The Enzyme Database

Displaying entries 101-150 of 1227.

<< Previous | Next >>    printer_iconPrintable version

EC 5.1.3.23     Relevance: 100%
Accepted name: UDP-2,3-diacetamido-2,3-dideoxyglucuronic acid 2-epimerase
Reaction: UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate = UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronate
For diagram of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronate biosynthesis, click here
Glossary: UDP-α-D-GlcNAc3NAcA = UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid
UDP-α-D-ManNAc3NAcA = UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid
Other name(s): UDP-GlcNAc3NAcA 2-epimerase; UDP-α-D-GlcNAc3NAcA 2-epimerase; 2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerase; WbpI; WlbD
Systematic name: 2,3-diacetamido-2,3-dideoxy-α-D-glucuronate 2-epimerase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of the B-band lipopolysaccharide of Pseudomonas aeroginosa serotype O5 and of the band-A trisaccharide of Bordetella pertussis, both important respiratory pathogens [1]. The enzyme is highly specific as UDP-α-D-GlcNAc, UDP-α-D-GlcNAcA (UDP-2-acetamido-2-deoxy-α-D-glucuronic acid) and UDP-α-D-GlcNAc3NAc (UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucose) cannot act as substrates [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Westman, E.L., McNally, D.J., Rejzek, M., Miller, W.L., Kannathasan, V.S., Preston, A., Maskell, D.J., Field, R.A., Brisson, J.R. and Lam, J.S. Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerases from respiratory pathogens. Biochem. J. 405 (2007) 123–130. [DOI] [PMID: 17346239]
2.  Westman, E.L., McNally, D.J., Rejzek, M., Miller, W.L., Kannathasan, V.S., Preston, A., Maskell, D.J., Field, R.A., Brisson, J.R. and Lam, J.S. Erratum report: Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronic acid 2-epimerases from respiratory pathogens. Biochem. J. 405 (2007) 625.
3.  Sri Kannathasan, V., Staines, A.G., Dong, C.J., Field, R.A., Preston, A.G., Maskell, D.J. and Naismith, J.H. Overexpression, purification, crystallization and data collection on the Bordetella pertussis wlbD gene product, a putative UDP-GlcNAc 2′-epimerase. Acta Crystallogr. D Biol. Crystallogr. 57 (2001) 1310–1312. [PMID: 11526328]
[EC 5.1.3.23 created 2007]
 
 
EC 2.4.3.3     Relevance: 100%
Accepted name: α-N-acetylgalactosaminide α-2,6-sialyltransferase
Reaction: CMP-N-acetylneuraminate + glycano-(1→3)-(N-acetyl-α-D-galactosaminyl)-glycoprotein = CMP + glycano-[(2→6)-α-N-acetylneuraminyl]-(N-acetyl-D-galactosaminyl)-glycoprotein
Systematic name: CMP-N-acetylneuraminate:glycano-1,3-(N-acetyl-α-D-galactosaminyl)-glycoprotein α-2,6-N-acetylneuraminyltransferase
Comments: N-acetyl-α-D-galactosamine linked to threonine or serine is also an acceptor, when substituted at the 3-position.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71124-50-0
References:
1.  Sadler, J.E., Rearick, J.I. and Hill, R.L. Purification to homogeneity and enzymatic characterization of an α-N-acetylgalactosaminide α2→6 sialyltransferase from porcine submaxillary glands. J. Biol. Chem. 254 (1979) 5934–5941. [PMID: 447688]
[EC 2.4.3.3 created 1984 as EC 2.4.99.3, modified 1986, transferred 2022 to EC 2.4.3.3]
 
 
EC 2.4.1.264     Relevance: 99.8%
Accepted name: D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-GlcA-(1→2)-α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol
For diagram of xanthan biosynthesis, click here
Other name(s): GumK; UDP-glucuronate:D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronyltransferase; D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronyltransferase
Systematic name: UDP-α-D-glucuronate:α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme is involved in the biosynthesis of the exopolysaccharides xanthan (in the bacterium Xanthomonas campestris) and acetan (in the bacterium Gluconacetobacter xylinus).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A. and Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180 (1998) 1607–1617. [PMID: 9537354]
2.  Ielpi, L., Couso, R.O. and Dankert, M.A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175 (1993) 2490–2500. [DOI] [PMID: 7683019]
3.  Kim, S.Y., Kim, J.G., Lee, B.M. and Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 31 (2009) 265–270. [DOI] [PMID: 18854951]
4.  Barreras, M., Bianchet, M.A. and Ielpi, L. Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 (2006) 880–883. [DOI] [PMID: 16946469]
5.  Barreras, M., Salinas, S.R., Abdian, P.L., Kampel, M.A. and Ielpi, L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J. Biol. Chem. 283 (2008) 25027–25035. [DOI] [PMID: 18596046]
6.  Vojnov, A.A., Bassi, D.E., Daniels, M.J. and Dankert, M.A. Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonas campestris. Carbohydr. Res. 337 (2002) 315–326. [DOI] [PMID: 11841812]
7.  Barreras, M., Abdian, P.L. and Ielpi, L. Functional characterization of GumK, a membrane-associated β-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Glycobiology 14 (2004) 233–241. [DOI] [PMID: 14736729]
[EC 2.4.1.264 created 2011, modified 2016]
 
 
EC 1.1.1.187     Relevance: 99.6%
Accepted name: GDP-4-dehydro-D-rhamnose reductase
Reaction: (1) GDP-α-D-rhamnose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+
(2) GDP-6-deoxy-α-D-talose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+
For diagram of gdp-l-fucose and GDP-mannose biosynthesis, click here
Glossary: GDP-α-D-rhamnose = GDP-6-deoxy-α-D-mannose
GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
GDP-6-deoxy-α-D-talose = GDP-α-D-pneumose
Other name(s): GDP-4-keto-6-deoxy-D-mannose reductase; GDP-4-keto-D-rhamnose reductase; guanosine diphosphate-4-keto-D-rhamnose reductase; GDP-6-deoxy-D-mannose:NAD(P)+ 4-oxidoreductase; GDP-6-deoxy-α-D-mannose:NAD(P)+ 4-oxidoreductase
Systematic name: GDP-4-dehydro-α-D-rhamnose:NAD(P)+ 4-oxidoreductase
Comments: The enzyme, which operates in the opposite direction to that shown, forms a mixture of GDP-α-D-rhamnose and its C-4 epimer, GDP-6-deoxy-α-D-talose. cf. EC 1.1.1.281, GDP-4-dehydro-6-deoxy-D-mannose reductase and EC 1.1.1.135, GDP-6-deoxy-D-talose 4-dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-56-3
References:
1.  Barber, G.A. The synthesis of guanosine 5′-diphosphate D-rhamnose by enzymes of a higher plant. Biochim. Biophys. Acta 165 (1968) 68–75. [DOI] [PMID: 4386238]
2.  Winkler, N.W. and Markovitz, A. Guanosine diphosphate-4-keto-D-rhamnose reductase. A non-stereoselective enzyme. J. Biol. Chem. 246 (1971) 5868–5876. [PMID: 4398966]
[EC 1.1.1.187 created 1984]
 
 
EC 3.2.1.129     Relevance: 99.5%
Accepted name: endo-α-sialidase
Reaction: Endohydrolysis of (2→8)-α-sialosyl linkages in oligo- or poly(sialic) acids
Other name(s): endo-N-acylneuraminidase; endoneuraminidase; endo-N-acetylneuraminidase; poly(α-2,8-sialosyl) endo-N-acetylneuraminidase; poly(α-2,8-sialoside) α-2,8-sialosylhydrolase; endosialidase; endo-N
Systematic name: polysialoside (2→8)-α-sialosylhydrolase
Comments: Although the name endo-N-acetylneuraminidase has also been used for this enzyme, this is misleading since its activity is not restricted to acetylated substrates. An exo-α-sialidase activity is listed as EC 3.2.1.18 exo-α-sialidase. See also EC 4.2.2.15 anhydrosialidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 91195-87-8
References:
1.  Finne, J., Mäkelä, P.H. Cleavage of the polysialosyl units of brain glycoproteins by a bacteriophage endosialidase. Involvement of a long oligosaccharide segment in molecular interactions of polysialic acid. J. Biol. Chem. 260 (1985) 1265–1270. [PMID: 3968060]
2.  Hallenbeck, P.C., Vimr, E.R., Yu, F., Bassler, B. and Troy, F.A. Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-α-2,8-sialosyl carbohydrate units. J. Biol. Chem. 262 (1987) 3553–3561. [PMID: 3546309]
3.  Kitakima, K., Inoue, S., Inoue, Y. and Troy, F.A. Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies. J. Biol. Chem. 263 (1988) 18269–18276. [PMID: 3142874]
4.  Kwiatkowski, B., Boscheck, B., Thicle, H. and Stirm, S. Endo-N-acetylneuraminidase associated with bacteriophage particles. J. Virol. 43 (1982) 697–704. [PMID: 7109038]
5.  Pelkonen, S., Pelkonen, J. and Finne, J. Common cleavage pattern of polysialic acid by bacteriophage endosialidases of different properties and origins. J. Virol. 65 (1989) 4409–4416. [PMID: 2778882]
6.  Tombinson, S. and Taylor, P.W. Neuraminidase associated with coliphage E that specifically depolymerizes the Escherichia coli K1 capsular polysaccharide. J. Virol. 55 (1985) 374–378. [PMID: 3894684]
7.  Cabezas, J.A. Some questions and suggestions on the type references of the official nomenclature (IUB) for sialidase(s) and endosialidase. Biochem. J. 278 (1991) 311–312. [PMID: 1883340]
[EC 3.2.1.129 created 1990, modified 1999]
 
 
EC 2.4.1.291     Relevance: 99.5%
Accepted name: N-acetylgalactosamine-N,N′-diacetylbacillosaminyl-diphospho-undecaprenol 4-α-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol = UDP + N-acetyl-D-galactosaminyl-α-(1→4)-N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglJ
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetylgalactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol 3-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [DOI] [PMID: 16186480]
2.  Chen, M.M., Weerapana, E., Ciepichal, E., Stupak, J., Reid, C.W., Swiezewska, E. and Imperiali, B. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 46 (2007) 14342–14348. [DOI] [PMID: 18034500]
[EC 2.4.1.291 created 2012]
 
 
EC 2.3.1.108     Relevance: 99.4%
Accepted name: α-tubulin N-acetyltransferase
Reaction: acetyl-CoA + [α-tubulin]-L-lysine = CoA + [α-tubulin]-N6-acetyl-L-lysine
Other name(s): ATAT1 (gene name); MEC17 (gene name); α-tubulin acetylase; TAT; α-tubulin acetyltransferase; tubulin N-acetyltransferase (ambiguous); acetyl-CoA:α-tubulin-L-lysine N-acetyltransferase; acetyl-CoA:[α-tubulin]-L-lysine 6-N-acetyltransferase
Systematic name: acetyl-CoA:[α-tubulin]-L-lysine N6-acetyltransferase
Comments: The enzyme is conserved from protists to mammals and is present in flowering plants. In most organisms it acetylates L-lysine at position 40 of α-tubulin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 99889-90-4
References:
1.  Greer, K., Maruta, H., L'Hernault, S.W. and Rosenbaum, J.L. α-Tubulin acetylase activity in isolated Chlamydomonas flagella. J. Cell Biol. 101 (1985) 2081–2084. [PMID: 4066751]
2.  Akella, J.S., Wloga, D., Kim, J., Starostina, N.G., Lyons-Abbott, S., Morrissette, N.S., Dougan, S.T., Kipreos, E.T. and Gaertig, J. MEC-17 is an α-tubulin acetyltransferase. Nature 467 (2010) 218–222. [DOI] [PMID: 20829795]
3.  Shida, T., Cueva, J.G., Xu, Z., Goodman, M.B. and Nachury, M.V. The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl. Acad. Sci. USA 107 (2010) 21517–21522. [DOI] [PMID: 21068373]
4.  Taschner, M., Vetter, M. and Lorentzen, E. Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA. Proc. Natl. Acad. Sci. USA 109 (2012) 19649–19654. [DOI] [PMID: 23071318]
5.  Friedmann, D.R., Aguilar, A., Fan, J., Nachury, M.V. and Marmorstein, R. Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proc. Natl. Acad. Sci. USA 109 (2012) 19655–19660. [DOI] [PMID: 23071314]
6.  Kalebic, N., Sorrentino, S., Perlas, E., Bolasco, G., Martinez, C. and Heppenstall, P.A. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat. Commun. 4:1962 (2013). [DOI] [PMID: 23748901]
[EC 2.3.1.108 created 1989, modified 2021]
 
 
EC 1.14.13.155     Relevance: 99.2%
Accepted name: α-pinene monooxygenase
Reaction: (–)-α-pinene + NADH + H+ + O2 = α-pinene oxide + NAD+ + H2O
For diagram of pinene and related monoterpenoids, click here
Systematic name: (–)-α-pinene,NADH:oxygen oxidoreductase
Comments: Involved in the catabolism of α-pinene.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Colocousi, A. Saqib, K.M. and Leak, D.J. Mutants of Pseudomonas fuorescence NCIMB 11671 defective in the catabolism of α-pinene. Appl. Microbiol. Biotechnol. 45 (1996) 822–830.
[EC 1.14.13.155 created 2012]
 
 
EC 1.1.1.426     Relevance: 99.1%
Accepted name: UDP-N-acetyl-α-D-quinovosamine dehydrogenase
Reaction: UDP-N-acetyl-α-D-quinovosamine + NAD(P)+ = UDP-2-acetamido-2,6-dideoxy-α-D-xylohex-4-ulose + NAD(P)H + H+
Glossary: UDP-N-acetyl-α-D-quinovosamine = UDP-N-acetyl-6-deoxy-α-D-glucosamine
Other name(s): wbpV (gene name); wreQ (gene name)
Systematic name: UDP-N-acetyl-α-D-quinovosamine:NAD(P)+ 4-dehydrogenase
Comments: The enzyme participates in the biosynthesis of N-acetyl-α-D-quinovosamine, a 6-deoxy sugar that is present in the O antigens of many Gram-negative bacteria, including Pseudomonas aeruginosa serotypes O6 and O10, Rhizobium etli, and Brucella abortus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Belanger, M., Burrows, L.L. and Lam, J.S. Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology (Reading) 145 (1999) 3505–3521. [DOI] [PMID: 10627048]
2.  Forsberg, L.S., Noel, K.D., Box, J. and Carlson, R.W. Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. J. Biol. Chem. 278 (2003) 51347–51359. [DOI] [PMID: 14551189]
3.  Li, T., Simonds, L., Kovrigin, E.L. and Noel, K.D. In vitro biosynthesis and chemical identification of UDP-N-acetyl-D-quinovosamine (UDP-D-QuiNAc). J. Biol. Chem. 289 (2014) 18110–18120. [DOI] [PMID: 24817117]
[EC 1.1.1.426 created 2021]
 
 
EC 3.2.1.98     Relevance: 98.9%
Accepted name: glucan 1,4-α-maltohexaosidase
Reaction: Hydrolysis of (1→4)-α-D-glucosidic linkages in amylaceous polysaccharides, to remove successive maltohexaose residues from the non-reducing chain ends
Other name(s): exo-maltohexaohydrolase; 1,4-α-D-glucan maltohexaohydrolase
Systematic name: 4-α-D-glucan maltohexaohydrolase
Comments: cf. EC 3.2.1.3 glucan 1,4-α-glucosidase, which removes successive glucose residues; EC 3.2.1.2 β-amylase, which removes successive maltose residues; EC 3.2.1.116 glucan 1,4-α-maltotriohydrolase, which removes successive maltotriose units and EC 3.2.1.60 glucan 1,4-α-maltotetraohydrolase, which removes successive maltotetraose residues. The products have the α-configuration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72561-12-7
References:
1.  Kainuma, K., Wako, K., Kobayashi, A., Nogami, A. and Suzuki, S. Purification and some properties of a novel maltohexaose-producing exo-amylase from Aerobacter aerogenes. Biochim. Biophys. Acta 410 (1975) 333–346. [DOI] [PMID: 1094]
2.  Nakakuki, T., Azuma, K. and Kainuma, K. Action patterns of various exo-amylases and the anomeric configurations of their products. Carbohydr. Res. 128 (1984) 297–310.
[EC 3.2.1.98 created 1978]
 
 
EC 2.4.1.18     Relevance: 98.8%
Accepted name: 1,4-α-glucan branching enzyme
Reaction: Transfers a segment of a (1→4)-α-D-glucan chain to a primary hydroxy group in a similar glucan chain
Other name(s): branching enzyme; amylo-(1,4→1,6)-transglycosylase; Q-enzyme; α-glucan-branching glycosyltransferase; amylose isomerase; enzymatic branching factor; branching glycosyltransferase; enzyme Q; glucosan transglycosylase; glycogen branching enzyme; plant branching enzyme; α-1,4-glucan:α-1,4-glucan-6-glycosyltransferase; starch branching enzyme; 1,4-α-D-glucan:1,4-α-D-glucan 6-α-D-(1,4-α-D-glucano)-transferase
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan 6-α-D-[(1→4)-α-D-glucano]-transferase
Comments: Converts amylose into amylopectin. The accepted name requires a qualification depending on the product, glycogen or amylopectin, e.g. glycogen branching enzyme, amylopectin branching enzyme. The latter has frequently been termed Q-enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-97-2
References:
1.  Barker, S.A., Bourne, E. and Peat, S. The enzymic synthesis and degradation of starch. Part IV. The purification and storage of the Q-enzyme of the potato. J. Chem. Soc. (Lond.) (1949) 1705–1711.
2.  Baum, H. and Gilbert, G.A. A simple method for the preparation of crystalline potato phosphorylase and Q-enzyme. Nature 171 (1953) 983–984. [PMID: 13063502]
3.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
4.  Illingworth Brown, B. and Brown, D.H. α-1,4-Glucan:α-1,4-glucan 6-glycosyltransferase from mammalian muscle. Methods Enzymol. 8 (1966) 395–403.
[EC 2.4.1.18 created 1961]
 
 
EC 3.2.1.60     Relevance: 98.7%
Accepted name: glucan 1,4-α-maltotetraohydrolase
Reaction: Hydrolysis of (1→4)-α-D-glucosidic linkages in amylaceous polysaccharides, to remove successive maltotetraose residues from the non-reducing chain ends
Other name(s): exo-maltotetraohydrolase; 1,4-α-D-glucan maltotetraohydrolase
Systematic name: 4-α-D-glucan maltotetraohydrolase
Comments: Compare EC 3.2.1.2 β-amylase, which removes successive maltose residues, and EC 3.2.1.98 (glucan 1,4-α-maltohexaosidase) and EC 3.2.1.116 (glucan 1,4-α-maltotriohydrolase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-44-1
References:
1.  Nakakuki, T., Azuma, K. and Kainuma, K. Action patterns of various exo-amylases and the anomeric configurations of their products. Carbohydr. Res. 128 (1984) 297–310.
2.  Robyt, J.F. and Ackerman, R.J. Isolation, purification, and characterization of a maltotetraose-producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145 (1971) 105–114. [DOI] [PMID: 5123132]
[EC 3.2.1.60 created 1972]
 
 
EC 2.4.3.8     Relevance: 98.7%
Accepted name: α-N-acetylneuraminate α-2,8-sialyltransferase
Reaction: CMP-N-acetylneuraminate + α-N-acetylneuraminyl-(2→3)-β-D-galactosyl-R = CMP + α-N-acetylneuraminyl-(2→8)-α-N-acetylneuraminyl-(2→3)-β-D-galactosyl-R
For diagram of ganglioside biosynthesis (pathway to GD3), click here
Other name(s): cytidine monophosphoacetylneuraminate-ganglioside GM3; α-2,8-sialyltransferase; ganglioside GD3 synthase; ganglioside GD3 synthetase sialyltransferase; CMP-NeuAc:LM1(α2-8) sialyltranferase; GD3 synthase; SAT-2
Systematic name: CMP-N-acetylneuraminate:α-N-acetylneuraminyl-(2→3)-β-D-galactoside α-(2→8)-N-acetylneuraminyltransferase
Comments: Gangliosides act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67339-00-8
References:
1.  Eppler, M.C., Morré, J.D. and Keenan, T.W. Ganglioside biosynthesis in rat liver: alteration of sialyltransferase activities by nucleotides. Biochim. Biophys. Acta 619 (1980) 332–343. [DOI] [PMID: 7407217]
2.  Higashi, H., Basu, M. and Basu, S. Biosynthesis in vitro of disialosylneolactotetraosylceramide by a solubilized sialyltransferase from embryonic chicken brain. J. Biol. Chem. 260 (1985) 824–828. [PMID: 3838172]
3.  McCoy, R.D., Vimr, E.R. and Troy, F.A. CMP-NeuNAc:poly-α-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules. J. Biol. Chem. 260 (1985) 12695–12699. [PMID: 4044605]
4.  Yohe, H.C. and Yu, R.K. In vitro biosynthesis of an isomer of brain trisialoganglioside, GT1a. J. Biol. Chem. 255 (1980) 608–613. [PMID: 6766128]
[EC 2.4.3.8 created 1984 as EC 2.4.99.8, modified 1986, transferred 2022 to EC 2.4.3.8]
 
 
EC 2.4.99.8      
Transferred entry: α-N-acetylneuraminate α-2,8-sialyltransferase. Now EC 2.4.3.8, α-N-acetylneuraminate α-2,8-sialyltransferase
[EC 2.4.99.8 created 1984, modified 1986, deleted 2022]
 
 
EC 2.4.1.37     Relevance: 98.5%
Accepted name: fucosylgalactoside 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-fucosyl-(1→2)-D-galactosyl-R = UDP + α-D-galactosyl-(1→3)-[α-L-fucosyl(1→2)]-D-galactosyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): UDP-galactose:O-α-L-fucosyl(1→2)D-galactose α-D-galactosyltransferase; UDPgalactose:glycoprotein-α-L-fucosyl-(1,2)-D-galactose 3-α-D-galactosyltransferase; [blood group substance] α-galactosyltransferase; blood-group substance B-dependent galactosyltransferase; glycoprotein-fucosylgalactoside α-galactosyltransferase; histo-blood group B transferase; histo-blood substance B-dependent galactosyltransferase; UDP-galactose:α-L-fucosyl-1,2-D-galactoside 3-α-D-galactosyltransferase; UDP-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Comments: Acts on blood group substance, and can use a number of 2-fucosyl-galactosides as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37257-33-3
References:
1.  Race, C., Ziderman, D. and Watkins, W.M. An α-D-galactosyltransferase associated with the blood-group B character. Biochem. J. 107 (1968) 733–735. [PMID: 16742598]
[EC 2.4.1.37 created 1972, modified 1999, modified 2002]
 
 
EC 3.2.1.111     Relevance: 98.4%
Accepted name: 1,3-α-L-fucosidase
Reaction: Hydrolysis of (1→3)-linkages between α-L-fucose and N-acetylglucosamine residues in glycoproteins
Other name(s): almond emulsin fucosidase I
Systematic name: 3-α-L-fucosyl-N-acetylglucosaminyl-glycoprotein fucohydrolase
Comments: Not identical with EC 3.2.1.63 1,2-α-L-fucosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83061-50-1
References:
1.  Imber, M.J., Glasgow, L.R. and Pizzo, S.V. Purification of an almond emulsin fucosidase on Cibacron blue-sepharose and demonstration of its activity toward fucose-containing glycoproteins. J. Biol. Chem. 257 (1982) 8205–8210. [PMID: 7085666]
2.  Ogata-Arakawa, M., Muramatsu, T. and Kobata, A. α-L-Fucosidases from almond emulsin: characterization of the two enzymes with different specificities. Arch. Biochem. Biophys. 181 (1977) 353–358. [DOI] [PMID: 18111]
3.  Yoshima, H., Takasaki, S., Ito-Mega, S. and Kobata, A. Purification of almond emulsin α-L-fucosidase I by affinity chromatography. Arch. Biochem. Biophys. 194 (1979) 394–398. [DOI] [PMID: 443810]
[EC 3.2.1.111 created 1986]
 
 
EC 2.4.1.44     Relevance: 98.3%
Accepted name: lipopolysaccharide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + lipopolysaccharide = UDP + 3-α-D-galactosyl-[lipopolysaccharide glucose]
Other name(s): UDP-galactose:lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:polysaccharide galactosyltransferase; uridine diphosphate galactose:lipopolysaccharide α-3-galactosyltransferase; uridine diphosphogalactose-lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Comments: Transfers α-D-galactosyl residues to D-glucose in the partially completed core of lipopolysaccharide [cf. EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase), EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-98-7
References:
1.  Endo, A. and Rothfield, L. Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose: lipopolysaccharide α-3-galactosyl transferase. Biochemistry 8 (1969) 3500–3507. [PMID: 4898284]
2.  Wollin, R., Creeger, E.S., Rothfield, L.I., Stocker, B.A.D. and Lindberg, A.A. Salmonella typhimurium mutants defective in UDP-D-galactose:lipopolysaccharide α-1,6-D-galactosyltransferase. Structural, immunochemical, and enzymologic studies of rfaB mutants. J. Biol. Chem. 258 (1983) 3769–3774. [PMID: 6403519]
[EC 2.4.1.44 created 1972, modified 2002]
 
 
EC 2.4.1.101     Relevance: 98.3%
Accepted name: α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Man5GlcNAc2-[protein] = UDP + Man5GlcNAc3-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Glossary: Man5GlcNAc2-[protein] = α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Man5GlcNAc3-[protein]= β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT1 (gene name); N-acetylglucosaminyltransferase I; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase I; uridine diphosphoacetylglucosamine-α-1,3-mannosylglycoprotein β-1,2-N-acetylglucosaminyltransferase; UDP-N-acetylglucosaminyl:α-1,3-D-mannoside-β-1,2-N-acetylglucosaminyltransferase I; UDP-N-acetylglucosaminyl:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I; α-1,3-mannosyl-glycoprotein β-1,2-N-acetylglucosaminyltransferase; GnTI; GlcNAc-T I; UDP-N-acetyl-D-glucosamine:3-(α-D-mannosyl)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. Its action is required before the other N-acetylglucosaminyltransferases involved in the process (GlcNAcT-II through VI) can act. While the natural substrate (produced by EC 3.2.1.113, mannosyl-oligosaccharide 1,2-α-mannosidase) is described here, the minimal substrate recognized by the enzyme is α-D-Man-(1→3)-β-D-Man-R.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 102576-81-8
References:
1.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J. Biol. Chem. 255 (1980) 4885–4893. [PMID: 6445358]
2.  Mendicino, J., Chandrasekaran, E.V., Anumula, K.R. and Davila, M. Isolation and properties of α-D-mannose:β-1,2-N-acetylglucosaminyltransferase from trachea mucosa. Biochemistry 20 (1981) 967–976. [PMID: 6452163]
3.  Oppenheimer, C.L. and Hill, R.L. Purification and characterization of a rabbit liver α1→3 mannoside β1→2 N-acetylglucosaminyltransferase. J. Biol. Chem. 256 (1981) 799–804. [PMID: 6450208]
4.  Oppenheimer, C.L., Eckhardt, A.E. and Hill, R.L. The nonidentity of porcine N-acetylglucosaminyltransferases I and II. J. Biol. Chem. 256 (1981) 11477–11482. [PMID: 6457827]
5.  Miyagi, T. and Tsuiki, S. Studies on UDP-N-acetylglucosamine : α-mannoside β-N-acetylglucosaminyltransferase of rat liver and hepatomas. Biochim. Biophys. Acta 661 (1981) 148–157. [DOI] [PMID: 6170335]
6.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
7.  Vella, G.J., Paulsen, H. and Schachter, H. Control of glycoprotein synthesis. IX. A terminal Man alphal-3Man β1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: α-D-mannoside (GlcNAc to Man α1-3) β2-N-acetylglucosaminyltransferase I. Can. J. Biochem. Cell Biol. 62 (1984) 409–417. [PMID: 6235906]
8.  Unligil, U.M., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H. and Rini, J.M. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19 (2000) 5269–5280. [DOI] [PMID: 11032794]
[EC 2.4.1.101 created 1983, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.2.62     Relevance: 98.3%
Accepted name: xylosyl α-1,3-xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine = UDP + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine
Other name(s): XXYLT1 (gene name)
Systematic name: UDP-α-D-xylose:[EGF-like domain protein]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine 3-α-D-xylosyltransferase (configuration-retaining)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains. When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Minamida, S., Aoki, K., Natsuka, S., Omichi, K., Fukase, K., Kusumoto, S. and Hase, S. Detection of UDP-D-xylose: α-D-xyloside α 1-→3xylosyltransferase activity in human hepatoma cell line HepG2. J. Biochem. 120 (1996) 1002–1006. [PMID: 8982869]
2.  Sethi, M.K., Buettner, F.F., Ashikov, A., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R. and Bakker, H. Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J. Biol. Chem. 287 (2012) 2739–2748. [PMID: 22117070]
3.  Yu, H., Takeuchi, M., LeBarron, J., Kantharia, J., London, E., Bakker, H., Haltiwanger, R.S., Li, H. and Takeuchi, H. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat. Chem. Biol. 11 (2015) 847–854. [PMID: 26414444]
[EC 2.4.2.62 created 2020]
 
 
EC 3.1.1.43     Relevance: 98.1%
Accepted name: α-amino-acid esterase
Reaction: an α-amino acid ester + H2O = an α-amino acid + an alcohol
Other name(s): α-amino acid ester hydrolase
Systematic name: α-amino-acid-ester aminoacylhydrolase
Comments: Also catalyses α-aminoacyl transfer to a number of amine nucleophiles.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 74506-40-4
References:
1.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Purification of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1069–1074.
2.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Substrate specificity of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1075–1081.
3.  Takahashi, T., Yamazaki, Y. and Kato, K. Substrate specificity of an α-amino acid ester hydrolase produced by Acetobacter turbidans A. T.C.C. 9325. Biochem. J. 137 (1974) 497–503. [PMID: 4424889]
[EC 3.1.1.43 created 1983]
 
 
EC 2.4.1.306     Relevance: 98.1%
Accepted name: UDP-GalNAc:α-D-GalNAc-diphosphoundecaprenol α-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbnH
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol α-1,3-N-acetyl-D-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of Escherichia coli serotype O86.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Yi, W., Yao, Q., Zhang, Y., Motari, E., Lin, S. and Wang, P.G. The wbnH gene of Escherichia coli O86:H2 encodes an α-1,3-N-acetylgalactosaminyl transferase involved in the O-repeating unit biosynthesis. Biochem. Biophys. Res. Commun. 344 (2006) 631–639. [DOI] [PMID: 16630548]
[EC 2.4.1.306 created 2013]
 
 
EC 2.7.8.42     Relevance: 97.9%
Accepted name: Kdo2-lipid A phosphoethanolamine 7′′-transferase
Reaction: (1) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A
(2) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA
Glossary: lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): eptB (gene name)
Systematic name: diacylphosphatidylethanolamine:α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid-A 7′′-phosphoethanolaminetransferase
Comments: The enzyme has been characterized from the bacterium Escherichia coli. It is activated by Ca2+ ions and is silenced by the sRNA MgrR.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kanipes, M.I., Lin, S., Cotter, R.J. and Raetz, C.R. Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-D-manno-octulosonic acid moiety of Escherichia coli lipopolysaccharide. A novel membrane enzyme dependent upon phosphatidylethanolamine. J. Biol. Chem. 276 (2001) 1156–1163. [DOI] [PMID: 11042192]
2.  Reynolds, C.M., Kalb, S.R., Cotter, R.J. and Raetz, C.R. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J. Biol. Chem. 280 (2005) 21202–21211. [DOI] [PMID: 15795227]
3.  Moon, K., Six, D.A., Lee, H.J., Raetz, C.R. and Gottesman, S. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol. Microbiol. 89 (2013) 52–64. [DOI] [PMID: 23659637]
[EC 2.7.8.42 created 2015]
 
 
EC 3.2.1.115     Relevance: 97.4%
Accepted name: branched-dextran exo-1,2-α-glucosidase
Reaction: Hydrolysis of (1→2)-α-D-glucosidic linkages at the branch points of dextrans and related polysaccharides, producing free D-glucose
Other name(s): dextran 1,2-α-glucosidase; dextran α-1,2-debranching enzyme; 1,2-α-D-glucosyl-branched-dextran 2-glucohydrolase
Systematic name: (1→2)-α-D-glucosyl-branched-dextran 2-glucohydrolase
Comments: Has a much lower activity with kojibiose and kojitriose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72840-94-9
References:
1.  Kobayashi, M., Mitsuishi, Y., and Matsuda, K. Pronounced hydrolysis of highly branched dextrans with a new type of dextranase. Biochem. Biophys. Res. Commun. 80(2) (1978) 306–312. [DOI] [PMID: 623663]
2.  Mitsuishi, Y., Kobayashi, M. and Matsuda, K. Dextran α-1,2-debranching enzyme from Flavobacterium sp. M-73: its production and purification. Agric. Biol. Chem. 43 (1979) 2283–2290. [DOI]
3.  Mitsuishi, Y., Kobayashi, M. and Matsuda, K. Dextran α-(1→2)-debranching enzyme from Flavobacterium sp. M-73. Properties and mode of action. Carbohydr. Res. 83 (1980) 303–313. [DOI] [PMID: 7407800]
4.  Miyazaki, T., Tanaka, H., Nakamura, S., Dohra, H. and Funane, K. Identification and characterization of dextran α-1,2-debranching enzyme from Microbacterium dextranolyticum. J. Appl. Glycosci. (1999) 70 (2023) 15–24. [DOI] [PMID: 37033117]
[EC 3.2.1.115 created 1989, modified 2023]
 
 
EC 2.4.1.123     Relevance: 97.2%
Accepted name: inositol 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + myo-inositol = UDP + O-α-D-galactosyl-(1→3)-1D-myo-inositol
For diagram of stachyose biosynthesis, click here
Glossary: O-α-D-galactosyl-(1→3)-1D-myo-inositol = galactinol
Other name(s): UDP-D-galactose:inositol galactosyltransferase; UDP-galactose:myo-inositol 1-α-D-galactosyltransferase; UDPgalactose:myo-inositol 1-α-D-galactosyltransferase; galactinol synthase; inositol 1-α-galactosyltransferase; uridine diphosphogalactose-inositol galactosyltransferase; GolS; UDP-galactose:myo-inositol 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:myo-inositol 3-α-D-galactosyltransferase
Comments: An enzyme from plants involved in the formation of raffinose and stachyose [cf. EC 2.4.1.67 (galactinol—raffinose galactosyltransferase) and EC 2.4.1.82 (galactinol—sucrose galactosyltransferase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 79955-89-8
References:
1.  Pharr, D.M., Sox, H.N., Locy, R.D. and Huber, S.C. Partial characterization of the galactinol forming enzyme from leaves of Cucumis sativus L. Plant Sci. Lett. 23 (1981) 25–33.
[EC 2.4.1.123 created 1984, modified 2003]
 
 
EC 2.3.1.273     Relevance: 97.1%
Accepted name: diglucosylglycerate octanoyltransferase
Reaction: octanoyl-CoA + 2-O-[α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl]-D-glycerate = CoA + 2-O-[6-O-octanoyl-α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl]-D-glycerate
Other name(s): octT (gene name); DGG octanoyltransferase
Systematic name: octanoyl-CoA:2-O-[α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl]-D-glycerate octanoyltransferase
Comments: The enzyme, characterized from mycobacteria, is involved in the biosynthesis of methylglucose lipopolysaccharide (MGLP). The enzyme can also act on 2-O-(α-D-glucopyranosyl)-D-glycerate, but with lower activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Maranha, A., Moynihan, P.J., Miranda, V., Correia Lourenco, E., Nunes-Costa, D., Fraga, J.S., Jose Barbosa Pereira, P., Macedo-Ribeiro, S., Ventura, M.R., Clarke, A.J. and Empadinhas, N. Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides. Sci. Rep. 5:13610 (2015). [PMID: 26324178]
[EC 2.3.1.273 created 2018]
 
 
EC 4.2.3.95     Relevance: 97.1%
Accepted name: (-)-α-cuprenene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-cuprenene + diphosphate
For diagram of biosynthesis of bicyclic sesquiterpenoids derived from bisabolyl cation, click here and for diagram of trichodiene and (–)-α-cuprenene biosynthesis, click here
Other name(s): Cop6
Systematic name: (-)-α-cuprenene hydrolase [cyclizing, (-)-α-cuprenene-forming]
Comments: The enzyme from the fungus Coprinopsis cinerea produces (-)-α-cuprenene with high selectivity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lopez-Gallego, F., Agger, S.A., Abate-Pella, D., Distefano, M.D. and Schmidt-Dannert, C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. ChemBioChem 11 (2010) 1093–1106. [DOI] [PMID: 20419721]
[EC 4.2.3.95 created 2012]
 
 
EC 3.2.1.70     Relevance: 96.8%
Accepted name: glucan 1,6-α-glucosidase
Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages in (1→6)-α-D-glucans and derived oligosaccharides
Other name(s): exo-1,6-β-glucosidase; glucodextrinase; glucan α-1,6-D-glucohydrolase
Systematic name: glucan 6-α-D-glucohydrolase
Comments: Hydrolysis is accompanied by inversion at C-1, so that new reducing ends are released in the β-configuration. Dextrans and isomaltosaccharides are hydrolysed, as is isomaltose, but very slowly. The enzyme from some sources also possesses the activity of EC 3.2.1.59 (glucan endo-1,3-α-glucosidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-48-5
References:
1.  Ohya, T., Sawai, T., Uemura, S. and Abe, K. Some catalytic properties of an exo-1,6-α-glucosidase (glucodextranase) from Arthrobacter globiformis I42. Agric. Biol. Chem. 42 (1978) 571–577.
2.  Sawai, T., Yamaki, T. and Ohya, T. Preparation and some properties of Arthrobacter globiformis exo-1,6-α-glucosidase. Agric. Biol. Chem. 40 (1976) 1293–1299.
3.  Walker, G.J. and Pulkownik, A. Degradation of dextrans by an α-1,6-glucan glucohydrolase from Streptococcus mitis. Carbohydr. Res. 29 (1973) 1–14. [DOI] [PMID: 4356399]
[EC 3.2.1.70 created 1972, modified 2001]
 
 
EC 2.4.1.301     Relevance: 96.7%
Accepted name: 2′-deamino-2′-hydroxyneamine 1-α-D-kanosaminyltransferase
Reaction: (1) UDP-α-D-kanosamine + 2′-deamino-2′-hydroxyneamine = UDP + kanamycin A
(2) UDP-α-D-kanosamine + neamine = UDP + kanamycin B
(3) UDP-α-D-kanosamine + paromamine = UDP + kanamycin C
(4) UDP-α-D-kanosamine + 2′-deamino-2′-hydroxyparomamine = UDP + kanamycin X
For diagram of kanamycin A biosynthesis, click here
Glossary: neamine = (1R,2R,3S,4R,6S)-4,6-diamino-2,3-dihydroxycyclohexyl 2,6-diamino-2,6-dideoxy-α-D-glucopyranoside
paromamine = (1R,2R,3S,4R,6S)-4,6-diamino-2,3-dihydroxycyclohexyl 2-amino-2-deoxy-α-D-glucopyranoside
UDP-α-D-kanosamine = uridine 5′-[3-(3-amino-3-deoxy-α-D-glucopyranosyl) diphosphate]
kanamycin A = (1S,2R,3R,4S,6R)-4,6-diamino-3-(6-amino-6-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
kanamycin B = (1R,2S,3S,4R,6S)-4,6-diamino-3-(3-amino-3-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 2,6-diamino-2,6-dideoxy-α-D-glucopyranoside
kanamycin C = (1R,2S,3S,4R,6S)-4,6-diamino-3-(3-amino-3-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 2-amino-2-deoxy-α-D-glucopyranoside
kanamycin X = (1S,2R,3R,4S,6R)-4,6-diamino-3-(α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
Other name(s): kanE (gene name); kanM2 (gene name)
Systematic name: UDP-α-D-kanosamine:2′-deamino-2′-hydroxyneamine 1-α-D-kanosaminyltransferase
Comments: Involved in the biosynthetic pathway of kanamycins. The enzyme characterized from the bacterium Streptomyces kanamyceticus can also accept UDP-α-D-glucose with lower efficiency [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kudo, F., Sucipto, H. and Eguchi, T. Enzymatic activity of a glycosyltransferase KanM2 encoded in the kanamycin biosynthetic gene cluster. J. Antibiot. (Tokyo) 62 (2009) 707–710. [DOI] [PMID: 19911031]
2.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [DOI] [PMID: 21983602]
[EC 2.4.1.301 created 2013]
 
 
EC 2.7.7.69     Relevance: 96.6%
Accepted name: GDP-L-galactose/GDP-D-glucose: hexose 1-phosphate guanylyltransferase
Reaction: (1) GDP-β-L-galactose + α-D-mannose 1-phosphate = β-L-galactose 1-phosphate + GDP-α-D-mannose
(2) GDP-α-D-glucose + α-D-mannose 1-phosphate = α-D-glucose 1-phosphate + GDP-α-D-mannose
Other name(s): VTC2; VTC5; GDP-L-galactose phosphorylase
Systematic name: GDP-β-L-galactose/GDP-α-D-glucose:hexose 1-phosphate guanylyltransferase
Comments: This plant enzyme catalyses the conversion of GDP-β-L-galactose and GDP-α-D-glucose to β-L-galactose 1-phosphate and α-D-glucose 1-phosphate, respectively. The enzyme can use inorganic phosphate as the co-substrate, but several hexose 1-phosphates, including α-D-mannose 1-phosphate, α-D-glucose 1-phosphate, and α-D-galactose 1-phosphate, are better guanylyl acceptors. The enzyme's activity on GDP-β-L-galactose is crucial for the biosynthesis of L-ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Linster, C.L., Gomez, T.A., Christensen, K.C., Adler, L.N., Young, B.D., Brenner, C. and Clarke, S.G. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J. Biol. Chem. 282 (2007) 18879–18885. [DOI] [PMID: 17462988]
2.  Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S. and Smirnoff, N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J. 52 (2007) 673–689. [DOI] [PMID: 17877701]
3.  Wolucka, B.A. and Van Montagu, M. The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68 (2007) 2602–2613. [DOI] [PMID: 17950389]
4.  Laing, W.A., Wright, M.A., Cooney, J. and Bulley, S.M. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc. Natl. Acad. Sci. USA 104 (2007) 9534–9539. [DOI] [PMID: 17485667]
5.  Linster, C.L., Adler, L.N., Webb, K., Christensen, K.C., Brenner, C. and Clarke, S.G. A second GDP-L-galactose phosphorylase in arabidopsis en route to vitamin C. Covalent intermediate and substrate requirements for the conserved reaction. J. Biol. Chem. 283 (2008) 18483–18492. [DOI] [PMID: 18463094]
6.  Muller-Moule, P. An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol. Biol. 68 (2008) 31–41. [DOI] [PMID: 18516687]
[EC 2.7.7.69 created 2010, modified 2020]
 
 
EC 2.4.1.348     Relevance: 96.6%
Accepted name: N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase
Reaction: GDP-α-D-mannose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = GDP + α-D-mannosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdC
Systematic name: GDP-α-D-mannose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the biosynthesis of the linker region of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotypes O8, O9 and O9a.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Greenfield, L.K., Richards, M.R., Li, J., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. J. Biol. Chem. 287 (2012) 35078–35091. [DOI] [PMID: 22875852]
[EC 2.4.1.348 created 2017]
 
 
EC 3.2.1.209     Relevance: 96.5%
Accepted name: endoplasmic reticulum Man9GlcNAc2 1,2-α-mannosidase
Reaction: Man9GlcNAc2-[protein] + H2O = Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,3) + D-mannopyranose
Glossary: Man9GlcNAc2-[protein] = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,3) = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Other name(s): MAN1B1 (gene name); MNS1 (gene name); MNS3 (gene name)
Systematic name: Man9GlcNAc2-[protein]2-α-mannohydrolase (configuration-inverting)
Comments: The enzyme, located in the endoplasmic reticulum, primarily trims a single α-1,2-linked mannose residue from Man9GlcNAc2 to produce Man8GlcNAc2 isomer 8A1,2,3B1,3 (the names of the isomers listed here are based on a nomenclature system proposed by Prien et al [7]). The removal of the single mannosyl residue occurs in all eukaryotes as part of the processing of N-glycosylated proteins, and is absolutely essential for further elongation of the outer chain of properly-folded N-glycosylated proteins in yeast. In addition, the enzyme is involved in glycoprotein quality control at the ER quality control compartment (ERQC), helping to target misfolded glycoproteins for degradation. When present at very high concentrations in the ERQC, the enzyme can trim the carbohydrate chain further to Man(5-6)GlcNAc2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jelinek-Kelly, S. and Herscovics, A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the α-mannosidase which removes one specific mannose residue from Man9GlcNAc. J. Biol. Chem. 263 (1988) 14757–14763. [PMID: 3049586]
2.  Ziegler, F.D. and Trimble, R.B. Glycoprotein biosynthesis in yeast: purification and characterization of the endoplasmic reticulum Man9 processing α-mannosidase. Glycobiology 1 (1991) 605–614. [PMID: 1822240]
3.  Gonzalez, D.S., Karaveg, K., Vandersall-Nairn, A.S., Lal, A. and Moremen, K.W. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J. Biol. Chem. 274 (1999) 21375–21386. [PMID: 10409699]
4.  Herscovics, A., Romero, P.A. and Tremblay, L.O. The specificity of the yeast and human class I ER α 1,2-mannosidases involved in ER quality control is not as strict previously reported. Glycobiology 12 (2002) 14G–15G. [PMID: 12090241]
5.  Avezov, E., Frenkel, Z., Ehrlich, M., Herscovics, A. and Lederkremer, G.Z. Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation. Mol. Biol. Cell 19 (2008) 216–225. [PMID: 18003979]
6.  Liebminger, E., Huttner, S., Vavra, U., Fischl, R., Schoberer, J., Grass, J., Blaukopf, C., Seifert, G.J., Altmann, F., Mach, L. and Strasser, R. Class I α-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21 (2009) 3850–3867. [PMID: 20023195]
7.  Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H. and Reinhold, V.N. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20 (2009) 539–556. [DOI] [PMID: 19181540]
[EC 3.2.1.209 created 2019]
 
 
EC 5.4.99.52     Relevance: 96.5%
Accepted name: α-seco-amyrin synthase
Reaction: (3S)-2,3-epoxy-2,3-dihydrosqualene = α-seco-amyrin
For diagram of α-amyrin, α-seco-amyrin and germanicol biosynthesis, click here
Glossary: α-seco-amyrin = 8,14-secoursa-7,13-diene-3β-ol
Systematic name: (3S)-2,3-epoxy-2,3-dihydrosqualene mutase (cyclizing, α-seco-amyrin-forming)
Comments: The enzyme from Arabidopsis thaliana is multifunctional and produces about equal amounts of α- and β-seco-amyrin. See EC 5.4.99.54, β-seco-amyrin synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shibuya, M., Xiang, T., Katsube, Y., Otsuka, M., Zhang, H. and Ebizuka, Y. Origin of structural diversity in natural triterpenes: direct synthesis of seco-triterpene skeletons by oxidosqualene cyclase. J. Am. Chem. Soc. 129 (2007) 1450–1455. [DOI] [PMID: 17263431]
[EC 5.4.99.52 created 2011]
 
 
EC 2.4.1.257     Relevance: 96.5%
Accepted name: GDP-Man:Man2GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-Man-(1→3)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = GDP + α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): GDP-Man:Man2GlcNAc2-PP-Dol α-1,6-mannosyltransferase; Alg2 mannosyltransferase (ambiguous); ALG2 (gene name, ambiguous); GDP-Man:Man1GlcNAc2-PP-dolichol mannosyltransferase (ambiguous); GDP-D-mannose:D-Man-α-(1→3)-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-6-mannosyltransferase
Systematic name: GDP-α-D-mannose:α-D-Man-(1→3)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 6-α-D-mannosyltransferase (configuration-retaining)
Comments: The biosynthesis of asparagine-linked glycoproteins utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. Alg2 mannosyltransferase from Saccharomyces cerevisiae carries out an α1,3-mannosylation (cf. EC 2.4.1.132) of β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol, followed by an α1,6-mannosylation, to form the first branched pentasaccharide intermediate of the dolichol pathway [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kampf, M., Absmanner, B., Schwarz, M. and Lehle, L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J. Biol. Chem. 284 (2009) 11900–11912. [DOI] [PMID: 19282279]
2.  O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593–9603. [DOI] [PMID: 16878994]
[EC 2.4.1.257 created 2011, modified 2012]
 
 
EC 4.2.3.87     Relevance: 96.4%
Accepted name: α-guaiene synthase
Reaction: (2E,6E)-farnesyl diphosphate = α-guaiene + diphosphate
For diagram of guaiene, α-gurjunene, patchoulol and viridiflorene biosynthesis, click here
Other name(s): PatTps177 (gene name)
Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, α-guaiene-forming)
Comments: Requires Mg2+. The enzyme from Pogostemon cablin gives 13% α-guaiene as well as 37% (-)-patchoulol (see EC 4.2.3.70), 13% δ-guaiene (see EC 4.2.3.93), and traces of at least ten other sesquiterpenoids [1]. In Aquilaria crassna three clones of the enzyme gave about 80% δ-guaiene and 20% α-guaiene, with traces of α-humulene. A fourth clone gave 54% δ-guaiene and 45% α-guaiene [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Deguerry, F., Pastore, L., Wu, S., Clark, A., Chappell, J. and Schalk, M. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch. Biochem. Biophys. 454 (2006) 123–136. [DOI] [PMID: 16970904]
2.  Kumeta, Y. and Ito, M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol. 154 (2010) 1998–2007. [DOI] [PMID: 20959422]
[EC 4.2.3.87 created 2011]
 
 
EC 1.1.1.341     Relevance: 96.3%
Accepted name: CDP-abequose synthase
Reaction: CDP-α-D-abequose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Glossary: CDP-α-D-abequose = CDP-3,6-dideoxy-α-D-xylo-hexose
Other name(s): rfbJ (gene name)
Systematic name: CDP-α-D-abequose:NADP+ 4-oxidoreductase
Comments: Isolated from Yersinia pseudotuberculosis [1,3] and Salmonella enterica [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kessler, A.C., Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular cloning and genetic characterization of the rfb region from Yersinia pseudotuberculosis serogroup IIA, which determines the formation of the 3,6-dideoxyhexose abequose. J. Gen. Microbiol. 137 (1991) 2689–2695. [DOI] [PMID: 1724263]
2.  Wyk, P. and Reeves, P. Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J. Bacteriol. 171 (1989) 5687–5693. [DOI] [PMID: 2793832]
3.  Thorson, J.S., Lo, S.F., Ploux, O., He, X. and Liu, H.W. Studies of the biosynthesis of 3,6-dideoxyhexoses: molecular cloning and characterization of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J. Bacteriol. 176 (1994) 5483–5493. [DOI] [PMID: 8071227]
[EC 1.1.1.341 created 2012]
 
 
EC 1.14.13.150      
Transferred entry: α-humulene 10-hydroxylase. Now EC 1.14.14.113, α-humulene 10-hydroxylase.
[EC 1.14.13.150 created 2012, deleted 2018]
 
 
EC 2.4.1.390     Relevance: 96.2%
Accepted name: 4,3-α-glucanotransferase
Reaction: formation of a mixed (1→4)/(1→3)-α-D-glucan from (1→4)-α-D-glucans
Other name(s): gtfB (gene name) (ambiguous)
Systematic name: (1→4)-α-D-glucan:(1→4)/(1→3)-α-D-glucan 3-α-D-glucosyltransferase
Comments: The enzyme, characterized from the bacterium Lactobacillus fermentum NCC 2970, possesses hydrolysis and transglycosylase activities on malto-oligosaccharides with a degree of polymerization of at least 6, as well as polymers such as amylose, potato starch, and amylopectin. The enzyme, which belongs to glycoside hydrolase 70 (GH70) family, attaches the glucosyl residues by α(1→3) linkages in both linear and branched orientations. While capable of forming large polymers, the enzyme produces mainly oligosaccharides in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gangoiti, J., van Leeuwen, S.S., Gerwig, G.J., Duboux, S., Vafiadi, C., Pijning, T. and Dijkhuizen, L. 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Sci. Rep. 7:39761 (2017). [DOI] [PMID: 28059108]
2.  Pijning, T., Gangoiti, J., Te Poele, E.M., Borner, T. and Dijkhuizen, L. Insights into broad-specificity starch modification from the crystal structure of Limosilactobacillus reuteri NCC 2613 4,6-α-glucanotransferase GtfB. J. Agric. Food Chem. 69 (2021) 13235–13245. [DOI] [PMID: 34708648]
[EC 2.4.1.390 created 2022]
 
 
EC 2.4.1.334     Relevance: 96.1%
Accepted name: 1,3-α-oligoglucan phosphorylase
Reaction: [(1→3)-α-D-glucosyl]n + phosphate = [(1→3)-α-D-glucosyl]n-1 + β-D-glucose 1-phosphate
Systematic name: 1,3-α-D-glucan:phosphate β-D-glucosyltransferase
Comments: The enzyme, isolated from the bacterium Clostridium phytofermentans, catalyses a reversible reaction. Substrates for the phosphorolytic reaction are α-1,3-linked oligoglucans with a polymerisation degree of 3 or more. Nigerose (i.e. 3-O-α-D-glucopyranosyl-D-glucopyranose) is not phosphorylyzed but can serve as substrate in the reverse direction (cf. EC 2.4.1.279, nigerose phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nihira, T., Nishimoto, M., Nakai, H., Ohtsubo, K., and Kitaoka, M. Characterization of two phosphorylases for α-1,3-oligoglucans from Clostridium phytofermentans. J. Appl. Glycosci. 61 (2014) 59–66.
[EC 2.4.1.334 created 2014]
 
 
EC 4.2.3.82     Relevance: 95.8%
Accepted name: α-santalene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-α-santalene + diphosphate
For diagram of santalene and bergamotene biosynthesis, click here
Glossary: (-)-exo-α-bergamotene = (-)-trans-α-bergamotene = (1S,5S,6R)-2,6-dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]hept-2-ene
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (+)-α-santalene-forming)
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2E,6E)-farnesyl diphosphate. As well as (+)-α-santalene, (-)-β-santalene and (-)-exo-α-bergamotene are formed with traces of (+)-epi-β-santalene. See EC 4.2.3.83 [(-)-β-santalene synthase], and EC 4.2.3.81 [(-)-exo-α-bergamotene synthase]. cf. EC 4.2.3.50 α-santalene synthase [(2Z,6Z)-farnesyl diphosphate cyclizing]
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jones, C.G., Moniodis, J., Zulak, K.G., Scaffidi, A., Plummer, J.A., Ghisalberti, E.L., Barbour, E.L. and Bohlmann, J. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J. Biol. Chem. 286 (2011) 17445–17454. [DOI] [PMID: 21454632]
[EC 4.2.3.82 created 2011]
 
 
EC 3.2.1.189     Relevance: 95.5%
Accepted name: dioscin glycosidase (diosgenin-forming)
Reaction: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin + 3 H2O = D-glucose + 2 L-rhamnose + diosgenin
For diagram of diosgenin catabolism, click here
Glossary: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin = (3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L-mannopyranosyl-(1→4)]-β-D-glucopyranoside = dioscin
diosgenin = (3β,25R)-spirost-5-en-3-ol
Other name(s): dioscin glycosidase (aglycone-forming)
Systematic name: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin hydrolase (diosgenin-forming)
Comments: The enzyme is involved in degradation of the steroid saponin dioscin by some fungi of the Absidia genus. The enzyme can also hydrolyse 3-O-[α-L-Ara-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin into diosgenin and free sugars as the final products. cf. EC 3.2.1.190, dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fu, Y., Yu, H., Tang, S.H., Hu, X., Wang, Y., Liu, B., Yu, C. and Jin, F. New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain. J. Microbiol. Biotechnol. 20 (2010) 1011–1017. [PMID: 20622501]
[EC 3.2.1.189 created 2013]
 
 
EC 3.2.1.114     Relevance: 95.5%
Accepted name: mannosyl-oligosaccharide 1,3-1,6-α-mannosidase
Reaction: Man5GlcNAc3-[protein] + 2 H2O = Man3GlcNAc3-[protein] + 2 α-D-mannopyranose
For diagram of mannosyl-glycoprotein n-acetylglucosaminyltransferases, click here
Glossary: Man5GlcNAc3-[protein] = [β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Man3GlcNAc3-[protein] = {β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Other name(s): MAN2A1 (gene name); MAN2A2 (gene name); mannosidase II; exo-1,3-1,6-α-mannosidase; α-D-mannosidase II; α-mannosidase II; α1-3,6-mannosidase; GlcNAc transferase I-dependent α1,3[α1,6]mannosidase; Golgi α-mannosidase II; ManII; 1,3(1,6)-α-D-mannosidase; 1,3-(1,6-)mannosyl-oligosaccharide α-D-mannohydrolase; (1→3)-(1→6)-mannosyl-oligosaccharide α-D-mannohydrolase
Systematic name: (1→3)-(1→6)-mannosyl-oligosaccharide α-D-mannohydrolase (configuration-retaining)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. It removes two mannosyl residues, one linked by α1,3 linkage, and the other linked by α1,6 linkage, both of which are removed by the same catalytic site. The enzyme is sensitive to swainsonine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 82047-77-6
References:
1.  Tulsiani, D.R.P., Opheim, D.J. and Touster, O. Purification and characterization of α-D-mannosidase from rat liver golgi membranes. J. Biol. Chem. 252 (1977) 3227–3233. [PMID: 863880]
2.  Tabas, I. and Kornfeld, S. The synthesis of complex-type oligosaccharides. III. Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J. Biol. Chem. 253 (1978) 7779–7786. [PMID: 212436]
3.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: α-D-mannoside β2-N-acetylglucosaminyltransferase I. J. Biol. Chem. 255 (1980) 4894–4902. [PMID: 6445359]
4.  Tulsiani, D.R.P., Hubbard, S.C., Robbins, P.W. and Touster, O. α-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases IA and IB are the enzymes converting Man9 precursors to Man5 intermediates. J. Biol. Chem. 257 (1982) 3660–3668. [PMID: 7061502]
5.  Moremen, K.W. and Robbins, P.W. Isolation, characterization, and expression of cDNAs encoding murine α-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J. Cell Biol. 115 (1991) 1521–1534. [PMID: 1757461]
6.  Misago, M., Liao, Y.F., Kudo, S., Eto, S., Mattei, M.G., Moremen, K.W. and Fukuda, M.N. Molecular cloning and expression of cDNAs encoding human α-mannosidase II and a previously unrecognized α-mannosidase IIx isozyme. Proc. Natl. Acad. Sci. USA 92 (1995) 11766–11770. [DOI] [PMID: 8524845]
7.  van den Elsen, J.M., Kuntz, D.A. and Rose, D.R. Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 20 (2001) 3008–3017. [DOI] [PMID: 11406577]
8.  Athanasopoulos, V.I., Niranjan, K. and Rastall, R.A. The production, purification and characterisation of two novel α-D-mannosidases from Aspergillus phoenicis. Carbohydr. Res. 340 (2005) 609–617. [DOI] [PMID: 15721331]
9.  Shah, N., Kuntz, D.A. and Rose, D.R. Golgi α-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc. Natl. Acad. Sci. USA 105 (2008) 9570–9575. [DOI] [PMID: 18599462]
10.  Rose, D.R. Structure, mechanism and inhibition of Golgi α-mannosidase II. Curr. Opin. Struct. Biol. 22 (2012) 558–562. [DOI] [PMID: 22819743]
[EC 3.2.1.114 created 1986, modified 2018]
 
 
EC 1.1.3.48     Relevance: 95.4%
Accepted name: 3-deoxy-α-D-manno-octulosonate 8-oxidase
Reaction: 3-deoxy-α-D-manno-octulopyranosonate + O2 = 3,8-dideoxy-8-oxo-α-D-manno-octulosonate + H2O2
Glossary: 3-deoxy-α-D-manno-octulosonate = Kdo
3,8-dideoxy-8-oxo-α-D-manno-octulosonate = (2R,4R,5R,6S)-2,4,5-trihydroxy-6-[(1S)-1-hydroxy-2-oxoethyl]oxane-2-carboxylate
Other name(s): kdnB (gene name)
Systematic name: 3-deoxy-α-D-manno-octulopyranosonate:oxygen 8-oxidoreductase
Comments: The enzyme, characterized from the bacterium Shewanella oneidensis, is involved in the formation of 8-amino-3,8-dideoxy-α-D-manno-octulosonate, an aminated form of Kdo found in lipopolysaccharides of members of the Shewanella genus. cf. EC 2.6.1.109, 8-amino-3,8-dideoxy-α-D-manno-octulosonate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gattis, S.G., Chung, H.S., Trent, M.S. and Raetz, C.R. The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis. J. Biol. Chem. 288 (2013) 9216–9225. [DOI] [PMID: 23413030]
[EC 1.1.3.48 created 2015]
 
 
EC 3.2.1.51     Relevance: 95.2%
Accepted name: α-L-fucosidase
Reaction: an α-L-fucoside + H2O = L-fucose + an alcohol
Other name(s): α-fucosidase
Systematic name: α-L-fucoside fucohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9037-65-4
References:
1.  Levvy, G.A. and McAllan, A. Mammalian fucosidases. 2. α-L-Fucosidase. Biochem. J. 80 (1961) 435–439. [PMID: 13761578]
2.  Reglero, A. and Cabezas, J.A. Glycosidases of molluscs. Purification and properties of α-L-fucosidase from Chamelea gallina L. Eur. J. Biochem. 66 (1976) 379–387. [DOI] [PMID: 7458]
3.  Tanaka, K., Nakano, T., Noguchi, S. and Pigman, W. Purification of α-L-fucosidase of abalone livers. Arch. Biochem. Biophys. 126 (1968) 624–633. [DOI] [PMID: 5672520]
[EC 3.2.1.51 created 1972]
 
 
EC 3.2.1.95     Relevance: 95.1%
Accepted name: dextran 1,6-α-isomaltotriosidase
Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages in dextrans, to remove successive isomaltotriose units from the non-reducing ends of the chains
Other name(s): exo-isomaltotriohydrolase; 1,6-α-D-glucan isomaltotriohydrolase
Systematic name: 6-α-D-glucan isomaltotriohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72561-11-6
References:
1.  Sugiura, M., Ito, A. and Yamaguchi, T. Studies on dextranase. II. New exo-dextranase from Brevibacterium fuscum var. Dextranlyticum. Biochim. Biophys. Acta 350 (1974) 61–70. [DOI] [PMID: 4210084]
[EC 3.2.1.95 created 1978]
 
 
EC 3.2.1.93     Relevance: 95.1%
Accepted name: α,α-phosphotrehalase
Reaction: α,α-trehalose 6-phosphate + H2O = D-glucose + D-glucose 6-phosphate
Other name(s): phosphotrehalase
Systematic name: α,α-trehalose-6-phosphate phosphoglucohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 54576-93-1
References:
1.  Bhumiratana, A., Anderson, R.L. and Costilow, R.N. Trehalose metabolism by Bacillus popilliae. J. Bacteriol. 119 (1974) 484–493. [PMID: 4369400]
[EC 3.2.1.93 created 1976]
 
 
EC 2.1.2.14     Relevance: 95%
Accepted name: GDP-perosamine N-formyltransferase
Reaction: 10-formyltetrahydrofolate + GDP-α-D-perosamine = tetrahydrofolate + GDP-N-formyl-α-D-perosamine
Glossary: GDP-α-D-perosamine = GDP-4-amino-4,6-dideoxy-α-D-mannose
Other name(s): wbkC (gene name)
Systematic name: 10-formyltetrahydrofolate:GDP-α-D-perosamine N-formyltransferase
Comments: The enzyme, characterized from the bacterium Brucella melitensis, synthesizes a building block of the O antigen produced by Brucella species.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Godfroid, F., Cloeckaert, A., Taminiau, B., Danese, I., Tibor, A., de Bolle, X., Mertens, P. and Letesson, J.J. Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of Brucella melitensis 16M (wbk). Res. Microbiol. 151 (2000) 655–668. [DOI] [PMID: 11081580]
2.  Riegert, A.S., Chantigian, D.P., Thoden, J.B., Tipton, P.A. and Holden, H.M. Biochemical characterization of WbkC, an N-formyltransferase from Brucella melitensis. Biochemistry 56 (2017) 3657–3668. [DOI] [PMID: 28636341]
[EC 2.1.2.14 created 2021]
 
 
EC 6.3.2.25     Relevance: 95%
Accepted name: tubulin—tyrosine ligase
Reaction: ATP + detyrosinated α-tubulin + L-tyrosine = α-tubulin + ADP + phosphate
Systematic name: α-tubulin:L-tyrosine ligase (ADP-forming)
Comments: L-Tyrosine is linked via a peptide bond to the C-terminus of de-tyrosinated α-tubulin (des-Tyrω-α-tubulin). The enzyme is highly specific for α-tubulin and moderately specific for ATP and L-tyrosine. L-Phenylalanine and 3,4-dihydroxy-L-phenylalanine are transferred but with higher Km values.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60321-03-1
References:
1.  Wehland, J., Schröder, H.C., Weber, K. Isolation and purification of tubulin-tyrosine ligase. Methods Enzymol. 134 (1986) 170–179. [PMID: 3821560]
2.  Rudiger, M., Wehland, J., Weber, K. The carboxy-terminal peptide of detyrosinated α tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. Eur. J. Biochem. 220 (1994) 309–320. [DOI] [PMID: 7510228]
[EC 6.3.2.25 created 1999]
 
 
EC 2.4.1.5     Relevance: 94.9%
Accepted name: dextransucrase
Reaction: sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + [(1→6)-α-D-glucosyl]n+1
Other name(s): sucrose 6-glucosyltransferase; SGE; CEP; sucrose-1,6-α-glucan glucosyltransferase; sucrose:1,6-α-D-glucan 6-α-D-glucosyltransferase
Systematic name: sucrose:(1→6)-α-D-glucan 6-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme extends the glucan chain by an α(1→6) linkage.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-14-8
References:
1.  Bailey, R.W. Transglucosidase activity of rumen strains of Streptococcus bovis. 2. Isolation and properties of dextransucrase. Biochem. J. 72 (1959) 42–49. [PMID: 13651133]
2.  Bailey, R.W., Barker, S.A., Bourne, E.J. and Stacey, M. Immunopolysaccharides. Part VI. The isolation and properties of the dextransucrase of Betacoccus arabinosaceous. J. Chem. Soc. (Lond.) (1957) 3530–3536.
3.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
[EC 2.4.1.5 created 1961]
 
 
EC 2.6.1.102     Relevance: 94.9%
Accepted name: GDP-perosamine synthase
Reaction: GDP-α-D-perosamine + 2-oxoglutarate = GDP-4-dehydro-α-D-rhamnose + L-glutamate
Glossary: GDP-α-D-perosamine = GDP-4-amino-4,6-dideoxy-α-D-mannose
GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
Other name(s): RfbE; GDP-4-keto-6-deoxy-D-mannose-4-aminotransferase; GDP-perosamine synthetase; PerA; GDP-4-amino-4,6-dideoxy-α-D-mannose:2-oxoglutarate aminotransferase
Systematic name: GDP-α-D-perosamine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme. D-Perosamine is one of several dideoxy sugars found in the O-specific polysaccharide of the lipopolysaccharide component of the outer membrane of Gram-negative bacteria. The enzyme catalyses the final step in GDP-α-D-perosamine synthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Albermann, C. and Piepersberg, W. Expression and identification of the RfbE protein from Vibrio cholerae O1 and its use for the enzymatic synthesis of GDP-D-perosamine. Glycobiology 11 (2001) 655–661. [DOI] [PMID: 11479276]
2.  Zhao, G., Liu, J., Liu, X., Chen, M., Zhang, H. and Wang, P.G. Cloning and characterization of GDP-perosamine synthetase (Per) from Escherichia coli O157:H7 and synthesis of GDP-perosamine in vitro. Biochem. Biophys. Res. Commun. 363 (2007) 525–530. [DOI] [PMID: 17888872]
3.  Albermann, C. and Beuttler, H. Identification of the GDP-N-acetyl-d-perosamine producing enzymes from Escherichia coli O157:H7. FEBS Lett. 582 (2008) 479–484. [DOI] [PMID: 18201574]
4.  Cook, P.D., Carney, A.E. and Holden, H.M. Accommodation of GDP-linked sugars in the active site of GDP-perosamine synthase. Biochemistry 47 (2008) 10685–10693. [DOI] [PMID: 18795799]
[EC 2.6.1.102 created 2013]
 
 
EC 2.4.1.293     Relevance: 94.7%
Accepted name: GalNAc5-diNAcBac-PP-undecaprenol β-1,3-glucosyltransferase
Reaction: UDP-α-D-glucose + [GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol = UDP + [GalNAc-α-(1→4)]2-[Glc-β-(1→3)]-[GalNAc-α-(1→4)]2-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: diNAcBac = N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglI
Systematic name: UDP-α-D-glucose:[GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol 3-β-D-glucosyltransferase
Comments: Isolated from the bacterium Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [DOI] [PMID: 16186480]
2.  Kelly, J., Jarrell, H., Millar, L., Tessier, L., Fiori, L.M., Lau, P.C., Allan, B. and Szymanski, C.M. Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188 (2006) 2427–2434. [DOI] [PMID: 16547029]
[EC 2.4.1.293 created 2012]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald