The Enzyme Database

Displaying entries 101-150 of 1240.

<< Previous | Next >>    printer_iconPrintable version

EC 2.4.1.270     Relevance: 100%
Accepted name: mannosylglucosyl-3-phosphoglycerate synthase
Reaction: GDP-mannose + 2-O-(α-D-glucopyranosyl)-3-phospho-D-glycerate = GDP + 2-O-[2-O-(α-D-mannopyranosyl)-α-D-glucopyranosyl]-3-phospho-D-glycerate
Other name(s): MggA
Systematic name: GDP-mannose:2-O-(α-D-glucosyl)-3-phospho-D-glycerate 2-O-α-D-mannosyltransferase
Comments: The enzyme is involved in synthesis of 2-[2-O-(α-D-mannopranosyl)-α-D-glucopyranosyl]-D-glycerate. Petrotoga miotherma and Petrotoga mobilis accumulate this compound in response to water stress imposed by salt.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fernandes, C., Mendes, V., Costa, J., Empadinhas, N., Jorge, C., Lamosa, P., Santos, H. and da Costa, M.S. Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis. J. Bacteriol. 192 (2010) 1624–1633. [DOI] [PMID: 20061481]
[EC 2.4.1.270 created 2011]
 
 
EC 3.2.1.122     Relevance: 99.7%
Accepted name: maltose-6′-phosphate glucosidase
Reaction: α-maltose 6′-phosphate + H2O = D-glucose + D-glucose 6-phosphate
Other name(s): phospho-α-glucosidase; maltose-6′-phosphate 6-phosphoglucohydrolase
Systematic name: α-maltose-6′-phosphate 6-phosphoglucohydrolase
Comments: Hydrolyses a variety of 6-phospho-α-D-glucosides, including α-maltose 6′-phosphate, α,α-trehalose 6-phosphate, sucrose 6-phosphate and p-nitrophenyl-α-D-glucopyranoside 6-phosphate (as a chromogenic substrate). The enzyme is activated by FeII, MnII, CoII and NiII. It is rapidly inactivated in air.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 98445-08-0
References:
1.  Thompson, J., Gentry-Weeks, C.R., Nguyen, N.Y., Folk, J.E., Robrish, S.A. Purification from Fusobacterium mortiferum ATCC 25557 of a 6-phosphoryl-O-α-D-glucopyranosyl:6-phosphoglucohydrolase that hydrolyses maltose 6-phosphate and related phospho-α-D-glucosides. J. Bacteriol. 177 (1995) 2505–2512. [DOI] [PMID: 7730284]
[EC 3.2.1.122 created 1989, modified 1999]
 
 
EC 2.4.99.3      
Transferred entry: α-N-acetylgalactosaminide α-2,6-sialyltransferase. Now EC 2.4.3.3, α-N-acetylgalactosaminide α-2,6-sialyltransferase
[EC 2.4.99.3 created 1984, modified 1986, deleted 2022]
 
 
EC 3.2.1.131     Relevance: 99.5%
Accepted name: xylan α-1,2-glucuronosidase
Reaction: Hydrolysis of (1→2)-α-D-(4-O-methyl)glucuronosyl links in the main chain of hardwood xylans
Other name(s): 1,2-α-glucuronidase; α-(1→2)-glucuronidase; xylan α-D-1,2-(4-O-methyl)glucuronohydrolase
Systematic name: xylan 2-α-D-(4-O-methyl)glucuronohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 114921-73-2
References:
1.  Ishihara, M. and Shimizu, K. α-(1→2)-Glucuronidase in the enzymatic saccharification of hardwood xylan .1. Screening of α-glucuronidase producing fungi. Mokuzai Gakkaishi 34 (1988) 58–64.
[EC 3.2.1.131 created 1990]
 
 
EC 2.4.1.308     Relevance: 99.4%
Accepted name: GDP-Fuc:β-D-Gal-1,3-α-D-GalNAc-1,3-α-GalNAc-diphosphoundecaprenol α-1,2-fucosyltransferase
Reaction: GDP-β-L-fucose + β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol = GDP + α-L-Fuc-(1→2)-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbnK
Systematic name: GDP-β-L-fucose:β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol α-1,2-fucosyltransferase
Comments: The enzyme is involved in the biosynthesis of the O-polysaccharide repeating unit of the bacterium Escherichia coli serotype O86.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yi, W., Shao, J., Zhu, L., Li, M., Singh, M., Lu, Y., Lin, S., Li, H., Ryu, K., Shen, J., Guo, H., Yao, Q., Bush, C.A. and Wang, P.G. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J. Am. Chem. Soc. 127 (2005) 2040–2041. [DOI] [PMID: 15713070]
2.  Woodward, R., Yi, W., Li, L., Zhao, G., Eguchi, H., Sridhar, P.R., Guo, H., Song, J.K., Motari, E., Cai, L., Kelleher, P., Liu, X., Han, W., Zhang, W., Ding, Y., Li, M. and Wang, P.G. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6 (2010) 418–423. [DOI] [PMID: 20418877]
[EC 2.4.1.308 created 2013]
 
 
EC 2.4.1.19     Relevance: 99.4%
Accepted name: cyclomaltodextrin glucanotransferase
Reaction: Cyclizes part of a (1→4)-α-D-glucan chain by formation of a (1→4)-α-D-glucosidic bond
For diagram of glycoprotein biosynthesis, click here
Other name(s): Bacillus macerans amylase; cyclodextrin glucanotransferase; α-cyclodextrin glucanotransferase; α-cyclodextrin glycosyltransferase; β-cyclodextrin glucanotransferase; β-cyclodextrin glycosyltransferase; γ-cyclodextrin glycosyltransferase; cyclodextrin glycosyltransferase; cyclomaltodextrin glucotransferase; cyclomaltodextrin glycosyltransferase; konchizaimu; α-1,4-glucan 4-glycosyltransferase, cyclizing; BMA; CGTase; neutral-cyclodextrin glycosyltransferase; 1,4-α-D-glucan 4-α-D-(1,4-α-D-glucano)-transferase (cyclizing)
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan 4-α-D-[(1→4)-α-D-glucano]-transferase (cyclizing)
Comments: Cyclomaltodextrins (Schardinger dextrins) of various sizes (6,7,8, etc. glucose units) are formed reversibly from starch and similar substrates. Will also disproportionate linear maltodextrins without cyclizing (cf. EC 2.4.1.25, 4-α-glucanotransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-09-5
References:
1.  DePinto, J.A. and Campbell, L.L. Purification and properties of the amylase of Bacillus macerans. Biochemistry 7 (1968) 114–120. [PMID: 5758537]
2.  French, D., Levine, M.L., Norberg, E., Norden, P., Pazur, J.H. and Wild, G.M. Studies on the Schardinger dextrins. VII. Co-substrate specificity in coupling reactions of Macerans amylase. J. Am. Chem. Soc. 76 (1954) 2387–2390.
3.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
4.  Schwimmer, S. Evidence for the purity of Schardinger dextrinogenase. Arch. Biochem. Biophys. 43 (1953) 108–117. [DOI] [PMID: 13031665]
[EC 2.4.1.19 created 1961]
 
 
EC 3.4.21.12     Relevance: 99.3%
Accepted name: α-lytic endopeptidase
Reaction: Preferential cleavage: Ala┼, Val┼ in bacterial cell walls, elastin and other proteins
Other name(s): myxobacter α-lytic proteinase; α-lytic proteinase; α-lytic protease; Mycobacterium sorangium α-lytic proteinase; Myxobacter 495 α-lytic proteinase; Myxobacter α-lytic proteinase
Comments: From the myxobacterium Lysobacter enzymogenes. In peptidase family S1 (trypsin family)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, MEROPS, PDB, CAS registry number: 37288-76-9
References:
1.  Olson, M.O.J., Nagabushan, N., Dzwiniel, M., Smillie, L.B. and Whitaker, D.R. Primary structure of α-lytic protease: a bacterial homologue of the pancreatic serine proteases. Nature 228 (1970) 438–442. [PMID: 5482494]
2.  Polgár, L. Structure and function of serine proteases. In: Neuberger, A. and Brocklehurst, K. (Ed.), New Comprehensive Biochemistry: Hydrolytic Enzymes, vol. 16, Elsevier, Amsterdam, 1987, pp. 159–200.
3.  Epstein, D.M. and Wensink, P.C. The α-lytic protease gene of Lysobacter enzymogenes. The nucleotide sequence predicts a large prepro-peptide with homology to pro-peptides of other chymotrypsin-like enzymes. J. Biol. Chem. 263 (1988) 16586–16590. [PMID: 3053694]
4.  Bone, R., Frank, D., Kettner, C.A. and Agard, D.A. Structural analysis of specificity: α-lytic protease complexes with analogues of reaction intermediates. Biochemistry 28 (1989) 7600–7609. [PMID: 2611204]
[EC 3.4.21.12 created 1972]
 
 
EC 3.2.1.204     Relevance: 99.3%
Accepted name: 1,3-α-isomaltosidase
Reaction: cyclobis-(1→6)-α-nigerosyl + 2 H2O = 2 isomaltose (overall reaction)
(1a) cyclobis-(1→6)-α-nigerosyl + H2O = α-isomaltosyl-(1→3)-isomaltose
(1b) α-isomaltosyl-(1→3)-isomaltose + H2O = 2 isomaltose
Systematic name: 1,3-α-isomaltohydrolase (configuration-retaining)
Comments: The enzyme, characterized from the bacteria Bacillus sp. NRRL B-21195 and Kribbella flavida, participates in the degradation of starch. The cyclic tetrasaccharide cyclobis-(1→6)-α-nigerosyl is formed from starch extracellularly and imported into the cell, where it is degraded to glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kim, Y.K., Kitaoka, M., Hayashi, K., Kim, C.H. and Cote, G.L. Purification and characterization of an intracellular cycloalternan-degrading enzyme from Bacillus sp. NRRL B-21195. Carbohydr. Res. 339 (2004) 1179–1184. [DOI] [PMID: 15063208]
2.  Tagami, T., Miyano, E., Sadahiro, J., Okuyama, M., Iwasaki, T. and Kimura, A. Two novel glycoside hydrolases responsible for the catabolism of cyclobis-(1→6)-α-nigerosyl. J. Biol. Chem. 291 (2016) 16438–16447. [DOI] [PMID: 27302067]
[EC 3.2.1.204 created 2017]
 
 
EC 3.2.1.40     Relevance: 99.2%
Accepted name: α-L-rhamnosidase
Reaction: Hydrolysis of terminal non-reducing α-L-rhamnose residues in α-L-rhamnosides
Other name(s): α-L-rhamnosidase T; α-L-rhamnosidase N
Systematic name: α-L-rhamnoside rhamnohydrolase
Comments: The enzyme, found in animal tissues, plants, yeasts, fungi and bacteria, utilizes an inverting mechanism of hydrolysis, releasing β-L-rhamnose. Substrates include naringin, rutin, quercitrin, hesperidin, dioscin, terpenyl glycosides and many other natural glycosides containing terminal α-L-rhamnose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-35-0
References:
1.  Rosenfeld, E. and Wiederschein, G. The metabolism of L-rhamnose in animal tissues. Bull. Soc. Chim. Biol. 47 (1965) 1433–1440. [PMID: 5855461]
2.  Kurosawa, Y., Ikeda, K. and Egami, F. α-L-rhamnosidases of the liver of Turbo cornutus and Aspergillus niger. J. Biochem. 73 (1973) 31–37. [PMID: 4632197]
3.  Zverlov, V.V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J. and Schwarz, W.H. The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol. Microbiol. 35 (2000) 173–179. [DOI] [PMID: 10632887]
4.  Yanai, T. and Sato, M. Purification and characterization of an α-L-rhamnosidase from Pichia angusta X349. Biosci. Biotechnol. Biochem. 64 (2000) 2179–2185. [DOI] [PMID: 11129592]
5.  Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W. and Murata, K. Crystal structure of glycoside hydrolase family 78 α-L-Rhamnosidase from Bacillus sp. GL1. J. Mol. Biol. 374 (2007) 384–398. [DOI] [PMID: 17936784]
6.  Rabausch, U., Ilmberger, N. and Streit, W.R. The metagenome-derived enzyme RhaB opens a new subclass of bacterial B type α-L-rhamnosidases. J. Biotechnol. 191 (2014) 38–45. [DOI] [PMID: 24815685]
[EC 3.2.1.40 created 1972]
 
 
EC 5.4.99.40     Relevance: 99.2%
Accepted name: α-amyrin synthase
Reaction: (3S)-2,3-epoxy-2,3-dihydrosqualene = α-amyrin
For diagram of α-amyrin, α-seco-amyrin and germanicol biosynthesis, click here
Other name(s): 2,3-oxidosqualene α-amyrin cyclase; mixed amyrin synthase
Systematic name: (3S)-2,3-epoxy-2,3-dihydrosqualene mutase (cyclizing, α-amyrin-forming)
Comments: A multifunctional enzyme which produces both α- and β-amyrin (see EC 5.4.99.39, β-amyrin synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Morita, M., Shibuya, M., Kushiro, T., Masuda, K. and Ebizuka, Y. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) new α-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267 (2000) 3453–3460. [DOI] [PMID: 10848960]
[EC 5.4.99.40 created 2011]
 
 
EC 4.2.3.81     Relevance: 99.2%
Accepted name: exo-α-bergamotene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-exo-α-bergamotene + diphosphate
For diagram of santalene and bergamotene biosynthesis, click here
Glossary: (-)-exo-α-bergamotene = (-)-trans-α-bergamotene = (1S,5S,6R)-2,6-dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]hept-2-ene
Other name(s): trans-α-bergamotene synthase; LaBERS (gene name)
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (-)-exo-α-bergamotene-forming)
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2E,6E)-farnesyl diphosphate. As well as (-)-exo-α-bergamotene (74%) there were (E)-nerolidol (10%), (Z)-α-bisabolene (6%), (E)-β-farnesene (5%) and β-sesquiphellandrene (1%).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schnee, C., Kollner, T.G., Held, M., Turlings, T.C., Gershenzon, J. and Degenhardt, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 103 (2006) 1129–1134. [DOI] [PMID: 16418295]
2.  Landmann, C., Fink, B., Festner, M., Dregus, M., Engel, K.H. and Schwab, W. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys. 465 (2007) 417–429. [DOI] [PMID: 17662687]
[EC 4.2.3.81 created 2011]
 
 
EC 2.4.1.343     Relevance: 99.1%
Accepted name: UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol α-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-Gal-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): wclR (gene name)
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-galactosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the the biosynthesis of the O-antigen repeating unit of Escherichia coli O3. Requires a divalent metal ion (Mn2+, Mg2+ or Fe2+). cf. EC 2.4.1.303, UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol β-1,3-galactosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chen, C., Liu, B., Xu, Y., Utkina, N., Zhou, D., Danilov, L., Torgov, V., Veselovsky, V. and Feng, L. Biochemical characterization of the novel α-1, 3-galactosyltransferase WclR from Escherichia coli O3. Carbohydr. Res. 430 (2016) 36–43. [DOI] [PMID: 27196310]
[EC 2.4.1.343 created 2017]
 
 
EC 4.2.3.90     Relevance: 98.9%
Accepted name: 5-epi-α-selinene synthase
Reaction: (2E,6E)-farnesyl diphosphate = 5-epi-α-selinene + diphosphate
For diagram of eudesmol and selinene biosynthesis, click here
Glossary: 5-epi-α-selinene = 5β-eudesma-3,11-diene = (2R,4aR,8aS)-1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl-2-(prop-1-en-2-yl)naphthalene
[= 8a-epi-α-selinene which uses naththalene numbering not eudesmane]
Other name(s): 8a-epi-α-selinene synthase; NP1
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 5-epi-α-selinene-forming)
Comments: Requires Mg2+. The enzyme forms 5-epi-α-selinene possibly via germecrene A or a 1,6-hydride shift mechanism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Agger, S.A., Lopez-Gallego, F., Hoye, T.R. and Schmidt-Dannert, C. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. J. Bacteriol. 190 (2008) 6084–6096. [DOI] [PMID: 18658271]
[EC 4.2.3.90 created 2011]
 
 
EC 2.4.99.24     Relevance: 98.9%
Accepted name: lipopolysaccharide heptosyltransferase II
Reaction: ADP-L-glycero-β-D-manno-heptose + an α-Hep-(1→5)-[α-Kdo-(2→4)]-α-Kdo-(2→6)-[lipid A] = ADP + an α-Hep-(1→3)-α-Hep-(1→5)-[α-Kdo-(2→4)]-α-Kdo-(2→6)-[lipid A]
Glossary: Lipid A is a lipid component of the lipopolysaccharides (LPS) of Gram-negative bacteria. It consists of two glucosamine units connected by a β(1→6) bond and decorated with four to seven acyl chains and up to two phosphate groups.
Hep = L-glycero-D-manno-heptose
Other name(s): HepII; rfaF (gene name); WaaF; heptosyltransferase II
Systematic name: ADP-L-glycero-β-D-manno-heptose:an α-L-glycero-D-manno-heptosyl-(1→5)-[α-Kdo-(2→4)]-α -Kdo-(2→6)-[lipid A] 3-α-heptosyltransferase
Comments: The enzyme catalyses a glycosylation step in the biosynthesis of the inner core oligosaccharide of the lipopolysaccharide (endotoxin) of some Gram-negative bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Allen, A.G., Isobe, T. and Maskell, D.J. Identification and cloning of waaF (rfaF) from Bordetella pertussis and use to generate mutants of Bordetella spp. with deep rough lipopolysaccharide. J. Bacteriol. 180 (1998) 35–40. [DOI] [PMID: 9422589]
2.  Bauer, B.A., Lumbley, S.R. and Hansen, E.J. Characterization of a WaaF (RfaF) homolog expressed by Haemophilus ducreyi. Infect. Immun. 67 (1999) 899–907. [DOI] [PMID: 9916106]
3.  Gronow, S., Brabetz, W. and Brade, H. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267 (2000) 6602–6611. [DOI] [PMID: 11054112]
4.  Gronow, S., Oertelt, C., Ervela, E., Zamyatina, A., Kosma, P., Skurnik, M. and Holst, O. Characterization of the physiological substrate for lipopolysaccharide heptosyltransferases I and II. J Endotoxin Res 7 (2001) 263–270. [PMID: 11717579]
5.  Oldfield, N.J., Moran, A.P., Millar, L.A., Prendergast, M.M. and Ketley, J.M. Characterization of the Campylobacter jejuni heptosyltransferase II gene, waaF, provides genetic evidence that extracellular polysaccharide is lipid A core independent. J. Bacteriol. 184 (2002) 2100–2107. [DOI] [PMID: 11914340]
[EC 2.4.99.24 created 2022]
 
 
EC 2.4.1.307      
Deleted entry: UDP-Gal:α-D-GalNAc-1,3-α-D-GalNAc-diphosphoundecaprenol β-1,3-galactosyltransferase. Now included in EC 2.4.1.122, glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase
[EC 2.4.1.307 created 2013, deleted 2016]
 
 
EC 5.1.3.23     Relevance: 98.6%
Accepted name: UDP-2,3-diacetamido-2,3-dideoxyglucuronic acid 2-epimerase
Reaction: UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate = UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronate
For diagram of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronate biosynthesis, click here
Glossary: UDP-α-D-GlcNAc3NAcA = UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid
UDP-α-D-ManNAc3NAcA = UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid
Other name(s): UDP-GlcNAc3NAcA 2-epimerase; UDP-α-D-GlcNAc3NAcA 2-epimerase; 2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerase; WbpI; WlbD
Systematic name: 2,3-diacetamido-2,3-dideoxy-α-D-glucuronate 2-epimerase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of the B-band lipopolysaccharide of Pseudomonas aeroginosa serotype O5 and of the band-A trisaccharide of Bordetella pertussis, both important respiratory pathogens [1]. The enzyme is highly specific as UDP-α-D-GlcNAc, UDP-α-D-GlcNAcA (UDP-2-acetamido-2-deoxy-α-D-glucuronic acid) and UDP-α-D-GlcNAc3NAc (UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucose) cannot act as substrates [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Westman, E.L., McNally, D.J., Rejzek, M., Miller, W.L., Kannathasan, V.S., Preston, A., Maskell, D.J., Field, R.A., Brisson, J.R. and Lam, J.S. Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerases from respiratory pathogens. Biochem. J. 405 (2007) 123–130. [DOI] [PMID: 17346239]
2.  Westman, E.L., McNally, D.J., Rejzek, M., Miller, W.L., Kannathasan, V.S., Preston, A., Maskell, D.J., Field, R.A., Brisson, J.R. and Lam, J.S. Erratum report: Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerases from respiratory pathogens. Biochem. J. 405 (2007) 625.
3.  Sri Kannathasan, V., Staines, A.G., Dong, C.J., Field, R.A., Preston, A.G., Maskell, D.J. and Naismith, J.H. Overexpression, purification, crystallization and data collection on the Bordetella pertussis wlbD gene product, a putative UDP-GlcNAc 2′-epimerase. Acta Crystallogr. D Biol. Crystallogr. 57 (2001) 1310–1312. [PMID: 11526328]
[EC 5.1.3.23 created 2007]
 
 
EC 2.4.3.3     Relevance: 98.6%
Accepted name: α-N-acetylgalactosaminide α-2,6-sialyltransferase
Reaction: CMP-N-acetylneuraminate + glycano-(1→3)-(N-acetyl-α-D-galactosaminyl)-glycoprotein = CMP + glycano-[(2→6)-α-N-acetylneuraminyl]-(N-acetyl-D-galactosaminyl)-glycoprotein
Systematic name: CMP-N-acetylneuraminate:glycano-1,3-(N-acetyl-α-D-galactosaminyl)-glycoprotein α-2,6-N-acetylneuraminyltransferase
Comments: N-acetyl-α-D-galactosamine linked to threonine or serine is also an acceptor, when substituted at the 3-position.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71124-50-0
References:
1.  Sadler, J.E., Rearick, J.I. and Hill, R.L. Purification to homogeneity and enzymatic characterization of an α-N-acetylgalactosaminide α2→6 sialyltransferase from porcine submaxillary glands. J. Biol. Chem. 254 (1979) 5934–5941. [PMID: 447688]
[EC 2.4.3.3 created 1984 as EC 2.4.99.3, modified 1986, transferred 2022 to EC 2.4.3.3]
 
 
EC 2.4.1.264     Relevance: 98.4%
Accepted name: D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-GlcA-(1→2)-α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol
For diagram of xanthan biosynthesis, click here
Other name(s): GumK; UDP-glucuronate:D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronyltransferase; D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronyltransferase
Systematic name: UDP-α-D-glucuronate:α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme is involved in the biosynthesis of the exopolysaccharides xanthan (in the bacterium Xanthomonas campestris) and acetan (in the bacterium Gluconacetobacter xylinus).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A. and Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180 (1998) 1607–1617. [PMID: 9537354]
2.  Ielpi, L., Couso, R.O. and Dankert, M.A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175 (1993) 2490–2500. [DOI] [PMID: 7683019]
3.  Kim, S.Y., Kim, J.G., Lee, B.M. and Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 31 (2009) 265–270. [DOI] [PMID: 18854951]
4.  Barreras, M., Bianchet, M.A. and Ielpi, L. Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 (2006) 880–883. [DOI] [PMID: 16946469]
5.  Barreras, M., Salinas, S.R., Abdian, P.L., Kampel, M.A. and Ielpi, L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J. Biol. Chem. 283 (2008) 25027–25035. [DOI] [PMID: 18596046]
6.  Vojnov, A.A., Bassi, D.E., Daniels, M.J. and Dankert, M.A. Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonas campestris. Carbohydr. Res. 337 (2002) 315–326. [DOI] [PMID: 11841812]
7.  Barreras, M., Abdian, P.L. and Ielpi, L. Functional characterization of GumK, a membrane-associated β-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Glycobiology 14 (2004) 233–241. [DOI] [PMID: 14736729]
[EC 2.4.1.264 created 2011, modified 2016]
 
 
EC 1.1.1.187     Relevance: 98.2%
Accepted name: GDP-4-dehydro-D-rhamnose reductase
Reaction: (1) GDP-α-D-rhamnose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+
(2) GDP-6-deoxy-α-D-talose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+
For diagram of gdp-l-fucose and GDP-mannose biosynthesis, click here
Glossary: GDP-α-D-rhamnose = GDP-6-deoxy-α-D-mannose
GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
GDP-6-deoxy-α-D-talose = GDP-α-D-pneumose
Other name(s): GDP-4-keto-6-deoxy-D-mannose reductase; GDP-4-keto-D-rhamnose reductase; guanosine diphosphate-4-keto-D-rhamnose reductase; GDP-6-deoxy-D-mannose:NAD(P)+ 4-oxidoreductase; GDP-6-deoxy-α-D-mannose:NAD(P)+ 4-oxidoreductase
Systematic name: GDP-4-dehydro-α-D-rhamnose:NAD(P)+ 4-oxidoreductase
Comments: The enzyme, which operates in the opposite direction to that shown, forms a mixture of GDP-α-D-rhamnose and its C-4 epimer, GDP-6-deoxy-α-D-talose. cf. EC 1.1.1.281, GDP-4-dehydro-6-deoxy-D-mannose reductase and EC 1.1.1.135, GDP-6-deoxy-D-talose 4-dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-56-3
References:
1.  Barber, G.A. The synthesis of guanosine 5′-diphosphate D-rhamnose by enzymes of a higher plant. Biochim. Biophys. Acta 165 (1968) 68–75. [DOI] [PMID: 4386238]
2.  Winkler, N.W. and Markovitz, A. Guanosine diphosphate-4-keto-D-rhamnose reductase. A non-stereoselective enzyme. J. Biol. Chem. 246 (1971) 5868–5876. [PMID: 4398966]
[EC 1.1.1.187 created 1984]
 
 
EC 3.2.1.129     Relevance: 98.2%
Accepted name: endo-α-sialidase
Reaction: Endohydrolysis of (2→8)-α-sialosyl linkages in oligo- or poly(sialic) acids
Other name(s): endo-N-acylneuraminidase; endoneuraminidase; endo-N-acetylneuraminidase; poly(α-2,8-sialosyl) endo-N-acetylneuraminidase; poly(α-2,8-sialoside) α-2,8-sialosylhydrolase; endosialidase; endo-N
Systematic name: polysialoside (2→8)-α-sialosylhydrolase
Comments: Although the name endo-N-acetylneuraminidase has also been used for this enzyme, this is misleading since its activity is not restricted to acetylated substrates. An exo-α-sialidase activity is listed as EC 3.2.1.18 exo-α-sialidase. See also EC 4.2.2.15 anhydrosialidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 91195-87-8
References:
1.  Finne, J., Mäkelä, P.H. Cleavage of the polysialosyl units of brain glycoproteins by a bacteriophage endosialidase. Involvement of a long oligosaccharide segment in molecular interactions of polysialic acid. J. Biol. Chem. 260 (1985) 1265–1270. [PMID: 3968060]
2.  Hallenbeck, P.C., Vimr, E.R., Yu, F., Bassler, B. and Troy, F.A. Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-α-2,8-sialosyl carbohydrate units. J. Biol. Chem. 262 (1987) 3553–3561. [PMID: 3546309]
3.  Kitakima, K., Inoue, S., Inoue, Y. and Troy, F.A. Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies. J. Biol. Chem. 263 (1988) 18269–18276. [PMID: 3142874]
4.  Kwiatkowski, B., Boscheck, B., Thicle, H. and Stirm, S. Endo-N-acetylneuraminidase associated with bacteriophage particles. J. Virol. 43 (1982) 697–704. [PMID: 7109038]
5.  Pelkonen, S., Pelkonen, J. and Finne, J. Common cleavage pattern of polysialic acid by bacteriophage endosialidases of different properties and origins. J. Virol. 65 (1989) 4409–4416. [PMID: 2778882]
6.  Tombinson, S. and Taylor, P.W. Neuraminidase associated with coliphage E that specifically depolymerizes the Escherichia coli K1 capsular polysaccharide. J. Virol. 55 (1985) 374–378. [PMID: 3894684]
7.  Cabezas, J.A. Some questions and suggestions on the type references of the official nomenclature (IUB) for sialidase(s) and endosialidase. Biochem. J. 278 (1991) 311–312. [PMID: 1883340]
[EC 3.2.1.129 created 1990, modified 1999]
 
 
EC 2.4.1.291     Relevance: 98.1%
Accepted name: N-acetylgalactosamine-N,N′-diacetylbacillosaminyl-diphospho-undecaprenol 4-α-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol = UDP + N-acetyl-D-galactosaminyl-α-(1→4)-N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglJ
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetylgalactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol 3-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [DOI] [PMID: 16186480]
2.  Chen, M.M., Weerapana, E., Ciepichal, E., Stupak, J., Reid, C.W., Swiezewska, E. and Imperiali, B. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 46 (2007) 14342–14348. [DOI] [PMID: 18034500]
[EC 2.4.1.291 created 2012]
 
 
EC 2.3.1.108     Relevance: 98%
Accepted name: α-tubulin N-acetyltransferase
Reaction: acetyl-CoA + [α-tubulin]-L-lysine = CoA + [α-tubulin]-N6-acetyl-L-lysine
Other name(s): ATAT1 (gene name); MEC17 (gene name); α-tubulin acetylase; TAT; α-tubulin acetyltransferase; tubulin N-acetyltransferase (ambiguous); acetyl-CoA:α-tubulin-L-lysine N-acetyltransferase; acetyl-CoA:[α-tubulin]-L-lysine 6-N-acetyltransferase
Systematic name: acetyl-CoA:[α-tubulin]-L-lysine N6-acetyltransferase
Comments: The enzyme is conserved from protists to mammals and is present in flowering plants. In most organisms it acetylates L-lysine at position 40 of α-tubulin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 99889-90-4
References:
1.  Greer, K., Maruta, H., L'Hernault, S.W. and Rosenbaum, J.L. α-Tubulin acetylase activity in isolated Chlamydomonas flagella. J. Cell Biol. 101 (1985) 2081–2084. [PMID: 4066751]
2.  Akella, J.S., Wloga, D., Kim, J., Starostina, N.G., Lyons-Abbott, S., Morrissette, N.S., Dougan, S.T., Kipreos, E.T. and Gaertig, J. MEC-17 is an α-tubulin acetyltransferase. Nature 467 (2010) 218–222. [DOI] [PMID: 20829795]
3.  Shida, T., Cueva, J.G., Xu, Z., Goodman, M.B. and Nachury, M.V. The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl. Acad. Sci. USA 107 (2010) 21517–21522. [DOI] [PMID: 21068373]
4.  Taschner, M., Vetter, M. and Lorentzen, E. Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA. Proc. Natl. Acad. Sci. USA 109 (2012) 19649–19654. [DOI] [PMID: 23071318]
5.  Friedmann, D.R., Aguilar, A., Fan, J., Nachury, M.V. and Marmorstein, R. Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proc. Natl. Acad. Sci. USA 109 (2012) 19655–19660. [DOI] [PMID: 23071314]
6.  Kalebic, N., Sorrentino, S., Perlas, E., Bolasco, G., Martinez, C. and Heppenstall, P.A. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat. Commun. 4:1962 (2013). [DOI] [PMID: 23748901]
[EC 2.3.1.108 created 1989, modified 2021]
 
 
EC 1.14.13.155     Relevance: 97.9%
Accepted name: α-pinene monooxygenase
Reaction: (–)-α-pinene + NADH + H+ + O2 = α-pinene oxide + NAD+ + H2O
For diagram of pinene and related monoterpenoids, click here
Systematic name: (–)-α-pinene,NADH:oxygen oxidoreductase
Comments: Involved in the catabolism of α-pinene.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Colocousi, A. Saqib, K.M. and Leak, D.J. Mutants of Pseudomonas fuorescence NCIMB 11671 defective in the catabolism of α-pinene. Appl. Microbiol. Biotechnol. 45 (1996) 822–830.
[EC 1.14.13.155 created 2012]
 
 
EC 1.1.1.426     Relevance: 97.7%
Accepted name: UDP-N-acetyl-α-D-quinovosamine dehydrogenase
Reaction: UDP-N-acetyl-α-D-quinovosamine + NAD(P)+ = UDP-2-acetamido-2,6-dideoxy-α-D-xylohex-4-ulose + NAD(P)H + H+
Glossary: UDP-N-acetyl-α-D-quinovosamine = UDP-N-acetyl-6-deoxy-α-D-glucosamine
Other name(s): wbpV (gene name); wreQ (gene name)
Systematic name: UDP-N-acetyl-α-D-quinovosamine:NAD(P)+ 4-dehydrogenase
Comments: The enzyme participates in the biosynthesis of N-acetyl-α-D-quinovosamine, a 6-deoxy sugar that is present in the O antigens of many Gram-negative bacteria, including Pseudomonas aeruginosa serotypes O6 and O10, Rhizobium etli, and Brucella abortus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Belanger, M., Burrows, L.L. and Lam, J.S. Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology (Reading) 145 (1999) 3505–3521. [DOI] [PMID: 10627048]
2.  Forsberg, L.S., Noel, K.D., Box, J. and Carlson, R.W. Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. J. Biol. Chem. 278 (2003) 51347–51359. [DOI] [PMID: 14551189]
3.  Li, T., Simonds, L., Kovrigin, E.L. and Noel, K.D. In vitro biosynthesis and chemical identification of UDP-N-acetyl-D-quinovosamine (UDP-D-QuiNAc). J. Biol. Chem. 289 (2014) 18110–18120. [DOI] [PMID: 24817117]
[EC 1.1.1.426 created 2021]
 
 
EC 3.2.1.98     Relevance: 97.5%
Accepted name: glucan 1,4-α-maltohexaosidase
Reaction: Hydrolysis of (1→4)-α-D-glucosidic linkages in amylaceous polysaccharides, to remove successive maltohexaose residues from the non-reducing chain ends
Other name(s): exo-maltohexaohydrolase; 1,4-α-D-glucan maltohexaohydrolase
Systematic name: 4-α-D-glucan maltohexaohydrolase
Comments: cf. EC 3.2.1.3 glucan 1,4-α-glucosidase, which removes successive glucose residues; EC 3.2.1.2 β-amylase, which removes successive maltose residues; EC 3.2.1.116 glucan 1,4-α-maltotriohydrolase, which removes successive maltotriose units and EC 3.2.1.60 glucan 1,4-α-maltotetraohydrolase, which removes successive maltotetraose residues. The products have the α-configuration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72561-12-7
References:
1.  Kainuma, K., Wako, K., Kobayashi, A., Nogami, A. and Suzuki, S. Purification and some properties of a novel maltohexaose-producing exo-amylase from Aerobacter aerogenes. Biochim. Biophys. Acta 410 (1975) 333–346. [DOI] [PMID: 1094]
2.  Nakakuki, T., Azuma, K. and Kainuma, K. Action patterns of various exo-amylases and the anomeric configurations of their products. Carbohydr. Res. 128 (1984) 297–310.
[EC 3.2.1.98 created 1978]
 
 
EC 2.4.1.18     Relevance: 97.4%
Accepted name: 1,4-α-glucan branching enzyme
Reaction: Transfers a segment of a (1→4)-α-D-glucan chain to a primary hydroxy group in a similar glucan chain
Other name(s): branching enzyme; amylo-(1,4→1,6)-transglycosylase; Q-enzyme; α-glucan-branching glycosyltransferase; amylose isomerase; enzymatic branching factor; branching glycosyltransferase; enzyme Q; glucosan transglycosylase; glycogen branching enzyme; plant branching enzyme; α-1,4-glucan:α-1,4-glucan-6-glycosyltransferase; starch branching enzyme; 1,4-α-D-glucan:1,4-α-D-glucan 6-α-D-(1,4-α-D-glucano)-transferase
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan 6-α-D-[(1→4)-α-D-glucano]-transferase
Comments: Converts amylose into amylopectin. The accepted name requires a qualification depending on the product, glycogen or amylopectin, e.g. glycogen branching enzyme, amylopectin branching enzyme. The latter has frequently been termed Q-enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-97-2
References:
1.  Barker, S.A., Bourne, E. and Peat, S. The enzymic synthesis and degradation of starch. Part IV. The purification and storage of the Q-enzyme of the potato. J. Chem. Soc. (Lond.) (1949) 1705–1711.
2.  Baum, H. and Gilbert, G.A. A simple method for the preparation of crystalline potato phosphorylase and Q-enzyme. Nature 171 (1953) 983–984. [PMID: 13063502]
3.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
4.  Illingworth Brown, B. and Brown, D.H. α-1,4-Glucan:α-1,4-glucan 6-glycosyltransferase from mammalian muscle. Methods Enzymol. 8 (1966) 395–403.
[EC 2.4.1.18 created 1961]
 
 
EC 3.2.1.60     Relevance: 97.4%
Accepted name: glucan 1,4-α-maltotetraohydrolase
Reaction: Hydrolysis of (1→4)-α-D-glucosidic linkages in amylaceous polysaccharides, to remove successive maltotetraose residues from the non-reducing chain ends
Other name(s): exo-maltotetraohydrolase; 1,4-α-D-glucan maltotetraohydrolase
Systematic name: 4-α-D-glucan maltotetraohydrolase
Comments: Compare EC 3.2.1.2 β-amylase, which removes successive maltose residues, and EC 3.2.1.98 (glucan 1,4-α-maltohexaosidase) and EC 3.2.1.116 (glucan 1,4-α-maltotriohydrolase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-44-1
References:
1.  Nakakuki, T., Azuma, K. and Kainuma, K. Action patterns of various exo-amylases and the anomeric configurations of their products. Carbohydr. Res. 128 (1984) 297–310.
2.  Robyt, J.F. and Ackerman, R.J. Isolation, purification, and characterization of a maltotetraose-producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145 (1971) 105–114. [DOI] [PMID: 5123132]
[EC 3.2.1.60 created 1972]
 
 
EC 2.4.3.8     Relevance: 97.4%
Accepted name: α-N-acetylneuraminate α-2,8-sialyltransferase
Reaction: CMP-N-acetylneuraminate + α-N-acetylneuraminyl-(2→3)-β-D-galactosyl-R = CMP + α-N-acetylneuraminyl-(2→8)-α-N-acetylneuraminyl-(2→3)-β-D-galactosyl-R
For diagram of ganglioside biosynthesis (pathway to GD3), click here
Other name(s): cytidine monophosphoacetylneuraminate-ganglioside GM3; α-2,8-sialyltransferase; ganglioside GD3 synthase; ganglioside GD3 synthetase sialyltransferase; CMP-NeuAc:LM1(α2-8) sialyltranferase; GD3 synthase; SAT-2
Systematic name: CMP-N-acetylneuraminate:α-N-acetylneuraminyl-(2→3)-β-D-galactoside α-(2→8)-N-acetylneuraminyltransferase
Comments: Gangliosides act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67339-00-8
References:
1.  Eppler, M.C., Morré, J.D. and Keenan, T.W. Ganglioside biosynthesis in rat liver: alteration of sialyltransferase activities by nucleotides. Biochim. Biophys. Acta 619 (1980) 332–343. [DOI] [PMID: 7407217]
2.  Higashi, H., Basu, M. and Basu, S. Biosynthesis in vitro of disialosylneolactotetraosylceramide by a solubilized sialyltransferase from embryonic chicken brain. J. Biol. Chem. 260 (1985) 824–828. [PMID: 3838172]
3.  McCoy, R.D., Vimr, E.R. and Troy, F.A. CMP-NeuNAc:poly-α-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules. J. Biol. Chem. 260 (1985) 12695–12699. [PMID: 4044605]
4.  Yohe, H.C. and Yu, R.K. In vitro biosynthesis of an isomer of brain trisialoganglioside, GT1a. J. Biol. Chem. 255 (1980) 608–613. [PMID: 6766128]
[EC 2.4.3.8 created 1984 as EC 2.4.99.8, modified 1986, transferred 2022 to EC 2.4.3.8]
 
 
EC 2.4.99.8      
Transferred entry: α-N-acetylneuraminate α-2,8-sialyltransferase. Now EC 2.4.3.8, α-N-acetylneuraminate α-2,8-sialyltransferase
[EC 2.4.99.8 created 1984, modified 1986, deleted 2022]
 
 
EC 2.4.1.37     Relevance: 97.2%
Accepted name: fucosylgalactoside 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-fucosyl-(1→2)-D-galactosyl-R = UDP + α-D-galactosyl-(1→3)-[α-L-fucosyl(1→2)]-D-galactosyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): UDP-galactose:O-α-L-fucosyl(1→2)D-galactose α-D-galactosyltransferase; UDPgalactose:glycoprotein-α-L-fucosyl-(1,2)-D-galactose 3-α-D-galactosyltransferase; [blood group substance] α-galactosyltransferase; blood-group substance B-dependent galactosyltransferase; glycoprotein-fucosylgalactoside α-galactosyltransferase; histo-blood group B transferase; histo-blood substance B-dependent galactosyltransferase; UDP-galactose:α-L-fucosyl-1,2-D-galactoside 3-α-D-galactosyltransferase; UDP-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Comments: Acts on blood group substance, and can use a number of 2-fucosyl-galactosides as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37257-33-3
References:
1.  Race, C., Ziderman, D. and Watkins, W.M. An α-D-galactosyltransferase associated with the blood-group B character. Biochem. J. 107 (1968) 733–735. [PMID: 16742598]
[EC 2.4.1.37 created 1972, modified 1999, modified 2002]
 
 
EC 3.2.1.111     Relevance: 97.1%
Accepted name: 1,3-α-L-fucosidase
Reaction: Hydrolysis of (1→3)-linkages between α-L-fucose and N-acetylglucosamine residues in glycoproteins
Other name(s): almond emulsin fucosidase I
Systematic name: 3-α-L-fucosyl-N-acetylglucosaminyl-glycoprotein fucohydrolase
Comments: Not identical with EC 3.2.1.63 1,2-α-L-fucosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83061-50-1
References:
1.  Imber, M.J., Glasgow, L.R. and Pizzo, S.V. Purification of an almond emulsin fucosidase on Cibacron blue-sepharose and demonstration of its activity toward fucose-containing glycoproteins. J. Biol. Chem. 257 (1982) 8205–8210. [PMID: 7085666]
2.  Ogata-Arakawa, M., Muramatsu, T. and Kobata, A. α-L-Fucosidases from almond emulsin: characterization of the two enzymes with different specificities. Arch. Biochem. Biophys. 181 (1977) 353–358. [DOI] [PMID: 18111]
3.  Yoshima, H., Takasaki, S., Ito-Mega, S. and Kobata, A. Purification of almond emulsin α-L-fucosidase I by affinity chromatography. Arch. Biochem. Biophys. 194 (1979) 394–398. [DOI] [PMID: 443810]
[EC 3.2.1.111 created 1986]
 
 
EC 2.4.1.44     Relevance: 97%
Accepted name: lipopolysaccharide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + lipopolysaccharide = UDP + 3-α-D-galactosyl-[lipopolysaccharide glucose]
Other name(s): UDP-galactose:lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:polysaccharide galactosyltransferase; uridine diphosphate galactose:lipopolysaccharide α-3-galactosyltransferase; uridine diphosphogalactose-lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Comments: Transfers α-D-galactosyl residues to D-glucose in the partially completed core of lipopolysaccharide [cf. EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase), EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-98-7
References:
1.  Endo, A. and Rothfield, L. Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose: lipopolysaccharide α-3-galactosyl transferase. Biochemistry 8 (1969) 3500–3507. [PMID: 4898284]
2.  Wollin, R., Creeger, E.S., Rothfield, L.I., Stocker, B.A.D. and Lindberg, A.A. Salmonella typhimurium mutants defective in UDP-D-galactose:lipopolysaccharide α-1,6-D-galactosyltransferase. Structural, immunochemical, and enzymologic studies of rfaB mutants. J. Biol. Chem. 258 (1983) 3769–3774. [PMID: 6403519]
[EC 2.4.1.44 created 1972, modified 2002]
 
 
EC 2.4.1.101     Relevance: 97%
Accepted name: α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Man5GlcNAc2-[protein] = UDP + Man5GlcNAc3-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Glossary: Man5GlcNAc2-[protein] = α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Man5GlcNAc3-[protein]= β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT1 (gene name); N-acetylglucosaminyltransferase I; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase I; uridine diphosphoacetylglucosamine-α-1,3-mannosylglycoprotein β-1,2-N-acetylglucosaminyltransferase; UDP-N-acetylglucosaminyl:α-1,3-D-mannoside-β-1,2-N-acetylglucosaminyltransferase I; UDP-N-acetylglucosaminyl:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I; α-1,3-mannosyl-glycoprotein β-1,2-N-acetylglucosaminyltransferase; GnTI; GlcNAc-T I; UDP-N-acetyl-D-glucosamine:3-(α-D-mannosyl)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. Its action is required before the other N-acetylglucosaminyltransferases involved in the process (GlcNAcT-II through VI) can act. While the natural substrate (produced by EC 3.2.1.113, mannosyl-oligosaccharide 1,2-α-mannosidase) is described here, the minimal substrate recognized by the enzyme is α-D-Man-(1→3)-β-D-Man-R.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 102576-81-8
References:
1.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J. Biol. Chem. 255 (1980) 4885–4893. [PMID: 6445358]
2.  Mendicino, J., Chandrasekaran, E.V., Anumula, K.R. and Davila, M. Isolation and properties of α-D-mannose:β-1,2-N-acetylglucosaminyltransferase from trachea mucosa. Biochemistry 20 (1981) 967–976. [PMID: 6452163]
3.  Oppenheimer, C.L. and Hill, R.L. Purification and characterization of a rabbit liver α1→3 mannoside β1→2 N-acetylglucosaminyltransferase. J. Biol. Chem. 256 (1981) 799–804. [PMID: 6450208]
4.  Oppenheimer, C.L., Eckhardt, A.E. and Hill, R.L. The nonidentity of porcine N-acetylglucosaminyltransferases I and II. J. Biol. Chem. 256 (1981) 11477–11482. [PMID: 6457827]
5.  Miyagi, T. and Tsuiki, S. Studies on UDP-N-acetylglucosamine : α-mannoside β-N-acetylglucosaminyltransferase of rat liver and hepatomas. Biochim. Biophys. Acta 661 (1981) 148–157. [DOI] [PMID: 6170335]
6.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
7.  Vella, G.J., Paulsen, H. and Schachter, H. Control of glycoprotein synthesis. IX. A terminal Man alphal-3Man β1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: α-D-mannoside (GlcNAc to Man α1-3) β2-N-acetylglucosaminyltransferase I. Can. J. Biochem. Cell Biol. 62 (1984) 409–417. [PMID: 6235906]
8.  Unligil, U.M., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H. and Rini, J.M. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19 (2000) 5269–5280. [DOI] [PMID: 11032794]
[EC 2.4.1.101 created 1983, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.2.62     Relevance: 96.9%
Accepted name: xylosyl α-1,3-xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine = UDP + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine
Other name(s): XXYLT1 (gene name)
Systematic name: UDP-α-D-xylose:[EGF-like domain protein]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine 3-α-D-xylosyltransferase (configuration-retaining)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains. When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Minamida, S., Aoki, K., Natsuka, S., Omichi, K., Fukase, K., Kusumoto, S. and Hase, S. Detection of UDP-D-xylose: α-D-xyloside α 1-→3xylosyltransferase activity in human hepatoma cell line HepG2. J. Biochem. 120 (1996) 1002–1006. [PMID: 8982869]
2.  Sethi, M.K., Buettner, F.F., Ashikov, A., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R. and Bakker, H. Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J. Biol. Chem. 287 (2012) 2739–2748. [PMID: 22117070]
3.  Yu, H., Takeuchi, M., LeBarron, J., Kantharia, J., London, E., Bakker, H., Haltiwanger, R.S., Li, H. and Takeuchi, H. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat. Chem. Biol. 11 (2015) 847–854. [PMID: 26414444]
[EC 2.4.2.62 created 2020]
 
 
EC 3.1.1.43     Relevance: 96.8%
Accepted name: α-amino-acid esterase
Reaction: an α-amino acid ester + H2O = an α-amino acid + an alcohol
Other name(s): α-amino acid ester hydrolase
Systematic name: α-amino-acid-ester aminoacylhydrolase
Comments: Also catalyses α-aminoacyl transfer to a number of amine nucleophiles.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 74506-40-4
References:
1.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Purification of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1069–1074.
2.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Substrate specificity of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1075–1081.
3.  Takahashi, T., Yamazaki, Y. and Kato, K. Substrate specificity of an α-amino acid ester hydrolase produced by Acetobacter turbidans A. T.C.C. 9325. Biochem. J. 137 (1974) 497–503. [PMID: 4424889]
[EC 3.1.1.43 created 1983]
 
 
EC 2.4.1.306     Relevance: 96.7%
Accepted name: UDP-GalNAc:α-D-GalNAc-diphosphoundecaprenol α-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbnH
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol α-1,3-N-acetyl-D-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of Escherichia coli serotype O86.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Yi, W., Yao, Q., Zhang, Y., Motari, E., Lin, S. and Wang, P.G. The wbnH gene of Escherichia coli O86:H2 encodes an α-1,3-N-acetylgalactosaminyl transferase involved in the O-repeating unit biosynthesis. Biochem. Biophys. Res. Commun. 344 (2006) 631–639. [DOI] [PMID: 16630548]
[EC 2.4.1.306 created 2013]
 
 
EC 2.7.8.42     Relevance: 96.6%
Accepted name: Kdo2-lipid A phosphoethanolamine 7′′-transferase
Reaction: (1) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A
(2) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA
Glossary: lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): eptB (gene name)
Systematic name: diacylphosphatidylethanolamine:α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid-A 7′′-phosphoethanolaminetransferase
Comments: The enzyme has been characterized from the bacterium Escherichia coli. It is activated by Ca2+ ions and is silenced by the sRNA MgrR.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kanipes, M.I., Lin, S., Cotter, R.J. and Raetz, C.R. Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-D-manno-octulosonic acid moiety of Escherichia coli lipopolysaccharide. A novel membrane enzyme dependent upon phosphatidylethanolamine. J. Biol. Chem. 276 (2001) 1156–1163. [DOI] [PMID: 11042192]
2.  Reynolds, C.M., Kalb, S.R., Cotter, R.J. and Raetz, C.R. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J. Biol. Chem. 280 (2005) 21202–21211. [DOI] [PMID: 15795227]
3.  Moon, K., Six, D.A., Lee, H.J., Raetz, C.R. and Gottesman, S. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol. Microbiol. 89 (2013) 52–64. [DOI] [PMID: 23659637]
[EC 2.7.8.42 created 2015]
 
 
EC 3.2.1.115     Relevance: 96%
Accepted name: branched-dextran exo-1,2-α-glucosidase
Reaction: Hydrolysis of (1→2)-α-D-glucosidic linkages at the branch points of dextrans and related polysaccharides, producing free D-glucose
Other name(s): dextran 1,2-α-glucosidase; dextran α-1,2-debranching enzyme; 1,2-α-D-glucosyl-branched-dextran 2-glucohydrolase
Systematic name: (1→2)-α-D-glucosyl-branched-dextran 2-glucohydrolase
Comments: Has a much lower activity with kojibiose and kojitriose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72840-94-9
References:
1.  Kobayashi, M., Mitsuishi, Y., and Matsuda, K. Pronounced hydrolysis of highly branched dextrans with a new type of dextranase. Biochem. Biophys. Res. Commun. 80(2) (1978) 306–312. [DOI] [PMID: 623663]
2.  Mitsuishi, Y., Kobayashi, M. and Matsuda, K. Dextran α-1,2-debranching enzyme from Flavobacterium sp. M-73: its production and purification. Agric. Biol. Chem. 43 (1979) 2283–2290. [DOI]
3.  Mitsuishi, Y., Kobayashi, M. and Matsuda, K. Dextran α-(1→2)-debranching enzyme from Flavobacterium sp. M-73. Properties and mode of action. Carbohydr. Res. 83 (1980) 303–313. [DOI] [PMID: 7407800]
4.  Miyazaki, T., Tanaka, H., Nakamura, S., Dohra, H. and Funane, K. Identification and characterization of dextran α-1,2-debranching enzyme from Microbacterium dextranolyticum. J. Appl. Glycosci. (1999) 70 (2023) 15–24. [DOI] [PMID: 37033117]
[EC 3.2.1.115 created 1989, modified 2023]
 
 
EC 2.4.1.123     Relevance: 95.9%
Accepted name: inositol 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + myo-inositol = UDP + O-α-D-galactosyl-(1→3)-1D-myo-inositol
For diagram of stachyose biosynthesis, click here
Glossary: O-α-D-galactosyl-(1→3)-1D-myo-inositol = galactinol
Other name(s): UDP-D-galactose:inositol galactosyltransferase; UDP-galactose:myo-inositol 1-α-D-galactosyltransferase; UDPgalactose:myo-inositol 1-α-D-galactosyltransferase; galactinol synthase; inositol 1-α-galactosyltransferase; uridine diphosphogalactose-inositol galactosyltransferase; GolS; UDP-galactose:myo-inositol 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:myo-inositol 3-α-D-galactosyltransferase
Comments: An enzyme from plants involved in the formation of raffinose and stachyose [cf. EC 2.4.1.67 (galactinol—raffinose galactosyltransferase) and EC 2.4.1.82 (galactinol—sucrose galactosyltransferase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 79955-89-8
References:
1.  Pharr, D.M., Sox, H.N., Locy, R.D. and Huber, S.C. Partial characterization of the galactinol forming enzyme from leaves of Cucumis sativus L. Plant Sci. Lett. 23 (1981) 25–33.
[EC 2.4.1.123 created 1984, modified 2003]
 
 
EC 2.3.1.273     Relevance: 95.8%
Accepted name: diglucosylglycerate octanoyltransferase
Reaction: octanoyl-CoA + 2-O-[α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl]-D-glycerate = CoA + 2-O-[6-O-octanoyl-α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl]-D-glycerate
Other name(s): octT (gene name); DGG octanoyltransferase
Systematic name: octanoyl-CoA:2-O-[α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl]-D-glycerate octanoyltransferase
Comments: The enzyme, characterized from mycobacteria, is involved in the biosynthesis of methylglucose lipopolysaccharide (MGLP). The enzyme can also act on 2-O-(α-D-glucopyranosyl)-D-glycerate, but with lower activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Maranha, A., Moynihan, P.J., Miranda, V., Correia Lourenco, E., Nunes-Costa, D., Fraga, J.S., Jose Barbosa Pereira, P., Macedo-Ribeiro, S., Ventura, M.R., Clarke, A.J. and Empadinhas, N. Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides. Sci. Rep. 5:13610 (2015). [PMID: 26324178]
[EC 2.3.1.273 created 2018]
 
 
EC 3.2.1.70     Relevance: 95.4%
Accepted name: glucan 1,6-α-glucosidase
Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages in (1→6)-α-D-glucans and derived oligosaccharides
Other name(s): exo-1,6-β-glucosidase; glucodextrinase; glucan α-1,6-D-glucohydrolase
Systematic name: glucan 6-α-D-glucohydrolase
Comments: Hydrolysis is accompanied by inversion at C-1, so that new reducing ends are released in the β-configuration. Dextrans and isomaltosaccharides are hydrolysed, as is isomaltose, but very slowly. The enzyme from some sources also possesses the activity of EC 3.2.1.59 (glucan endo-1,3-α-glucosidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-48-5
References:
1.  Ohya, T., Sawai, T., Uemura, S. and Abe, K. Some catalytic properties of an exo-1,6-α-glucosidase (glucodextranase) from Arthrobacter globiformis I42. Agric. Biol. Chem. 42 (1978) 571–577.
2.  Sawai, T., Yamaki, T. and Ohya, T. Preparation and some properties of Arthrobacter globiformis exo-1,6-α-glucosidase. Agric. Biol. Chem. 40 (1976) 1293–1299.
3.  Walker, G.J. and Pulkownik, A. Degradation of dextrans by an α-1,6-glucan glucohydrolase from Streptococcus mitis. Carbohydr. Res. 29 (1973) 1–14. [DOI] [PMID: 4356399]
[EC 3.2.1.70 created 1972, modified 2001]
 
 
EC 2.4.1.301     Relevance: 95.3%
Accepted name: 2′-deamino-2′-hydroxyneamine 1-α-D-kanosaminyltransferase
Reaction: (1) UDP-α-D-kanosamine + 2′-deamino-2′-hydroxyneamine = UDP + kanamycin A
(2) UDP-α-D-kanosamine + neamine = UDP + kanamycin B
(3) UDP-α-D-kanosamine + paromamine = UDP + kanamycin C
(4) UDP-α-D-kanosamine + 2′-deamino-2′-hydroxyparomamine = UDP + kanamycin X
For diagram of kanamycin A biosynthesis, click here
Glossary: neamine = (1R,2R,3S,4R,6S)-4,6-diamino-2,3-dihydroxycyclohexyl 2,6-diamino-2,6-dideoxy-α-D-glucopyranoside
paromamine = (1R,2R,3S,4R,6S)-4,6-diamino-2,3-dihydroxycyclohexyl 2-amino-2-deoxy-α-D-glucopyranoside
UDP-α-D-kanosamine = uridine 5′-[3-(3-amino-3-deoxy-α-D-glucopyranosyl) diphosphate]
kanamycin A = (1S,2R,3R,4S,6R)-4,6-diamino-3-(6-amino-6-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
kanamycin B = (1R,2S,3S,4R,6S)-4,6-diamino-3-(3-amino-3-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 2,6-diamino-2,6-dideoxy-α-D-glucopyranoside
kanamycin C = (1R,2S,3S,4R,6S)-4,6-diamino-3-(3-amino-3-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 2-amino-2-deoxy-α-D-glucopyranoside
kanamycin X = (1S,2R,3R,4S,6R)-4,6-diamino-3-(α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
Other name(s): kanE (gene name); kanM2 (gene name)
Systematic name: UDP-α-D-kanosamine:2′-deamino-2′-hydroxyneamine 1-α-D-kanosaminyltransferase
Comments: Involved in the biosynthetic pathway of kanamycins. The enzyme characterized from the bacterium Streptomyces kanamyceticus can also accept UDP-α-D-glucose with lower efficiency [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kudo, F., Sucipto, H. and Eguchi, T. Enzymatic activity of a glycosyltransferase KanM2 encoded in the kanamycin biosynthetic gene cluster. J. Antibiot. (Tokyo) 62 (2009) 707–710. [DOI] [PMID: 19911031]
2.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [DOI] [PMID: 21983602]
[EC 2.4.1.301 created 2013]
 
 
EC 2.7.7.69     Relevance: 95.3%
Accepted name: GDP-L-galactose/GDP-D-glucose: hexose 1-phosphate guanylyltransferase
Reaction: (1) GDP-β-L-galactose + α-D-mannose 1-phosphate = β-L-galactose 1-phosphate + GDP-α-D-mannose
(2) GDP-α-D-glucose + α-D-mannose 1-phosphate = α-D-glucose 1-phosphate + GDP-α-D-mannose
Other name(s): VTC2; VTC5; GDP-L-galactose phosphorylase
Systematic name: GDP-β-L-galactose/GDP-α-D-glucose:hexose 1-phosphate guanylyltransferase
Comments: This plant enzyme catalyses the conversion of GDP-β-L-galactose and GDP-α-D-glucose to β-L-galactose 1-phosphate and α-D-glucose 1-phosphate, respectively. The enzyme can use inorganic phosphate as the co-substrate, but several hexose 1-phosphates, including α-D-mannose 1-phosphate, α-D-glucose 1-phosphate, and α-D-galactose 1-phosphate, are better guanylyl acceptors. The enzyme's activity on GDP-β-L-galactose is crucial for the biosynthesis of L-ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Linster, C.L., Gomez, T.A., Christensen, K.C., Adler, L.N., Young, B.D., Brenner, C. and Clarke, S.G. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J. Biol. Chem. 282 (2007) 18879–18885. [DOI] [PMID: 17462988]
2.  Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S. and Smirnoff, N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J. 52 (2007) 673–689. [DOI] [PMID: 17877701]
3.  Wolucka, B.A. and Van Montagu, M. The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68 (2007) 2602–2613. [DOI] [PMID: 17950389]
4.  Laing, W.A., Wright, M.A., Cooney, J. and Bulley, S.M. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc. Natl. Acad. Sci. USA 104 (2007) 9534–9539. [DOI] [PMID: 17485667]
5.  Linster, C.L., Adler, L.N., Webb, K., Christensen, K.C., Brenner, C. and Clarke, S.G. A second GDP-L-galactose phosphorylase in arabidopsis en route to vitamin C. Covalent intermediate and substrate requirements for the conserved reaction. J. Biol. Chem. 283 (2008) 18483–18492. [DOI] [PMID: 18463094]
6.  Muller-Moule, P. An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol. Biol. 68 (2008) 31–41. [DOI] [PMID: 18516687]
[EC 2.7.7.69 created 2010, modified 2020]
 
 
EC 2.4.1.348     Relevance: 95.3%
Accepted name: N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase
Reaction: GDP-α-D-mannose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = GDP + α-D-mannosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdC
Systematic name: GDP-α-D-mannose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the biosynthesis of the linker region of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotypes O8, O9 and O9a.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Greenfield, L.K., Richards, M.R., Li, J., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. J. Biol. Chem. 287 (2012) 35078–35091. [DOI] [PMID: 22875852]
[EC 2.4.1.348 created 2017]
 
 
EC 3.2.1.209     Relevance: 95.2%
Accepted name: endoplasmic reticulum Man9GlcNAc2 1,2-α-mannosidase
Reaction: Man9GlcNAc2-[protein] + H2O = Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,3) + D-mannopyranose
Glossary: Man9GlcNAc2-[protein] = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,3) = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Other name(s): MAN1B1 (gene name); MNS1 (gene name); MNS3 (gene name)
Systematic name: Man9GlcNAc2-[protein]2-α-mannohydrolase (configuration-inverting)
Comments: The enzyme, located in the endoplasmic reticulum, primarily trims a single α-1,2-linked mannose residue from Man9GlcNAc2 to produce Man8GlcNAc2 isomer 8A1,2,3B1,3 (the names of the isomers listed here are based on a nomenclature system proposed by Prien et al [7]). The removal of the single mannosyl residue occurs in all eukaryotes as part of the processing of N-glycosylated proteins, and is absolutely essential for further elongation of the outer chain of properly-folded N-glycosylated proteins in yeast. In addition, the enzyme is involved in glycoprotein quality control at the ER quality control compartment (ERQC), helping to target misfolded glycoproteins for degradation. When present at very high concentrations in the ERQC, the enzyme can trim the carbohydrate chain further to Man(5-6)GlcNAc2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jelinek-Kelly, S. and Herscovics, A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the α-mannosidase which removes one specific mannose residue from Man9GlcNAc. J. Biol. Chem. 263 (1988) 14757–14763. [PMID: 3049586]
2.  Ziegler, F.D. and Trimble, R.B. Glycoprotein biosynthesis in yeast: purification and characterization of the endoplasmic reticulum Man9 processing α-mannosidase. Glycobiology 1 (1991) 605–614. [PMID: 1822240]
3.  Gonzalez, D.S., Karaveg, K., Vandersall-Nairn, A.S., Lal, A. and Moremen, K.W. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J. Biol. Chem. 274 (1999) 21375–21386. [PMID: 10409699]
4.  Herscovics, A., Romero, P.A. and Tremblay, L.O. The specificity of the yeast and human class I ER α 1,2-mannosidases involved in ER quality control is not as strict previously reported. Glycobiology 12 (2002) 14G–15G. [PMID: 12090241]
5.  Avezov, E., Frenkel, Z., Ehrlich, M., Herscovics, A. and Lederkremer, G.Z. Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation. Mol. Biol. Cell 19 (2008) 216–225. [PMID: 18003979]
6.  Liebminger, E., Huttner, S., Vavra, U., Fischl, R., Schoberer, J., Grass, J., Blaukopf, C., Seifert, G.J., Altmann, F., Mach, L. and Strasser, R. Class I α-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21 (2009) 3850–3867. [PMID: 20023195]
7.  Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H. and Reinhold, V.N. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20 (2009) 539–556. [DOI] [PMID: 19181540]
[EC 3.2.1.209 created 2019]
 
 
EC 5.4.99.52     Relevance: 95.2%
Accepted name: α-seco-amyrin synthase
Reaction: (3S)-2,3-epoxy-2,3-dihydrosqualene = α-seco-amyrin
For diagram of α-amyrin, α-seco-amyrin and germanicol biosynthesis, click here
Glossary: α-seco-amyrin = 8,14-secoursa-7,13-diene-3β-ol
Systematic name: (3S)-2,3-epoxy-2,3-dihydrosqualene mutase (cyclizing, α-seco-amyrin-forming)
Comments: The enzyme from Arabidopsis thaliana is multifunctional and produces about equal amounts of α- and β-seco-amyrin. See EC 5.4.99.54, β-seco-amyrin synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shibuya, M., Xiang, T., Katsube, Y., Otsuka, M., Zhang, H. and Ebizuka, Y. Origin of structural diversity in natural triterpenes: direct synthesis of seco-triterpene skeletons by oxidosqualene cyclase. J. Am. Chem. Soc. 129 (2007) 1450–1455. [DOI] [PMID: 17263431]
[EC 5.4.99.52 created 2011]
 
 
EC 2.4.1.257     Relevance: 95.2%
Accepted name: GDP-Man:Man2GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-Man-(1→3)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = GDP + α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): GDP-Man:Man2GlcNAc2-PP-Dol α-1,6-mannosyltransferase; Alg2 mannosyltransferase (ambiguous); ALG2 (gene name, ambiguous); GDP-Man:Man1GlcNAc2-PP-dolichol mannosyltransferase (ambiguous); GDP-D-mannose:D-Man-α-(1→3)-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-6-mannosyltransferase
Systematic name: GDP-α-D-mannose:α-D-Man-(1→3)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 6-α-D-mannosyltransferase (configuration-retaining)
Comments: The biosynthesis of asparagine-linked glycoproteins utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. Alg2 mannosyltransferase from Saccharomyces cerevisiae carries out an α1,3-mannosylation (cf. EC 2.4.1.132) of β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol, followed by an α1,6-mannosylation, to form the first branched pentasaccharide intermediate of the dolichol pathway [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kampf, M., Absmanner, B., Schwarz, M. and Lehle, L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J. Biol. Chem. 284 (2009) 11900–11912. [DOI] [PMID: 19282279]
2.  O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593–9603. [DOI] [PMID: 16878994]
[EC 2.4.1.257 created 2011, modified 2012]
 
 
EC 4.2.3.87     Relevance: 95.1%
Accepted name: α-guaiene synthase
Reaction: (2E,6E)-farnesyl diphosphate = α-guaiene + diphosphate
For diagram of guaiene, α-gurjunene, patchoulol and viridiflorene biosynthesis, click here
Other name(s): PatTps177 (gene name)
Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, α-guaiene-forming)
Comments: Requires Mg2+. The enzyme from Pogostemon cablin gives 13% α-guaiene as well as 37% (-)-patchoulol (see EC 4.2.3.70), 13% δ-guaiene (see EC 4.2.3.93), and traces of at least ten other sesquiterpenoids [1]. In Aquilaria crassna three clones of the enzyme gave about 80% δ-guaiene and 20% α-guaiene, with traces of α-humulene. A fourth clone gave 54% δ-guaiene and 45% α-guaiene [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Deguerry, F., Pastore, L., Wu, S., Clark, A., Chappell, J. and Schalk, M. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch. Biochem. Biophys. 454 (2006) 123–136. [DOI] [PMID: 16970904]
2.  Kumeta, Y. and Ito, M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol. 154 (2010) 1998–2007. [DOI] [PMID: 20959422]
[EC 4.2.3.87 created 2011]
 
 
EC 1.1.1.341     Relevance: 95%
Accepted name: CDP-abequose synthase
Reaction: CDP-α-D-abequose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Glossary: CDP-α-D-abequose = CDP-3,6-dideoxy-α-D-xylo-hexose
Other name(s): rfbJ (gene name)
Systematic name: CDP-α-D-abequose:NADP+ 4-oxidoreductase
Comments: Isolated from Yersinia pseudotuberculosis [1,3] and Salmonella enterica [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kessler, A.C., Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular cloning and genetic characterization of the rfb region from Yersinia pseudotuberculosis serogroup IIA, which determines the formation of the 3,6-dideoxyhexose abequose. J. Gen. Microbiol. 137 (1991) 2689–2695. [DOI] [PMID: 1724263]
2.  Wyk, P. and Reeves, P. Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J. Bacteriol. 171 (1989) 5687–5693. [DOI] [PMID: 2793832]
3.  Thorson, J.S., Lo, S.F., Ploux, O., He, X. and Liu, H.W. Studies of the biosynthesis of 3,6-dideoxyhexoses: molecular cloning and characterization of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J. Bacteriol. 176 (1994) 5483–5493. [DOI] [PMID: 8071227]
[EC 1.1.1.341 created 2012]
 
 
EC 1.14.13.150      
Transferred entry: α-humulene 10-hydroxylase. Now EC 1.14.14.113, α-humulene 10-hydroxylase.
[EC 1.14.13.150 created 2012, deleted 2018]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald