The Enzyme Database

Displaying entries 51-100 of 126.

<< Previous | Next >>    printer_iconPrintable version

EC 2.6.1.51     
Accepted name: serine—pyruvate transaminase
Reaction: L-serine + pyruvate = 3-hydroxypyruvate + L-alanine
For diagram of reaction, click here and for mechanism, click here
Other name(s): SPT; hydroxypyruvate:L-alanine transaminase
Systematic name: L-serine:pyruvate aminotransferase
Comments: A pyridoxal-phosphate protein. The liver enzyme may be identical with EC 2.6.1.44 alanine-glyoxylate transaminase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-88-0
References:
1.  Cheung, G.P., Rosenblum, I. and Sallach, H.J. Comparative studies of enzymes related to serine metabolism in higher plants. Plant Physiol. 43 (1968) 1813–1820. [PMID: 5699148]
2.  Kretovich, V.L. and Stepanovich, K.M. [The synthesis of serine from hydroxypyruvate in plants.] Dokl. Akad. Nauk S.S.S.R. 139 (1961) 488–490. (in Russian)
3.  Sallach, H.J. Formation of serine from hydroxypyruvate and L-alanine. J. Biol. Chem. 223 (1956) 1101–1108. [PMID: 13385257]
[EC 2.6.1.51 created 1972]
 
 
EC 2.6.1.52     
Accepted name: phosphoserine transaminase
Reaction: (1) O-phospho-L-serine + 2-oxoglutarate = 3-phosphooxypyruvate + L-glutamate
(2) 4-phosphooxy-L-threonine + 2-oxoglutarate = (3R)-3-hydroxy-2-oxo-4-phosphooxybutanoate + L-glutamate
For diagram of EC 2.6.1, click here, for diagram of serine biosynthesis, click here and for diagram of pyridoxal biosynthesis, click here
Other name(s): PSAT; phosphoserine aminotransferase; 3-phosphoserine aminotransferase; hydroxypyruvic phosphate-glutamic transaminase; L-phosphoserine aminotransferase; phosphohydroxypyruvate transaminase; phosphohydroxypyruvic-glutamic transaminase; 3-O-phospho-L-serine:2-oxoglutarate aminotransferase; SerC; PdxC; 3PHP transaminase
Systematic name: O-phospho-L-serine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. This enzyme catalyses the second step in the phosphorylated pathway of serine biosynthesis [1,3] and the third step in pyridoxal 5′-phosphate biosynthesis in the bacterium Escherichia coli [3]. Pyridoxal 5′-phosphate is the cofactor for both activities and therefore seems to be involved in its own biosynthesis [4]. Non-phosphorylated forms of serine and threonine are not substrates [4]. The archaeal enzyme has a relaxed specificity and can act on L-cysteate and L-alanine as alternative substrates to O-phospho-L-serine [7].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-90-4
References:
1.  Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem. 238 (1963) 3934–3944. [PMID: 14086727]
2.  Hirsch, H. and Greenberg, D.M. Studies on phosphoserine aminotransferase of sheep brain. J. Biol. Chem. 242 (1967) 2283–2287. [PMID: 6022873]
3.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
4.  Drewke, C., Klein, M., Clade, D., Arenz, A., Müller, R. and Leistner, E. 4-O-phosphoryl-L-threonine, a substrate of the pdxC(serC) gene product involved in vitamin B6 biosynthesis. FEBS Lett. 390 (1996) 179–182. [DOI] [PMID: 8706854]
5.  Zhao, G. and Winkler, M.E. 4-Phospho-hydroxy-L-threonine is an obligatory intermediate in pyridoxal 5′-phosphate coenzyme biosynthesis in Escherichia coli K-12. FEMS Microbiol. Lett. 135 (1996) 275–280. [PMID: 8595869]
6.  Baek, J.Y., Jun, D.Y., Taub, D. and Kim, Y.H. Characterization of human phosphoserine aminotransferase involved in the phosphorylated pathway of L-serine biosynthesis. Biochem. J. 373 (2003) 191–200. [PMID: 12633500]
7.  Helgadottir, S., Rosas-Sandoval, G., Soll, D. and Graham, D.E. Biosynthesis of phosphoserine in the Methanococcales. J. Bacteriol. 189 (2007) 575–582. [PMID: 17071763]
[EC 2.6.1.52 created 1972, modified 2006]
 
 
EC 2.6.1.53      
Transferred entry: glutamate synthase. Now EC 1.4.1.13, glutamate synthase (NADPH)
[EC 2.6.1.53 created 1972, deleted 1976]
 
 
EC 2.6.1.54     
Accepted name: pyridoxamine-phosphate transaminase
Reaction: pyridoxamine 5′-phosphate + 2-oxoglutarate = pyridoxal 5′-phosphate + D-glutamate
Other name(s): pyridoxamine phosphate aminotransferase; pyridoxamine 5′-phosphate-α-ketoglutarate transaminase; pyridoxamine 5′-phosphate transaminase
Systematic name: pyridoxamine-5′-phosphate:2-oxoglutarate aminotransferase (D-glutamate-forming)
Comments: Also acts, more slowly, on pyridoxamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9074-84-4
References:
1.  Tani, Y., Ukita, M. and Ogata, K. Studies on vitamin B6 metabolism in microorganisms. Part X. Further purification and characterization of pyridoxamine 5′-phosphate-α-ketoglutarate transaminase from Clostridium kainantoi. Agric. Biol. Chem. 36 (1972) 181–188.
[EC 2.6.1.54 created 1976]
 
 
EC 2.6.1.55     
Accepted name: taurine—2-oxoglutarate transaminase
Reaction: taurine + 2-oxoglutarate = 2-sulfoacetaldehyde + L-glutamate
Glossary: 2-sulfoacetaldehyde = 2-oxoethanesulfonate
taurine = 2-aminoethanesulfonate
Other name(s): taurine aminotransferase; taurine transaminase; taurine—α-ketoglutarate aminotransferase; taurine—glutamate transaminase
Systematic name: taurine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on D,L-3-amino-isobutanoate, β-alanine and 3-aminopropanesulfonate. Involved in the microbial utilization of β-alanine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-52-2
References:
1.  Toyama, S., Misono, H. and Soda, K. Crystalline taurine:α-ketoglutarate aminotransferase from Achromobacter superficialis. Biochem. Biophys. Res. Commun. 46 (1972) 1374–1379. [DOI] [PMID: 5012173]
2.  Cook, A.M. and Denger, K. Dissimilation of the C2 sulfonates. Arch. Microbiol. 179 (2002) 1–6. [DOI] [PMID: 12471498]
[EC 2.6.1.55 created 1976, modified 2003]
 
 
EC 2.6.1.56     
Accepted name: 1D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol transaminase
Reaction: 1D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol + pyruvate = 1D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol + L-alanine
Other name(s): guanidinoaminodideoxy-scyllo-inositol-pyruvate aminotransferase; L-alanine-N-amidino-3-(or 5-)keto-scyllo-inosamine transaminase
Systematic name: 1D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol:pyruvate aminotransferase
Comments: L-Glutamate and L-glutamine can also act as amino donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 57127-19-2
References:
1.  Walker, J.B. Enzymatic reactions involved in streptomycin biosynthesis and metabolism. Lloydia 34 (1971) 363–371. [PMID: 4376579]
2.  Walker, J.B. and Walker, M.S. Streptomycin biosynthesis. Transamination reactions involving inosamines and inosadiamines. Biochemistry 8 (1969) 763–770. [PMID: 5781017]
[EC 2.6.1.56 created 1976]
 
 
EC 2.6.1.57     
Accepted name: aromatic-amino-acid transaminase
Reaction: an aromatic amino acid + 2-oxoglutarate = an aromatic oxo acid + L-glutamate
For diagram of phenylalanine and tyrosine biosynthesis, click here and for diagram of the methionine-salvage pathway, click here
Other name(s): aromatic amino acid aminotransferase; aromatic aminotransferase; ArAT
Systematic name: aromatic-amino-acid:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. L-Methionine can also act as donor, but more slowly; oxaloacetate can act as acceptor. Controlled proteolysis converts the enzyme into EC 2.6.1.1 aspartate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37332-38-0
References:
1.  Mavrides, C. and Orr, W. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J. Biol. Chem. 250 (1975) 4128–4133. [PMID: 236311]
[EC 2.6.1.57 created 1976]
 
 
EC 2.6.1.58     
Accepted name: phenylalanine(histidine) transaminase
Reaction: L-phenylalanine + pyruvate = phenylpyruvate + L-alanine
For diagram of reaction, click here and for mechanism, click here
Other name(s): phenylalanine (histidine) aminotransferase; phenylalanine(histidine):pyruvate aminotransferase; histidine:pyruvate aminotransferase; L-phenylalanine(L-histidine):pyruvate aminotransferase
Systematic name: L-phenylalanine:pyruvate aminotransferase
Comments: L-Histidine and L-tyrosine can act instead of L-phenylalanine; in the reverse reaction, L-methionine, L-serine and L-glutamine can replace L-alanine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72560-98-6
References:
1.  Minatogawa, Y., Noguchi, T. and Kido, R. Species distribution and properties of hepatic phenylalanine (histidine):pyruvate aminotransferase. Hoppe-Seyler's Z. Physiol. Chem. 358 (1977) 59–67. [PMID: 14070]
[EC 2.6.1.58 created 1978]
 
 
EC 2.6.1.59     
Accepted name: dTDP-4-amino-4,6-dideoxygalactose transaminase
Reaction: dTDP-4-amino-4,6-dideoxy-α-D-galactose + 2-oxoglutarate = dTDP-4-dehydro-6-deoxy-α-D-galactose + L-glutamate
For diagram of dTDP-Fuc3NAc, dTDP-Fuc4NAc and dTDP-Fuc3NMe2 biosynthesis, click here
Glossary: dTDP-4-dehydro-6-deoxy-α-D-galactose = dTDP-4-dehydro-6-deoxy-α-D-glucose
Other name(s): thymidine diphosphoaminodideoxygalactose aminotransferase; thymidine diphosphate 4-keto-6-deoxy-D-glucose transaminase; WecE; dTDP-4,6-dideoxy-D-galactose:2-oxoglutarate aminotransferase; dTDP-4,6-dideoxy-α-D-galactose:2-oxoglutarate aminotransferase
Systematic name: dTDP-4-amino-4,6-dideoxy-α-D-galactose:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72560-97-5
References:
1.  Ohashi, H., Matsuhashi, M. and Matsuhashi, S. Thymidine diphosphate 4-acetamido-4,6-dideoxyhexoses. IV. Purification and properties of thymidine diphosphate 4-keto-6-deoxy-D-glucose transaminase from Pasteurella pseudotuberculosis. J. Biol. Chem. 246 (1971) 2325–2330. [PMID: 4928644]
2.  Hwang, B.Y., Lee, H.J., Yang, Y.H., Joo, H.S. and Kim, B.G. Characterization and investigation of substrate specificity of the sugar aminotransferase WecE from E. coli K12. Chem. Biol. 11 (2004) 915–925. [DOI] [PMID: 15271350]
[EC 2.6.1.59 created 1978]
 
 
EC 2.6.1.60     
Accepted name: aromatic-amino-acid—glyoxylate transaminase
Reaction: an aromatic amino acid + glyoxylate = an aromatic oxo acid + glycine
Systematic name: aromatic-amino-acid:glyoxylate aminotransferase
Comments: Phenylalanine, kynurenine, tyrosine and histidine can act as amino donors; glyoxylate, pyruvate and hydroxypyruvate can act as amino acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67185-76-6
References:
1.  Harada, I., Noguchi, T. and Kido, R. Purification and characterization of aromatic-amino-acid-glyoxylate aminotransferase from monkey and rat liver. Hoppe-Seylers Z. Physiol. Chem. 359 (1978) 481–488. [DOI] [PMID: 25837]
[EC 2.6.1.60 created 1978]
 
 
EC 2.6.1.61      
Deleted entry:  (R)-3-amino-2-methylpropionate transaminase. Enzyme is identical to EC 2.6.1.40, (R)-3-amino-2-methylpropionate—pyruvate transaminase
[EC 2.6.1.61 created 1982, deleted 2004]
 
 
EC 2.6.1.62     
Accepted name: adenosylmethionine—8-amino-7-oxononanoate transaminase
Reaction: S-adenosyl-L-methionine + 8-amino-7-oxononanoate = S-adenosyl-4-(methylsulfanyl)-2-oxobutanoate + 7,8-diaminononanoate
Other name(s): 7,8-diaminonanoate transaminase; 7,8-diaminononanoate transaminase; DAPA transaminase (ambiguous); 7,8-diaminopelargonic acid aminotransferase; DAPA aminotransferase (ambiguous); 7-keto-8-aminopelargonic acid; diaminopelargonate synthase; 7-keto-8-aminopelargonic acid aminotransferase
Systematic name: S-adenosyl-L-methionine:8-amino-7-oxononanoate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme. S-adenosylhomocysteine can also act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37259-71-5
References:
1.  Izumi, Y., Sato, K., Tani, Y. and Ogata, K. Purification of 7-keto-8-aminopelargonic acid-7,8-diaminopelargonic acid aminotransferase, an enzyme involved in biotin synthesis, from Brevibacterium divaricatum. Agric. Biol. Chem. 37 (1973) 2683–2684.
2.  Izumi, Y., Sato, K., Tani, Y. and Ogata, K. 7,8-Diaminopelargonic acid aminotransferase, an enzyme involved in biotin synthesis by microorganisms. Agric. Biol. Chem. 39 (1975) 175–181.
3.  Stoner, G.L. and Eisenberg, M.A. Purification and properties of 7,8-diaminopelargonic acid aminotransferase. An enzyme in the biotin biosynthetic pathway. J. Biol. Chem. 250 (1973) 4029–4036. [PMID: 1092681]
[EC 2.6.1.62 created 1983]
 
 
EC 2.6.1.63     
Accepted name: kynurenine—glyoxylate transaminase
Reaction: (1) L-kynurenine + glyoxylate = kynurenate + glycine + H2O (overall reaction)
(1a) L-kynurenine + glyoxylate = 4-(2-aminophenyl)-2,4-dioxobutanoate + glycine
(1b) 4-(2-aminophenyl)-2,4-dioxobutanoate = kynurenate + H2O (spontaneous)
(2) 3-hydroxy-L-kynurenine + glyoxylate = xanthurenate + glycine + H2O (overall reaction)
(2a) 3-hydroxy-L-kynurenine + glyoxylate = 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoate + glycine
(2b) 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoate = xanthurenate + H2O (spontaneous)
For diagram of EC 2.6.1, click here
Other name(s): kynurenine-glyoxylate aminotransferase
Systematic name: L-kynurenine:glyoxylate aminotransferase (cyclizing)
Comments: This enzyme, characterized from animals, belongs to a family of aminotransferases some members of which can use other amino acceptors (cf. EC 2.6.1.7, kynurenine—oxoglutarate transaminase). The products, 4-(2-aminophenyl)-2,4-dioxobutanoate and 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoate, are converted to kynurenate and xanthurenate, respectively, by spontaneous reactions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 74506-33-5
References:
1.  Harada, I., Noguchi, T. and Kido, R. Purification and characterization of aromatic-amino-acid-glyoxylate aminotransferase from monkey and rat liver. Hoppe-Seylers Z. Physiol. Chem. 359 (1978) 481–488. [DOI] [PMID: 25837]
2.  Harada, I. [Glucagen inducible kynurenine aminotransferase.] Wakayama Igaku 31 (1980) 61–68. (in Japanese)
3.  Han, Q., Fang, J. and Li, J. 3-Hydroxykynurenine transaminase identity with alanine glyoxylate transaminase. A probable detoxification protein in Aedes aegypti. J. Biol. Chem. 277 (2002) 15781–15787. [DOI] [PMID: 11880382]
4.  Rossi, F., Lombardo, F., Paglino, A., Cassani, C., Miglio, G., Arca, B. and Rizzi, M. Identification and biochemical characterization of the Anopheles gambiae 3-hydroxykynurenine transaminase. FEBS J. 272 (2005) 5653–5662. [DOI] [PMID: 16262702]
[EC 2.6.1.63 created 1983]
 
 
EC 2.6.1.64     
Accepted name: glutamine—phenylpyruvate transaminase
Reaction: L-glutamine + phenylpyruvate = 2-oxoglutaramate + L-phenylalanine
For diagram of reaction, click here and for mechanism, click here
Other name(s): glutamine transaminase K; glutamine-phenylpyruvate aminotransferase
Systematic name: L-glutamine:phenylpyruvate aminotransferase
Comments: A pyridoxal-phosphate protein. L-Methionine, L-histidine and L-tyrosine can act as donors. The enzyme has little activity on pyruvate and glyoxylate (cf. EC 2.6.1.15 glutamine—pyruvate transaminase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 68518-06-9
References:
1.  Cooper, A.J.L. Purification of soluble and mitochondrial glutamine transaminase K from rat kidney. Use of a sensitive assay involving transamination between L-phenylalanine and α-keto-γ-methiolbutyrate. Anal. Biochem. 89 (1978) 451–460. [DOI] [PMID: 727444]
2.  Cooper, A.J.L. and Meister, A. Isolation and properties of a new glutamine transaminase from rat kidney. J. Biol. Chem. 249 (1974) 2554–2561. [PMID: 4822504]
[EC 2.6.1.64 created 1984]
 
 
EC 2.6.1.65     
Accepted name: N6-acetyl-β-lysine transaminase
Reaction: 6-acetamido-3-aminohexanoate + 2-oxoglutarate = 6-acetamido-3-oxohexanoate + L-glutamate
Other name(s): ε-acetyl-β-lysine aminotransferase
Systematic name: 6-acetamido-3-aminohexanoate:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71768-10-0
References:
1.  Bozler, G., Robertson, J.M., Ohsugi, M., Hensley, C. and Barker, H.A. Metabolism of L-β-lysine in a Pseudomonas: conversion of 6-N-acetyl-L-β-lysine to 3-keto-6-acetamidohexanoate and of 4-aminobutyrate to succinic semialdehyde by different transaminases. Arch. Biochem. Biophys. 197 (1979) 226–235. [DOI] [PMID: 44448]
[EC 2.6.1.65 created 1984]
 
 
EC 2.6.1.66     
Accepted name: valine—pyruvate transaminase
Reaction: L-valine + pyruvate = 3-methyl-2-oxobutanoate + L-alanine
For diagram of reaction, click here, of isoleucine and valine biosynthesis, click here and for diagram of mechanism, click here
Other name(s): transaminase C; valine-pyruvate aminotransferase; alanine-oxoisovalerate aminotransferase
Systematic name: L-valine:pyruvate aminotransferase
Comments: Different from EC 2.6.1.42, branched-chain-amino-acid-transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 73379-50-7
References:
1.  Falkinham, J.O. , III Identification of a mutation affecting an alanine-α-ketoisovalerate transaminase activity in Escherichia coli K-12. Mol. Gen. Genet. 176 (1979) 147–149. [PMID: 396446]
2.  Rudman, D. and Meister, A. Transamination in Escherichia coli. J. Biol. Chem. 200 (1953) 591–604. [PMID: 13034817]
[EC 2.6.1.66 created 1984]
 
 
EC 2.6.1.67     
Accepted name: 2-aminohexanoate transaminase
Reaction: L-2-aminohexanoate + 2-oxoglutarate = 2-oxohexanoate + L-glutamate
For diagram of reaction, click here and for mechanism, click here
Other name(s): norleucine transaminase; norleucine (leucine) aminotransferase; leucine L-norleucine: 2-oxoglutarate aminotransferase
Systematic name: L-2-aminohexanoate:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on L-leucine and, more slowly, on L-isoleucine, L-2-aminopentanoate and L-aspartate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111310-35-1
References:
1.  Der Garabedian, P.A. and Vermeersch, J.J. Candida L-norleucine, leucine:2-oxoglutarate aminotransferase. Purification and properties. Eur. J. Biochem. 167 (1987) 141–147. [DOI] [PMID: 3622507]
[EC 2.6.1.67 created 1989]
 
 
EC 2.6.1.68      
Deleted entry: ornithine(lysine) transaminase. Now classified as EC 2.6.1.13, ornithine aminotransferase and EC 2.6.1.36, L-lysine 6-transaminase
[EC 2.6.1.68 created 1989, deleted 2016]
 
 
EC 2.6.1.69      
Deleted entry:  N2-acetylornithine 5-transaminase. Enzyme is identical to EC 2.6.1.11, acetylornithine transaminase
[EC 2.6.1.69 created 1989, deleted 2004]
 
 
EC 2.6.1.70     
Accepted name: aspartate—phenylpyruvate transaminase
Reaction: L-aspartate + phenylpyruvate = oxaloacetate + L-phenylalanine
For diagram of reaction, click here and for mechanism, click here
Other name(s): aspartate-phenylpyruvate aminotransferase
Systematic name: L-aspartate:phenylpyruvate aminotransferase
Comments: The enzyme from Pseudomonas putida also acts on 4-hydroxy-phenylpyruvate and, more slowly, on L-glutamate and L-histidine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 99533-45-6
References:
1.  Holger, Z. and Kula, M.-R. Isolation and characterization of a highly inducible L-aspartate-phenylpyruvate transaminase from Pseudomonas putida. J. Biotechnol. 3 (1985) 19–31.
[EC 2.6.1.70 created 1989]
 
 
EC 2.6.1.71     
Accepted name: lysine—pyruvate 6-transaminase
Reaction: L-lysine + pyruvate = (S)-2-amino-6-oxohexanoate + L-alanine
Glossary: (S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
Other name(s): lysine-pyruvate aminotransferase; Lys-AT
Systematic name: L-lysine:pyruvate aminotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 114189-79-6
References:
1.  Schmidt, H., Bode, R. and Birnbaum, D. A novel enzyme, L-lysine : pyruvate aminotransferase, catalyses the first step of lysine catabolism in Pichia guilliermondii. FEMS Microbiol. Lett. 49 (1988) 203–206.
[EC 2.6.1.71 created 1990, modified 2011]
 
 
EC 2.6.1.72     
Accepted name: D-4-hydroxyphenylglycine transaminase
Reaction: D-4-hydroxyphenylglycine + 2-oxoglutarate = 4-hydroxyphenylglyoxylate + L-glutamate
Other name(s): D-hydroxyphenylglycine aminotransferase
Systematic name: D-4-hydroxyphenylglycine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 117444-05-0
References:
1.  Van den Tweel, W.J.J., Ogg, R.L.H.P. and de Bont, J.A.M. Transamination with a D-transaminase from Pseudomonas putida and conversion of p-hydroxyphenylglyoxylate to D-p-hydroxyphenylglycine. Patent EP0315786, Neth. Appl. NL (1987), 87, 02449.
2.  Van den Tweel, W.J.J., Smits, J.P., Ogg, R.L.H.P. and de Bont, J.A.M. The involvement of an enantioselective transaminase in the metabolism of D-3- and D-4-hydroxyphenylglycine in Pseudomonas putida. Appl. Microbiol. Biotechnol. 29 (1998) 224–230.
[EC 2.6.1.72 created 1990]
 
 
EC 2.6.1.73     
Accepted name: methionine—glyoxylate transaminase
Reaction: L-methionine + glyoxylate = 4-(methylsulfanyl)-2-oxobutanoate + glycine
For diagram of EC 2.6.1, click here
Other name(s): methionine-glyoxylate aminotransferase; MGAT
Systematic name: L-methionine:glyoxylate aminotransferase
Comments: L-Glutamate can also act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 116155-75-0
References:
1.  Glover, J.R., Chapple, C.C.S., Rothwell, S., Tober, I. and Ellis, B.E. Allylglucosinolate biosynthesis in Brassica carinata. Phytochemistry 27 (1988) 1345–1348.
[EC 2.6.1.73 created 1992]
 
 
EC 2.6.1.74     
Accepted name: cephalosporin-C transaminase
Reaction: (7R)-7-(5-carboxy-5-oxopentanoyl)aminocephalosporinate + D-glutamate = cephalosporin C + 2-oxoglutarate
For diagram of cephalosporin biosynthesis, click here
Glossary: cephalosporin C = (7R)-7-(5-carboxy-5-oxopentanamido)cephalosporanate
Other name(s): cephalosporin C aminotransferase; L-alanine:cephalosporin-C aminotransferase
Systematic name: cephalosporin-C:2-oxoglutarate aminotransferase
Comments: A number of D-amino acids, including D-alanine, D-aspartate and D-methionine can also act as amino-group donors. Although this enzyme acts on several free D-amino acids, it differs from EC 2.6.1.21, D-alanine transaminase, in that it can use cephalosporin C as an amino donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 122096-91-7
References:
1.  Aretz, W. and Sauber, K. Novel D-amino acid transaminase. Ann. N.Y. Acad. Sci. 542 (1988) 366–370. [PMID: 3228235]
[EC 2.6.1.74 created 1992, modified 2005]
 
 
EC 2.6.1.75     
Accepted name: cysteine-conjugate transaminase
Reaction: S-(4-bromophenyl)-L-cysteine + 2-oxoglutarate = 3-[(4-bromophenyl)sulfanyl]-2-oxopropanoate + L-glutamate
For diagram of reaction, click here and for mechanism, click here
Other name(s): cysteine conjugate aminotransferase; cysteine-conjugate α-ketoglutarate transaminase (CAT-1)
Systematic name: S-(4-bromophenyl)-L-cysteine:2-oxoglutarate aminotransferase
Comments: A number of cysteine conjugates can also act.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 117698-05-2
References:
1.  Tomisawa, H., Ichimoto, N., Takanohashi, Y., Ichihara, S., Fukazawa, H. and Tateishi, M. Purification and characterization of cysteine conjugate transaminases from rat liver. Xenobiotica 18 (1988) 1015–1028. [DOI] [PMID: 2852419]
[EC 2.6.1.75 created 1992]
 
 
EC 2.6.1.76     
Accepted name: diaminobutyrate—2-oxoglutarate transaminase
Reaction: L-2,4-diaminobutanoate + 2-oxoglutarate = L-aspartate 4-semialdehyde + L-glutamate
For diagram of ectoine biosynthesis, click here
Other name(s): L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase; 2,4-diaminobutyrate 4-aminotransferase; diaminobutyrate aminotransferase; DABA aminotransferase; DAB aminotransferase; EctB; diaminibutyric acid aminotransferase; L-2,4-diaminobutyrate:2-oxoglutarate 4-aminotransferase
Systematic name: L-2,4-diaminobutanoate:2-oxoglutarate 4-aminotransferase
Comments: A pyridoxal-phosphate protein that requires potassium for activity [4]. In the proteobacterium Acinetobacter baumannii, this enzyme is cotranscribed with the neighbouring ddc gene that also encodes EC 4.1.1.86, diaminobutyrate decarboxylase. Differs from EC 2.6.1.46, diaminobutyrate—pyruvate transaminase, which has pyruvate as the amino-group acceptor. This is the first enzyme in the ectoine-biosynthesis pathway, the other enzymes involved being EC 2.3.1.178, diaminobutyrate acetyltransferase and EC 4.2.1.108, ectoine synthase [3,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 196622-96-5
References:
1.  Ikai, H. and Yamamoto, S. Identification and analysis of a gene encoding L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. J. Bacteriol. 179 (1997) 5118–5125. [DOI] [PMID: 9260954]
2.  Ikai, H. and Yamamoto, S. Two genes involved in the 1,3-diaminopropane production pathway in Haemophilus influenzae. Biol. Pharm. Bull. 21 (1998) 170–173. [PMID: 9514614]
3.  Peters, P., Galinski, E.A. and Truper, H.G. The biosynthesis of ectoine. FEMS Microbiol. Lett. 71 (1990) 157–162.
4.  Ono, H., Sawada, K., Khunajakr, N., Tao, T., Yamamoto, M., Hiramoto, M., Shinmyo, A., Takano, M. and Murooka, Y. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J. Bacteriol. 181 (1999) 91–99. [PMID: 9864317]
5.  Kuhlmann, A.U. and Bremer, E. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl. Environ. Microbiol. 68 (2002) 772–783. [DOI] [PMID: 11823218]
6.  Louis, P. and Galinski, E.A. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143 (1997) 1141–1149. [DOI] [PMID: 9141677]
[EC 2.6.1.76 created 2000, modified 2006]
 
 
EC 2.6.1.77     
Accepted name: taurine—pyruvate aminotransferase
Reaction: taurine + pyruvate = L-alanine + 2-sulfoacetaldehyde
For diagram of reaction, click here
Glossary: taurine = 2-aminoethanesulfonate
hypotaurine = 2-aminoethanesulfinate
2-sulfoacetaldehyde = 2-oxoethanesulfonate
2-sulfinoacetaldehyde = 2-oxoethanesulfinate
Other name(s): Tpa
Systematic name: taurine:pyruvate aminotransferase
Comments: The enzyme from the bacterium Bilophila wadsworthia requires pyridoxal 5′-phosphate as a cofactor, and catalyses a reversible reaction that starts an anaerobic taurine degradation pathway. β-Alanine is also a significant amino group donor. The enzyme from the bacterium Pseudomonas denitrificans PD1222 can also use hypotaurine, producing 2-sulfinoacetaldehyde, which spontaneously hydrolyses to sulfite and acetaldehyde. Unlike, EC 2.6.1.55, taurine—2-oxoglutarate transaminase, 2-oxoglutarate cannot serve as an acceptor for the amino group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 51901-18-9
References:
1.  Laue, H. and Cook, A.M. Biochemical and molecular characterization of taurine:pyruvate transaminase from the anaerobe Bilophila wadsworthia. Eur. J. Biochem. 267 (2000) 6841–6848. [DOI] [PMID: 11082195]
2.  Cook, A.M. and Denger, K. Dissimilation of the C2 sulfonates. Arch. Microbiol. 179 (2002) 1–6. [DOI] [PMID: 12471498]
3.  Masepohl, B., Fuhrer, F. and Klipp, W. Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source. FEMS Microbiol. Lett. 205 (2001) 105–111. [DOI] [PMID: 11728723]
4.  Felux, A.K., Denger, K., Weiss, M., Cook, A.M. and Schleheck, D. Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth. J. Bacteriol. 195 (2013) 2921–2930. [DOI] [PMID: 23603744]
[EC 2.6.1.77 created 2003]
 
 
EC 2.6.1.78     
Accepted name: aspartate—prephenate aminotransferase
Reaction: L-arogenate + oxaloacetate = prephenate + L-aspartate
For diagram of phenylalanine and tyrosine biosynthesis, click here
Other name(s): prephenate transaminase (ambiguous); PAT (ambiguous); prephenate aspartate aminotransferase; L-aspartate:prephenate aminotransferase
Systematic name: L-arogenate:oxaloacetate aminotransferase
Comments: A pyridoxal-phosphate protein. Glutamate can also act as the amino donor, but more slowly (cf. EC 2.6.1.79, glutamate—prephenate aminotransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  De-Eknamkul, W. and Ellis, B.E. Purification and characterization of prephenate aminotransferase from Anchusa officinalis cell cultures. Arch. Biochem. Biophys. 267 (1988) 87–94. [DOI] [PMID: 3196038]
[EC 2.6.1.78 created 2005]
 
 
EC 2.6.1.79     
Accepted name: glutamate—prephenate aminotransferase
Reaction: L-arogenate + 2-oxoglutarate = prephenate + L-glutamate
For diagram of phenylalanine and tyrosine biosynthesis, click here
Other name(s): prephenate transaminase (ambiguous); PAT (ambiguous); L-glutamate:prephenate aminotransferase
Systematic name: L-arogenate:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. Aspartate can also act as the amino donor, but more slowly (cf. EC 2.6.1.78, aspartate—prephenate aminotransferase). The enzyme from higher plants shows a marked preference for prephenate as substrate compared to pyruvate, phenylpyruvate or 4-hydroxyphenylpyruvate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bonner, C.A. and Jensen, R.A. Novel features of prephenate aminotransferase from cell cultures of Nicotiana silvestris. Arch. Biochem. Biophys. 238 (1985) 237–246. [DOI] [PMID: 3985619]
2.  Siehl, D.L., Connelly, J.A. and Conn, E.E. Tyrosine biosynthesis in Sorghum bicolor: characteristics of prephenate aminotransferase. Z. Naturforsch. 41 (1986) 79–86. [PMID: 2939644]
3.  Bonner, C. and Jensen, R. Prephenate aminotransferase. Methods Enzymol. 142 (1987) 479–487. [PMID: 3298985]
[EC 2.6.1.79 created 2005]
 
 
EC 2.6.1.80     
Accepted name: nicotianamine aminotransferase
Reaction: nicotianamine + 2-oxoglutarate = 3′′-deamino-3′′-oxonicotianamine + L-glutamate
For diagram of nicotianamine biosynthesis, click here
Other name(s): NAAT; NAAT-I; NAAT-II; NAAT-III; nicotianamine transaminase
Systematic name: nicotianamine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. This enzyme is produced by grasses. They secrete both the nicotianamine and the transaminated product into the soil around them. Both compounds chelate iron(II) and iron(III); these chelators, called mugineic acid family phytosiderophores, are taken up by the grass, which is thereby supplied with iron.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 154907-64-9
References:
1.  Kanazawa, K., Higuchi, K., Nishizawa, N.-K., Fushiya, S., Chino, M. and Mori, S. Nicotianamine aminotransferase activities are correlated with the phytosiderophore secretions under Fe-deficient conditions in Gramineae. J. Exp. Bot. 45 (1994) 1903–1906.
2.  Takahashi, M., Yamaguchi, H., Nakanishi, H., Shioiri, T., Nishizawa, N.K. and Mori, S. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol. 121 (1999) 947–956. [PMID: 10557244]
3.  Schaaf, G., Ludewig, U., Erenoglu, B.E., Mori, S., Kitahara, T. and von Wirén, N. ZmYS1 functions as a proton-coupled symporter for phytosideorophore- and nicotianamine-chelated metals. J. Biol. Chem. 279 (2004) 9091–9096. [DOI] [PMID: 14699112]
[EC 2.6.1.80 created 2005]
 
 
EC 2.6.1.81     
Accepted name: succinylornithine transaminase
Reaction: N2-succinyl-L-ornithine + 2-oxoglutarate = N-succinyl-L-glutamate 5-semialdehyde + L-glutamate
For diagram of arginine catabolism, click here
Other name(s): succinylornithine aminotransferase; N2-succinylornithine 5-aminotransferase; AstC; SOAT; 2-N-succinyl-L-ornithine:2-oxoglutarate 5-aminotransferase
Systematic name: N2-succinyl-L-ornithine:2-oxoglutarate 5-aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on N2-acetyl-L-ornithine and L-ornithine, but more slowly [3]. In Pseudomonas aeruginosa, the arginine-inducible succinylornithine transaminase, acetylornithine transaminase (EC 2.6.1.11) and ornithine aminotransferase (EC 2.6.1.13) activities are catalysed by the same enzyme, but this is not the case in all species [5]. This is the third enzyme in the arginine succinyltransferase (AST) pathway for the catabolism of arginine [1]. This pathway converts the carbon skeleton of arginine into glutamate, with the concomitant production of ammonia and conversion of succinyl-CoA into succinate and CoA. The five enzymes involved in this pathway are EC 2.3.1.109 (arginine N-succinyltransferase), EC 3.5.3.23 (N-succinylarginine dihydrolase), EC 2.6.1.81 (succinylornithine transaminase), EC 1.2.1.71 (succinylglutamate-semialdehyde dehydrogenase) and EC 3.5.1.96 (succinylglutamate desuccinylase) [3,6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vander Wauven, C. and Stalon, V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J. Bacteriol. 164 (1985) 882–886. [PMID: 2865249]
2.  Schneider, B.L., Kiupakis, A.K. and Reitzer, L.J. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J. Bacteriol. 180 (1998) 4278–4286. [PMID: 9696779]
3.  Cunin, R., Glansdorff, N., Pierard, A. and Stalon, V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50 (1986) 314–352. [PMID: 3534538]
4.  Itoh, Y. Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J. Bacteriol. 179 (1997) 7280–7290. [DOI] [PMID: 9393691]
5.  Stalon, V., Vander Wauven, C., Momin, P. and Legrain, C. Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria. J. Gen. Microbiol. 133 (1987) 2487–2495. [DOI] [PMID: 3129535]
[EC 2.6.1.81 created 2006]
 
 
EC 2.6.1.82     
Accepted name: putrescine—2-oxoglutarate transaminase
Reaction: putrescine + 2-oxoglutarate = 4-aminobutanal + L-glutamate
For diagram of arginine catabolism, click here
Glossary: putrescine = butane-1,4-diamine
1-pyrroline = 3,4-dihydro-2H-pyrrole
Other name(s): putrescine-α-ketoglutarate transaminase; YgjG; putrescine:α-ketoglutarate aminotransferase; PAT (ambiguous); putrescine transaminase (ambiguous); putrescine aminotransferase (ambiguous); butane-1,4-diamine:2-oxoglutarate aminotransferase
Systematic name: putrescine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein [3]. The product, 4-aminobutanal, spontaneously cyclizes to form 1-pyrroline, which may be the actual substrate for EC 1.2.1.19, aminobutyraldehyde dehydrogenase. Cadaverine and spermidine can also act as substrates [3]. Forms part of the arginine-catabolism pathway [2]. cf. EC 2.6.1.113, putrescine—pyruvate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 98982-73-1
References:
1.  Prieto-Santos, M.I., Martin-Checa, J., Balaña-Fouce, R. and Garrido-Pertierra, A. A pathway for putrescine catabolism in Escherichia coli. Biochim. Biophys. Acta 880 (1986) 242–244. [DOI] [PMID: 3510672]
2.  Samsonova, N.N., Smirnov, S.V., Novikova, A.E. and Ptitsyn, L.R. Identification of Escherichia coli K12 YdcW protein as a γ-aminobutyraldehyde dehydrogenase. FEBS Lett. 579 (2005) 4107–4112. [DOI] [PMID: 16023116]
3.  Samsonova, N.N., Smirnov, S.V., Altman, I.B. and Ptitsyn, L.R. Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol. 3 (2003) 2. [DOI] [PMID: 12617754]
[EC 2.6.1.82 created 2006, modified 2017, modified 2021]
 
 
EC 2.6.1.83     
Accepted name: LL-diaminopimelate aminotransferase
Reaction: LL-2,6-diaminoheptanedioate + 2-oxoglutarate = (S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate + L-glutamate + H2O
For diagram of lysine biosynthesis (later stages), click here
Glossary: LL-diaminopimelate = LL-2,6-diaminoheptanedioate
tetrahydrodipicolinate = tetrahydropyridine-2,6-dicarboxylate
Other name(s): LL-diaminopimelate transaminase; LL-DAP aminotransferase; LL-DAP-AT
Systematic name: LL-2,6-diaminoheptanedioate:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate enzyme. In vivo, the reaction occurs in the opposite direction to that shown above. This is one of the final steps in the lysine-biosynthesis pathway of plants (ranging from mosses to flowering plants). meso-Diaminoheptanedioate, an isomer of LL-2,6-diaminoheptanedioate, and the structurally related compounds lysine and ornithine are not substrates. 2-Oxoglutarate cannot be replaced by oxaloacetate or pyruvate. It is not yet known if the substrate of the biosynthetic reaction is the cyclic or acyclic form of tetrahydropyridine-2,6-dicarboxylate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 949001-34-7
References:
1.  Hudson, A.O., Singh, B.K., Leustek, T. and Gilvarg, C. An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants. Plant Physiol. 140 (2006) 292–301. [DOI] [PMID: 16361515]
[EC 2.6.1.83 created 2006]
 
 
EC 2.6.1.84     
Accepted name: arginine—pyruvate transaminase
Reaction: L-arginine + pyruvate = 5-guanidino-2-oxopentanoate + L-alanine
For diagram of arginine-catabolism pathway, click here
Other name(s): arginine:pyruvate transaminase; AruH; ATase
Systematic name: L-arginine:pyruvate aminotransferase
Comments: A pyridoxal-phosphate protein. While L-arginine is the best substrate, the enzyme exhibits broad substrate specificity, with L-lysine, L-methionine, L-leucine, L-ornithine and L-glutamine also able to act as substrates, but more slowly. Pyruvate cannot be replaced by 2-oxoglutarate as amino-group acceptor. This is the first catalytic enzyme of the arginine transaminase pathway for L-arginine utilization in Pseudomonas aeruginosa. This pathway is only used when the major route of arginine catabolism, i.e. the arginine succinyltransferase pathway, is blocked.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yang, Z. and Lu, C.-D. Characterization of an arginine:pyruvate transaminase in arginine catabolism of Pseudomonas aeruginosa PAO1. J. Bacteriol. 189 (2007) 3954–3959. [DOI] [PMID: 17416668]
2.  Yang, Z. and Lu, C.D. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. J. Bacteriol. 189 (2007) 3945–3953. [DOI] [PMID: 17416670]
[EC 2.6.1.84 created 2007]
 
 
EC 2.6.1.85     
Accepted name: aminodeoxychorismate synthase
Reaction: chorismate + L-glutamine = 4-amino-4-deoxychorismate + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) chorismate + NH3 = 4-amino-4-deoxychorismate + H2O
For diagram of folate biosynthesis (late stages), click here
Other name(s): ADC synthase; 4-amino-4-deoxychorismate synthase; PabAB; chorismate:L-glutamine amido-ligase (incorrect)
Systematic name: chorismate:L-glutamine aminotransferase
Comments: The enzyme is composed of two parts, a glutaminase (PabA in Escherichia coli) and an aminotransferase (PabB). In the absence of PabA and glutamine (but in the presence of Mg2+), PabB can convert ammonia and chorismate into 4-amino-4-deoxychorismate. PabA converts glutamine into glutamate only in the presence of stoichiometric amounts of PabB. In many organisms, including plants, the genes encoding the two proteins have fused to encode a single bifunctional protein. This enzyme is coupled with EC 4.1.3.38, aminodeoxychorismate lyase, to form 4-aminobenzoate. cf. EC 2.6.1.123, 4-amino-4-deoxychorismate synthase (2-amino-4-deoxychorismate-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ye, Q.Z., Liu, J. and Walsh, C.T. p-Aminobenzoate synthesis in Escherichia coli: purification and characterization of PabB as aminodeoxychorismate synthase and enzyme X as aminodeoxychorismate lyase. Proc. Natl. Acad. Sci. USA 87 (1990) 9391–9395. [DOI] [PMID: 2251281]
2.  Viswanathan, V.K., Green, J.M. and Nichols, B.P. Kinetic characterization of 4-amino 4-deoxychorismate synthase from Escherichia coli. J. Bacteriol. 177 (1995) 5918–5923. [DOI] [PMID: 7592344]
3.  Chang, Z., Sun, Y., He, J. and Vining, L.C. p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology (Reading) 147 (2001) 2113–2126. [DOI] [PMID: 11495989]
4.  Camara, D., Richefeu-Contesto, C., Gambonnet, B., Dumas, R. and Rebeille, F. The synthesis of pABA: Coupling between the glutamine amidotransferase and aminodeoxychorismate synthase domains of the bifunctional aminodeoxychorismate synthase from Arabidopsis thaliana. Arch. Biochem. Biophys. 505 (2011) 83–90. [DOI] [PMID: 20851095]
[EC 2.6.1.85 created 2003 as EC 6.3.5.8, transferred 2007 to EC 2.6.1.85, modified 2022]
 
 
EC 2.6.1.86     
Accepted name: 2-amino-4-deoxychorismate synthase
Reaction: (2S)-2-amino-4-deoxychorismate + L-glutamate = chorismate + L-glutamine
For diagram of enediyne antitumour antibiotic biosynthesis, click here
Glossary: (2S)-2-amino-4-deoxychorismate = (2S,3S)-3-(1-carboxyvinyloxy)-2,3-dihydroanthranilate
Other name(s): ADIC synthase; 2-amino-2-deoxyisochorismate synthase; SgcD
Systematic name: (2S)-2-amino-4-deoxychorismate:2-oxoglutarate aminotransferase
Comments: Requires Mg2+. The reaction occurs in the reverse direction to that shown above. In contrast to most anthranilate-synthase I (ASI) homologues, this enzyme is not inhibited by tryptophan. In Streptomyces globisporus, the sequential action of this enzyme and EC 1.3.99.24, 2-amino-4-deoxychorismate dehydrogenase, leads to the formation of the benzoxazolinate moiety of the enediyne antitumour antibiotic C-1027 [1,2]. In certain Pseudomonads the enzyme participates in the biosynthesis of phenazine, a precursor for several compounds with antibiotic activity [3,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Lanen, S.G., Lin, S. and Shen, B. Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Proc. Natl. Acad. Sci. USA 105 (2008) 494–499. [DOI] [PMID: 18182490]
2.  Yu, L., Mah, S., Otani, T. and Dedon, P. The benzoxazolinate of C-1027 confers intercalative DNA binding. J. Am. Chem. Soc. 117 (1995) 8877–8878. [DOI]
3.  McDonald, M., Mavrodi, D.V., Thomashow, L.S. and Floss, H.G. Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J. Am. Chem. Soc. 123 (2001) 9459–9460. [PMID: 11562236]
4.  Laursen, J.B. and Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104 (2004) 1663–1686. [DOI] [PMID: 15008629]
[EC 2.6.1.86 created 2008]
 
 
EC 2.6.1.87     
Accepted name: UDP-4-amino-4-deoxy-L-arabinose aminotransferase
Reaction: UDP-4-amino-4-deoxy-β-L-arabinopyranose + 2-oxoglutarate = UDP-β-L-threo-pentapyranos-4-ulose + L-glutamate
For diagram of UDP-4-amino-4-deoxy-β-L-arabinose biosynthesis, click here
Other name(s): UDP-(β-L-threo-pentapyranosyl-4′′-ulose diphosphate) aminotransferase; UDP-4-amino-4-deoxy-L-arabinose—oxoglutarate aminotransferase; UDP-Ara4O aminotransferase; UDP-L-Ara4N transaminase
Systematic name: UDP-4-amino-4-deoxy-β-L-arabinose:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Breazeale, S.D., Ribeiro, A.A. and Raetz, C.R. Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J. Biol. Chem. 278 (2003) 24731–24739. [DOI] [PMID: 12704196]
2.  Noland, B.W., Newman, J.M., Hendle, J., Badger, J., Christopher, J.A., Tresser, J., Buchanan, M.D., Wright, T.A., Rutter, M.E., Sanderson, W.E., Muller-Dieckmann, H.J., Gajiwala, K.S. and Buchanan, S.G. Structural studies of Salmonella typhimurium ArnB (PmrH) aminotransferase: a 4-amino-4-deoxy-L-arabinose lipopolysaccharide-modifying enzyme. Structure 10 (2002) 1569–1580. [DOI] [PMID: 12429098]
[EC 2.6.1.87 created 2010]
 
 
EC 2.6.1.88     
Accepted name: methionine transaminase
Reaction: L-methionine + a 2-oxo carboxylate = 4-(methylsulfanyl)-2-oxobutanoate + an L-amino acid
Other name(s): methionine-oxo-acid transaminase
Systematic name: L-methionine:2-oxo-acid aminotransferase
Comments: The enzyme is most active with L-methionine. It participates in the L-methionine salvage pathway from S-methyl-5′-thioadenosine, a by-product of polyamine biosynthesis. The enzyme from the bacterium Klebsiella pneumoniae can use several different amino acids as amino donor, with aromatic amino acids being the most effective [1]. The enzyme from the plant Arabidopsis thaliana is also a part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Heilbronn, J., Wilson, J. and Berger, B.J. Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. J. Bacteriol. 181 (1999) 1739–1747. [PMID: 10074065]
2.  Dolzan, M., Johansson, K., Roig-Zamboni, V., Campanacci, V., Tegoni, M., Schneider, G. and Cambillau, C. Crystal structure and reactivity of YbdL from Escherichia coli identify a methionine aminotransferase function. FEBS Lett. 571 (2004) 141–146. [DOI] [PMID: 15280032]
3.  Schuster, J., Knill, T., Reichelt, M., Gershenzon, J. and Binder, S. Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell 18 (2006) 2664–2679. [DOI] [PMID: 17056707]
[EC 2.6.1.88 created 2011]
 
 
EC 2.6.1.89     
Accepted name: dTDP-3-amino-3,6-dideoxy-α-D-glucopyranose transaminase
Reaction: dTDP-3-amino-3,6-dideoxy-α-D-glucopyranose + 2-oxoglutarate = dTDP-3-dehydro-6-deoxy-α-D-glucopyranose + L-glutamate
For diagram of dTDP-D-mycaminose biosynthesis, click here
Glossary: dTDP-D-mycaminose = dTDP-3-dimethylamino-3,6-dideoxy-α-D-glucopyranose
Other name(s): TylB; TDP-3-keto-6-deoxy-D-glucose 3-aminotransferase; TDP-3-dehydro-6-deoxy-D-glucose 3-aminotransferase; dTDP-3-keto-6-deoxy-D-glucose 3-aminotransferase; dTDP-3-dehydro-6-deoxy-D-glucose 3-aminotransferase
Systematic name: dTDP-3-amino-3,6-dideoxy-α-D-glucopyranose:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The reaction occurs in the reverse direction. The enzyme is involved in biosynthesis of D-mycaminose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Melancon, C.E., 3rd, Hong, L., White, J.A., Liu, Y.N. and Liu, H.W. Characterization of TDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase from the D-mycaminose biosynthetic pathway of Streptomyces fradiae: in vitro activity and substrate specificity studies. Biochemistry 46 (2007) 577–590. [DOI] [PMID: 17209568]
[EC 2.6.1.89 created 2011]
 
 
EC 2.6.1.90     
Accepted name: dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose transaminase
Reaction: dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose + 2-oxoglutarate = dTDP-3-dehydro-6-deoxy-α-D-galactopyranose + L-glutamate
For diagram of dTDP-Fuc3NAc and dTDP-Fuc4NAc biosynthesis, click here
Glossary: dTDP-3-dehydro-6-deoxy-D-galactopyranose = dTDP-6-deoxy-D-xylo-hexopyranos-3-ulose
Other name(s): dTDP-6-deoxy-D-xylohex-3-uloseaminase; FdtB; TDP-3-keto-6-deoxy-D-galactose-3-aminotransferase; RavAMT; TDP-3-keto-6-deoxy-D-galactose 3-aminotransferase; TDP-3-dehydro-6-deoxy-D-galactose 3-aminotransferase
Systematic name: dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme is involved in the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose. The reaction occurs in the reverse direction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pfoestl, A., Hofinger, A., Kosma, P. and Messner, P. Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose in Aneurinibacillus thermoaerophilus L420-91T. J. Biol. Chem. 278 (2003) 26410–26417. [DOI] [PMID: 12740380]
[EC 2.6.1.90 created 2011]
 
 
EC 2.6.1.91      
Deleted entry: UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine transaminase. Identical to EC 2.6.1.34, UDP-N-acetylbacillosamine transaminase.
[EC 2.6.1.91 created 2011, deleted 2013]
 
 
EC 2.6.1.92     
Accepted name: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine transaminase
Reaction: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine + 2-oxoglutarate = UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose + L-glutamate
Other name(s): PseC; UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine:2-oxoglutarate aminotransferase; UDP-β-L-threo-pentapyranos-4-ulose transaminase; UDP-4-dehydro-6-deoxy-D-glucose transaminase
Systematic name: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine:2-oxoglutarate transaminase
Comments: A pyridoxal 5′-phosphate protein. The enzyme transfers the primary amino group of L-glutamate to C-4′′ of UDP-4-dehydro sugars, forming a C-N bond in a stereo configuration opposite to that of UDP. The enzyme from the bacterium Bacillus cereus has been shown to act on UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose, UDP-β-L-threo-pentapyranos-4-ulose, UDP-4-dehydro-6-deoxy-D-glucose, and UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose. cf. EC 2.6.1.34, UDP-N-acetylbacillosamine transaminase, which catalyses a similar reaction, but forms the C-N bond in the same stereo configuration as that of UDP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schoenhofen, I.C., McNally, D.J., Vinogradov, E., Whitfield, D., Young, N.M., Dick, S., Wakarchuk, W.W., Brisson, J.R. and Logan, S.M. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281 (2006) 723–732. [DOI] [PMID: 16286454]
2.  Schoenhofen, I.C., Lunin, V.V., Julien, J.P., Li, Y., Ajamian, E., Matte, A., Cygler, M., Brisson, J.R., Aubry, A., Logan, S.M., Bhatia, S., Wakarchuk, W.W. and Young, N.M. Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. J. Biol. Chem. 281 (2006) 8907–8916. [DOI] [PMID: 16421095]
3.  Mostafavi, A.Z. and Troutman, J.M. Biosynthetic assembly of the Bacteroides fragilis capsular polysaccharide A precursor bactoprenyl diphosphate-linked acetamido-4-amino-6-deoxygalactopyranose. Biochemistry 52 (2013) 1939–1949. [DOI] [PMID: 23458065]
4.  Hwang, S., Li, Z., Bar-Peled, Y., Aronov, A., Ericson, J. and Bar-Peled, M. The biosynthesis of UDP-D-FucNAc-4N-(2)-oxoglutarate (UDP-Yelosamine) in Bacillus cereus ATCC 14579: Pat and Pyl, an aminotransferase and an ATP-dependent Grasp protein that ligates 2-oxoglutarate to UDP-4-amino-sugars. J. Biol. Chem. 289 (2014) 35620–35632. [DOI] [PMID: 25368324]
[EC 2.6.1.92 created 2011, modified 2018]
 
 
EC 2.6.1.93     
Accepted name: neamine transaminase
Reaction: neamine + 2-oxoglutarate = 6′-dehydroparomamine + L-glutamate
For diagram of neamine and ribostamycin biosynthesis, click here
Other name(s): glutamate—6′-dehydroparomamine aminotransferase; btrB (gene name); neoN (gene name); kacL (gene name)
Systematic name: neamine:2-oxoglutarate aminotransferase
Comments: The reaction occurs in vivo in the opposite direction. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin B, butirosin, neomycin and ribostamycin. Works in combination with EC 1.1.3.43, paromamine 6-oxidase, to replace the 6′-hydroxy group of paromamine with an amino group. The enzyme from the bacterium Streptomyces kanamyceticus can also catalyse EC 2.6.1.94, 2′-deamino-2′-hydroxyneamine transaminase, which leads to production of kanamycin A [3]. The enzyme from the bacterium Streptomyces fradiae can also catalyse EC 2.6.1.95, leading to production of neomycin C [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem 8 (2007) 283–288. [DOI] [PMID: 17206729]
2.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [DOI] [PMID: 21689223]
3.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [DOI] [PMID: 21983602]
[EC 2.6.1.93 created 2012]
 
 
EC 2.6.1.94     
Accepted name: 2′-deamino-2′-hydroxyneamine transaminase
Reaction: 2′-deamino-2′-hydroxyneamine + 2-oxoglutarate = 2′-deamino-2′-hydroxy-6′-dehydroparomamine + L-glutamate
Other name(s): kacL (gene name)
Systematic name: 2′-deamino-2′-hydroxyneamine:2-oxoglutarate aminotransferase
Comments: The reaction occurs in vivo in the opposite direction. Involved in the biosynthetic pathway of kanamycin A and kanamycin D. The enzyme, characterized from the bacterium Streptomyces kanamyceticus, can also catalyse EC 2.6.1.93, neamine transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [DOI] [PMID: 21983602]
[EC 2.6.1.94 created 2012]
 
 
EC 2.6.1.95     
Accepted name: neomycin C transaminase
Reaction: neomycin C + 2-oxoglutarate = 6′′′-deamino-6′′′-oxoneomycin C + L-glutamate
Other name(s): neoN (gene name)
Systematic name: 2-oxoglutarate:neomycin C aminotransferase
Comments: The reaction occurs in vivo in the opposite direction. Involved in the biosynthetic pathway of aminoglycoside antibiotics of the neomycin family. Works in combination with EC 1.1.3.44, 6′′′-hydroxyneomycin C oxidase, to replace the 6′′′-hydroxy group of 6′′′-deamino-6′′′-hydroxyneomycin C with an amino group. The enzyme, characterized from the bacterium Streptomyces fradiae, can also catalyse EC 2.6.1.93, neamine transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem 8 (2007) 283–288. [DOI] [PMID: 17206729]
2.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [DOI] [PMID: 21689223]
[EC 2.6.1.95 created 2012]
 
 
EC 2.6.1.96     
Accepted name: 4-aminobutyrate—pyruvate transaminase
Reaction: (1) 4-aminobutanoate + pyruvate = succinate semialdehyde + L-alanine
(2) 4-aminobutanoate + glyoxylate = succinate semialdehyde + glycine
Other name(s): aminobutyrate aminotransferase (ambiguous); γ-aminobutyrate aminotransaminase (ambiguous); γ-aminobutyrate transaminase (ambiguous); γ-aminobutyric acid aminotransferase (ambiguous); γ-aminobutyric acid pyruvate transaminase; γ-aminobutyric acid transaminase (ambiguous); γ-aminobutyric transaminase (ambiguous); 4-aminobutyrate aminotransferase (ambiguous); 4-aminobutyric acid aminotransferase (ambiguous); aminobutyrate transaminase (ambiguous); GABA aminotransferase (ambiguous); GABA transaminase (ambiguous); GABA transferase (ambiguous); POP2 (gene name)
Systematic name: 4-aminobutanoate:pyruvate aminotransferase
Comments: Requires pyridoxal 5′-phosphate. The enzyme is found in plants that do not have the 2-oxoglutarate dependent enzyme (cf. EC 2.6.1.19). The reaction with pyruvate is reversible while the reaction with glyoxylate only takes place in the forward direction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Cauwenberghe, O.R. and Shelp, B.J. Biochemical characterization of partially purified gaba:pyruvate transaminase from Nicotiana tabacum. Phytochemistry 52 (1999) 575–581.
2.  Palanivelu, R., Brass, L., Edlund, A.F. and Preuss, D. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114 (2003) 47–59. [DOI] [PMID: 12859897]
3.  Clark, S.M., Di Leo, R., Dhanoa, P.K., Van Cauwenberghe, O.R., Mullen, R.T. and Shelp, B.J. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J. Exp. Bot. 60 (2009) 1743–1757. [DOI] [PMID: 19264755]
4.  Clark, S.M., Di Leo, R., Van Cauwenberghe, O.R., Mullen, R.T. and Shelp, B.J. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J. Exp. Bot. 60 (2009) 3255–3267. [DOI] [PMID: 19470656]
[EC 2.6.1.96 created 2012]
 
 
EC 2.6.1.97     
Accepted name: archaeosine synthase
Reaction: L-glutamine + 7-cyano-7-carbaguanine15 in tRNA + H2O = L-glutamate + archaeine15 in tRNA
Glossary: 7-cyano-7-carbaguanine = preQ0 = 7-cyano-7-deazaguanine
archaeine = 7-deaza-7-carbamidoylguanine = base G*
archaeosine = G* = 7-amidino-7-deazaguanosine
Other name(s): ArcS; TgtA2; MJ1022 (gene name); glutamine:preQ0-tRNA amidinotransferase (incorrect)
Systematic name: L-glutamine:7-cyano-7-carbaguanine aminotransferase
Comments: In Euryarchaeota the reaction is catalysed by ArcS [1,2]. In Crenarchaeota, which do not have an ArcS homologue, the reaction is catalysed either by a homologue of EC 6.3.4.20, 7-cyano-7-deazaguanine synthase that includes a glutaminase domain (cf. EC 3.5.1.2), or by a homologue of EC 1.7.1.13, preQ1 synthase [2]. The enzyme from the Euryarchaeon Methanocaldococcus jannaschii can also use arginine and ammonium as amino donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Phillips, G., Chikwana, V.M., Maxwell, A., El-Yacoubi, B., Swairjo, M.A., Iwata-Reuyl, D. and de Crecy-Lagard, V. Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA. J. Biol. Chem. 285 (2010) 12706–12713. [DOI] [PMID: 20129918]
2.  Phillips, G., Swairjo, M.A., Gaston, K.W., Bailly, M., Limbach, P.A., Iwata-Reuyl, D. and de Crecy-Lagard, V. Diversity of archaeosine synthesis in crenarchaeota. ACS Chem. Biol. 7 (2012) 300–305. [DOI] [PMID: 22032275]
[EC 2.6.1.97 created 2012]
 
 
EC 2.6.1.98     
Accepted name: UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase
Reaction: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate + 2-oxoglutarate = UDP-2-acetamido-2-deoxy-α-D-ribo-hex-3-uluronate + L-glutamate
For diagram of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronate biosynthesis, click here
Other name(s): WbpE; WlbC
Systematic name: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide. The enzymes from Pseudomonas aeruginosa serotype O5 and Thermus thermophilus form a complex with the previous enzyme in the pathway, EC 1.1.1.335 (UDP-N-acetyl-2-amino-2-deoxyglucuronate oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [DOI] [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [DOI] [PMID: 19348502]
3.  Larkin, A., Olivier, N.B. and Imperiali, B. Structural analysis of WbpE from Pseudomonas aeruginosa PAO1: a nucleotide sugar aminotransferase involved in O-antigen assembly. Biochemistry 49 (2010) 7227–7237. [DOI] [PMID: 20604544]
[EC 2.6.1.98 created 2012]
 
 
EC 2.6.1.99     
Accepted name: L-tryptophan—pyruvate aminotransferase
Reaction: L-tryptophan + pyruvate = indole-3-pyruvate + L-alanine
For diagram of indoleacetic acid biosynthesis, click here
Other name(s): TAA1 (gene name); vt2 (gene name)
Systematic name: L-tryptophan:pyruvate aminotransferase
Comments: This plant enzyme, along with EC 1.14.13.168, indole-3-pyruvate monooxygenase, is responsible for the biosynthesis of the plant hormone indole-3-acetate from L-tryptophan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M.E., Ivans, L.J., Cheng, Y., Lim, J., Zhao, Y., Ballare, C.L., Sandberg, G., Noel, J.P. and Chory, J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133 (2008) 164–176. [DOI] [PMID: 18394996]
2.  Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y. and Kasahara, H. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 108 (2011) 18512–18517. [DOI] [PMID: 22025724]
3.  Phillips, K.A., Skirpan, A.L., Liu, X., Christensen, A., Slewinski, T.L., Hudson, C., Barazesh, S., Cohen, J.D., Malcomber, S. and McSteen, P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23 (2011) 550–566. [DOI] [PMID: 21335375]
4.  Zhao, Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5 (2012) 334–338. [DOI] [PMID: 22155950]
[EC 2.6.1.99 created 2012]
 
 
EC 2.6.1.100     
Accepted name: L-glutamine:2-deoxy-scyllo-inosose aminotransferase
Reaction: L-glutamine + 2-deoxy-scyllo-inosose = 2-oxoglutaramate + 2-deoxy-scyllo-inosamine
For diagram of paromamine biosynthesis, click here
Glossary: 2-deoxy-scyllo-inosose = (2S,3R,4S,5R)-2,3,4,5-tetrahydroxycyclohexan-1-one
Other name(s): btrR (gene name); neoB (gene name); kanB (gene name)
Systematic name: L-glutamine:2-deoxy-scyllo-inosose aminotransferase
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Also catalyses EC 2.6.1.101, L-glutamine:5-amino-2,3,4-trihydroxycyclohexanone aminotransferase [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Tamegai, H., Eguchi, T. and Kakinuma, K. First identification of Streptomyces genes involved in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics--genetic and evolutionary analysis of L-glutamine:2-deoxy-scyllo-inosose aminotransferase genes. J. Antibiot. (Tokyo) 55 (2002) 1016–1018. [PMID: 12546424]
2.  Huang, F., Haydock, S.F., Mironenko, T., Spiteller, D., Li, Y. and Spencer, J.B. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: characterisation of an aminotransferase involved in the formation of 2-deoxystreptamine. Org. Biomol. Chem. 3 (2005) 1410–1418. [DOI] [PMID: 15827636]
3.  Kudo, F., Yamamoto, Y., Yokoyama, K., Eguchi, T. and Kakinuma, K. Biosynthesis of 2-deoxystreptamine by three crucial enzymes in Streptomyces fradiae NBRC 12773. J. Antibiot. (Tokyo) 58 (2005) 766–774. [DOI] [PMID: 16506694]
4.  Jnawali, H.N., Subba, B., Liou, K. and Sohng, J.K. Functional characterization of kanB by complementing in engineered Streptomyces fradiae Δneo6::tsr. Biotechnol. Lett. 31 (2009) 869–875. [DOI] [PMID: 19219581]
[EC 2.6.1.100 created 2013]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald