The Enzyme Database

Displaying entries 51-100 of 532.

<< Previous | Next >>    printer_iconPrintable version

Accepted name: phorbol-diester hydrolase
Reaction: phorbol 12,13-dibutanoate + H2O = phorbol 13-butanoate + butanoate
For diagram of reaction, click here
Other name(s): diacylphorbate 12-hydrolase; diacylphorbate 12-hydrolase; phorbol-12,13-diester 12-ester hydrolase; PDEH
Systematic name: 12,13-diacylphorbate 12-acylhydrolase
Comments: Hydrolyses the 12-ester bond in a variety of 12,13-diacylphorbols (phorbol is a diterpenoid); this reaction inactivates the tumour promotor 12-O-tetradecanoylphorbol-13-acetate from croton oil.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81181-74-0
1.  Shoyab, M., Warren, T.C. and Todaro, G.J. Isolation and characterization of an ester hydrolase active on phorbol diesters from murine liver. J. Biol. Chem. 256 (1981) 12529–12534. [PMID: 6946062]
[EC created 1984]
Accepted name: phosphatidylinositol deacylase
Reaction: 1-phosphatidyl-D-myo-inositol + H2O = 1-acylglycerophosphoinositol + a carboxylate
Other name(s): phosphatidylinositol phospholipase A2; phospholipase A2
Systematic name: 1-phosphatidyl-D-myo-inositol 2-acylhydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81604-94-6
1.  Gray, N.C.C. and Strickland, K.P. The purification and characterization of a phospholipase A2 activity from the 106,000 x g pellet (microsomal fraction) of bovine brain acting on phosphatidylinositol. Can. J. Biochem. 60 (1982) 108–117. [PMID: 7083039]
2.  Gray, N.C.C. and Strickland, K.P. On the specificity of a phospholipase A2 purified from the 106,000 X g pellet of bovine brain. Lipids 17 (1982) 91–96. [DOI] [PMID: 7087686]
[EC created 1984]
Accepted name: sialate O-acetylesterase
Reaction: N-acetyl-O-acetylneuraminate + H2O = N-acetylneuraminate + acetate
Other name(s): N-acetylneuraminate acetyltransferase; sialate 9(4)-O-acetylesterase; sialidase
Systematic name: N-acyl-O-acetylneuraminate O-acetylhydrolase
Comments: Acts on free and glycosidically bound N-acetyl- or N-glycoloyl-neuraminic acid; acts mainly on the 4-O- and 9-O-acetyl groups. Also acts on some other O-acetyl esters, both cyclic and acyclic compounds, which are not sialic acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 89400-31-7
1.  Garcia-Sastre, A., Villar, E., Manuguerra, J.C., Hannoun, C. and Cabezas, J.A. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds. Biochem. J. 273 (1991) 435–441. [PMID: 1991039]
2.  Shukla, A.K. and Schauer, R. High performance liquid chromatography of enzymes of sialic acid metabolism. Hoppe-Seyler's Z. Physiol. Chem. 363 (1982) 1039–1040.
[EC created 1984]
Accepted name: acetoxybutynylbithiophene deacetylase
Reaction: 5-(4-acetoxybut-1-ynyl)-2,2′-bithiophene + H2O = 5-(4-hydroxybut-1-ynyl)-2,2′-bithiophene + acetate
Other name(s): acetoxybutynylbithiophene esterase; 5-(4-acetoxy-1-butynyl)-2,2′-bithiophene:acetate esterase
Systematic name: 5-(4-acetoxybut-1-ynyl)-2,2′-bithiophene O-acetylhydrolase
Comments: The enzyme is highly specific.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82346-63-2
1.  Sütfeld, R. and Towers, G.H.N. 5-(4-Acetoxy-1-butinyl)-2,2′-bithiophene:acetate esterase from Tagetes patula. Phytochemistry 21 (1982) 277–279.
[EC created 1986]
Accepted name: acetylsalicylate deacetylase
Reaction: acetylsalicylate + H2O = salicylate + acetate
Other name(s): aspirin esterase; aspirin esterase; acetylsalicylic acid esterase; aspirin hydrolase
Systematic name: acetylsalicylate O-acetylhydrolase
Comments: Not identical with EC (carboxylesterase), EC (arylesterase), EC (acetylcholinesterase) or EC (cholinesterase). The activity of the liver cytosol enzyme is highest with acetyl esters of aryl alcohols, and thioesters are also hydrolysed; the microsomal enzyme also hydrolyses some other negatively charged esters, with highest activity on esters of salicylate with long-chain alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 87348-04-7
1.  Ali, B. and Kaur, S. Mammalian tissue acetylsalicylic acid esterase(s): identification, distribution and discrimination from other esterases. J. Pharmacol. Exp. Ther. 226 (1983) 589–594. [PMID: 6875867]
2.  Kim, D.-H., Yang, Y.-S. and Jakoby, W.B. Aspirin hydrolyzing esterases from rat liver cytosol. Biochem. Pharmacol. 40 (1990) 481–487. [DOI] [PMID: 2383281]
3.  White, K.N. and Hope, D.B. Partial purification and characterization of a microsomal carboxylesterase specific for salicylate esters from guinea-pig liver. Biochim. Biophys. Acta 785 (1984) 138–147. [DOI] [PMID: 6704404]
[EC created 1986, modified 1989]
Accepted name: methylumbelliferyl-acetate deacetylase
Reaction: 4-methylumbelliferyl acetate + H2O = 4-methylumbelliferone + acetate
Other name(s): esterase D
Systematic name: 4-methylumbelliferyl-acetate acylhydrolase
Comments: Acts on short-chain acyl esters of 4-methylumbelliferone, but not on naphthyl, indoxyl or thiocholine esters.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 83380-83-0
1.  Hopkinson, D.A., Mestriner, M.A., Cortner, J. and Harris, H. Esterase D: a new human polymorphism. Ann. Hum. Genet. 37 (1973) 119–137. [DOI] [PMID: 4768551]
[EC created 1986]
Accepted name: 2-pyrone-4,6-dicarboxylate lactonase
Reaction: 2-oxo-2H-pyran-4,6-dicarboxylate + H2O = (1E)-4-oxobut-1-ene-1,2,4-tricarboxylate
For diagram of the protocatechuate 3,4-cleavage pathway, click here
Other name(s): 2-pyrone-4,6-dicarboxylate hydrolase; 2-pyrone-4,6-dicarboxylate lactonohydrolase
Systematic name: 2-oxo-2H-pyran-4,6-dicarboxylate lactonohydrolase
Comments: The product is most likely the keto-form of 4-oxalomesaconate (as shown in the reaction) [1,2]. It can be converted to the enol-form, 4-hydroxybuta-1,3-diene-1,2,4-trioate, either spontaneously or by EC, 4-oxalomesaconate tautomerase [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 84177-55-9
1.  Kersten, P.J., Dagley, S., Whittaker, J.W., Arciero, D.M. and Lipscomb, J.D. 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species. J. Bacteriol. 152 (1982) 1154–1162. [PMID: 7142106]
2.  Maruyama, K. Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J. Biochem. (Tokyo) 93 (1983) 557–565. [PMID: 6841353]
3.  Nogales, J., Canales, A., Jiménez-Barbero, J., Serra B., Pingarrón, J. M., García, J. L. and Díaz, E. Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol. Microbiol. 79 (2011) 359–374. [DOI] [PMID: 21219457]
[EC created 1986, modified 2010]
Accepted name: N-acetylgalactosaminoglycan deacetylase
Reaction: N-acetyl-D-galactosaminoglycan + H2O = D-galactosaminoglycan + acetate
Other name(s): polysaccharide deacetylase (misleading); Vi-polysaccharide deacetylase; N-acetyl galactosaminoglycan deacetylase
Systematic name: N-acetyl-D-galactosaminoglycan acetylhydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 52410-59-0
1.  Jorge, J.A., Kinney, S.G. and Reissig, J.L. Purification and characterization of Neurospora crassa N-acetyl galactosaminoglycan deacetylase. Braz. J. Med. Biol. Res. 15 (1982) 29–34. [PMID: 6217857]
[EC created 1986]
Accepted name: juvenile-hormone esterase
Reaction: (1) juvenile hormone I + H2O = juvenile hormone I acid + methanol
(2) juvenile hormone III + H2O = juvenile hormone III acid + methanol
For diagram of juvenile hormone biosynthesis, click here
Glossary: juvenile hormone I = methyl (2E,6E,10R,11S)-10,11-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate
juvenile hormone I acid = (2E,6E,10R,11S)-10,11-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate
juvenile hormone III = methyl (2E,6E,10R)-10,11-epoxy-3,7,11-trimethyldodeca-2,6-dienoate
juvenile hormone III acid = (2E,6E,10R)-10,11-epoxy-3,7,11-trimethyldodeca-2,6-dienoate
Other name(s): JH-esterase; juvenile hormone analog esterase; juvenile hormone carboxyesterase; methyl-(2E,6E)-(10R,11S)-10,11-epoxy-3,7,11-trimethyltrideca-2,6-dienoate acylhydrolase
Systematic name: methyl-(2E,6E,10R)-10,11-epoxy-3,7,11-trimethyltrideca-2,6-dienoate acylhydrolase
Comments: Demethylates the insect juvenile hormones JH1 and JH3, but does not hydrolyse the analogous ethyl or isopropyl esters.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 50812-15-2
1.  de Kort, C.A.D. and Granger, N.A. Regulation of the juvenile hormone titer. Annu. Rev. Entomol. 26 (1981) 1–28.
2.  Mitsui, T., Riddiford, L.M. and Bellamy, G. Metabolism of juvenile hormone by the epidermis of the tobacco hornworm (Manduca sexta). Insect Biochem. 9 (1979) 637–643.
[EC created 1989, modified 2015]
Accepted name: bis(2-ethylhexyl)phthalate esterase
Reaction: bis(2-ethylhexyl)phthalate + H2O = 2-ethylhexyl phthalate + 2-ethylhexan-1-ol
Other name(s): DEHP esterase
Systematic name: bis(2-ethylhexyl)phthalate acylhydrolase
Comments: Also acts on 4-nitrophenyl esters, with optimum chain-length C6 to C8.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 92480-02-9
1.  Krell, H.-W. and Sandermann, H., Jr. Plant biochemistry of xenobiotics. Purification and properties of a wheat esterase hydrolyzing the plasticizer chemical, bis(2-ethylhexyl)phthalate. Eur. J. Biochem. 143 (1984) 57–62. [DOI] [PMID: 6468391]
[EC created 1989]
Accepted name: protein-glutamate methylesterase
Reaction: protein L-glutamate O5-methyl ester + H2O = protein L-glutamate + methanol
Other name(s): chemotaxis-specific methylesterase; methyl-accepting chemotaxis protein methyl-esterase; CheB methylesterase; methylesterase CheB; protein methyl-esterase; protein carboxyl methylesterase; PME; protein methylesterase; protein-L-glutamate-5-O-methyl-ester acylhydrolase
Systematic name: protein-L-glutamate-O5-methyl-ester acylhydrolase
Comments: Hydrolyses the products of EC (protein-L-isoaspartate(D-aspartate) O-methyltransferase), EC (isoorientin 3′-O-methyltransferase), EC (protein-glutamate O-methyltransferase) and EC (protein-S-isoprenylcysteine O-methyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 69552-31-4
1.  Gagnon, C., Harbour, G. and Camato, R. Purification and characterization of protein methylesterase from rat kidney. J. Biol. Chem. 259 (1984) 10212–10215. [PMID: 6469959]
2.  Kehry, M.R., Doak, T.G. and Dahlquist, F.W. Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J. Biol. Chem. 259 (1984) 11828–11835. [PMID: 6384215]
[EC created 1989, modified 2002]
Deleted entry: N-acetyldiaminopimelate deacylase. Now listed as EC, N-acetyldiaminopimelate deacetylase
[EC created 1989, deleted 1992]
Accepted name: 11-cis-retinyl-palmitate hydrolase
Reaction: 11-cis-retinyl palmitate + H2O = 11-cis-retinol + palmitate
For diagram of biosynthesis of retinal and derivatives, click here
Other name(s): 11-cis-retinol palmitate esterase; RPH
Systematic name: 11-cis-retinyl-palmitate acylhydrolase
Comments: Activated by bile salts.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 106389-23-5
1.  Blaner, W.S., Das, S.R., Gouras, P. and Flood, M.T. Hydrolysis of 11-cis- and all-trans-retinyl palmitate by homogenates of human retinal epithelial cells. J. Biol. Chem. 262 (1987) 53–58. [PMID: 3793734]
2.  Blaner, W.S., Prystowsky, J.H., Smith, J.E. and Goodman, D.S. Rat liver retinyl palmitate hydrolase activity. Relationship to cholesteryl oleate and triolein hydrolase activities. Biochim. Biophys. Acta 794 (1984) 419–427. [DOI] [PMID: 6743673]
[EC created 1989]
Accepted name: retinoid isomerohydrolase
Reaction: an all-trans-retinyl ester + H2O = 11-cis-retinol + a fatty acid
For diagram of retinal and derivatives biosynthesis, click here
Other name(s): all-trans-retinyl-palmitate hydrolase (ambiguous); retinol isomerase (ambiguous); all-trans-retinol isomerase:hydrolase (ambiguous); all-trans-retinylester 11-cis isomerohydrolase; RPE65 (gene name)
Systematic name: all-trans-retinyl ester acylhydrolase, 11-cis retinol-forming
Comments: This enzyme, which operates in the retinal pigment epithelium (RPE), catalyses the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol, a key step in the regeneration of the visual chromophore in the vertebrate visual cycle [4]. Interaction of the enzyme with the membrane is critical for its enzymic activity [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 106389-24-6
1.  Blaner, W.S., Das, S.R., Gouras, P. and Flood, M.T. Hydrolysis of 11-cis- and all-trans-retinyl palmitate by homogenates of human retinal epithelial cells. J. Biol. Chem. 262 (1987) 53–58. [PMID: 3793734]
2.  Bernstein, P.S., Law, W.C. and Rando, R.R. Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. Proc. Natl. Acad. Sci. USA 84 (1987) 1849–1853. [DOI] [PMID: 3494246]
3.  Bridges, C.D. and Alvarez, R.A. The visual cycle operates via an isomerase acting on all-trans retinol in the pigment epithelium. Science 236 (1987) 1678–1680. [DOI] [PMID: 3603006]
4.  Moiseyev, G., Chen, Y., Takahashi, Y., Wu, B.X. and Ma, J.X. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl. Acad. Sci. USA 102 (2005) 12413–12418. [DOI] [PMID: 16116091]
5.  Nikolaeva, O., Takahashi, Y., Moiseyev, G. and Ma, J.X. Purified RPE65 shows isomerohydrolase activity after reassociation with a phospholipid membrane. FEBS J. 276 (2009) 3020–3030. [DOI] [PMID: 19490105]
6.  Golczak, M., Kiser, P.D., Lodowski, D.T., Maeda, A. and Palczewski, K. Importance of membrane structural integrity for RPE65 retinoid isomerization activity. J. Biol. Chem. 285 (2010) 9667–9682. [DOI] [PMID: 20100834]
[EC created 1989 (EC created 1989, incorporated 2011), modified 2011]
Accepted name: L-rhamnono-1,4-lactonase
Reaction: L-rhamnono-1,4-lactone + H2O = L-rhamnonate
For diagram of L-Rhamnose metabolism, click here
Other name(s): L-rhamno-γ-lactonase; L-rhamnono-γ-lactonase; L-rhamnonate dehydratase
Systematic name: L-rhamnono-1,4-lactone lactonohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Rigo, L.U., Maréchal, L.R., Vieira, M.M. and Veiga, L.A. Oxidative pathway for L-rhamnose degradation in Pallularia pullulans. Can. J. Microbiol. 31 (1985) 817–822.
[EC created 1989]
Accepted name: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene deacetylase
Reaction: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene + H2O = 5-(3-hydroxy-4-acetoxybut-1-ynyl)-2,2′-bithiophene + acetate
Other name(s): diacetoxybutynylbithiophene acetate esterase; 3,4-diacetoxybutinylbithiophene:4-acetate esterase
Systematic name: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene acetylhydrolase
Comments: A highly specific enzyme from Tagetes patula.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 95990-32-2
1.  Pensl, R. and Suetfeld, R. Occurrence of 3,4-diacetoybutinylbithiophene in Tagetes patula and its enzymatic conversion. Z. Naturforsch. C: Biosci. 40 (1985) 3–7.
[EC created 1989]
Accepted name: fatty-acyl-ethyl-ester synthase
Reaction: a long-chain-fatty-acyl ethyl ester + H2O = a long-chain-fatty acid + ethanol
Glossary: a long-chain-fatty acid = a fatty acid with an aliphatic chain of 13-22 carbons.
Other name(s): FAEES
Systematic name: long-chain-fatty-acyl-ethyl-ester acylhydrolase
Comments: The reaction, forms ethyl esters from fatty acids and ethanol in the absence of coenzyme A or ATP. Best substrates are unsaturated octadecanoic acids; palmitate, stearate and arachidonate also act, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 90119-16-7
1.  Mogelson, S. and Lange, L.G. Nonoxidative ethanol metabolism in rabbit myocardium: purification to homogeneity of fatty acyl ethyl ester synthase. Biochemistry 23 (1984) 4075–4081. [PMID: 6487591]
[EC created 1989]
Accepted name: xylono-1,4-lactonase
Reaction: D-xylono-1,4-lactone + H2O = D-xylonate
Other name(s): xylono-γ-lactonase; xylonolactonase
Systematic name: D-xylono-1,4-lactone lactonohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Buchert, J. and Viikari, L. The role of xylonolactone in xylonic acid production by Pseudomonas fragi. Appl. Microbiol. Biotechnol. 27 (1988) 333–336.
[EC created 1990]
Transferred entry: N-acetylglucosaminylphosphatidylinositol deacetylase. Now EC, N-acetylglucosaminylphosphatidylinositol deacetylase. Previously classified erroneously as an enzyme that hydrolysed an ester and not an amide
[EC created 1992, deleted 2002]
Accepted name: cetraxate benzylesterase
Reaction: cetraxate benzyl ester + H2O = cetraxate + benzyl alcohol
Systematic name: cetraxate-benzyl-ester benzylhydrolase
Comments: Acts on a number of benzyl esters of substituted phenyl propanoates, and on the benzyl esters of phenylalanine and tyrosine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 125858-78-8
1.  Kuroda, H., Miyadera, A., Imura, A. and Suzuki, A. Partial purification, and some properties and reactivities of cetraxate benzyl ester hydrochloride-hydrolyzing enzyme. Chem. Pharm. Bull. 37 (1989) 2929–2932. [PMID: 2632040]
[EC created 1992]
Accepted name: acetylalkylglycerol acetylhydrolase
Reaction: 2-acetyl-1-alkyl-sn-glycerol + H2O = 1-alkyl-sn-glycerol + acetate
Other name(s): alkylacetylglycerol acetylhydrolase
Systematic name: 2-acetyl-1-alkyl-sn-glycerol acetylhydrolase
Comments: Hydrolysis of the acetyl group from the 1-alkyl-2-acetyl and 1-alkyl-3-acetyl substrates occurs at apparently identical rates. The enzyme from Erlich ascites cells is membrane-bound. It differs from lipoprotein lipase (EC since 1,2-diacetyl-sn-glycerols are not substrates. It also differs from EC, 1-acetyl-2-alkyl-glycerophosphocholine esterase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Blank, M.L., Smith, Z.L., Cress, E.A., Snyder, F. Characterization of the enzymatic hydrolysis of acetate from alkylacetylglycerols in the de novo pathway of PAF biosynthesis. Biochim. Biophys. Acta 1042 (1990) 153–158. [DOI] [PMID: 2302414]
[EC created 1999]
Accepted name: acetylxylan esterase
Reaction: Deacetylation of xylans and xylo-oligosaccharides
Systematic name: acetylxylan esterase
Comments: Catalyses the hydrolysis of acetyl groups from polymeric xylan, acetylated xylose, acetylated glucose, α-napthyl acetate, p-nitrophenyl acetate but not from triacetylglycerol. Does not act on acetylated mannan or pectin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 188959-24-2
1.  Sundberg, M., Poutanen, K. Purification and properties of two acetylxylan esterases of Trichoderma reesei. Biotechnol. Appl. Biochem. 13 (1991) 1–11.
2.  Poutanen, K., Sundberg, M., Korte, H., Puls, J. Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl. Microbiol. Biotechnol. 33 (1990) 506–510.
3.  Margolles-Clark, E., Tenkanen, M., Söderland, H., Penttilä, M. Acetyl xylan esterase from Trichoderma reesei contains an active site serine and a cellulose binding domain. Eur. J. Biochem. 237 (1996) 553–560. [DOI] [PMID: 8647098]
[EC created 1999]
Accepted name: feruloyl esterase
Reaction: feruloyl-polysaccharide + H2O = ferulate + polysaccharide
Glossary: ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): ferulic acid esterase; hydroxycinnamoyl esterase; hemicellulase accessory enzyme; FAE-III; cinnamoyl ester hydrolase; FAEA; cinnAE; FAE-I; FAE-II
Systematic name: 4-hydroxy-3-methoxycinnamoyl-sugar hydrolase
Comments: Catalyses the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose in "natural" substrates. p-Nitrophenol acetate and methyl ferulate are poorer substrates. All microbial ferulate esterases are secreted into the culture medium. They are sometimes called hemicellulase accessory enzymes, since they help xylanases and pectinases to break down plant cell wall hemicellulose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 134712-49-5
1.  Faulds, C.B. and Williamson, G. The purification and characterisation of 4-hydroxy-3-methoxy-cinnamic (ferulic) acid esterase from Streptomyces olivochromogenes (3232). J. Gen. Microbiol. 137 (1991) 2339–2345. [DOI] [PMID: 1663152]
2.  Faulds, C.B. and Williamson, G. Purification and characterisation of a ferulic acid esterase (FAE-III) from Aspergillus niger. Specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140 (1994) 779–787.
3.  Kroon, P.A., Faulds, C.B. and Williamson, G. Purification and characterisation of a novel ferulic acid esterase induced by growth of Aspergillus niger on sugarbeet pulp. Biotechnol. Appl. Biochem. 23 (1996) 255–262. [PMID: 8679110]
4.  deVries, R.P. , Michelsen,B., Poulsen, C.H., Kroon, P.A., van den Heuvel, R.H.H., Faulds, C.B., Williamson, G., van den Homberg, J.P.T.W. and Visser, J. The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl. Environ. Microbiol. 63 (1997) 4638–4644. [PMID: 9406381]
5.  Castanares, A., Mccrae, S.I. and Wood, T.M. Purification and properties of a feruloyl/p-coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microbiol. Technol. 14 (1992) 875–884.
[EC created 2000]
Accepted name: cutinase
Reaction: cutin + H2O = cutin monomers
Systematic name: cutin hydrolase
Comments: Cutin, a polymeric structural component of plant cuticles, is a polymer of hydroxy fatty acids that are usually C16 or C18 and contain up to three hydroxy groups. The enzyme from several fungal sources also hydrolyses the p-nitrophenyl esters of hexadecanoic acid. It is however inactive towards several esters that are substrates for non-specific esterases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 51377-41-4
1.  Garcia-Lepe, R., Nuero, O.M., Reyes, F. and Santamaria, F. Lipases in autolysed cultures of filamentous fungi. Lett. Appl. Microbiol. 25 (1997) 127–130. [DOI] [PMID: 9281862]
2.  Purdy, R.E. and Kolattukudy, P.E. Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isoenzymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 14 (1975) 2824–2831. [PMID: 1156575]
3.  Purdy, R.E. and Kolattukudy, P.E. Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry 14 (1975) 2832–2840. [PMID: 239740]
[EC created 2000]
Accepted name: poly(3-hydroxybutyrate) depolymerase
Reaction: [(R)-3-hydroxybutanoate]n + H2O = [(R)-3-hydroxybutanoate]n-x + [(R)-3-hydroxybutanoate]x; x = 1–5
Other name(s): PHB depolymerase; poly(3HB) depolymerase; poly[(R)-hydroxyalkanoic acid] depolymerase; poly(HA) depolymerase; poly(HASCL) depolymerase; poly[(R)-3-hydroxybutyrate] hydrolase
Systematic name: poly[(R)-3-hydroxybutanoate] hydrolase
Comments: Reaction also occurs with esters of other short-chain-length (C1-C5) hydroxyalkanoic acids (HA). There are two types of polymers: native (intracellular) granules are amorphous and have an intact surface layer; denatured (extracellular) granules either have no surface layer or a damaged surface layer and are partially crystalline.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-11-3
1.  Jendrossek, D. Microbial degradation of polyesters. Adv. Biochem. Eng./Biotechnol. 71 (2001) 293–325. [PMID: 11217416]
2.  García, B., Olivera, E.R., Miñambres, B., Fernández-Valverde, Cañedo, L.M., Prieto, M.A., García, J.L., Martínez, M. and Luengo, J.M. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J. Biol. Chem. 274 (1999) 29228–29241. [DOI] [PMID: 10506180]
[EC created 2001]
Accepted name: poly(3-hydroxyoctanoate) depolymerase
Reaction: Hydrolyses the polyester poly{oxycarbonyl[(R)-2-pentylethylene]} to oligomers
Other name(s): PHO depolymerase; poly(3HO) depolymerase; poly[(R)-hydroxyalkanoic acid] depolymerase; poly(HA) depolymerase; poly(HAMCL) depolymerase; poly[(R)-3-hydroxyoctanoate] hydrolase
Systematic name: poly{oxycarbonyl[(R)-2-pentylethylene]} hydrolase
Comments: The main product after prolonged incubation is the dimer [3]. Besides hydrolysing polymers of 3-hydroxyoctanoic acid, the enzyme also hydrolyses other polymers derived from medium-chain-length (C6-C12) hydroxyalkanoic acids and copolymers of mixtures of these. It also hydrolyses p-nitrophenyl esters of fatty acids. Polymers of short-chain-length hydroxyalkanoic acids such as poly[(R)-3-hydroxybutanoic acid] and poly[(R)-3-hydroxypentanoic acid] are not hydrolysed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Jendrossek, D. Microbial degradation of polyesters. Adv. Biochem. Eng./Biotechnol. 71 (2001) 293–325. [PMID: 11217416]
2.  García, B., Olivera, E.R., Miñambres, B., Fernández-Valverde, Cañedo, L.M., Prieto, M.A., García, J.L., Martínez, M. and Luengo, J.M. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J. Biol. Chem. 274 (1999) 29228–29241. [DOI] [PMID: 10506180]
3.  Schirmer, A., Jendrossek, D. and Schlegel, H.G. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59 (1993) 1220–1227. [PMID: 8476295]
[EC created 2001, modified 2005]
Accepted name: acyloxyacyl hydrolase
Reaction: 3-(acyloxy)acyl group of bacterial toxin + H2O = 3-hydroxyacyl group of bacterial toxin + a fatty acid
For diagram of reaction, click here
Comments: The substrate is lipid A on the reducing end of the toxic lipopolysaccharide (LPS) of Salmonella typhimurium and related organisms. It consists of diglucosamine, β-D-GlcN-(1→ 6)-D-GlcN, attached by glycosylation on O-6 of its non-reducing residue, phosphorylated on O-4 of this residue and on O-1 of its potentially reducing residue. Both residues carry 3-(acyloxy)acyl groups on N-2 and O-3. The enzyme from human leucocytes detoxifies the lipid by hydrolysing the secondary acyl groups from O-3 of the 3-hydroxyacyl groups on the disaccharide (LPS). It also possesses a wide range of phospholipase and acyltransferase activities [e.g. EC (phospholipase A2), EC (lysophospholipase), EC (phospholipase A1) and EC (phosphatidylinositol deacylase)], hydrolysing diacylglycerol and phosphatidyl compounds, but not triacylglycerols. It has a preference for saturated C12-C16 acyl groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110277-64-0
1.  Erwin, A.L. and Munford, R.S. Deacylation of structurally diverse lipopolysaccharides by human acyloxyacyl hydrolase. J. Biol. Chem. 265 (1990) 16444–16449. [PMID: 2398058]
2.  Hagen, F.S., Grant, F.J., Kuijper, J.L., Slaughter, C.A., Moomaw, C.R., Orth, K., O'Hara, P.J. and Munford, R.S. Expression and characterization of recombinant human acyloxyacyl hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides. Biochemistry 30 (1991) 8415–8423. [PMID: 1883828]
3.  Munford, R.S. and Hunter, J.P. Acyloxyacyl hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides, has phospholipase, lysophospholipase, diacylglycerollipase, and acyltransferase activities in vitro. J. Biol. Chem. 267 (1992) 10116–10121. [PMID: 1577781]
[EC created 2001]
Accepted name: polyneuridine-aldehyde esterase
Reaction: polyneuridine aldehyde + H2O = 16-epivellosimine + CO2 + methanol
For diagram of geissoschizine and sarpagine biosynthesis, click here
Other name(s): polyneuridine aldehyde esterase; PNAE
Systematic name: polyneuridine aldehyde hydrolase (decarboxylating)
Comments: Following hydrolysis of this indole alkaloid ester the carboxylic acid decarboxylates spontaneously giving the sarpagan skeleton. The enzyme also acts on akuammidine aldehyde (the 16-epimer of polyneuridine aldehyde).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 87041-55-2
1.  Pfitzner, A. and Stöckigt, J. Characterization of polyneuridine aldehyde esterase, a key enzyme in the biosynthesis of sarpagine ajmaline type alkaloids. Planta Med. 48 (1983) 221–227. [PMID: 17404987]
2.  Pfitzner, A. and Stöckigt, J. Polyneuridine aldehyde esterase: an unusual specific enzyme involved in the biosynthesis of sarpagine type alkaloids. J. Chem. Soc. Chem. Commun. (1983) 459–460.
3.  Dogru, E., Warzecha, H., Seibel, F., Haebel, S., Lottspeich, F. and Stöckigt, J. The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the hydrolase super family. Eur. J. Biochem. 267 (2000) 1397–1406. [DOI] [PMID: 10691977]
4.  Mattern-Dogru, E., Ma, X., Hartmann, J., Decker, H. and Stöckigt, J. Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesis. Eur. J. Biochem. 269 (2002) 2889–2896. [DOI] [PMID: 12071952]
[EC created 2002]
Accepted name: hormone-sensitive lipase
Reaction: (1) diacylglycerol + H2O = monoacylglycerol + a carboxylate
(2) triacylglycerol + H2O = diacylglycerol + a carboxylate
(3) monoacylglycerol + H2O = glycerol + a carboxylate
Other name(s): HSL
Systematic name: diacylglycerol acylhydrolase
Comments: This enzyme is a serine hydrolase. Compared with other lipases, hormone-sensitive lipase has a uniquely broad substrate specificity. It hydrolyses all acylglycerols (triacylglycerol, diacylglycerol and monoacylglycerol) [2,3,4] as well as cholesteryl esters [2,4], steroid fatty acid esters [5], retinyl esters [6] and p-nitrophenyl esters [4,7]. It exhibits a preference for the 1- or 3-ester bond of its acylglycerol substrate compared with the 2-ester bond [8]. The enzyme shows little preference for the fatty acids in the triacylglycerol, although there is some increase in activity with decreasing chain length. The enzyme activity is increased in response to hormones that elevate intracellular levels of cAMP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Holm, C., Osterlund, T., Laurell, H. and Contreras, J.A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 20 (2000) 365–393. [DOI] [PMID: 10940339]
2.  Fredrikson, G., Stralfors, P., Nilsson, N.O. and Belfrage, P. Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J. Biol. Chem. 256 (1981) 6311–6320. [PMID: 7240206]
3.  Vaughan, M., Berger, J.E. and Steinberg, D. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239 (1964) 401–409. [PMID: 14169138]
4.  Østerlund, T., Danielsson, B., Degerman, E., Contreras, J.A., Edgren, G., Davis, R.C., Schotz, M.C. and Holm, C. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem. J. 319 ( Pt 2) (1996) 411–420. [PMID: 8912675]
5.  Lee, F.T., Adams, J.B., Garton, A.J. and Yeaman, S.J. Hormone-sensitive lipase is involved in the hydrolysis of lipoidal derivatives of estrogens and other steroid hormones. Biochim. Biophys. Acta 963 (1988) 258–264. [DOI] [PMID: 3196730]
6.  Wei, S., Lai, K., Patel, S., Piantedosi, R., Shen, H., Colantuoni, V., Kraemer, F.B. and Blaner, W.S. Retinyl ester hydrolysis and retinol efflux from BFC-1β adipocytes. J. Biol. Chem. 272 (1977) 14159–14165. [DOI] [PMID: 9162045]
7.  Tsujita, T., Ninomiya, H. and Okuda, H. p-Nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. J. Lipid Res. 30 (1989) 997–1004. [PMID: 2794798]
8.  Yeaman, S.J. Hormone-sensitive lipase - new roles for an old enzyme. Biochem. J. 379 (2004) 11–22. [DOI] [PMID: 14725507]
[EC created 2004]
Accepted name: acetylajmaline esterase
Reaction: (1) 17-O-acetylajmaline + H2O = ajmaline + acetate
(2) 17-O-acetylnorajmaline + H2O = norajmaline + acetate
For diagram of ajmaline, vinorine, vomilenine and raucaffricine biosynthesis, click here
Other name(s): AAE; 2β(R)-17-O-acetylajmalan:acetylesterase; acetylajmalan esterase
Systematic name: 17-O-acetylajmaline O-acetylhydrolase
Comments: This plant enzyme is responsible for the last stages in the biosynthesis of the indole alkaloid ajmaline. The enzyme is highly specific for the substrates 17-O-acetylajmaline and 17-O-acetylnorajmaline as the structurally related acetylated alkaloids vinorine, vomilenine, 1,2-dihydrovomilenine and 1,2-dihydroraucaffricine cannot act as substrates [2]. This is a novel member of the GDSL family of serine esterases/lipases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110183-46-5
1.  Polz, L., Schübel, H. and Stöckigt, J. Characterization of 2β(R)-17-O-acetylajmalan:acetylesterase—a specific enzyme involved in the biosynthesis of the Rauwolfia alkaloid ajmaline. Z. Naturforsch. [C] 42 (1987) 333–342. [PMID: 2955586]
2.  Ruppert, M., Woll, J., Giritch, A., Genady, E., Ma, X. and Stöckigt, J. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta 222 (2005) 888–898. [DOI] [PMID: 16133216]
[EC created 2006]
Accepted name: quorum-quenching N-acyl-homoserine lactonase
Reaction: an N-acyl-L-homoserine lactone + H2O = an N-acyl-L-homoserine
Other name(s): acyl homoserine degrading enzyme; acyl-homoserine lactone acylase; AHL lactonase; AHL-degrading enzyme; AHL-inactivating enzyme; AHLase; AhlD; AhlK; AiiA; AiiA lactonase; AiiA-like protein; AiiB; AiiC; AttM; delactonase; lactonase-like enzyme; N-acyl homoserine lactonase; N-acyl homoserine lactone hydrolase; N-acyl-homoserine lactone lactonase; N-acyl-L-homoserine lactone hydrolase; quorum-quenching lactonase; quorum-quenching N-acyl homoserine lactone hydrolase
Systematic name: N-acyl-L-homoserine-lactone lactonohydrolase
Comments: Acyl-homoserine lactones (AHLs) are produced by a number of bacterial species and are used by them to regulate the expression of virulence genes in a process known as quorum-sensing. Each bacterial cell has a basal level of AHL and, once the population density reaches a critical level, it triggers AHL-signalling which, in turn, initiates the expression of particular virulence genes [5]. Plants or animals capable of degrading AHLs would have a therapeutic advantage in avoiding bacterial infection as they could prevent AHL-signalling and the expression of virulence genes in quorum-sensing bacteria [5]. N-(3-Oxohexanoyl)-L-homoserine lactone, N-(3-oxododecanoyl)-L-homoserine lactone, N-butanoyl-L-homoserine lactone and N-(3-oxooctanoyl)-L-homoserine lactone can act as substrates [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 389867-43-0
1.  Thomas, P.W., Stone, E.M., Costello, A.L., Tierney, D.L. and Fast, W. The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry 44 (2005) 7559–7569. [DOI] [PMID: 15895999]
2.  Dong, Y.H., Gusti, A.R., Zhang, Q., Xu, J.L. and Zhang, L.H. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68 (2002) 1754–1759. [DOI] [PMID: 11916693]
3.  Wang, L.H., Weng, L.X., Dong, Y.H. and Zhang, L.H. Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J. Biol. Chem. 279 (2004) 13645–13651. [DOI] [PMID: 14734559]
4.  Dong, Y.H., Xu, J.L., Li, X.Z. and Zhang, L.H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97 (2000) 3526–3531. [DOI] [PMID: 10716724]
5.  Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F. and Zhang, L.H. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411 (2001) 813–817. [DOI] [PMID: 11459062]
6.  Lee, S.J., Park, S.Y., Lee, J.J., Yum, D.Y., Koo, B.T. and Lee, J.K. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68 (2002) 3919–3924. [DOI] [PMID: 12147491]
7.  Park, S.Y., Lee, S.J., Oh, T.K., Oh, J.W., Koo, B.T., Yum, D.Y. and Lee, J.K. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149 (2003) 1541–1550. [DOI] [PMID: 12777494]
8.  Ulrich, R.L. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70 (2004) 6173–6180. [DOI] [PMID: 15466564]
9.  Kim, M.H., Choi, W.C., Kang, H.O., Lee, J.S., Kang, B.S., Kim, K.J., Derewenda, Z.S., Oh, T.K., Lee, C.H. and Lee, J.K. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA 102 (2005) 17606–17611. [DOI] [PMID: 16314577]
10.  Liu, D., Lepore, B.W., Petsko, G.A., Thomas, P.W., Stone, E.M., Fast, W. and Ringe, D. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 102 (2005) 11882–11887. [DOI] [PMID: 16087890]
11.  Yang, F., Wang, L.H., Wang, J., Dong, Y.H., Hu, J.Y. and Zhang, L.H. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579 (2005) 3713–3717. [DOI] [PMID: 15963993]
[EC created 2007]
Accepted name: pheophorbidase
Reaction: pheophorbide a + H2O = pyropheophorbide a + methanol + CO2 (overall reaction)
(1a) pheophorbide a + H2O = C-132-carboxypyropheophorbide a + methanol
(1b) C-132-carboxypyropheophorbide a = pyropheophorbide a + CO2 (spontaneous)
For diagram of chlorophyll catabolism, click here
Other name(s): phedase; PPD
Systematic name: pheophorbide-a hydrolase
Comments: This enzyme forms part of the chlorophyll degradation pathway, and is found in higher plants and in algae. In higher plants it participates in de-greening processes such as fruit ripening, leaf senescence, and flowering. The enzyme exists in two forms: type 1 is induced by senescence whereas type 2 is constitutively expressed [1,2]. The enzyme is highly specific for pheophorbide as substrate (with a preference for pheophorbide a over pheophorbide b) as other chlorophyll derivatives such as protochlorophyllide a, pheophytin a and c, chlorophyll a and b, and chlorophyllide a cannot act as substrates [2]. Another enzyme, called pheophorbide demethoxycarbonylase (PDC), produces pyropheophorbide a from pheophorbide a without forming an intermediate although the precise reaction is not yet known [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Suzuki, Y., Doi, M. and Shioi, Y. Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth. Res. 74 (2002) 225–233. [DOI] [PMID: 16228561]
2.  Suzuki, Y., Amano, T. and Shioi, Y. Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. Plant Physiol. 140 (2006) 716–725. [DOI] [PMID: 16384908]
3.  Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57 (2006) 55–77. [DOI] [PMID: 16669755]
[EC created 2007]
Accepted name: monoterpene ε-lactone hydrolase
Reaction: (1) isoprop(en)ylmethyloxepan-2-one + H2O = 6-hydroxyisoprop(en)ylmethylhexanoate (general reaction)
(2) 4-isopropenyl-7-methyloxepan-2-one + H2O = 6-hydroxy-3-isopropenylheptanoate
(3) 7-isopropyl-4-methyloxepan-2-one + H2O = 6-hydroxy-3,7-dimethyloctanoate
For diagram of (–)-carvone catabolism, click here and for diagram of menthol biosynthesis, click here
Other name(s): MLH
Systematic name: isoprop(en)ylmethyloxepan-2-one lactonohydrolase
Comments: The enzyme catalyses the ring opening of ε-lactones which are formed during degradation of dihydrocarveol by the Gram-positive bacterium Rhodococcus erythropolis DCL14. The enzyme also acts on ethyl caproate, indicating that it is an esterase with a preference for lactones (internal cyclic esters). The enzyme is not stereoselective.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  van der Vlugt-Bergmans , C.J. and van der Werf , M.J. Genetic and biochemical characterization of a novel monoterpene ε-lactone hydrolase from Rhodococcus erythropolis DCL14. Appl. Environ. Microbiol. 67 (2001) 733–741. [DOI] [PMID: 11157238]
[EC created 2008]
Accepted name: cocaine esterase
Reaction: cocaine + H2O = ecgonine methyl ester + benzoate
Glossary: ecgonine methyl ester = 2β-carbomethoxy-3β-tropine = methyl (1R,2R,3S,5S)-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
Other name(s): CocE; hCE2; hCE-2; human carboxylesterase 2
Systematic name: cocaine benzoylhydrolase
Comments: Rhodococcus sp. strain MB1 and Pseudomonas maltophilia strain MB11L can utilize cocaine as sole source of carbon and energy [2,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
1.  Gao, D., Narasimhan, D.L., Macdonald, J., Brim, R., Ko, M.C., Landry, D.W., Woods, J.H., Sunahara, R.K. and Zhan, C.G. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol. Pharmacol. 75 (2009) 318–323. [DOI] [PMID: 18987161]
2.  Bresler, M.M., Rosser, S.J., Basran, A. and Bruce, N.C. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Appl. Environ. Microbiol. 66 (2000) 904–908. [DOI] [PMID: 10698749]
3.  Britt, A.J., Bruce, N.C. and Lowe, C.R. Identification of a cocaine esterase in a strain of Pseudomonas maltophilia. J. Bacteriol. 174 (1992) 2087–2094. [DOI] [PMID: 1551831]
4.  Larsen, N.A., Turner, J.M., Stevens, J., Rosser, S.J., Basran, A., Lerner, R.A., Bruce, N.C. and Wilson, I.A. Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9 (2002) 17–21. [DOI] [PMID: 11742345]
5.  Pindel, E.V., Kedishvili, N.Y., Abraham, T.L., Brzezinski, M.R., Zhang, J., Dean, R.A. and Bosron, W.F. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J. Biol. Chem. 272 (1997) 14769–14775. [DOI] [PMID: 9169443]
[EC created 2010]
Accepted name: pimelyl-[acyl-carrier protein] methyl ester esterase
Reaction: pimeloyl-[acyl-carrier protein] methyl ester + H2O = pimeloyl-[acyl-carrier protein] + methanol
Other name(s): BioH
Systematic name: pimeloyl-[acyl-carrier protein] methyl ester hydrolase
Comments: Involved in biotin biosynthesis in Gram-negative bacteria. The enzyme exhibits carboxylesterase activity, particularly toward substrates with short acyl chains [1,2]. Even though the enzyme can interact with coenzyme A thioesters [3], the in vivo role of the enzyme is to hydrolyse the methyl ester of pimeloyl-[acyl carrier protein], terminating the part of the biotin biosynthesis pathway that is catalysed by the fatty acid elongation enzymes [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Sanishvili, R., Yakunin, A.F., Laskowski, R.A., Skarina, T., Evdokimova, E., Doherty-Kirby, A., Lajoie, G.A., Thornton, J.M., Arrowsmith, C.H., Savchenko, A., Joachimiak, A. and Edwards, A.M. Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J. Biol. Chem. 278 (2003) 26039–26045. [DOI] [PMID: 12732651]
2.  Lemoine, Y., Wach, A. and Jeltsch, J.M. To be free or not: the fate of pimelate in Bacillus sphaericus and in Escherichia coli. Mol. Microbiol. 19 (1996) 645–647. [DOI] [PMID: 8830257]
3.  Tomczyk, N.H., Nettleship, J.E., Baxter, R.L., Crichton, H.J., Webster, S.P. and Campopiano, D.J. Purification and characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Lett. 513 (2002) 299–304. [DOI] [PMID: 11904168]
4.  Lin, S., Hanson, R.E. and Cronan, J.E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol. 6 (2010) 682–688. [DOI] [PMID: 20693992]
[EC created 2011]
Accepted name: rhamnogalacturonan acetylesterase
Reaction: Hydrolytic cleavage of 2-O-acetyl- or 3-O-acetyl groups of α-D-galacturonic acid in rhamnogalacturonan I.
Other name(s): RGAE
Systematic name: rhamnogalacturonan 2/3-O-acetyl-α-D-galacturonate O-acetylhydrolase
Comments: The degradation of rhamnogalacturonan by rhamnogalacturonases depends on the removal of the acetyl esters from the substrate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Kauppinen, S., Christgau, S., Kofod, L.V., Halkier, T., Dorreich, K. and Dalboge, H. Molecular cloning and characterization of a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. Synergism between rhamnogalacturonan degrading enzymes. J. Biol. Chem. 270 (1995) 27172–27178. [DOI] [PMID: 7592973]
2.  Molgaard, A., Kauppinen, S. and Larsen, S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8 (2000) 373–383. [PMID: 10801485]
[EC created 2011]
Accepted name: fumonisin B1 esterase
Reaction: fumonisin B1 + 2 H2O = aminopentol + 2 propane-1,2,3-tricarboxylate
Glossary: fumonisin B1 = (2R,2′R)-2,2′-{[(5R,6R,7S,9S,11R,16R,18S,19S)-19-amino-11,16,18-trihydroxy-5,9-dimethylicosane-6,7-diyl]bis[oxy(2-oxoethane-2,1-diyl)]}dibutanedioic acid
aminopentol = (2S,3S,5R,10R,12S,14S,15R,16R)-2-amino-12,16-dimethylicosane-3,5,10,14,15-pentol
Other name(s): fumD (gene name)
Systematic name: fumonisin B1 acylhydrolase
Comments: The enzyme is involved in degradation of fumonisin B1 [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Heinl, S., Hartinger, D., Thamhesl, M., Vekiru, E., Krska, R., Schatzmayr, G., Moll, W.D. and Grabherr, R. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. J. Biotechnol. 145 (2010) 120–129. [DOI] [PMID: 19922747]
[EC created 2011]
Accepted name: pyrethroid hydrolase
Reaction: trans-permethrin + H2O = (3-phenoxyphenyl)methanol + (1S,3R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate
Other name(s): pyrethroid-hydrolyzing carboxylesterase; pyrethroid-hydrolysing esterase; pyrethroid-hydrolyzing esterase; pyrethroid-selective esterase; pyrethroid-cleaving enzyme; permethrinase; PytH; EstP
Systematic name: pyrethroid-ester hydrolase
Comments: The enzyme is involved in degradation of pyrethroid pesticides. The enzymes from Sphingobium sp., Klebsiella sp. and Aspergillus niger hydrolyse cis-permethrin at approximately equal rate to trans-permethrin [1-3]. The enzyme from mouse hydrolyses trans-permethrin at a rate about 22-fold higher than cis-permethrin [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
1.  Wang, B.Z., Guo, P., Hang, B.J., Li, L., He, J. and Li, S.P. Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl. Environ. Microbiol. 75 (2009) 5496–5500. [DOI] [PMID: 19581484]
2.  Wu, P.C., Liu, Y.H., Wang, Z.Y., Zhang, X.Y., Li, H., Liang, W.Q., Luo, N., Hu, J.M., Lu, J.Q., Luan, T.G. and Cao, L.X. Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. J. Agric. Food Chem. 54 (2006) 836–842. [DOI] [PMID: 16448191]
3.  Liang, W.Q., Wang, Z.Y., Li, H., Wu, P.C., Hu, J.M., Luo, N., Cao, L.X. and Liu, Y.H. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J. Agric. Food Chem. 53 (2005) 7415–7420. [DOI] [PMID: 16159167]
4.  Stok, J.E., Huang, H., Jones, P.D., Wheelock, C.E., Morisseau, C. and Hammock, B.D. Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes. J. Biol. Chem. 279 (2004) 29863–29869. [DOI] [PMID: 15123619]
5.  Maloney, S.E., Maule, A. and Smith, A.R. Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Appl. Environ. Microbiol. 59 (1993) 2007–2013. [PMID: 8357241]
6.  Guo, P., Wang, B., Hang, B., Li, L., Ali, W., He, J. and Li, S. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int. Biodeter. Biodegrad. 63 (2009) 1107–1112.
[EC created 2011]
Accepted name: protein phosphatase methylesterase-1
Reaction: [phosphatase 2A protein]-leucine methyl ester + H2O = [phosphatase 2A protein]-leucine + methanol
Other name(s): PME-1; PPME1
Systematic name: [phosphatase 2A protein]-leucine ester acylhydrolase
Comments: A key regulator of protein phosphatase 2A. The methyl ester is formed by EC (leucine carboxy methyltransferase-1). Occurs mainly in the nucleus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Ogris, E., Du, X., Nelson, K.C., Mak, E.K., Yu, X.X., Lane, W.S. and Pallas, D.C. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J. Biol. Chem. 274 (1999) 14382–14391. [DOI] [PMID: 10318862]
2.  Xing, Y., Li, Z., Chen, Y., Stock, J.B., Jeffrey, P.D. and Shi, Y. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133 (2008) 154–163. [DOI] [PMID: 18394995]
[EC created 2011]
Accepted name: all-trans-retinyl ester 13-cis isomerohydrolase
Reaction: an all-trans-retinyl ester + H2O = 13-cis-retinol + a fatty acid
For diagram of retinal and derivatives biosynthesis, click here
Systematic name: all-trans-retinyl ester acylhydrolase, 13-cis-retinol-forming
Comments: All-trans-retinyl esters, which are a storage form of vitamin A, are generated by the activity of EC, phosphatidylcholine—retinol O-acyltransferase (LRAT). They can be hydrolysed to 11-cis-retinol by EC, retinoid isomerohydrolase (RPE65), or to 13-cis-retinol by this enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Takahashi, Y., Moiseyev, G., Chen, Y., Farjo, K., Nikolaeva, O. and Ma, J.X. An enzymatic mechanism for generating the precursor of endogenous 13-cis retinoic acid in the brain. FEBS J. 278 (2011) 973–987. [DOI] [PMID: 21235714]
[EC created 2011]
Accepted name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonase
Reaction: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + H2O = maleylpyruvate
Other name(s): naaC (gene name)
Systematic name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonohydrolase
Comments: This enzyme, characterized from the soil bacterium Bradyrhizobium sp. JS329, is involved in the pathway of 5-nitroanthranilate degradation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Qu, Y. and Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193 (2011) 3057–3063. [DOI] [PMID: 21498645]
[EC created 2012]
Accepted name: 4-sulfomuconolactone hydrolase
Reaction: 4-sulfomuconolactone + H2O = maleylacetate + sulfite
Glossary: 4-sulfomuconolactone = 4-carboxymethylen-4-sulfobut-2-en-olide = 2-(5-oxo-2-sulfo-2,5-dihydrofuran-2-yl)acetic acid
maleylacetate = (2Z)-4-oxohex-2-enedioate
Systematic name: 4-sulfomuconolactone sulfohydrolase
Comments: The enzyme was isolated from the bacteria Hydrogenophaga intermedia and Agrobacterium radiobacter S2. It catalyses a step in the degradation of 4-sulfocatechol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
1.  Halak, S., Basta, T., Burger, S., Contzen, M., Wray, V., Pieper, D.H. and Stolz, A. 4-sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. J. Bacteriol. 189 (2007) 6998–7006. [DOI] [PMID: 17660282]
[EC created 2012]
Accepted name: mycophenolic acid acyl-glucuronide esterase
Reaction: mycophenolic acid O-acyl-glucuronide + H2O = mycophenolate + D-glucuronate
Glossary: mycophenolate = (4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoate
mycophenolic acid O-acyl-glucuronide = 1-O-[(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoyl]-β-D-glucopyranuronic acid
Other name(s): mycophenolic acid acyl-glucuronide deglucuronidase; AcMPAG deglucuronidase
Systematic name: mycophenolic acid O-acyl-glucuronide-ester hydrolase
Comments: This liver enzyme deglucuronidates mycophenolic acid O-acyl-glucuronide, a metabolite of the immunosuppressant drug mycophenolate that is thought to be immunotoxic.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Iwamura, A., Fukami, T., Higuchi, R., Nakajima, M. and Yokoi, T. Human α/β hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver. J. Biol. Chem. 287 (2012) 9240–9249. [DOI] [PMID: 22294686]
[EC created 2012]
Accepted name: versiconal hemiacetal acetate esterase
Reaction: (1) versiconal hemiacetal acetate + H2O = versiconal + acetate
(2) versiconol acetate + H2O = versiconol + acetate
For diagram of aflatoxin biosynthesis (part 2), click here
Glossary: versiconal = (2S,3S)-2,4,6,8-tetrahydroxy-3-(2-hydroxyethyl)anthra[2,3-b]furan-5,10-dione
versiconal hemiacetal acetate = 2-[(2S,3S)-2,4,6,8-tetrahydroxy-5,10-dioxo-5,10-dihydroanthra[2,3-b]furan-3-yl]ethyl acetate
versiconol = 1,3,6,8-tetrahydroxy-3-[(2S)-1,4-dihydroxybutan-2-yl]anthracene-5,10-dione
versiconol acetate = (3S)-4-hydroxy-3-[1,3,6,8-tetrahydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl]butyl acetate
Other name(s): VHA esterase
Systematic name: versiconal-hemiacetal-acetate O-acetylhydrolase
Comments: Isolated from the mold Aspergillus parasiticus. Involved in a metabolic grid that leads to aflatoxin biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Kusumoto, K. and Hsieh, D.P. Purification and characterization of the esterases involved in aflatoxin biosynthesis in Aspergillus parasiticus. Can. J. Microbiol. 42 (1996) 804–810. [PMID: 8776851]
2.  Chang, P.K., Yabe, K. and Yu, J. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70 (2004) 3593–3599. [DOI] [PMID: 15184162]
[EC created 2013]
Accepted name: aclacinomycin methylesterase
Reaction: aclacinomycin T + H2O = 15-demethylaclacinomycin T + methanol
For diagram of aflatoxin biosynthesis, click here
Glossary: aclacinomycin T = 2-ethyl-1,2,3,4,6,11-hexahydro-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1-naphthacenecarboxylic acid methyl ester = methyl (1R,2R,4S)-2-ethyl-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
15-demethoxyaclacinomycin T = (1R,2R,4S)-2-ethyl-1,2,3,4,6,11-hexahydro-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1-naphthacenecarboxylic acid = (1R,2R,4S)-2-ethyl-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1,2,3,4,6,11-hexahydrotetracene-1-carboxylic acid
Other name(s): RdmC; aclacinomycin methyl esterase
Systematic name: aclacinomycin T acylhydrolase
Comments: The enzyme is involved in the modification of the aklavinone skeleton in the biosynthesis of anthracyclines in Streptomyces species.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Wang, Y., Niemi, J., Airas, K., Ylihonko, K., Hakala, J. and Mantsala, P. Modifications of aclacinomycin T by aclacinomycin methyl esterase (RdmC) and aclacinomycin-10-hydroxylase (RdmB) from Streptomyces purpurascens. Biochim. Biophys. Acta 1480 (2000) 191–200. [DOI] [PMID: 11004563]
2.  Jansson, A., Niemi, J., Mantsala, P. and Schneider, G. Crystal structure of aclacinomycin methylesterase with bound product analogues: implications for anthracycline recognition and mechanism. J. Biol. Chem. 278 (2003) 39006–39013. [DOI] [PMID: 12878604]
[EC created 2013]
Accepted name: D-aminoacyl-tRNA deacylase
Reaction: (1) a D-aminoacyl-tRNA + H2O = a D-amino acid + tRNA
(2) glycyl-tRNAAla + H2O = glycine + tRNAAla
Other name(s): Dtd2; D-Tyr-tRNA(Tyr) deacylase; D-Tyr-tRNATyr deacylase; D-tyrosyl-tRNATyr aminoacylhydrolase; dtdA (gene name)
Systematic name: D-aminoacyl-tRNA aminoacylhydrolase
Comments: The enzyme, found in all domains of life, can cleave mischarged glycyl-tRNAAla [5]. The enzyme from Escherichia coli can cleave D-tyrosyl-tRNATyr, D-aspartyl-tRNAAsp and D-tryptophanyl-tRNATrp [1]. Whereas the enzyme from the archaeon Pyrococcus abyssi is a zinc protein, the enzyme from Escherichia coli does not carry any zinc [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Soutourina, J., Plateau, P. and Blanquet, S. Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J. Biol. Chem. 275 (2000) 32535–32542. [DOI] [PMID: 10918062]
2.  Ferri-Fioni, M.L., Schmitt, E., Soutourina, J., Plateau, P., Mechulam, Y. and Blanquet, S. Structure of crystalline D-Tyr-tRNA(Tyr) deacylase. A representative of a new class of tRNA-dependent hydrolases. J. Biol. Chem. 276 (2001) 47285–47290. [DOI] [PMID: 11568181]
3.  Ferri-Fioni, M.L., Fromant, M., Bouin, A.P., Aubard, C., Lazennec, C., Plateau, P. and Blanquet, S. Identification in archaea of a novel D-Tyr-tRNATyr deacylase. J. Biol. Chem. 281 (2006) 27575–27585. [DOI] [PMID: 16844682]
4.  Wydau, S., Ferri-Fioni, M.L., Blanquet, S. and Plateau, P. GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase. Nucleic Acids Res. 35 (2007) 930–938. [DOI] [PMID: 17251192]
5.  Pawar, K.I., Suma, K., Seenivasan, A., Kuncha, S.K., Routh, S.B., Kruparani, S.P. and Sankaranarayanan, R. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. Elife 6:e24001 (2017). [DOI] [PMID: 28362257]
[EC created 2014, modified 2019]
Accepted name: methylated diphthine methylhydrolase
Reaction: diphthine methyl ester-[translation elongation factor 2] + H2O = diphthine-[translation elongation factor 2] + methanol
For diagram of diphthamide biosynthesis, click here
Glossary: diphthine methyl ester = 2-[(3S)-3-carboxy methyl ester-3-(trimethylammonio)propyl]-L-histidine
diphthine = 2-[(3S)-3-carboxy-3-(trimethylammonio)propyl]-L-histidine
Other name(s): Dph7; diphthine methylesterase (incorrect)
Systematic name: diphthine methyl ester acylhydrolase
Comments: The protein is only present in eukaryotes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Lin, Z., Su, X., Chen, W., Ci, B., Zhang, S. and Lin, H. Dph7 catalyzes a previously unknown demethylation step in diphthamide biosynthesis. J. Am. Chem. Soc. 136 (2014) 6179–6182. [DOI] [PMID: 24739148]
[EC created 2014, modified 2015]
Accepted name: [Wnt protein] O-palmitoleoyl-L-serine hydrolase
Reaction: [Wnt]-O-(9Z)-hexadec-9-enoyl-L-serine + H2O = [Wnt]-L-serine + (9Z)-hexadec-9-enoate
Glossary: (9Z)-hexadec-9-enoate = palmitoleoate
Other name(s): Notum
Systematic name: [Wnt]-O-(9Z)-hexadec-9-enoyl-L-serine acylhydrolase
Comments: The enzyme removes the palmitoleate modification that is introduced to specific L-serine residues in Wnt proteins by EC, [Wnt protein]-O-palmitoleoyl transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Kakugawa, S., Langton, P.F., Zebisch, M., Howell, S.A., Chang, T.H., Liu, Y., Feizi, T., Bineva, G., O'Reilly, N., Snijders, A.P., Jones, E.Y. and Vincent, J.P. Notum deacylates Wnt proteins to suppress signalling activity. Nature (2015) . [DOI] [PMID: 25731175]
[EC created 2015]
Accepted name: 6-deoxy-6-sulfogluconolactonase
Reaction: 6-deoxy-6-sulfo-D-glucono-1,5-lactone + H2O = 6-deoxy-6-sulfo-D-gluconate
Other name(s): SGL lactonase
Systematic name: 6-deoxy-6-sulfo-D-glucono-1,5-lactone lactonohydrolase
Comments: The enzyme, characterized from the bacterium Pseudomonas putida SQ1, participates in a sulfoquinovose degradation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Felux, A.K., Spiteller, D., Klebensberger, J. and Schleheck, D. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proc. Natl. Acad. Sci. USA 112 (2015) E4298–E4305. [DOI] [PMID: 26195800]
[EC created 2016]
Accepted name: chlorophyllide a hydrolase
Reaction: chlorophyllide a + H2O = 8-ethyl-12-methyl-3-vinyl-bacteriochlorophyllide d + methanol + CO2
For diagram of bacteriochlorophllide c and d biosynthesis, click here
Other name(s): bciC (gene name)
Systematic name: chlorophyllide-a hydrolase
Comments: This enzyme, found in green sulfur bacteria (Chlorobiaceae) and green filamentous bacteria (Chloroflexaceae), catalyses the first committed step in the biosynthesis of bacteriochlorophylls c, d and e, the removal of the C-132-methylcarboxyl group from chlorophyllide a. The reaction is very similar to the conversion of pheophorbide a to pyropheophorbide a during chlorophyll a degradation, which is catalysed by EC, pheophorbidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Liu, Z. and Bryant, D.A. Identification of a gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. J. Biol. Chem. 286 (2011) 22393–22402. [DOI] [PMID: 21550979]
[EC created 2016]

Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald