The Enzyme Database

Displaying entries 101-126 of 126.

<< Previous | Next >>    printer_iconPrintable version

EC 2.6.1.101     
Accepted name: L-glutamine:3-amino-2,3-dideoxy-scyllo-inosose aminotransferase
Reaction: L-glutamine + 3-amino-2,3-dideoxy-scyllo-inosose = 2-oxoglutaramate + 2-deoxystreptamine
For diagram of paromamine biosynthesis, click here
Glossary: 3-amino-2,3-dideoxy-scyllo-inosose = (2R,3S,4R,5S)-5-amino-2,3,4-trihydroxycyclohexan-1-one
Systematic name: L-glutamine:5-amino-2,3,4-trihydroxycyclohexanone aminotransferase
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Also catalyses EC 2.6.1.100, L-glutamine:2-deoxy-scyllo-inosose aminotransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Huang, F., Haydock, S.F., Mironenko, T., Spiteller, D., Li, Y. and Spencer, J.B. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: characterisation of an aminotransferase involved in the formation of 2-deoxystreptamine. Org. Biomol. Chem. 3 (2005) 1410–1418. [DOI] [PMID: 15827636]
2.  Kudo, F., Yamamoto, Y., Yokoyama, K., Eguchi, T. and Kakinuma, K. Biosynthesis of 2-deoxystreptamine by three crucial enzymes in Streptomyces fradiae NBRC 12773. J. Antibiot. (Tokyo) 58 (2005) 766–774. [DOI] [PMID: 16506694]
[EC 2.6.1.101 created 2013]
 
 
EC 2.6.1.102     
Accepted name: GDP-perosamine synthase
Reaction: GDP-α-D-perosamine + 2-oxoglutarate = GDP-4-dehydro-α-D-rhamnose + L-glutamate
Glossary: GDP-α-D-perosamine = GDP-4-amino-4,6-dideoxy-α-D-mannose
GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
Other name(s): RfbE; GDP-4-keto-6-deoxy-D-mannose-4-aminotransferase; GDP-perosamine synthetase; PerA; GDP-4-amino-4,6-dideoxy-α-D-mannose:2-oxoglutarate aminotransferase
Systematic name: GDP-α-D-perosamine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme. D-Perosamine is one of several dideoxy sugars found in the O-specific polysaccharide of the lipopolysaccharide component of the outer membrane of Gram-negative bacteria. The enzyme catalyses the final step in GDP-α-D-perosamine synthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Albermann, C. and Piepersberg, W. Expression and identification of the RfbE protein from Vibrio cholerae O1 and its use for the enzymatic synthesis of GDP-D-perosamine. Glycobiology 11 (2001) 655–661. [DOI] [PMID: 11479276]
2.  Zhao, G., Liu, J., Liu, X., Chen, M., Zhang, H. and Wang, P.G. Cloning and characterization of GDP-perosamine synthetase (Per) from Escherichia coli O157:H7 and synthesis of GDP-perosamine in vitro. Biochem. Biophys. Res. Commun. 363 (2007) 525–530. [DOI] [PMID: 17888872]
3.  Albermann, C. and Beuttler, H. Identification of the GDP-N-acetyl-d-perosamine producing enzymes from Escherichia coli O157:H7. FEBS Lett. 582 (2008) 479–484. [DOI] [PMID: 18201574]
4.  Cook, P.D., Carney, A.E. and Holden, H.M. Accommodation of GDP-linked sugars in the active site of GDP-perosamine synthase. Biochemistry 47 (2008) 10685–10693. [DOI] [PMID: 18795799]
[EC 2.6.1.102 created 2013]
 
 
EC 2.6.1.103     
Accepted name: (S)-3,5-dihydroxyphenylglycine transaminase
Reaction: (S)-3,5-dihydroxyphenylglycine + 2-oxoglutarate = 2-(3,5-dihydroxyphenyl)-2-oxoacetate + L-glutamate
Glossary: (S)-3,5-dihydroxyphenylglycine = (2S)-2-amino-2-(3,5-dihydroxyphenyl)acetic acid
Other name(s): HpgT
Systematic name: (S)-3,5-dihydroxyphenylglycine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-5′-phosphate protein. The enzyme from the bacterium Amycolatopsis orientalis catalyses the reaction in the reverse direction as part of the biosynthesis of the (S)-3,5-dihydroxyphenylglycine constituent of the glycopeptide antibiotic chloroeremomycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sandercock, A.M., Charles, E.H., Scaife, W., Kirkpatrick, P.N., O'Brien, S.W., Papageorgiou, E.A., Spencer, J.B. and Williams, D.H. Biosynthesis of the di-meta-hydroxyphenylglycine constituent of the vancomycin-group antibiotic chloroeremomycin. Chem. Comm. (2001) 1252–1253.
[EC 2.6.1.103 created 2013]
 
 
EC 2.6.1.104     
Accepted name: 3-dehydro-glucose-6-phosphate—glutamate transaminase
Reaction: kanosamine 6-phosphate + 2-oxoglutarate = 3-dehydro-D-glucose 6-phosphate + L-glutamate
For diagram of kanosamine biosynthesis, click here
Glossary: kanosamine = 3-amino-3-deoxy-D-glucose
Other name(s): 3-oxo-glucose-6-phosphate:glutamate aminotransferase; ntdA (gene name)
Systematic name: kanosamine 6-phosphate:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme, found in the bacterium Bacillus subtilis, is involved in a kanosamine biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  van Straaten, K.E., Langill, D.M., Palmer, D.R. and Sanders, D.A. Purification, crystallization and preliminary X-ray analysis of NtdA, a putative pyridoxal phosphate-dependent aminotransferase from Bacillus subtilis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 (2009) 426–429. [DOI] [PMID: 19342798]
2.  Vetter, N.D., Langill, D.M., Anjum, S., Boisvert-Martel, J., Jagdhane, R.C., Omene, E., Zheng, H., van Straaten, K.E., Asiamah, I., Krol, E.S., Sanders, D.A. and Palmer, D.R. A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis. J. Am. Chem. Soc. 135 (2013) 5970–5973. [DOI] [PMID: 23586652]
[EC 2.6.1.104 created 2014]
 
 
EC 2.6.1.105     
Accepted name: lysine—8-amino-7-oxononanoate transaminase
Reaction: L-lysine + 8-amino-7-oxononanoate = (S)-2-amino-6-oxohexanoate + 7,8-diaminononanoate
Glossary: (S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
Other name(s): DAPA aminotransferase (ambiguous); bioA (gene name) (ambiguous); bioK (gene name)
Systematic name: L-lysine:8-amino-7-oxononanoate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme [2]. Participates in the pathway for biotin biosynthesis. The enzyme from the bacterium Bacillus subtilis cannot use S-adenosyl-L-methionine as amino donor and catalyses an alternative reaction for the conversion of 8-amino-7-oxononanoate to 7,8-diaminononanoate (cf. EC 2.6.1.62, adenosylmethionine—8-amino-7-oxononanoate transaminase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Van Arsdell, S.W., Perkins, J.B., Yocum, R.R., Luan, L., Howitt, C.L., Chatterjee, N.P. and Pero, J.G. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnol. Bioeng. 91 (2005) 75–83. [DOI] [PMID: 15880481]
2.  Dey, S., Lane, J.M., Lee, R.E., Rubin, E.J. and Sacchettini, J.C. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase. Biochemistry 49 (2010) 6746–6760. [DOI] [PMID: 20565114]
[EC 2.6.1.105 created 2014]
 
 
EC 2.6.1.106     
Accepted name: dTDP-3-amino-3,4,6-trideoxy-α-D-glucose transaminase
Reaction: dTDP-3-amino-3,4,6-trideoxy-α-D-glucose + 2-oxoglutarate = dTDP-3-dehydro-4,6-deoxy-α-D-glucose + L-glutamate
For diagram of dTDP-D-desosamine biosynthesis, click here
Glossary: dTDP-α-D-desosamine = dTDP-3-(dimethylamino)-3,4,6-trideoxy-α-D-glucose
Other name(s): desV (gene name); megDII (gene name); eryCI (gene name)
Systematic name: dTDP-3-amino-3,4,6-trideoxy-α-D-glucose:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme is involved in the biosynthesis of dTDP-α-D-desosamine, a sugar found in several bacterial macrolide antibiotics including erythromycin, megalomicin A, mycinamicin II, and oleandomycin. The reaction occurs in the reverse direction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Burgie, E.S., Thoden, J.B. and Holden, H.M. Molecular architecture of DesV from Streptomyces venezuelae: a PLP-dependent transaminase involved in the biosynthesis of the unusual sugar desosamine. Protein Sci. 16 (2007) 887–896. [DOI] [PMID: 17456741]
[EC 2.6.1.106 created 2014]
 
 
EC 2.6.1.107     
Accepted name: β-methylphenylalanine transaminase
Reaction: (2S,3S)-3-methylphenylalanine + 2-oxoglutarate = (3S)-2-oxo-3-phenylbutanoate + L-glutamate
Glossary: (3S)-2-oxo-3-phenylbutanoate = (3S)-β-methyl-phenylpyruvate
Other name(s): TyrB
Systematic name: (2S,3S)-3-methylphenylalanine:2-oxoglutarate aminotransferase
Comments: Requires pyridoxal phosphate. Isolated from the bacterium Streptomyces hygroscopicus NRRL3085. It is involved in the biosynthesis of the glycopeptide antibiotic mannopeptimycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Huang, Y.T., Lyu, S.Y., Chuang, P.H., Hsu, N.S., Li, Y.S., Chan, H.C., Huang, C.J., Liu, Y.C., Wu, C.J., Yang, W.B. and Li, T.L. In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-β-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. ChemBioChem 10 (2009) 2480–2487. [DOI] [PMID: 19731276]
[EC 2.6.1.107 created 2014]
 
 
EC 2.6.1.108     
Accepted name: (5-formylfuran-3-yl)methyl phosphate transaminase
Reaction: L-alanine + (5-formylfuran-3-yl)methyl phosphate = pyruvate + [5-(aminomethyl)furan-3-yl]methyl phosphate
For diagram of methanofuran biosynthesis, click here
Other name(s): mfnC (gene name); [5-(hydroxymethyl)furan-3-yl]methyl phosphate transaminase
Systematic name: L-alanine:(5-formylfuran-3-yl)methyl phosphate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. The enzyme, characterized from the archaebacterium Methanocaldococcus jannaschii, participates in the biosynthesis of the cofactor methanofuran. Requires pyridoxal 5′-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Miller, D., Wang, Y., Xu, H., Harich, K. and White, R.H. Biosynthesis of the 5-(aminomethyl)-3-furanmethanol moiety of methanofuran. Biochemistry 53 (2014) 4635–4647. [DOI] [PMID: 24977328]
[EC 2.6.1.108 created 2015]
 
 
EC 2.6.1.109     
Accepted name: 8-amino-3,8-dideoxy-α-D-manno-octulosonate transaminase
Reaction: 8-amino-3,8-dideoxy-α-D-manno-octulosonate + 2-oxoglutarate = 8-dehydro-3-deoxy-α-D-manno-octulosonate + L-glutamate
Glossary: 3-deoxy-α-D-manno-octulosonate = Kdo
8-dehydro-3-deoxy-α-D-manno-octulosonate = (2R,4R,5R,6S)-2,4,5-trihydroxy-6-[(1S)-1-hydroxy-2-oxoethyl]oxane-2-carboxylate
Other name(s): kdnA (gene name)
Systematic name: 8-amino-3,8-dideoxy-α-D-manno-octulosonate:2-oxoglutarate aminotransferase
Comments: The enzyme, characterized from the bacterium Shewanella oneidensis, forms 8-amino-3,8-dideoxy-α-D-manno-octulosonate, an aminated form of Kdo found in lipopolysaccharides of members of the Shewanella genus. cf. EC 1.1.3.48, 3-deoxy-α-D-manno-octulosonate 8-oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gattis, S.G., Chung, H.S., Trent, M.S. and Raetz, C.R. The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis. J. Biol. Chem. 288 (2013) 9216–9225. [DOI] [PMID: 23413030]
[EC 2.6.1.109 created 2015]
 
 
EC 2.6.1.110     
Accepted name: dTDP-4-dehydro-2,3,6-trideoxy-D-glucose 4-aminotransferase
Reaction: dTDP-4-amino-2,3,4,6-tetradeoxy-α-D-erythro-hexopyranose + 2-oxoglutarate = dTDP-4-dehydro-2,3,6-trideoxy-α-D-hexopyranose + L-glutamate
For diagram of dTDP-forosamine biosynthesis, click here
Other name(s): SpnR; TDP-4-keto-2,3,6-trideoxy-D-glucose 4-aminotransferase
Systematic name: dTDP-4-amino-2,3,4,6-tetradeoxy-α-D-erythro-hexopyranose:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme, isolated from the bacterium Saccharopolyspora spinosa, participates in the biosynthesis of forosamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hong, L., Zhao, Z., Melancon, C.E., 3rd, Zhang, H. and Liu, H.W. In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa. J. Am. Chem. Soc. 130 (2008) 4954–4967. [DOI] [PMID: 18345667]
[EC 2.6.1.110 created 2016]
 
 
EC 2.6.1.111     
Accepted name: 3-aminobutanoyl-CoA transaminase
Reaction: 3-aminobutanoyl-CoA + 2-oxoglutarate = acetoacetyl-CoA + L-glutamate
Other name(s): kat (gene name); acyl-CoA β-transaminase
Systematic name: 3-aminobutanoyl-CoA:2-oxoglutarate aminotransferase
Comments: The enzyme, found in bacteria, is part of a L-lysine degradation pathway. The enzyme is also active with other β-amino compounds such as 3-amino-5-methylhexanoyl-CoA and 3-amino-3-phenylpropanoyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Perret, A., Lechaplais, C., Tricot, S., Perchat, N., Vergne, C., Pelle, C., Bastard, K., Kreimeyer, A., Vallenet, D., Zaparucha, A., Weissenbach, J. and Salanoubat, M. A novel acyl-CoA β-transaminase characterized from a metagenome. PLoS One 6:e22918 (2011). [DOI] [PMID: 21826218]
[EC 2.6.1.111 created 2017]
 
 
EC 2.6.1.112     
Accepted name: (S)-ureidoglycine—glyoxylate transaminase
Reaction: (S)-ureidoglycine + glyoxylate = N-carbamoyl-2-oxoglycine + glycine
Glossary: (S)-ureidoglycine = (2S)-(carbamoylamino)glycine
Other name(s): (S)-ureidoglycine—glyoxylate aminotransferase; UGXT; PucG
Systematic name: (S)-ureidoglycine:glyoxylate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. The protein, found in bacteria, can use other amino-group acceptors, but is specific for (S)-ureidoglycine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ramazzina, I., Costa, R., Cendron, L., Berni, R., Peracchi, A., Zanotti, G. and Percudani, R. An aminotransferase branch point connects purine catabolism to amino acid recycling. Nat. Chem. Biol. 6 (2010) 801–806. [DOI] [PMID: 20852637]
[EC 2.6.1.112 created 2017]
 
 
EC 2.6.1.113     
Accepted name: putrescine—pyruvate transaminase
Reaction: putrescine + pyruvate = 4-aminobutanal + alanine
Other name(s): spuC (gene name)
Systematic name: putrescine:pyruvate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. The enzyme, studied in the bacterium Pseudomonas aeruginosa, participates in a putrescine degradation pathway. cf. EC 2.6.1.82, putrescine—2-oxoglutarate aminotransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lu, C.D., Itoh, Y., Nakada, Y. and Jiang, Y. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J. Bacteriol. 184 (2002) 3765–3773. [DOI] [PMID: 12081945]
[EC 2.6.1.113 created 2017]
 
 
EC 2.6.1.114     
Accepted name: 8-demethyl-8-aminoriboflavin-5′-phosphate synthase
Reaction: L-glutamate + FMN + O2 + H2O + 3 acceptor = 2-oxoglutarate + 8-amino-8-demethylriboflavin 5′-phosphate + CO2 + 3 reduced acceptor (overall reaction)
(1a) FMN + O2 = 8-demethyl-8-formylriboflavin 5′-phosphate + H2O
(1b) 8-demethyl-8-formylriboflavin 5′-phosphate + H2O + acceptor = 8-carboxy-8-demethylriboflavin 5′-phosphate + reduced acceptor
(1c) L-glutamate + 8-carboxy-8-demethylriboflavin 5′-phosphate + H2O + 2 acceptor = 2-oxoglutarate + 8-amino-8-demethylriboflavin 5′-phosphate + CO2 + 2 reduced acceptor
For diagram of roseoflavin biosynthesis, click here
Glossary: roseoflavin = 8-demethyl-8-(dimethylamino)riboflavin
Other name(s): rosB (gene name)
Systematic name: L-glutamate:FMN aminotransferase (oxidizing, decarboxylating)
Comments: The enzyme, characterized from the bacterium Streptomyces davawensis, has the activities of an oxidoreductase, a decarboxylase, and an aminotransferase. Its combined actions result in the replacement of a methyl substituent of one of the aromatic rings of FMN by an amino group, a step in the biosynthetic pathway of roseoflavin. The reaction requires thiamine for completion.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schwarz, J., Konjik, V., Jankowitsch, F., Sandhoff, R. and Mack, M. Identification of the key enzyme of roseoflavin biosynthesis. Angew. Chem. Int. Ed. Engl. 55 (2016) 6103–6106. [DOI] [PMID: 27062037]
2.  Jhulki, I., Chanani, P.K., Abdelwahed, S.H. and Begley, T.P. A remarkable oxidative cascade that replaces the riboflavin C8 methyl with an amino group during roseoflavin biosynthesis. J. Am. Chem. Soc. 138 (2016) 8324–8327. [DOI] [PMID: 27331868]
3.  Konjik, V., Brunle, S., Demmer, U., Vanselow, A., Sandhoff, R., Ermler, U. and Mack, M. The crystal structure of RosB: insights into the reaction mechanism of the first member of a family of flavodoxin-like enzymes. Angew. Chem. Int. Ed. Engl. 56 (2017) 1146–1151. [DOI] [PMID: 27981706]
[EC 2.6.1.114 created 2018]
 
 
EC 2.6.1.115     
Accepted name: 5-hydroxydodecatetraenal 1-aminotransferase
Reaction: (2E,5S,6E,8E,10E)-1-aminododeca-2,6,8,10-tetraen-5-ol + pyruvate = (2E,5S,6E,8E,10E)-5-hydroxydodeca-2,6,8,10-tetraenal + L-alanine
For diagram of coelimycin A1 biosynthesis, click here
Glossary: coelimycin P1 = N-[(3R)-8-[(2E)-but-2-enoyl]-2-oxo-6-[(2E)-1,2,5,6-tetrahydropyridin-2-ylidene]-2,3,4,6-tetrahydro-1,5-oxathiocin-3-yl]acetamide
Other name(s): cpkG (gene name)
Systematic name: (2E,5S,6E,8E,10E)-1-aminododeca-2,6,8,10-tetraen-5-ol:pyruvate aminotransferase
Comments: The enzyme, characterized from the bacterium Streptomyces coelicolor A3(2), participates in the biosynthesis of coelimycin P1, where it catalyses the amination of (2E,5S,6E,8E,10E)-5-hydroxydodeca-2,6,8,10-tetraenal. L-glutamate can also serve as the amino group donor with lower efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pawlik, K., Kotowska, M., Chater, K.F., Kuczek, K. and Takano, E. A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Arch. Microbiol. 187 (2007) 87–99. [PMID: 17009021]
2.  Awodi, U.R., Ronan, J.L., Masschelein, J., Santos, E.LC. and Challis, G.L. Thioester reduction and aldehyde transamination are universal steps in actinobacterial polyketide alkaloid biosynthesis. Chem. Sci. 8 (2017) 411–415. [PMID: 28451186]
[EC 2.6.1.115 created 2019]
 
 
EC 2.6.1.116     
Accepted name: 6-aminohexanoate aminotransferase
Reaction: 6-aminohexanoate + 2-oxoglutarate = 6-oxohexanoate + L-glutamate
Other name(s): nylD (gene name)
Systematic name: 6-aminohexanoate:2-oxogutarate aminotransferase
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. KI72, participates in the degradation of nylon-6. Glyoxylate can serve as an alternative amino group acceptor with similar efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Takehara, I., Fujii, T., Tanimoto, Y., Kato, D.I., Takeo, M. and Negoro, S. Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate. Appl. Microbiol. Biotechnol. 102 (2018) 801–814. [PMID: 29188330]
[EC 2.6.1.116 created 2019]
 
 
EC 2.6.1.117     
Accepted name: L-glutamine—4-(methylsulfanyl)-2-oxobutanoate aminotransferase
Reaction: L-glutamine + 4-(methylsulfanyl)-2-oxobutanoate = 2-oxoglutaramate + L-methionine
Other name(s): mtnE (gene name); Solyc11g013170.1 (locus name)
Systematic name: L-glutamine:4-(methylsulfanyl)-2-oxobutanoate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme, found in both prokaryotes and eukaryotes, catalyses the last reaction in a methionine salvage pathway. In mammals this activity is catalysed by the multifunctional glutamine transaminase K (cf. EC 2.6.1.64, glutamine—phenylpyruvate transaminase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Berger, B.J., English, S., Chan, G. and Knodel, M.H. Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J. Bacteriol. 185 (2003) 2418–2431. [PMID: 12670965]
2.  Ellens, K.W., Richardson, L.G., Frelin, O., Collins, J., Ribeiro, C.L., Hsieh, Y.F., Mullen, R.T. and Hanson, A.D. Evidence that glutamine transaminase and ω-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. Phytochemistry 113 (2015) 160–169. [PMID: 24837359]
[EC 2.6.1.117 created 2019]
 
 
EC 2.6.1.118     
Accepted name: [amino-group carrier protein]-γ-(L-lysyl)-L-glutamate aminotransferase
Reaction: an [amino-group carrier protein]-C-terminal-[γ-(L-lysyl)-L-glutamate] + 2-oxoglutarate = an [amino-group carrier protein]-C-terminal-[N-(1-carboxy-5-oxopentyl)-L-glutamine] + L-glutamate
Other name(s): lysJ (gene name)
Systematic name: 2-oxoglutarate:[amino-group carrier protein]-C-terminal-[γ-(L-lysyl)-L-glutamate] aminotransferase
Comments: The enzyme participates in an L-lysine biosynthesis pathway in certain species of archaea and bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Miyazaki, J., Kobashi, N., Nishiyama, M. and Yamane, H. Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through α-aminoadipate. J. Bacteriol. 183 (2001) 5067–5073. [PMID: 11489859]
2.  Horie, A., Tomita, T., Saiki, A., Kono, H., Taka, H., Mineki, R., Fujimura, T., Nishiyama, C., Kuzuyama, T. and Nishiyama, M. Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat. Chem. Biol. 5 (2009) 673–679. [DOI] [PMID: 19620981]
[EC 2.6.1.118 created 2019]
 
 
EC 2.6.1.119     
Accepted name: vanillin aminotransferase
Reaction: L-alanine + vanillin = pyruvate + vanillylamine
Other name(s): VAMT (gene name)
Systematic name: L-alanine:vanillin aminotransferase
Comments: The enzyme participates in the biosynthesis of capsaicinoids in pungent cultivars of Capsicum sp. In vivo it has only been assayed in the reverse direction, where the preferred amino group acceptors were found to be pyruvate and oxaloacetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Curry, J., Aluru, M., Mendoza, M., Nevarez, J., Melendrez, M. and O'Connell, M.A. Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci. 148 (1999) 47–57.
2.  del Rosario Abraham-Juarez, M., del Carmen Rocha-Granados, M., Lopez, M.G., Rivera-Bustamante, R.F. and Ochoa-Alejo, N. Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227 (2008) 681–695. [PMID: 17999078]
3.  Lang, Y., Kisaka, H., Sugiyama, R., Nomura, K., Morita, A., Watanabe, T., Tanaka, Y., Yazawa, S. and Miwa, T. Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. Plant J. 59 (2009) 953–961. [PMID: 19473323]
4.  Gururaj, H.B., Padma, M.N., Giridhar, P. and Ravishankar, G.A. Functional validation of Capsicum frutescens aminotransferase gene involved in vanillylamine biosynthesis using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures. Plant Sci. 195 (2012) 96–105. [PMID: 22921003]
5.  Weber, N., Ismail, A., Gorwa-Grauslund, M. and Carlquist, M. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense. BMC Biotechnol 14:25 (2014). [PMID: 24712445]
[EC 2.6.1.119 created 2020]
 
 
EC 2.6.1.120     
Accepted name: β-alanine—2-oxoglutarate transaminase
Reaction: β-alanine + 2-oxoglutarate = 3-oxopropanoate + L-glutamate
For diagram of pyrimidine catabolism, click here
Other name(s): pydD (gene name); β-alanine aminotransferase
Systematic name: β-alanine:2-oxoglutarate aminotransferase
Comments: The enzyme, found in many Gram-positive bacteria, participates in the reductive degradation of pyrimidines. In eukaryotes this activity is catalysed by EC 2.6.1.19, 4-aminobutyrate—2-oxoglutarate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fujimoto, S., Mizutani, N., Mizota, C. and Tamaki, N. The level of β-alanine aminotransferase activity in regenerating and differentiating rat liver. Biochim. Biophys. Acta 882 (1986) 106–112. [DOI] [PMID: 3085724]
2.  Yin, J., Wei, Y., Liu, D., Hu, Y., Lu, Q., Ang, E.L., Zhao, H. and Zhang, Y. An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine. J. Biol. Chem. 294 (2019) 15662–15671. [DOI] [PMID: 31455636]
[EC 2.6.1.120 created 2021]
 
 
EC 2.6.1.121     
Accepted name: 8-amino-7-oxononanoate carboxylating dehydrogenase
Reaction: (8S)-8-amino-7-oxononanoate + [protein]-L-lysine + CO2 = (7R,8S)-8-amino-7-(carboxyamino)nonanoate + [protein]-(S)-2-amino-6-oxohexanoate (overall reaction)
(1a) (8S)-8-amino-7-oxononanoate + [protein]-L-lysine + NAD(P)H + H+ = [protein]-N6-[(2S,3R)-2-amino-8-carboxyoctan-3-yl]-L-lysine + H2O + NAD(P)+
(1b) [protein]-N6-[(2S,3R)-2-amino-8-carboxyoctan-3-yl]-L-lysine + CO2 + H2O + NAD(P)+ = (7R,8S)-8-amino-7-(carboxyamino)nonanoate + [protein]-(S)-2-amino-6-oxohexanoate + NAD(P)H + H+
Other name(s): bioU (gene name)
Systematic name: (8S)-8-amino-7-oxononanoate:[protein]-L-lysine aminotransferase (N-carboxylating)
Comments: The enzyme, which participates in biotin biosynthesis, is found in haloarchaea and some cyanobacteria. It forms a conjugant between (7R,8S)-8-amino-7-oxononanoate and an internal lysine residue and catalyses multiple reactions, including a reduction, a carboxylation of the ε-amino group of the lysine residue, and an oxidative cleavage of the conjugate to release (7R,8S)-8-amino-7-(carboxyamino)nonanoate. During this process the lysine residue serves as an amino donor and is converted to (S)-2-amino-6-oxohexanoate, resulting in inactivation of the enzyme following a single turnover. cf. EC 2.6.1.105, lysine—8-amino-7-oxononanoate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sakaki, K., Ohishi, K., Shimizu, T., Kobayashi, I., Mori, N., Matsuda, K., Tomita, T., Watanabe, H., Tanaka, K., Kuzuyama, T. and Nishiyama, M. A suicide enzyme catalyzes multiple reactions for biotin biosynthesis in cyanobacteria. Nat. Chem. Biol. 16 (2020) 415–422. [DOI] [PMID: 32042199]
[EC 2.6.1.121 created 2021]
 
 
EC 2.6.1.122     
Accepted name: UDP-N-acetyl-3-dehydro-α-D-glucosamine 3-aminotranferase
Reaction: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose + 2-oxoglutarate = UDP-N-acetyl-3-dehydro-α-D-glucosamine + L-glutamate
Other name(s): gnnB (gene name)
Systematic name: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose:2-oxoglutarate aminotransferase
Comments: This bacterial enzyme participates, together with EC 1.1.1.374, UDP-N-acetylglucosamine 3-dehydrogenase, in the synthesis of 2,3-diamino-2,3-dideoxy-D-glucopyranose, a component of lipid A in some species.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sweet, C.R., Ribeiro, A.A. and Raetz, C.R. Oxidation and transamination of the 3"-position of UDP-N-acetylglucosamine by enzymes from Acidithiobacillus ferrooxidans. Role in the formation of lipid a molecules with four amide-linked acyl chains. J. Biol. Chem. 279 (2004) 25400–25410. [DOI] [PMID: 15044494]
[EC 2.6.1.122 created 2021]
 
 
EC 2.6.1.123     
Accepted name: 4-amino-4-deoxychorismate synthase (2-amino-4-deoxychorismate-forming)
Reaction: chorismate + 2 L-glutamine + H2O = 4-amino-4-deoxychorismate + 2 L-glutamate + NH3 (overall reaction)
(1a) 2 L-glutamine + 2 H2O = 2 L-glutamate + 2 NH3
(1b) chorismate + NH3 = (2S)-2-amino-4-deoxychorismate + H2O
(1c) (2S)-2-amino-4-deoxychorismate + NH3 = 4-amino-4-deoxychorismate + NH3
Other name(s): ADCS (ambiguous); ADC synthase (ambiguous); pabAB (gene names)
Systematic name: chorismate:L-glutamine aminotransferase (2-amino-4-deoxychorismate-forming)
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is a heterodimer. The PabA subunit acts successively on two molecules of L-glutamine, hydrolysing each to L-glutamate and ammonia (cf. EC 3.5.1.2, glutaminase). The ammonia molecules are channeled to the active site of PabB, which catalyses the formation of 4-amino-4-deoxychorismate from chorismate in two steps via the intermediate 2-amino-4-deoxychorismate. cf. EC 2.6.1.85, aminodeoxychorismate synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schadt, H.S., Schadt, S., Oldach, F. and Sussmuth, R.D. 2-Amino-2-deoxyisochorismate is a key intermediate in Bacillus subtilis p-aminobenzoic acid biosynthesis. J. Am. Chem. Soc. 131 (2009) 3481–3483. [DOI] [PMID: 19275258]
2.  Bera, A.K., Atanasova, V., Dhanda, A., Ladner, J.E. and Parsons, J.F. Structure of aminodeoxychorismate synthase from Stenotrophomonas maltophilia. Biochemistry 51 (2012) 10208–10217. [DOI] [PMID: 23230967]
[EC 2.6.1.123 created 2021]
 
 
EC 2.6.1.124     
Accepted name: [amino-group carrier protein]-γ-(L-ornithyl)-L-glutamate aminotransferase
Reaction: an [amino-group carrier protein]-C-terminal-[γ-(L-ornithyl)-L-glutamate] + 2-oxoglutarate = an [amino-group carrier protein]-C-terminal-[γ-(L-glutamate 5-semialdehyde-2-yl)-L-glutamate] + L-glutamate
Other name(s): lysJ (gene name)
Systematic name: 2-oxoglutarate:[amino-group carrier protein]-C-terminal-[γ-(L-ornithyl)-L-glutamate] aminotransferase
Comments: The enzyme participates in an L-arginine biosynthetic pathway that operates in certain species of archaea. In some cases the enzyme also catalyses the activity of EC 2.6.1.118, [amino-group carrier protein]-γ-(L-lysyl)-L-glutamate aminotransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yoshida, A., Tomita, T., Atomi, H., Kuzuyama, T. and Nishiyama, M. Lysine biosynthesis of Thermococcus kodakarensis with the capacity to function as an ornithine biosynthetic system. J. Biol. Chem. 291 (2016) 21630–21643. [DOI] [PMID: 27566549]
[EC 2.6.1.124 created 2022]
 
 
EC 2.6.1.125     
Accepted name: L-arginine:2-oxoglutarate transaminase
Reaction: L-arginine + 2-oxoglutarate = 5-guanidino-2-oxopentanoate + L-glutamate
Other name(s): argM (gene name); arginine-α-ketoglutarate transaminase
Systematic name: L-arginine:2-oxoglutarate aminotransferase
Comments: Requires pyridoxal 5′-phosphate. The enzyme, characterized from several bacterial species, is known to participate in L-arginine degradation and in the biosynthesis of the rare amino acid (3R)-3-methyl-L-arginine. The enzyme from Streptomyces arginensis also catalyses the activity of EC 2.6.1.126, L-aspartate:5-guanidino-3-methyl-2-oxopentanoate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tachiki, T., Kohno, H., Sugiyama, K., Matsubara, T. and Tochikura, T. Purification, properties and formation of arginine-α-ketoglutarate transaminase in Arthrobacter simplex. Biochim. Biophys Acta 615 (1980) 79–84. [DOI] [PMID: 7426667]
2.  Feng, J., Wu, J., Gao, J., Xia, Z., Deng, Z. and He, X. Biosynthesis of the β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941. Appl. Environ. Microbiol. 80 (2014) 5021–5027. [DOI] [PMID: 24907335]
[EC 2.6.1.125 created 2024]
 
 
EC 2.6.1.126     
Accepted name: L-aspartate:5-guanidino-3-methyl-2-oxopentanoate transaminase
Reaction: L-aspartate + (3R)-5-guanidino-3-methyl-2-oxopentanoate = oxaloacetate + (3R)-3-methyl-L-arginine
Other name(s): argM (gene name); mrsB (gene name)
Systematic name: L-aspartate:5-guanidino-3-methyl-2-oxopentanoate aminotransferase
Comments: Requires pyridoxal 5′-phosphate. The enzyme, characterized from several bacterial species, participates in the biosynthesis of the rare amino acid (3R)-3-methyl-L-arginine. The enzyme from Streptomyces arginensis also catalyses the activity of EC 2.6.1.125, L-arginine:2-oxoglutarate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Braun, S.D., Hofmann, J., Wensing, A., Ullrich, M.S., Weingart, H., Völksch, B. and Spiteller, D. Identification of the biosynthetic gene cluster for 3-methylarginine, a toxin produced by Pseudomonas syringae pv. syringae 22d/93. Appl. Environ. Microbiol. 76 (2010) 2500–2508. [DOI] [PMID: 20190091]
2.  Feng, J., Wu, J., Gao, J., Xia, Z., Deng, Z. and He, X. Biosynthesis of the β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941. Appl. Environ. Microbiol. 80 (2014) 5021–5027. [DOI] [PMID: 24907335]
[EC 2.6.1.126 created 2024]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald