The Enzyme Database

Displaying entries 151-200 of 1240.

<< Previous | Next >>    printer_iconPrintable version

EC 2.4.1.390     Relevance: 100%
Accepted name: 4,3-α-glucanotransferase
Reaction: formation of a mixed (1→4)/(1→3)-α-D-glucan from (1→4)-α-D-glucans
Other name(s): gtfB (gene name) (ambiguous)
Systematic name: (1→4)-α-D-glucan:(1→4)/(1→3)-α-D-glucan 3-α-D-glucosyltransferase
Comments: The enzyme, characterized from the bacterium Lactobacillus fermentum NCC 2970, possesses hydrolysis and transglycosylase activities on malto-oligosaccharides with a degree of polymerization of at least 6, as well as polymers such as amylose, potato starch, and amylopectin. The enzyme, which belongs to glycoside hydrolase 70 (GH70) family, attaches the glucosyl residues by α(1→3) linkages in both linear and branched orientations. While capable of forming large polymers, the enzyme produces mainly oligosaccharides in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gangoiti, J., van Leeuwen, S.S., Gerwig, G.J., Duboux, S., Vafiadi, C., Pijning, T. and Dijkhuizen, L. 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Sci. Rep. 7:39761 (2017). [DOI] [PMID: 28059108]
2.  Pijning, T., Gangoiti, J., Te Poele, E.M., Borner, T. and Dijkhuizen, L. Insights into broad-specificity starch modification from the crystal structure of Limosilactobacillus reuteri NCC 2613 4,6-α-glucanotransferase GtfB. J. Agric. Food Chem. 69 (2021) 13235–13245. [DOI] [PMID: 34708648]
[EC 2.4.1.390 created 2022]
 
 
EC 2.4.1.334     Relevance: 99.9%
Accepted name: 1,3-α-oligoglucan phosphorylase
Reaction: [(1→3)-α-D-glucosyl]n + phosphate = [(1→3)-α-D-glucosyl]n-1 + β-D-glucose 1-phosphate
Systematic name: 1,3-α-D-glucan:phosphate β-D-glucosyltransferase
Comments: The enzyme, isolated from the bacterium Clostridium phytofermentans, catalyses a reversible reaction. Substrates for the phosphorolytic reaction are α-1,3-linked oligoglucans with a polymerisation degree of 3 or more. Nigerose (i.e. 3-O-α-D-glucopyranosyl-D-glucopyranose) is not phosphorylyzed but can serve as substrate in the reverse direction (cf. EC 2.4.1.279, nigerose phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nihira, T., Nishimoto, M., Nakai, H., Ohtsubo, K., and Kitaoka, M. Characterization of two phosphorylases for α-1,3-oligoglucans from Clostridium phytofermentans. J. Appl. Glycosci. 61 (2014) 59–66.
[EC 2.4.1.334 created 2014]
 
 
EC 1.14.13.105     Relevance: 99.6%
Accepted name: monocyclic monoterpene ketone monooxygenase
Reaction: (1) (–)-menthone + NADPH + H+ + O2 = (4R,7S)-7-isopropyl-4-methyloxepan-2-one + NADP+ + H2O
(2) dihydrocarvone + NADPH + H+ + O2 = 4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(3) (iso)-dihydrocarvone + NADPH + H+ + O2 = 6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(4a) 1-hydroxymenth-8-en-2-one + NADPH + H+ + O2 = 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(4b) 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one = 3-isopropenyl-6-oxoheptanoate (spontaneous)
For diagram of (–)-carvone catabolism, click here, for diagram of limonene catabolism, click here and for diagram of menthol biosynthesis, click here
Other name(s): 1-hydroxy-2-oxolimonene 1,2-monooxygenase; dihydrocarvone 1,2-monooxygenase; MMKMO
Systematic name: (–)-menthone,NADPH:oxygen oxidoreductase
Comments: A flavoprotein (FAD). This Baeyer-Villiger monooxygenase enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 has wide substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones [2]. Both (1R,4S)- and (1S,4R)-1-hydroxymenth-8-en-2-one are metabolized, with the lactone product spontaneously rearranging to form 3-isopropenyl-6-oxoheptanoate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Werf, M.J., Swarts, H.J. and de Bont, J.A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 65 (1999) 2092–2102. [PMID: 10224006]
2.  Van Der Werf, M.J. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways. Biochem. J. 347 (2000) 693–701. [PMID: 10769172]
3.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [DOI] [PMID: 10832640]
[EC 1.14.13.105 created 2008]
 
 
EC 4.2.3.82     Relevance: 99.5%
Accepted name: α-santalene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-α-santalene + diphosphate
For diagram of santalene and bergamotene biosynthesis, click here
Glossary: (-)-exo-α-bergamotene = (-)-trans-α-bergamotene = (1S,5S,6R)-2,6-dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]hept-2-ene
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (+)-α-santalene-forming)
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2E,6E)-farnesyl diphosphate. As well as (+)-α-santalene, (-)-β-santalene and (-)-exo-α-bergamotene are formed with traces of (+)-epi-β-santalene. See EC 4.2.3.83 [(-)-β-santalene synthase], and EC 4.2.3.81 [(-)-exo-α-bergamotene synthase]. cf. EC 4.2.3.50 α-santalene synthase [(2Z,6Z)-farnesyl diphosphate cyclizing]
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jones, C.G., Moniodis, J., Zulak, K.G., Scaffidi, A., Plummer, J.A., Ghisalberti, E.L., Barbour, E.L. and Bohlmann, J. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J. Biol. Chem. 286 (2011) 17445–17454. [DOI] [PMID: 21454632]
[EC 4.2.3.82 created 2011]
 
 
EC 3.2.1.189     Relevance: 99.2%
Accepted name: dioscin glycosidase (diosgenin-forming)
Reaction: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin + 3 H2O = D-glucose + 2 L-rhamnose + diosgenin
For diagram of diosgenin catabolism, click here
Glossary: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin = (3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L-mannopyranosyl-(1→4)]-β-D-glucopyranoside = dioscin
diosgenin = (3β,25R)-spirost-5-en-3-ol
Other name(s): dioscin glycosidase (aglycone-forming)
Systematic name: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin hydrolase (diosgenin-forming)
Comments: The enzyme is involved in degradation of the steroid saponin dioscin by some fungi of the Absidia genus. The enzyme can also hydrolyse 3-O-[α-L-Ara-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin into diosgenin and free sugars as the final products. cf. EC 3.2.1.190, dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fu, Y., Yu, H., Tang, S.H., Hu, X., Wang, Y., Liu, B., Yu, C. and Jin, F. New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain. J. Microbiol. Biotechnol. 20 (2010) 1011–1017. [PMID: 20622501]
[EC 3.2.1.189 created 2013]
 
 
EC 3.2.1.114     Relevance: 99.2%
Accepted name: mannosyl-oligosaccharide 1,3-1,6-α-mannosidase
Reaction: Man5GlcNAc3-[protein] + 2 H2O = Man3GlcNAc3-[protein] + 2 α-D-mannopyranose
For diagram of mannosyl-glycoprotein n-acetylglucosaminyltransferases, click here
Glossary: Man5GlcNAc3-[protein] = [β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Man3GlcNAc3-[protein] = {β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Other name(s): MAN2A1 (gene name); MAN2A2 (gene name); mannosidase II; exo-1,3-1,6-α-mannosidase; α-D-mannosidase II; α-mannosidase II; α1-3,6-mannosidase; GlcNAc transferase I-dependent α1,3[α1,6]mannosidase; Golgi α-mannosidase II; ManII; 1,3(1,6)-α-D-mannosidase; 1,3-(1,6-)mannosyl-oligosaccharide α-D-mannohydrolase; (1→3)-(1→6)-mannosyl-oligosaccharide α-D-mannohydrolase
Systematic name: (1→3)-(1→6)-mannosyl-oligosaccharide α-D-mannohydrolase (configuration-retaining)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. It removes two mannosyl residues, one linked by α1,3 linkage, and the other linked by α1,6 linkage, both of which are removed by the same catalytic site. The enzyme is sensitive to swainsonine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 82047-77-6
References:
1.  Tulsiani, D.R.P., Opheim, D.J. and Touster, O. Purification and characterization of α-D-mannosidase from rat liver golgi membranes. J. Biol. Chem. 252 (1977) 3227–3233. [PMID: 863880]
2.  Tabas, I. and Kornfeld, S. The synthesis of complex-type oligosaccharides. III. Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J. Biol. Chem. 253 (1978) 7779–7786. [PMID: 212436]
3.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: α-D-mannoside β2-N-acetylglucosaminyltransferase I. J. Biol. Chem. 255 (1980) 4894–4902. [PMID: 6445359]
4.  Tulsiani, D.R.P., Hubbard, S.C., Robbins, P.W. and Touster, O. α-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases IA and IB are the enzymes converting Man9 precursors to Man5 intermediates. J. Biol. Chem. 257 (1982) 3660–3668. [PMID: 7061502]
5.  Moremen, K.W. and Robbins, P.W. Isolation, characterization, and expression of cDNAs encoding murine α-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J. Cell Biol. 115 (1991) 1521–1534. [PMID: 1757461]
6.  Misago, M., Liao, Y.F., Kudo, S., Eto, S., Mattei, M.G., Moremen, K.W. and Fukuda, M.N. Molecular cloning and expression of cDNAs encoding human α-mannosidase II and a previously unrecognized α-mannosidase IIx isozyme. Proc. Natl. Acad. Sci. USA 92 (1995) 11766–11770. [DOI] [PMID: 8524845]
7.  van den Elsen, J.M., Kuntz, D.A. and Rose, D.R. Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 20 (2001) 3008–3017. [DOI] [PMID: 11406577]
8.  Athanasopoulos, V.I., Niranjan, K. and Rastall, R.A. The production, purification and characterisation of two novel α-D-mannosidases from Aspergillus phoenicis. Carbohydr. Res. 340 (2005) 609–617. [DOI] [PMID: 15721331]
9.  Shah, N., Kuntz, D.A. and Rose, D.R. Golgi α-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc. Natl. Acad. Sci. USA 105 (2008) 9570–9575. [DOI] [PMID: 18599462]
10.  Rose, D.R. Structure, mechanism and inhibition of Golgi α-mannosidase II. Curr. Opin. Struct. Biol. 22 (2012) 558–562. [DOI] [PMID: 22819743]
[EC 3.2.1.114 created 1986, modified 2018]
 
 
EC 1.1.3.48     Relevance: 99.1%
Accepted name: 3-deoxy-α-D-manno-octulosonate 8-oxidase
Reaction: 3-deoxy-α-D-manno-octulopyranosonate + O2 = 3,8-dideoxy-8-oxo-α-D-manno-octulosonate + H2O2
Glossary: 3-deoxy-α-D-manno-octulosonate = Kdo
3,8-dideoxy-8-oxo-α-D-manno-octulosonate = (2R,4R,5R,6S)-2,4,5-trihydroxy-6-[(1S)-1-hydroxy-2-oxoethyl]oxane-2-carboxylate
Other name(s): kdnB (gene name)
Systematic name: 3-deoxy-α-D-manno-octulopyranosonate:oxygen 8-oxidoreductase
Comments: The enzyme, characterized from the bacterium Shewanella oneidensis, is involved in the formation of 8-amino-3,8-dideoxy-α-D-manno-octulosonate, an aminated form of Kdo found in lipopolysaccharides of members of the Shewanella genus. cf. EC 2.6.1.109, 8-amino-3,8-dideoxy-α-D-manno-octulosonate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gattis, S.G., Chung, H.S., Trent, M.S. and Raetz, C.R. The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis. J. Biol. Chem. 288 (2013) 9216–9225. [DOI] [PMID: 23413030]
[EC 1.1.3.48 created 2015]
 
 
EC 3.2.1.51     Relevance: 99%
Accepted name: α-L-fucosidase
Reaction: an α-L-fucoside + H2O = L-fucose + an alcohol
Other name(s): α-fucosidase
Systematic name: α-L-fucoside fucohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9037-65-4
References:
1.  Levvy, G.A. and McAllan, A. Mammalian fucosidases. 2. α-L-Fucosidase. Biochem. J. 80 (1961) 435–439. [PMID: 13761578]
2.  Reglero, A. and Cabezas, J.A. Glycosidases of molluscs. Purification and properties of α-L-fucosidase from Chamelea gallina L. Eur. J. Biochem. 66 (1976) 379–387. [DOI] [PMID: 7458]
3.  Tanaka, K., Nakano, T., Noguchi, S. and Pigman, W. Purification of α-L-fucosidase of abalone livers. Arch. Biochem. Biophys. 126 (1968) 624–633. [DOI] [PMID: 5672520]
[EC 3.2.1.51 created 1972]
 
 
EC 3.2.1.95     Relevance: 98.9%
Accepted name: dextran 1,6-α-isomaltotriosidase
Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages in dextrans, to remove successive isomaltotriose units from the non-reducing ends of the chains
Other name(s): exo-isomaltotriohydrolase; 1,6-α-D-glucan isomaltotriohydrolase
Systematic name: 6-α-D-glucan isomaltotriohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72561-11-6
References:
1.  Sugiura, M., Ito, A. and Yamaguchi, T. Studies on dextranase. II. New exo-dextranase from Brevibacterium fuscum var. Dextranlyticum. Biochim. Biophys. Acta 350 (1974) 61–70. [DOI] [PMID: 4210084]
[EC 3.2.1.95 created 1978]
 
 
EC 3.2.1.93     Relevance: 98.8%
Accepted name: α,α-phosphotrehalase
Reaction: α,α-trehalose 6-phosphate + H2O = D-glucose + D-glucose 6-phosphate
Other name(s): phosphotrehalase
Systematic name: α,α-trehalose-6-phosphate phosphoglucohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 54576-93-1
References:
1.  Bhumiratana, A., Anderson, R.L. and Costilow, R.N. Trehalose metabolism by Bacillus popilliae. J. Bacteriol. 119 (1974) 484–493. [PMID: 4369400]
[EC 3.2.1.93 created 1976]
 
 
EC 2.1.2.14     Relevance: 98.8%
Accepted name: GDP-perosamine N-formyltransferase
Reaction: 10-formyltetrahydrofolate + GDP-α-D-perosamine = tetrahydrofolate + GDP-N-formyl-α-D-perosamine
Glossary: GDP-α-D-perosamine = GDP-4-amino-4,6-dideoxy-α-D-mannose
Other name(s): wbkC (gene name)
Systematic name: 10-formyltetrahydrofolate:GDP-α-D-perosamine N-formyltransferase
Comments: The enzyme, characterized from the bacterium Brucella melitensis, synthesizes a building block of the O antigen produced by Brucella species.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Godfroid, F., Cloeckaert, A., Taminiau, B., Danese, I., Tibor, A., de Bolle, X., Mertens, P. and Letesson, J.J. Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of Brucella melitensis 16M (wbk). Res. Microbiol. 151 (2000) 655–668. [DOI] [PMID: 11081580]
2.  Riegert, A.S., Chantigian, D.P., Thoden, J.B., Tipton, P.A. and Holden, H.M. Biochemical characterization of WbkC, an N-formyltransferase from Brucella melitensis. Biochemistry 56 (2017) 3657–3668. [DOI] [PMID: 28636341]
[EC 2.1.2.14 created 2021]
 
 
EC 6.3.2.25     Relevance: 98.7%
Accepted name: tubulin—tyrosine ligase
Reaction: ATP + detyrosinated α-tubulin + L-tyrosine = α-tubulin + ADP + phosphate
Systematic name: α-tubulin:L-tyrosine ligase (ADP-forming)
Comments: L-Tyrosine is linked via a peptide bond to the C-terminus of de-tyrosinated α-tubulin (des-Tyrω-α-tubulin). The enzyme is highly specific for α-tubulin and moderately specific for ATP and L-tyrosine. L-Phenylalanine and 3,4-dihydroxy-L-phenylalanine are transferred but with higher Km values.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60321-03-1
References:
1.  Wehland, J., Schröder, H.C., Weber, K. Isolation and purification of tubulin-tyrosine ligase. Methods Enzymol. 134 (1986) 170–179. [PMID: 3821560]
2.  Rudiger, M., Wehland, J., Weber, K. The carboxy-terminal peptide of detyrosinated α tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. Eur. J. Biochem. 220 (1994) 309–320. [DOI] [PMID: 7510228]
[EC 6.3.2.25 created 1999]
 
 
EC 2.4.1.5     Relevance: 98.6%
Accepted name: dextransucrase
Reaction: sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + [(1→6)-α-D-glucosyl]n+1
Other name(s): sucrose 6-glucosyltransferase; SGE; CEP; sucrose-1,6-α-glucan glucosyltransferase; sucrose:1,6-α-D-glucan 6-α-D-glucosyltransferase
Systematic name: sucrose:(1→6)-α-D-glucan 6-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme extends the glucan chain by an α(1→6) linkage.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-14-8
References:
1.  Bailey, R.W. Transglucosidase activity of rumen strains of Streptococcus bovis. 2. Isolation and properties of dextransucrase. Biochem. J. 72 (1959) 42–49. [PMID: 13651133]
2.  Bailey, R.W., Barker, S.A., Bourne, E.J. and Stacey, M. Immunopolysaccharides. Part VI. The isolation and properties of the dextransucrase of Betacoccus arabinosaceous. J. Chem. Soc. (Lond.) (1957) 3530–3536.
3.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
[EC 2.4.1.5 created 1961]
 
 
EC 2.6.1.102     Relevance: 98.6%
Accepted name: GDP-perosamine synthase
Reaction: GDP-α-D-perosamine + 2-oxoglutarate = GDP-4-dehydro-α-D-rhamnose + L-glutamate
Glossary: GDP-α-D-perosamine = GDP-4-amino-4,6-dideoxy-α-D-mannose
GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
Other name(s): RfbE; GDP-4-keto-6-deoxy-D-mannose-4-aminotransferase; GDP-perosamine synthetase; PerA; GDP-4-amino-4,6-dideoxy-α-D-mannose:2-oxoglutarate aminotransferase
Systematic name: GDP-α-D-perosamine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme. D-Perosamine is one of several dideoxy sugars found in the O-specific polysaccharide of the lipopolysaccharide component of the outer membrane of Gram-negative bacteria. The enzyme catalyses the final step in GDP-α-D-perosamine synthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Albermann, C. and Piepersberg, W. Expression and identification of the RfbE protein from Vibrio cholerae O1 and its use for the enzymatic synthesis of GDP-D-perosamine. Glycobiology 11 (2001) 655–661. [DOI] [PMID: 11479276]
2.  Zhao, G., Liu, J., Liu, X., Chen, M., Zhang, H. and Wang, P.G. Cloning and characterization of GDP-perosamine synthetase (Per) from Escherichia coli O157:H7 and synthesis of GDP-perosamine in vitro. Biochem. Biophys. Res. Commun. 363 (2007) 525–530. [DOI] [PMID: 17888872]
3.  Albermann, C. and Beuttler, H. Identification of the GDP-N-acetyl-d-perosamine producing enzymes from Escherichia coli O157:H7. FEBS Lett. 582 (2008) 479–484. [DOI] [PMID: 18201574]
4.  Cook, P.D., Carney, A.E. and Holden, H.M. Accommodation of GDP-linked sugars in the active site of GDP-perosamine synthase. Biochemistry 47 (2008) 10685–10693. [DOI] [PMID: 18795799]
[EC 2.6.1.102 created 2013]
 
 
EC 2.4.1.293     Relevance: 98.4%
Accepted name: GalNAc5-diNAcBac-PP-undecaprenol β-1,3-glucosyltransferase
Reaction: UDP-α-D-glucose + [GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol = UDP + [GalNAc-α-(1→4)]2-[Glc-β-(1→3)]-[GalNAc-α-(1→4)]2-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: diNAcBac = N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglI
Systematic name: UDP-α-D-glucose:[GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol 3-β-D-glucosyltransferase
Comments: Isolated from the bacterium Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [DOI] [PMID: 16186480]
2.  Kelly, J., Jarrell, H., Millar, L., Tessier, L., Fiori, L.M., Lau, P.C., Allan, B. and Szymanski, C.M. Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188 (2006) 2427–2434. [DOI] [PMID: 16547029]
[EC 2.4.1.293 created 2012]
 
 
EC 2.4.1.287     Relevance: 98.3%
Accepted name: rhamnopyranosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,4/1,5-galactofuranosyltransferase
Reaction: 2 UDP-α-D-galactofuranose + α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol = 2 UDP + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol (overall reaction)
(1a) UDP-α-D-galactofuranose + α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol = UDP + β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol
(1b) UDP-α-D-galactofuranose + β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol = UDP + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol
For diagram of galactofuranan biosynthesis, click here
Other name(s): arabinogalactan galactofuranosyl transferase 1; GlfT1
Systematic name: UDP-α-D-galactofuranose:α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol 4-β/4-β-galactofuranosyltransferase (configuration-inverting)
Comments: Isolated from the bacteria Mycobacterium tuberculosis and M. smegmatis, the enzyme has dual β-(1→4) and β-(1→5) transferase action. Involved in the formation of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mikusová, K., Belánová, M., Korduláková, J., Honda, K., McNeil, M.R., Mahapatra, S., Crick, D.C. and Brennan, P.J. Identification of a novel galactosyl transferase involved in biosynthesis of the mycobacterial cell wall. J. Bacteriol. 188 (2006) 6592–6598. [DOI] [PMID: 16952951]
2.  Belánová, M., Dianisková, P., Brennan, P.J., Completo, G.C., Rose, N.L., Lowary, T.L. and Mikusová, K. Galactosyl transferases in mycobacterial cell wall synthesis. J. Bacteriol. 190 (2008) 1141–1145. [DOI] [PMID: 18055597]
[EC 2.4.1.287 created 2012, modified 2017]
 
 
EC 2.4.99.22      
Transferred entry: N-acetylglucosaminide α-(2,6)-sialyltransferase. Now EC 2.4.3.10, N-acetylglucosaminide α-(2,6)-sialyltransferase
[EC 2.4.99.22 created 2020, deleted 2022]
 
 
EC 2.4.3.10     Relevance: 98.3%
Accepted name: N-acetylglucosaminide α-(2,6)-sialyltransferase
Reaction: CMP-N-acetyl-β-neuraminate + N-acetyl-α-neuraminyl-(2→3)-β-D-galactosyl-(1→3)-N-acetyl-β-D-glucosaminyl-R = CMP + N-acetyl-α-neuraminyl-(2→3)-β-D-galactosyl-(1→3)-[N-acetyl-α-neuraminyl-(2→6)]-N-acetyl-β-D-glucosaminyl-R
Other name(s): α-N-acetylneuraminyl-2,3-β-galactosyl-1,3-N-acetylglucosaminide 6-α-sialyltransferase; N-acetylglucosaminide (α 2→6)-sialyltransferase; ST6GlcNAc
Systematic name: CMP-N-acetylneuraminate:N-acetyl-α-neuraminyl-(2→3)-β-D-galactosyl-(1→3)-N-acetyl-β-D-glucosaminide N-acetyl-β-D-glucosamine-6-α-N-acetylneuraminyltransferase (configuration-inverting)
Comments: Attaches N-acetylneuraminic acid in α-2,6-linkage to N-acetyl-β-D-glucosamine. The enzyme from rat liver also acts on β-D-galactosyl-(1→3)-N-acetyl-β-D-glucosaminyl residues, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Paulson, J.C., Weinstein, J. and de Souza-e-Silva, U. Biosynthesis of a disialylated sequence in N-linked oligosaccharides: identification of an N-acetylglucosaminide (α 2→6)-sialyltransferase in Golgi apparatus from rat liver. Eur. J. Biochem. 140 (1984) 523–530. [PMID: 6547092]
[EC 2.4.3.10 created 2020 as EC 2.4.99.22, transferred 2022 to EC 2.4.3.10]
 
 
EC 2.4.1.4     Relevance: 98.2%
Accepted name: amylosucrase
Reaction: sucrose + [(1→4)-α-D-glucosyl]n = D-fructose + [(1→4)-α-D-glucosyl]n+1
Other name(s): sucrose—glucan glucosyltransferase; sucrose-1,4-α-glucan glucosyltransferase; sucrose:1,4-α-D-glucan 4-α-D-glucosyltransferase
Systematic name: sucrose:(1→4)-α-D-glucan 4-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme extends the glucan chain by an α(1→4) linkage.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-11-5
References:
1.  Feingold, D.S., Avigad, G. and Hestrin, S. Enzymic synthesis and reactions of a sucrose isomer α-D-galactopyranosyl-β-D-fructofuranoside. J. Biol. Chem. 224 (1957) 295–307. [PMID: 13398406]
2.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
3.  Hehre, E.J., Hamilton, D.M. and Carlson, A.S. Synthesis of a polysaccharide of the starch-glycogen class from sucrose by a cell-free, bacterial enzyme system (amylosucrase). J. Biol. Chem. 177 (1949) 267–279. [PMID: 18107430]
[EC 2.4.1.4 created 1961]
 
 
EC 2.4.1.359     Relevance: 98.2%
Accepted name: glucosylglycerol phosphorylase (configuration-retaining)
Reaction: 2-O-α-D-glucopyranosyl-glycerol + phosphate = α-D-glucose 1-phosphate + glycerol
Other name(s): 2-O-α-D-glucosylglycerol phosphorylase (retaining)
Systematic name: 2-O-α-D-glucopyranosyl-glycerol:phosphate α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme, characterized from the halotolerant bacterium Marinobacter adhaerens, is likely responsible for degradation of the compatible solute 2-O-α-D-glucopyranosyl-glycerol when the environmental salt concentration decreases. cf. EC 2.4.1.332, 1,2-α-glucosylglycerol phosphorylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Franceus, J., Decuyper, L., D'hooghe, M. and Desmet, T. Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Appl. Microbiol. Biotechnol. (2018) . [PMID: 29470619]
[EC 2.4.1.359 created 2018]
 
 
EC 2.4.1.96     Relevance: 98.1%
Accepted name: sn-glycerol-3-phosphate 1-galactosyltransferase
Reaction: UDP-α-D-galactose + sn-glycerol 3-phosphate = UDP + 1-O-α-D-galactosyl-sn-glycerol 3-phosphate
Other name(s): isofloridoside-phosphate synthase; UDP-Gal:sn-glycero-3-phosphoric acid 1-α-galactosyl-transferase; UDPgalactose:sn-glycerol-3-phosphate α-D-galactosyltransferase; uridine diphosphogalactose-glycerol phosphate galactosyltransferase; glycerol 3-phosphate 1α-galactosyltransferase; UDP-galactose:sn-glycerol-3-phosphate 1-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sn-glycerol-3-phosphate 1-α-D-galactosyltransferase
Comments: The product is hydrolysed by a phosphatase to isofloridoside, which is involved in osmoregulation (cf. EC 2.4.1.137 sn-glycerol-3-phosphate 2-α-galactosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-70-4
References:
1.  Kauss, H. and Quader, H. In vitro activation of a galactosyl transferase involved in the osmotic regulation of Ochromonas. Plant Physiol. 58 (1976) 295–298. [PMID: 16659666]
2.  Kauss, H. and Schubert, B. `First demonstration of UDP-gal:sn-glycero-3-phosphoric acid 1α-galactosyl-transferase and its possible role in osmoregulation. FEBS Lett. 19 (1971) 131–135. [DOI] [PMID: 11946194]
[EC 2.4.1.96 created 1978]
 
 
EC 3.6.3.48      
Transferred entry: α-factor-transporting ATPase. Now EC 7.4.2.7 as α-factor-pheromone transporting ATPase
[EC 3.6.3.48 created 2000, deleted 2018]
 
 
EC 3.2.1.77     Relevance: 97.9%
Accepted name: mannan 1,2-(1,3)-α-mannosidase
Reaction: Hydrolysis of (1→2)- and (1→3)-linkages in yeast mannan, releasing mannose
Other name(s): exo-1,2-1,3-α-mannosidase; 1,2-1,3-α-D-mannan mannohydrolase
Systematic name: (1→2)-(1→3)-α-D-mannan mannohydrolase
Comments: A 1,6-α-D-mannan backbone remains after action on yeast mannan. This is further attacked, but slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37288-53-2
References:
1.  Jones, G.H. and Ballou, C.E. Studies on the structure of yeast mannan. I. Purification and some properties of an α-mannosidase from an Arthrobacter species. J. Biol. Chem. 244 (1969) 1043–1051. [PMID: 5769177]
2.  Jones, G.H. and Ballou, C.E. Studies on the structure of yeast mannan. II. Mode of action of the Arthrobacter α-mannosidase on yeast mannan. J. Biol. Chem. 244 (1969) 1052–1059. [PMID: 5814027]
[EC 3.2.1.77 created 1972]
 
 
EC 1.1.1.281     Relevance: 97.8%
Accepted name: GDP-4-dehydro-6-deoxy-D-mannose reductase
Reaction: GDP-α-D-rhamnose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+
For diagram of gdp-l-fucose and GDP-mannose biosynthesis, click here
Glossary: GDP-α-D-rhamnose = GDP-6-deoxy-α-D-mannose
GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
Other name(s): GDP-4-keto-6-deoxy-D-mannose reductase [ambiguous]; GDP-6-deoxy-D-lyxo-4-hexulose reductase; Rmd; GDP-6-deoxy-D-mannose:NAD(P)+ 4-oxidoreductase (D-rhamnose-forming); GDP-6-deoxy-α-D-mannose:NAD(P)+ 4-oxidoreductase (D-rhamnose-forming)
Systematic name: GDP-α-D-rhamnose:NAD(P)+ 4-oxidoreductase
Comments: This enzyme differs from EC 1.1.1.187, GDP-4-dehydro-D-rhamnose reductase, in that the only product formed is GDP-α-D-rhamnose. D-Rhamnose is a constituent of lipopolysaccharides of Gram-negative plant and human pathogenic bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kneidinger, B., Graninger, M., Adam, G., Puchberger, M., Kosma, P., Zayni, S. and Messner, P. Identification of two GDP-6-deoxy-D-lyxo-4-hexulose reductases synthesizing GDP-D-rhamnose in Aneurinibacillus thermoaerophilus L420-91T. J. Biol. Chem. 276 (2001) 5577–5583. [DOI] [PMID: 11096116]
2.  Mäki, M., Järvinen, N., Räbinä, J., Roos, C., Maaheimo, H., Mattila, P. and Renkonen, R. Functional expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-D-mannose reductase which synthesizes GDP-rhamnose. Eur. J. Biochem. 269 (2002) 593–601. [DOI] [PMID: 11856318]
[EC 1.1.1.281 created 2004]
 
 
EC 4.2.3.138     Relevance: 97.7%
Accepted name: (+)-epi-α-bisabolol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-epi-α-bisabolol + diphosphate
For diagram of bisabolene biosynthesis, click here
Glossary: (+)-epi-α-bisabolol = (2S)-6-methyl-2-[(1R)-4-methylcyclohex-3-en-1-yl]hept-5-en-2-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-epi-α-bisabolol-forming)
Comments: Isolated from the plant Phyla dulcis (Aztec sweet herb). (+)-epi-α-Bisabolol is the precursor of the sweetener hernandulcin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Attia, M., Kim, S.U. and Ro, D.K. Molecular cloning and characterization of (+)-epi-α-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis. Arch. Biochem. Biophys. 527 (2012) 37–44. [DOI] [PMID: 22867794]
[EC 4.2.3.138 created 2012]
 
 
EC 4.2.2.23     Relevance: 97.5%
Accepted name: rhamnogalacturonan endolyase
Reaction: Endotype eliminative cleavage of L-α-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronic acid bonds of rhamnogalacturonan I domains in ramified hairy regions of pectin leaving L-rhamnopyranose at the reducing end and 4-deoxy-4,5-unsaturated D-galactopyranosyluronic acid at the non-reducing end.
Other name(s): rhamnogalacturonase B; α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronide lyase; Rgase B; rhamnogalacturonan α-L-rhamnopyranosyl-(1,4)-α-D-galactopyranosyluronide lyase; RG-lyase; YesW; RGL4; Rgl11A; Rgl11Y; RhiE
Systematic name: α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronate endolyase
Comments: The enzyme is part of the degradation system for rhamnogalacturonan I in Bacillus subtilis strain 168 and Aspergillus aculeatus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mutter, M., Colquhoun, I.J., Schols, H.A., Beldman, G. and Voragen, A.G. Rhamnogalacturonase B from Aspergillus aculeatus is a rhamnogalacturonan α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronide lyase. Plant Physiol. 110 (1996) 73–77. [PMID: 8587995]
2.  Azadi, P., O'Neill, M.A., Bergmann, C., Darvill, A.G. and Albersheim, P. The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase. Glycobiology 5 (1995) 783–789. [DOI] [PMID: 8720076]
3.  Mutter, M., Colquhoun, I.J., Beldman, G., Schols, H.A., Bakx, E.J. and Voragen, A.G. Characterization of recombinant rhamnogalacturonan α-L-rhamnopyranosyl-(1,4)-α-D-galactopyranosyluronide lyase from Aspergillus aculeatus. An enzyme that fragments rhamnogalacturonan I regions of pectin. Plant Physiol. 117 (1998) 141–152. [PMID: 9576783]
4.  Kadirvelraj, R., Harris, P., Poulsen, J.C., Kauppinen, S. and Larsen, S. A stepwise optimization of crystals of rhamnogalacturonan lyase from Aspergillus aculeatus. Acta Crystallogr. D Biol. Crystallogr. 58 (2002) 1346–1349. [PMID: 12136151]
5.  Laatu, M. and Condemine, G. Rhamnogalacturonate lyase RhiE is secreted by the out system in Erwinia chrysanthemi. J. Bacteriol. 185 (2003) 1642–1649. [DOI] [PMID: 12591882]
6.  Pages, S., Valette, O., Abdou, L., Belaich, A. and Belaich, J.P. A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome. J. Bacteriol. 185 (2003) 4727–4733. [DOI] [PMID: 12896991]
7.  Ochiai, A., Yamasaki, M., Itoh, T., Mikami, B., Hashimoto, W. and Murata, K. Crystallization and preliminary X-ray analysis of the rhamnogalacturonan lyase YesW from Bacillus subtilis strain 168, a member of polysaccharide lyase family 11. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 (2006) 438–440. [DOI] [PMID: 16682770]
8.  Jensen, M.H., Otten, H., Christensen, U., Borchert, T.V., Christensen, L.L., Larsen, S. and Leggio, L.L. Structural and biochemical studies elucidate the mechanism of rhamnogalacturonan lyase from Aspergillus aculeatus. J. Mol. Biol. 404 (2010) 100–111. [DOI] [PMID: 20851126]
[EC 4.2.2.23 created 2011]
 
 
EC 2.4.1.290     Relevance: 97.5%
Accepted name: N,N′-diacetylbacillosaminyl-diphospho-undecaprenol α-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol = UDP + N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglA
Systematic name: UDP-N-acetyl-α-D-galactosamine:N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol 3-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [DOI] [PMID: 16186480]
[EC 2.4.1.290 created 2012]
 
 
EC 2.7.1.168     Relevance: 97.3%
Accepted name: D-glycero-α-D-manno-heptose-7-phosphate kinase
Reaction: D-glycero-α-D-manno-heptose 7-phosphate + ATP = D-glycero-α-D-manno-heptose 1,7-bisphosphate + ADP
Other name(s): D-α-D-heptose-7-phosphate kinase; hdda (gene name)
Systematic name: ATP:D-glycero-α-D-manno-heptose 7-phosphate 1-phosphotransferase
Comments: The enzyme is involved in biosynthesis of GDP-D-glycero-α-D-manno-heptose, which is required for assembly of S-layer glycoprotein in Gram-positive bacteria. The enzyme is specific for the α-anomer.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kneidinger, B., Graninger, M., Puchberger, M., Kosma, P. and Messner, P. Biosynthesis of nucleotide-activated D-glycero-D-manno-heptose. J. Biol. Chem. 276 (2001) 20935–20944. [DOI] [PMID: 11279237]
2.  Valvano, M.A., Messner, P. and Kosma, P. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148 (2002) 1979–1989. [DOI] [PMID: 12101286]
[EC 2.7.1.168 created 2010]
 
 
EC 3.2.1.177     Relevance: 97.2%
Accepted name: α-D-xyloside xylohydrolase
Reaction: Hydrolysis of terminal, non-reducing α-D-xylose residues with release of α-D-xylose.
Other name(s): α-xylosidase
Systematic name: α-D-xyloside xylohydrolase
Comments: The enzyme catalyses hydrolysis of a terminal, unsubstituted xyloside at the extreme reducing end of a xylogluco-oligosaccharide. Representative α-xylosidases from glycoside hydrolase family 31 utilize a two-step (double-displacement) mechanism involving a covalent glycosyl-enzyme intermediate, and retain the anomeric configuration of the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Moracci, M., Cobucci Ponzano, B., Trincone, A., Fusco, S., De Rosa, M., van Der Oost, J., Sensen, C.W., Charlebois, R.L. and Rossi, M. Identification and molecular characterization of the first α -xylosidase from an archaeon. J. Biol. Chem. 275 (2000) 22082–22089. [DOI] [PMID: 10801892]
2.  Sampedro, J., Sieiro, C., Revilla, G., Gonzalez-Villa, T. and Zarra, I. Cloning and expression pattern of a gene encoding an α-xylosidase active against xyloglucan oligosaccharides from Arabidopsis. Plant Physiol. 126 (2001) 910–920. [PMID: 11402218]
3.  Crombie, H.J., Chengappa, S., Jarman, C., Sidebottom, C. and Reid, J.S. Molecular characterisation of a xyloglucan oligosaccharide-acting α-D-xylosidase from nasturtium (Tropaeolum majus L.) cotyledons that resembles plant ’apoplastic’ α-D-glucosidases. Planta 214 (2002) 406–413. [PMID: 11859845]
4.  Lovering, A.L., Lee, S.S., Kim, Y.W., Withers, S.G. and Strynadka, N.C. Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. J. Biol. Chem. 280 (2005) 2105–2115. [DOI] [PMID: 15501829]
5.  Iglesias, N., Abelenda, J.A., Rodino, M., Sampedro, J., Revilla, G. and Zarra, I. Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant Cell Physiol. 47 (2006) 55–63. [DOI] [PMID: 16267099]
6.  Okuyama, M., Kaneko, A., Mori, H., Chiba, S. and Kimura, A. Structural elements to convert Escherichia coli α-xylosidase (YicI) into α-glucosidase. FEBS Lett. 580 (2006) 2707–2711. [DOI] [PMID: 16631751]
7.  Larsbrink, J., Izumi, A., Ibatullin, F., Nakhai, A., Gilbert, H.J., Davies, G.J. and Brumer, H. Structural and enzymatic characterisation of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem. J. 436 (2011) 567–580. [DOI] [PMID: 21426303]
[EC 3.2.1.177 created 2011]
 
 
EC 2.3.1.227     Relevance: 97.1%
Accepted name: GDP-perosamine N-acetyltransferase
Reaction: acetyl-CoA + GDP-4-amino-4,6-dideoxy-α-D-mannose = CoA + GDP-4-acetamido-4,6-dideoxy-α-D-mannose
Glossary: GDP-4-amino-4,6-dideoxy-α-D-mannose = GDP-α-D-perosamine
GDP-4-acetamido-4,6-dideoxy-α-D-mannose = GDP-N-acetyl-α-D-perosamine
Other name(s): perB (gene name); GDP-α-D-perosamine N-acetyltransferase
Systematic name: acetyl-CoA:GDP-4-amino-4,6-dideoxy-α-D-mannose N-acetyltransferase
Comments: D-Perosamine is one of several dideoxy sugars found in the O-antigen component of the outer membrane lipopolysaccharides of Gram-negative bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Albermann, C. and Beuttler, H. Identification of the GDP-N-acetyl-d-perosamine producing enzymes from Escherichia coli O157:H7. FEBS Lett. 582 (2008) 479–484. [DOI] [PMID: 18201574]
[EC 2.3.1.227 created 2013]
 
 
EC 3.2.1.190     Relevance: 97.1%
Accepted name: dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming)
Reaction: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin + 2 H2O = 2 L-rhamnopyranose + diosgenin 3-O-β-D-glucopyranoside
For diagram of diosgenin catabolism, click here
Glossary: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin = (3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L-mannopyranosyl-(1→4)]-β-D-glucopyranoside = dioscin
diosgenin = (3β,25R)-spirost-5-en-3-ol
Other name(s): dioscin-α-L-rhamnosidase
Systematic name: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin (3-O-β-D-Glc-diosgenin-forming)
Comments: The enzyme is involved in the hydrolysis of the steroid saponin dioscin by the digestive system of Sus scrofa (pig). cf. EC 3.2.1.189, dioscin glycosidase (diosgenin-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Qian, S., Yu, H., Zhang, C., Lu, M., Wang, H. and Jin, F. Purification and characterization of dioscin-α-L-rhamnosidase from pig liver. Chem Pharm Bull (Tokyo) 53 (2005) 911–914. [PMID: 16079518]
[EC 3.2.1.190 created 2013]
 
 
EC 2.4.99.15     Relevance: 97%
Accepted name: (Kdo)3-lipid IVA (2-4) 3-deoxy-D-manno-octulosonic acid transferase
Reaction: α-Kdo-(2→8)-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + CMP-β-Kdo = α-Kdo-(2→8)-[α-Kdo-(2→4)]-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + CMP
For diagram of Kdo4-Lipid IVA biosynthesis, click here
Glossary: (Kdo)3-lipid IVA = α-Kdo-(2→8)-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→8)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
(Kdo)4-lipid IVA = α-Kdo-(2→8)-[α-Kdo-(2→4)]-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→8)-[(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)]-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
CMP-β-Kdo = CMP-3-deoxy-β-D-manno-oct-2-ulopyranosylonate
Other name(s): Kdo transferase; waaA (gene name); kdtA (gene name); 3-deoxy-D-manno-oct-2-ulosonic acid transferase; 3-deoxy-manno-octulosonic acid transferase; (KDO)3-lipid IVA (2-4) 3-deoxy-D-manno-octulosonic acid transferase
Systematic name: CMP-3-deoxy-D-manno-oct-2-ulosonate:(Kdo)3-lipid IVA 3-deoxy-D-manno-oct-2-ulosonate transferase [(2→4) glycosidic bond-forming]
Comments: The enzyme from Chlamydia psittaci transfers four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure α-Kdo-(2,8)-[α-Kdo-(2,4)]-α-Kdo-(2,4)-α-Kdo (cf. EC 2.4.99.12 [lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], EC 2.4.99.13 [(Kdo)-lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], and EC 2.4.99.14 [(Kdo)2-lipid IVA (2-8) 3-deoxy-D-manno-octulosonic acid transferase]).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brabetz, W., Lindner, B. and Brade, H. Comparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12. Eur. J. Biochem. 267 (2000) 5458–5465. [DOI] [PMID: 10951204]
2.  Holst, O., Bock, K., Brade, L. and Brade, H. The structures of oligosaccharide bisphosphates isolated from the lipopolysaccharide of a recombinant Escherichia coli strain expressing the gene gseA [3-deoxy-D-manno-octulopyranosonic acid (Kdo) transferase] of Chlamydia psittaci 6BC. Eur. J. Biochem. 229 (1995) 194–200. [DOI] [PMID: 7744029]
[EC 2.4.99.15 created 2010, modified 2011]
 
 
EC 2.4.1.87     Relevance: 96.7%
Accepted name: N-acetyllactosaminide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R = UDP + α-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-N-acetylglucosaminyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): α-galactosyltransferase; UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α-1,3-D-galactosyltransferase; UDP-Gal:Galβ1→4GlcNAc-R α1→3-galactosyltransferase; UDP-galactose-acetyllactosamine α-D-galactosyltransferase; UDPgalactose:β-D-galactosyl-β-1,4-N-acetyl-D-glucosaminyl-glycopeptide α-1,3-D-galactosyltransferase; glucosaminylglycopeptide α-1,3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine α1→3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine galactosyltransferase; uridine diphosphogalactose-galactosylacetylglucosaminylgalactosylglucosylceramide galactosyltransferase; β-D-galactosyl-N-acetylglucosaminylglycopeptide α-1,3-galactosyltransferase; UDP-galactose:N-acetyllactosaminide 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-1,4-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Comments: Acts on β-galactosyl-1,4-N-acetylglucosaminyl termini on asialo-α1-acid glycoprotein and N-acetyllactosamine (β-D-galactosyl-1,4-N-acetyl-β-D-glucosamine), but not on 2′-fucosylated-N-acetyllactosamine. The non-reducing terminal N-acetyllactosamine residues of glycoproteins can also act as acceptor. Now includes EC 2.4.1.124 and EC 2.4.1.151.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 128449-51-4
References:
1.  Basu, M. and Basu, S. Enzymatic synthesis of a blood group B-related pentaglycosylceramide by an α-galactosyltransferase from rabbit bone marrow. J. Biol. Chem. 248 (1973) 1700–1706. [PMID: 4632915]
2.  Blanken, W.M. and van den Eijnden, D.H. Biosynthesis of terminal Gal α 1→3Gal β 1→4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide α 1→3-galactosyltransferase from calf thymus. J. Biol. Chem. 260 (1985) 12927–12934. [PMID: 3932335]
3.  Blake, D.A. and Goldstein, I.J. An α-D-galactosyltransferase activity in Ehrlich ascites tumor cells. Biosynthesis and characterization of a trisaccharide (α-D-galactose-(1→3)-N-acetyllactosamine). J. Biol. Chem. 256 (1981) 5387–5393. [PMID: 6787040]
[EC 2.4.1.87 created 1976, modified 1989, modified 2002 (EC 2.4.1.124 created 1984, incorporated 2002, EC 2.4.1.151 created 1984, incorporated 2002)]
 
 
EC 3.2.1.199     Relevance: 96.7%
Accepted name: sulfoquinovosidase
Reaction: a 6-sulfo-α-D-quinovosyl diacylglycerol + H2O = 6-sulfo-α-D-quinovose + a 1,2-diacylglycerol
Glossary: quinovose = 6-deoxy-D-glucopyranose
Other name(s): yihQ (gene name); 6-sulfo-α-D-quinovosyl diacylglycerol 6-sulfo-D-quinovohydrolase
Systematic name: 6-sulfo-α-D-quinovosyl diacylglycerol 6-sulfo-D-quinovohydrolase (configuration-retaining)
Comments: The enzyme, characterized from the bacteria Escherichia coli and Pseudomonas putida, hydrolyses terminal non-reducing α-sulfoquinovoside residues in α-sulfoquinovosyl diacylglycerides and α-sulfoquinovosyl glycerol using a retaining mechanism. The enzyme belongs to the glycosyl hydrolase GH31 family.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shibuya, I. and Benson, A. A. Hydrolysis of α-sulphoquinovosides by β-galactosidase. Nature 192 (1961) 1186–1187. [DOI]
2.  Speciale, G., Jin, Y., Davies, G.J., Williams, S.J. and Goddard-Borger, E.D. YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat. Chem. Biol. 12 (2016) 215–217. [DOI] [PMID: 26878550]
[EC 3.2.1.199 created 2016]
 
 
EC 2.4.2.61     Relevance: 96.3%
Accepted name: α-dystroglycan β1,4-xylosyltransferase
Reaction: UDP-α-D-xylose + 3-O-[Rib-ol-P-Rib-ol-P-3-β-D-GalNAc-(1→3)-β-D-GlcNAc-(1→4)-O-6-P-α-D-Man]-Ser/Thr-[protein] = UDP + 3-O-[β-D-Xyl-(1→4)-Rib-ol-P-Rib-ol-P-3-β-D-GalNAc-(1→3)-β-D-GlcNAc-(1→4)-O-6-P-α-D-Man]-Ser/Thr-[protein]
Other name(s): TMEM5 (gene name)
Systematic name: UDP-α-D-xylose:3-O-[Rib-ol-P-Rib-ol-P-3-β-D-GalNAc-(1→3)-β-D-GlcNAc-(1→4)-O-6-P-α-D-Man]-Ser/Thr-[protein] xylosyltransferase
Comments: This eukaryotic enzyme catalyses a step in the biosynthesis of the glycan moiety of the membrane protein α-dystroglycan. It is specific for the second ribitol 5-phosphate in the nascent glycan chain as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vuillaumier-Barrot, S., Bouchet-Seraphin, C., Chelbi, M., Devisme, L., Quentin, S., Gazal, S., Laquerriere, A., Fallet-Bianco, C., Loget, P., Odent, S., Carles, D., Bazin, A., Aziza, J., Clemenson, A., Guimiot, F., Bonniere, M., Monnot, S., Bole-Feysot, C., Bernard, J.P., Loeuillet, L., Gonzales, M., Socha, K., Grandchamp, B., Attie-Bitach, T., Encha-Razavi, F. and Seta, N. Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am. J. Hum. Genet. 91 (2012) 1135–1143. [PMID: 23217329]
2.  Manya, H., Yamaguchi, Y., Kanagawa, M., Kobayashi, K., Tajiri, M., Akasaka-Manya, K., Kawakami, H., Mizuno, M., Wada, Y., Toda, T. and Endo, T. The muscular dystrophy gene TMEM5 encodes a ribitol β1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J. Biol. Chem. 291 (2016) 24618–24627. [PMID: 27733679]
[EC 2.4.2.61 created 2018]
 
 
EC 2.4.2.42     Relevance: 96.3%
Accepted name: UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine = UDP + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine
Other name(s): β-glucoside α-1,3-xylosyltransferase; UDP-α-D-xylose:β-D-glucoside 3-α-D-xylosyltransferase; GXYLT1 (gene name); GXYLT2 (gene name)
Systematic name: UDP-α-D-xylose:[protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine 3-α-D-xylosyltransferase (configuration-retaining)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains [2,3]. When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Omichi, K., Aoki, K., Minamida, S. and Hase, S. Presence of UDP-D-xylose: β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α 1-3Glc β-Ser structure of glycoproteins in the human hepatoma cell line HepG2. Eur. J. Biochem. 245 (1997) 143–146. [DOI] [PMID: 9128735]
2.  Ishimizu, T., Sano, K., Uchida, T., Teshima, H., Omichi, K., Hojo, H., Nakahara, Y. and Hase, S. Purification and substrate specificity of UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α1-3Xyl α1-3Glc β1-O-Ser on epidermal growth factor-like domains. J. Biochem. 141 (2007) 593–600. [DOI] [PMID: 17317689]
3.  Sethi, M.K., Buettner, F.F., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R. and Bakker, H. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J. Biol. Chem. 285 (2010) 1582–1586. [PMID: 19940119]
[EC 2.4.2.42 created 2010, modified 2020]
 
 
EC 3.2.1.63     Relevance: 96.3%
Accepted name: 1,2-α-L-fucosidase
Reaction: methyl-2-α-L-fucopyranosyl-β-D-galactoside + H2O = L-fucose + methyl β-D-galactoside
Other name(s): almond emulsin fucosidase; α-(1→2)-L-fucosidase
Systematic name: 2-α-L-fucopyranosyl-β-D-galactoside fucohydrolase
Comments: Highly specific for non-reducing terminal L-fucose residues linked to D-galactose residues by a 1,2-α-linkage. Not identical with EC 3.2.1.111 1,3-α-L-fucosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-45-2
References:
1.  Bahl, O.P. Glycosidases of Aspergillus niger. II. Purification and general properties of 1,2-α-L-fucosidase. J. Biol. Chem. 245 (1970) 299–304. [PMID: 5460888]
2.  Ogata-Arakawa, M., Muramatsu, T. and Kobata, A. α-L-Fucosidases from almond emulsin: characterization of the two enzymes with different specificities. Arch. Biochem. Biophys. 181 (1977) 353–358. [DOI] [PMID: 18111]
3.  Reglero, A. and Cabezas, J.A. Glycosidases of molluscs. Purification and properties of α-L-fucosidase from Chamelea gallina L. Eur. J. Biochem. 66 (1976) 379–387. [DOI] [PMID: 7458]
[EC 3.2.1.63 created 1972]
 
 
EC 2.4.99.23     Relevance: 96.1%
Accepted name: lipopolysaccharide heptosyltransferase I
Reaction: ADP-L-glycero-β-D-manno-heptose + an α-Kdo-(2→4)-α-Kdo-(2→6)-[lipid A] = ADP + an α-Hep-(1→5)-[α-Kdo-(2→4)]-α-Kdo-(2→6)-[lipid A]
Glossary: Lipid A is a lipid component of the lipopolysaccharides (LPS) of Gram-negative bacteria. It consists of two glucosamine units connected by a β(1→6) bond and decorated with four to seven acyl chains and up to two phosphate groups.
Hep = L-glycero-D-manno-heptose
Other name(s): HepI; rfaC (gene name); WaaC; heptosyltransferase I (ambiguous)
Systematic name: ADP-L-glycero-β-D-manno-heptose:an α-Kdo-(2→4)-α-Kdo-(2→6)-[lipid A] 5-α-heptosyltransferase
Comments: The enzyme catalyses a glycosylation step in the biosynthesis of the inner core oligosaccharide of the lipopolysaccharide (endotoxin) of many Gram-negative bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kadrmas, J.L. and Raetz, C.R. Enzymatic synthesis of lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase i. J. Biol. Chem. 273 (1998) 2799–2807. [DOI] [PMID: 9446588]
2.  de Kievit, T.R. and Lam, J.S. Isolation and characterization of two genes, waaC (rfaC) and waaF (rfaF), involved in Pseudomonas aeruginosa serotype O5 inner-core biosynthesis. J. Bacteriol. 179 (1997) 3451–3457. [DOI] [PMID: 9171387]
3.  Klena, J.D., Gray, S.A. and Konkel, M.E. Cloning, sequencing, and characterization of the lipopolysaccharide biosynthetic enzyme heptosyltransferase I gene (waaC) from Campylobacter jejuni and Campylobacter coli. Gene 222 (1998) 177–185. [DOI] [PMID: 9831648]
4.  Gronow, S., Oertelt, C., Ervela, E., Zamyatina, A., Kosma, P., Skurnik, M. and Holst, O. Characterization of the physiological substrate for lipopolysaccharide heptosyltransferases I and II. J Endotoxin Res 7 (2001) 263–270. [PMID: 11717579]
5.  Grizot, S., Salem, M., Vongsouthi, V., Durand, L., Moreau, F., Dohi, H., Vincent, S., Escaich, S. and Ducruix, A. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. J. Mol. Biol. 363 (2006) 383–394. [DOI] [PMID: 16963083]
[EC 2.4.99.23 created 2022]
 
 
EC 2.7.1.212     Relevance: 96.1%
Accepted name: α-D-ribose-1-phosphate 5-kinase (ADP)
Reaction: ADP + α-D-ribose-1-phosphate = AMP + α-D-ribose 1,5-bisphosphate
Systematic name: ADP:α-D-ribose-1-phosphate 5-phosphotransferase
Comments: The enzyme, characterized from the archaeon Thermococcus kodakarensis, participates in an archaeal pathway for nucleoside degradation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Aono, R., Sato, T., Imanaka, T. and Atomi, H. A pentose bisphosphate pathway for nucleoside degradation in Archaea. Nat. Chem. Biol. 11 (2015) 355–360. [DOI] [PMID: 25822915]
[EC 2.7.1.212 created 2016]
 
 
EC 2.4.1.26     Relevance: 96%
Accepted name: DNA α-glucosyltransferase
Reaction: Transfers an α-D-glucosyl residue from UDP-glucose to an hydroxymethylcytosine residue in DNA
Other name(s): uridine diphosphoglucose-deoxyribonucleate α-glucosyltransferase; UDP-glucose-DNA α-glucosyltransferase; uridine diphosphoglucose-deoxyribonucleate α-glucosyltransferase; T2-HMC-α-glucosyl transferase; T4-HMC-α-glucosyl transferase; T6-HMC-α-glucosyl transferase
Systematic name: UDP-glucose:DNA α-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-13-1
References:
1.  Kornberg, S.R., Zimmerman, S.B. and Kornberg, A. Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J. Biol. Chem. 236 (1961) 1487–1493. [PMID: 13753193]
[EC 2.4.1.26 created 1965]
 
 
EC 5.4.99.9     Relevance: 95.7%
Accepted name: UDP-galactopyranose mutase
Reaction: UDP-α-D-galactopyranose = UDP-α-D-galactofuranose
For diagram of UDP-glucose, UDP-galactose and UDP-glucuronate biosynthesis, click here
Other name(s): UGM; UDP-D-galactopyranose furanomutase
Systematic name: UDP-α-D-galactopyranose furanomutase
Comments: A flavoenzyme which generates UDP-α-D-glactofuranose required for cell wall formation in bacteria, fungi, and protozoa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 174632-18-9
References:
1.  Trejo, A.G., Chittenden, G.J.F., Buchanan, J.G. and Baddiley, J. Uridine diphosphate α-D-galactofuranose, an intermediate in the biosynthesis of galactofuranosyl residues. Biochem. J. 117 (1970) 637–639. [PMID: 5419754]
2.  Karunan Partha, S., Bonderoff, S.A., van Straaten, K.E. and Sanders, D.A. Expression, purification and preliminary X-ray crystallographic analysis of UDP-galactopyranose mutase from Deinococcus radiodurans. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 (2009) 843–845. [DOI] [PMID: 19652355]
3.  Dhatwalia, R., Singh, H., Oppenheimer, M., Karr, D.B., Nix, J.C., Sobrado, P. and Tanner, J.J. Crystal structures and small-angle x-ray scattering analysis of UDP-galactopyranose mutase from the pathogenic fungus Aspergillus fumigatus. J. Biol. Chem. 287 (2012) 9041–9051. [DOI] [PMID: 22294687]
4.  van Straaten, K.E., Routier, F.H. and Sanders, D.A. Towards the crystal structure elucidation of eukaryotic UDP-galactopyranose mutase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 (2012) 455–459. [DOI] [PMID: 22505419]
[EC 5.4.99.9 created 1984, modified 2012]
 
 
EC 1.1.1.135     Relevance: 95.7%
Accepted name: GDP-6-deoxy-D-talose 4-dehydrogenase
Reaction: GDP-6-deoxy-α-D-talose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+
For diagram of gdp-l-fucose and GDP-mannose biosynthesis, click here
Glossary: GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
GDP-6-deoxy-α-D-talose = GDP-α-D-pneumose
Other name(s): guanosine diphospho-6-deoxy-D-talose dehydrogenase; GDP-6-deoxy-D-talose:NAD(P)+ 4-oxidoreductase
Systematic name: GDP-6-deoxy-α-D-talose:NAD(P)+ 4-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-66-1
References:
1.  Markovitz, A. Biosynthesis of guanosine diphosphate D-rhamnose and guanosine diphosphate D-talomethylose from guanosine diphosphate α-D-mannose. J. Biol. Chem. 239 (1964) 2091–2098. [PMID: 14209931]
[EC 1.1.1.135 created 1972, modified 1976]
 
 
EC 2.4.1.21     Relevance: 95.7%
Accepted name: starch synthase (glycosyl-transferring)
Reaction: ADP-α-D-glucose + [(1→4)-α-D-glucosyl]n = ADP + [(1→4)-α-D-glucosyl]n+1
Other name(s): ADP-glucose—starch glucosyltransferase; adenosine diphosphate glucose-starch glucosyltransferase; adenosine diphosphoglucose-starch glucosyltransferase; ADP-glucose starch synthase; ADP-glucose transglucosylase; ADP-glucose-starch glucosyltransferase; ADPG starch synthetase; ADPG-starch glucosyltransferase; starch synthetase; ADP-glucose:1,4-α-D-glucan 4-α-D-glucosyltransferase
Systematic name: ADP-α-D-glucose:(1→4)-α-D-glucan 4-α-D-glucosyltransferase
Comments: The accepted name varies according to the source of the enzyme and the nature of its synthetic product, e.g. starch synthase, bacterial glycogen synthase. Similar to EC 2.4.1.11 [glycogen(starch) synthase] but the preferred or mandatory nucleoside diphosphate sugar substrate is ADP-α-D-glucose. The entry covers starch and glycogen synthases utilizing ADP-α-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-10-8, 37338-93-5
References:
1.  Chambers, J.C. and Elbein, A.D. Biosynthesis of glucans in mung bean seedlings. Formation of β-(1,4)-glucans from GDP-glucose and β-(1,3)-glucans from UDP-glucose. Arch. Biochem. Biophys. 138 (1970) 620–631. [DOI] [PMID: 4317490]
2.  Frydman, R.B. and Cardini, C.E. Studies on adenosine diphosphate D-glucose: α-1,4-glucan α-4-glucosyltransferase of sweet-corn endosperm. Biochim. Biophys. Acta 96 (1965) 294–303. [DOI] [PMID: 14298833]
3.  Greenberg, E. and Preiss, J. Biosynthesis of bacterial glycogen. II. Purification and properties of the adenosine diphosphoglucose:glycogen transglucosylase of arthrobacter species NRRL B1973. J. Biol. Chem. 240 (1965) 2341–2348. [PMID: 14304835]
4.  Leloir, L.F., de Fekete, M.A. and Cardini, C.E. Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. Biol. Chem. 236 (1961) 636–641. [PMID: 13760681]
5.  Preiss, J., Govins, S., Eidels, L., Lammel, C., Greenberg, E., Edelmann, P. and Sabraw, A. Regulatory mechanisms in the biosynthesis of α-1,4-glucans in bacteria and plants. In: Whelan, W.J. and Schultz, J. (Ed.), Miami Winter Symposia, vol. 1, North Holland, Utrecht, 1970, pp. 122–138.
[EC 2.4.1.21 created 1965]
 
 
EC 2.4.1.1     Relevance: 95.7%
Accepted name: glycogen phosphorylase
Reaction: [(1→4)-α-D-glucosyl]n + phosphate = [(1→4)-α-D-glucosyl]n-1 + α-D-glucose 1-phosphate
For diagram of glycogen, click here
Other name(s): muscle phosphorylase a and b; amylophosphorylase; polyphosphorylase; amylopectin phosphorylase; glucan phosphorylase; α-glucan phosphorylase; 1,4-α-glucan phosphorylase; glucosan phosphorylase; granulose phosphorylase; maltodextrin phosphorylase; muscle phosphorylase; myophosphorylase; potato phosphorylase; starch phosphorylase; 1,4-α-D-glucan:phosphate α-D-glucosyltransferase; phosphorylase (ambiguous)
Systematic name: (1→4)-α-D-glucan:phosphate α-D-glucosyltransferase
Comments: This entry covers several enzymes from different sources that act in vivo on different forms of (1→4)-α-D-glucans. Some of these enzymes catalyse the first step in the degradation of large branched glycan polymers - the phosphorolytic cleavage of α-1,4-glucosidic bonds from the non-reducing ends of linear poly(1→4)-α-D-glucosyl chains within the polymers. The enzyme stops when it reaches the fourth residue away from an α-1,6 branching point, leaving a highly branched core known as a limit dextrin. The accepted name of the enzyme should be modified for each specific instance by substituting "glycogen" with the name of the natural substrate, e.g. maltodextrin phosphorylase, starch phosphorylase, etc.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9035-74-9
References:
1.  Hanes, C.S. The breakdown and synthesis of starch by an enzyme from pea seeds. Proc. R. Soc. Lond. B Biol. Sci. 128 (1940) 421–450.
2.  Green, A.A. and Cori, G.T. Crystalline muscle phosphorylase. I. Preparation, properties, and molecular weight. J. Biol. Chem. 151 (1943) 21–29.
3.  Baum, H. and Gilbert, G.A. A simple method for the preparation of crystalline potato phosphorylase and Q-enzyme. Nature 171 (1953) 983–984. [PMID: 13063502]
4.  Cowgill, R.W. Lobster muscle phosphorylase: purfication and properties. J. Biol. Chem. 234 (1959) 3146–3153. [PMID: 13812491]
5.  Chen, G.S. and Segel, I.H. Purification and properties of glycogen phosphorylase from Escherichia coli. Arch. Biochem. Biophys. 127 (1968) 175–186. [DOI] [PMID: 4878695]
6.  Fischer, E.H., Pocker, A. and Saari, J.C. The structure, function and control of glycogen phosphorylase. In: Campbell, P.N. and Greville, G.D. (Ed.), Essays in Biochemistry, vol. 6, Academic Press, London and New York, 1970, pp. 23–68.
[EC 2.4.1.1 created 1961, modified 2013]
 
 
EC 2.6.1.109     Relevance: 95.7%
Accepted name: 8-amino-3,8-dideoxy-α-D-manno-octulosonate transaminase
Reaction: 8-amino-3,8-dideoxy-α-D-manno-octulosonate + 2-oxoglutarate = 8-dehydro-3-deoxy-α-D-manno-octulosonate + L-glutamate
Glossary: 3-deoxy-α-D-manno-octulosonate = Kdo
8-dehydro-3-deoxy-α-D-manno-octulosonate = (2R,4R,5R,6S)-2,4,5-trihydroxy-6-[(1S)-1-hydroxy-2-oxoethyl]oxane-2-carboxylate
Other name(s): kdnA (gene name)
Systematic name: 8-amino-3,8-dideoxy-α-D-manno-octulosonate:2-oxoglutarate aminotransferase
Comments: The enzyme, characterized from the bacterium Shewanella oneidensis, forms 8-amino-3,8-dideoxy-α-D-manno-octulosonate, an aminated form of Kdo found in lipopolysaccharides of members of the Shewanella genus. cf. EC 1.1.3.48, 3-deoxy-α-D-manno-octulosonate 8-oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gattis, S.G., Chung, H.S., Trent, M.S. and Raetz, C.R. The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis. J. Biol. Chem. 288 (2013) 9216–9225. [DOI] [PMID: 23413030]
[EC 2.6.1.109 created 2015]
 
 
EC 2.4.1.155     Relevance: 95.6%
Accepted name: α-1,6-mannosyl-glycoprotein 6-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein n-acetylglucosaminyltransferases, click here
Other name(s): MGAT5 (gene name); N-acetylglucosaminyltransferase V; α-mannoside β-1,6-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-α-mannoside β1→6-acetylglucosaminyltransferase; UDP-N-acetylglucosamine:α-mannoside-β1,6 N-acetylglucosaminyltransferase; α-1,3(6)-mannosylglycoprotein β-1,6-N-acetylglucosaminyltransferase; GnTV; GlcNAc-T V; UDP-N-acetyl-D-glucosamine:6-[2-(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl]-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)-β-D-mannosyl-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires Mg2+. The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. It catalyses the addition of N-acetylglucosamine in β 1-6 linkage to the α-linked mannose of biantennary N-linked oligosaccharides, and thus enables the synthesis of tri- and tetra-antennary complexes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83588-90-3
References:
1.  Cummings, R.D., Trowbridge, I.S. and Kornfeld, S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: α-D-mannoside β1,6 N-acetylglucosaminyltransferase. J. Biol. Chem. 257 (1982) 13421–13427. [PMID: 6216250]
2.  Hindsgaul, O., Tahir, S.H., Srivastava, O.P. and Pierce, M. The trisaccharide β-D-GlcpNAc-(1→2)-α-D-Manp-(1→6)-β-D-Manp, as its 8-methoxycarbonyloctyl glycoside, is an acceptor selective for N-acetylglucosaminyltransferase V. Carbohydr. Res. 173 (1988) 263–272. [DOI] [PMID: 2834054]
3.  Shoreibah, M.G., Hindsgaul, O. and Pierce, M. Purification and characterization of rat kidney UDP-N-acetylglucosamine: α-6-D-mannoside β-1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 267 (1992) 2920–2927. [PMID: 1531335]
4.  Gu, J., Nishikawa, A., Tsuruoka, N., Ohno, M., Yamaguchi, N., Kangawa, K. and Taniguchi, N. Purification and characterization of UDP-N-acetylglucosamine: α-6-D-mannoside β 1-6N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. J. Biochem. 113 (1993) 614–619. [PMID: 8393437]
5.  Park, C., Jin, U.H., Lee, Y.C., Cho, T.J. and Kim, C.H. Characterization of UDP-N-acetylglucosamine:α-6-D-mannoside β-1,6-N-acetylglucosaminyltransferase V from a human hepatoma cell line Hep3B. Arch. Biochem. Biophys. 367 (1999) 281–288. [PMID: 10395745]
6.  Saito, T., Miyoshi, E., Sasai, K., Nakano, N., Eguchi, H., Honke, K. and Taniguchi, N. A secreted type of β 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J. Biol. Chem. 277 (2002) 17002–17008. [PMID: 11872751]
[EC 2.4.1.155 created 1986, modified 2001, modified 2018]
 
 
EC 2.4.1.345     Relevance: 95.6%
Accepted name: phosphatidyl-myo-inositol α-mannosyltransferase
Reaction: GDP-α-D-mannose + 1-phosphatidyl-1D-myo-inositol = GDP + 2-O-(α-D-mannosyl)-1-phosphatidyl-1D-myo-inositol
Glossary: 1-phosphatidyl-1D-myo-inositol = PtdIns
Other name(s): mannosyltransferase PimA; PimA; guanosine diphosphomannose-phosphatidyl-inositol α-mannosyltransferase (ambiguous)
Systematic name: GDP-α-D-mannose:1-phosphatidyl-1D-myo-inositol 2-α-D-mannosyltransferase (configuration-retaining)
Comments: Requires Mg2+. The enzyme, found in Corynebacteriales, is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kordulakova, J., Gilleron, M., Mikusova, K., Puzo, G., Brennan, P.J., Gicquel, B. and Jackson, M. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J. Biol. Chem. 277 (2002) 31335–31344. [DOI] [PMID: 12068013]
2.  Gu, X., Chen, M., Wang, Q., Zhang, M., Wang, B. and Wang, H. Expression and purification of a functionally active recombinant GDP-mannosyltransferase (PimA) from Mycobacterium tuberculosis H37Rv. Protein Expr. Purif. 42 (2005) 47–53. [DOI] [PMID: 15939292]
3.  Giganti, D., Albesa-Jove, D., Urresti, S., Rodrigo-Unzueta, A., Martinez, M.A., Comino, N., Barilone, N., Bellinzoni, M., Chenal, A., Guerin, M.E. and Alzari, P.M. Secondary structure reshuffling modulates glycosyltransferase function at the membrane. Nat. Chem. Biol. 11 (2015) 16–18. [DOI] [PMID: 25402770]
4.  Rodrigo-Unzueta, A., Martinez, M.A., Comino, N., Alzari, P.M., Chenal, A. and Guerin, M.E. Molecular basis of membrane association by the phosphatidylinositol mannosyltransferase PimA enzyme from Mycobacteria. J. Biol. Chem. 291 (2016) 13955–13963. [DOI] [PMID: 27189944]
[EC 2.4.1.345 created 2017]
 
 
EC 5.5.1.10     Relevance: 95.4%
Accepted name: α-pinene-oxide decyclase
Reaction: α-pinene oxide = (Z)-2-methyl-5-isopropylhexa-2,5-dienal
For diagram of pinene and related monoterpenoids, click here
Other name(s): α-pinene oxide lyase; α-pinene-oxide lyase (decyclizing)
Systematic name: α-pinene-oxide lyase (ring-opening)
Comments: Both rings of pinene are cleaved in the reaction.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 112692-50-9
References:
1.  Griffiths, E.T., Harries, P.C., Jeffcoat, R. and Trudgill, P.W. Purification and properties of α-pinene oxide lyase from Nocardia sp. strain P18.3. J. Bacteriol. 169 (1987) 4980–4983. [DOI] [PMID: 3667522]
[EC 5.5.1.10 created 1990]
 
 
EC 5.3.2.3     Relevance: 95.2%
Accepted name: TDP-4-oxo-6-deoxy-α-D-glucose-3,4-oxoisomerase (dTDP-3-dehydro-6-deoxy-α-D-galactopyranose-forming)
Reaction: dTDP-4-dehydro-6-deoxy-α-D-glucopyranose = dTDP-3-dehydro-6-deoxy-α-D-galactopyranose
For diagram of dTDP-Fuc3NAc and dTDP-Fuc4NAc biosynthesis, click here
Other name(s): dTDP-6-deoxy-hex-4-ulose isomerase; TDP-6-deoxy-hex-4-ulose isomerase; FdtA
Systematic name: dTDP-4-dehydro-6-deoxy-α-D-glucopyranose:dTDP-3-dehydro-6-deoxy-α-D-galactopyranose isomerase
Comments: The enzyme is involved in the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose. Four moieties of α-D-rhamnose and two moities of 3-acetamido-3,6-dideoxy-α-D-galactose form the repeating unit of the glycan chain in the S-layer of the bacterium Aneurinibacillus thermoaerophilus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pfoestl, A., Hofinger, A., Kosma, P. and Messner, P. Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose in Aneurinibacillus thermoaerophilus L420-91T. J. Biol. Chem. 278 (2003) 26410–26417. [DOI] [PMID: 12740380]
2.  Davis, M.L., Thoden, J.B. and Holden, H.M. The x-ray structure of dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase. J. Biol. Chem. 282 (2007) 19227–19236. [DOI] [PMID: 17459872]
[EC 5.3.2.3 created 2011]
 
 
EC 2.3.1.284     Relevance: 95.2%
Accepted name: 3′-(hydroxy)phthioceranyl-2′-palmitoyl(stearoyl)-2-O-sulfo-trehalose (hydroxy)phthioceranyltransferase
Reaction: 3 3′-(hydroxy)phthioceranyl-2′-palmitoyl(stearoyl)-2-O-sulfo-α,α-trehalose = 3,6,6′-tris-(hydroxy)phthioceranyl-2-palmitoyl(stearoyl)-2′-sulfo-α-alpha-trehalose + 2 2′-palmitoyl/stearoyl-2-O-sulfo-α,α-trehalose
Glossary: 3,6,6′-tris-(hydroxy)phthioceranyl-2-palmitoyl(stearoyl)-2′-sulfo-α-alpha-trehalose = a mycobacterial sulfolipid
Other name(s): chp1 (gene name)
Systematic name: 3′-(hydroxy)phthioceranyl-2′-palmitoyl(stearoyl)-2-O-sulfo-α,α-trehalose:3′-(hydroxy)phthioceranyl-2′-palmitoyl(stearoyl)-2-O-sulfo-α,α-trehalose 6,6′-di(hydroxy)phthioceranyltransferase
Comments: The enzyme, present in mycobacteria, catalyses the ultimate step in the biosynthesis of mycobacterial sulfolipids. It catalyses two successive transfers of a (hydroxy)phthioceranyl group from two diacylated intermediates to third diacylated intermediate, generating the tetraacylated sulfolipid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Seeliger, J.C., Holsclaw, C.M., Schelle, M.W., Botyanszki, Z., Gilmore, S.A., Tully, S.E., Niederweis, M., Cravatt, B.F., Leary, J.A. and Bertozzi, C.R. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 287 (2012) 7990–8000. [PMID: 22194604]
[EC 2.3.1.284 created 2019]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald