EC 3.1.1.1     
Accepted name: carboxylesterase
Reaction: a carboxylic ester + H2O = an alcohol + a carboxylate
Other name(s): ali-esterase; B-esterase; monobutyrase; cocaine esterase; procaine esterase; methylbutyrase; vitamin A esterase; butyryl esterase; carboxyesterase; carboxylate esterase; carboxylic esterase; methylbutyrate esterase; triacetin esterase; carboxyl ester hydrolase; butyrate esterase; methylbutyrase; α-carboxylesterase; propionyl esterase; nonspecific carboxylesterase; esterase D; esterase B; esterase A; serine esterase; carboxylic acid esterase; cocaine esterase
Systematic name: carboxylic-ester hydrolase
Comments: Wide specificity. The enzymes from microsomes also catalyse the reactions of EC 3.1.1.2 (arylesterase), EC 3.1.1.5 (lysophospholipase), EC 3.1.1.6 (acetylesterase), EC 3.1.1.23 (acylglycerol lipase), EC 3.1.1.28 (acylcarnitine hydrolase), EC 3.1.2.2 (palmitoyl-CoA hydrolase), EC 3.5.1.4 (amidase) and EC 3.5.1.13 (aryl-acylamidase). Also hydrolyses vitamin A esters.
References:
1.  Augusteyn, R.C., de Jersey, J., Webb, E.C. and Zerner, B. On the homology of the active-site peptides of liver carboxylesterases. Biochim. Biophys. Acta 171 (1969) 128–137. [PMID: 4884138]
2.  Barker, D.L. and Jencks, W.P. Pig liver esterase. Physical properties. Biochemistry 8 (1969) 3879–3889. [PMID: 4981346]
3.  Bertram, J. and Krisch, K. Hydrolysis of vitamin A acetate by unspecific carboxylesterases from liver and kidney. Eur. J. Biochem. 11 (1969) 122–126. [PMID: 5353595]
4.  Burch, J. The purification and properties of horse liver esterase. Biochem. J. 58 (1954) 415–426. [PMID: 13208632]
5.  Horgan, D.J., Stoops, J.K., Webb, E.C. and Zerner, B. Carboxylesterases (EC 3.1.1). A large-scale purification of pig liver carboxylesterase. Biochemistry 8 (1969) 2000–2006. [PMID: 5785220]
6.  Malhotra, O.P. and Philip, G. Specificity of goat intestinal esterase. Biochem. Z. 346 (1966) 386–402.
7.  Mentlein, R., Schumann, M. and Heymann, E. Comparative chemical and immunological characterization of five lipolytic enzymes (carboxylesterases) from rat liver microsomes. Arch. Biochem. Biophys. 234 (1984) 612–621. [PMID: 6208846]
8.  Runnegar, M.T.C., Scott, K., Webb, E.C. and Zerner, B. Carboxylesterases (EC 3.1.1). Purification and titration of ox liver carboxylesterase. Biochemistry 8 (1969) 2013–2018. [PMID: 5785222]
[EC 3.1.1.1 created 1961]
 
 
EC 3.1.1.2     
Accepted name: arylesterase
Reaction: a phenyl acetate + H2O = a phenol + acetate
Other name(s): A-esterase (ambiguous); paraoxonase (ambiguous); aromatic esterase
Systematic name: aryl-ester hydrolase
Comments: Acts on many phenolic esters. The reactions of EC 3.1.8.1 aryldialkylphosphatase, were previously attributed to this enzyme. It is likely that the three forms of human paraoxonase are lactonases rather than aromatic esterases [7,8]. The natural substrates of the paraoxonases are lactones [7,8], with (±)-5-hydroxy-6E,8Z,11Z,4Z-eicostetraenoic-acid 1,5-lactone being the best substrate [8].
References:
1.  Aldridge, W.N. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate and a method for their determination. Biochem. J. 53 (1953) 110–117. [PMID: 13032041]
2.  Augustinsson, K.-B. and Olsson, B. Esterases in the milk and blood plasma of swine. 1. Substrate specificity and electrophoresis studies. Biochem. J. 71 (1959) 477–484. [PMID: 13638253]
3.  Bosmann, H.B. Membrane marker enzymes. Characterization of an arylesterase of guinea pig cerebral cortex utilizing p-nitrophenyl acetate as substrate. Biochim. Biophys. Acta 276 (1972) 180–191. [PMID: 5047702]
4.  Kim, D.-H., Yang, Y.-S. and Jakoby, W.B. Nonserine esterases from rat liver cytosol. Protein Expr. Purif. 1 (1990) 19–27. [PMID: 2152179]
5.  Mackness, M.I., Thompson, H.M., Hardy, A.R. and Walker, C.H. Distinction between 'A′-esterases and arylesterases. Implications for esterase classification. Biochem. J. 245 (1987) 293–296. [PMID: 2822017]
6.  Reiner, E., Aldridge, W.N. and Hoskin, C.G. (Ed.), Enzymes Hydrolysing Organophosphorus Compounds, Ellis Horwood, Chichester, UK, 1989.
7.  Khersonsky, O. and Tawfik, D.S. Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry 44 (2005) 6371–6382. [PMID: 15835926]
8.  Draganov, D.I., Teiber, J.F., Speelman, A., Osawa, Y., Sunahara, R. and La Du, B.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res. 46 (2005) 1239–1247. [PMID: 15772423]
[EC 3.1.1.2 created 1961, modified 1989]
 
 
EC 3.1.1.3     
Accepted name: triacylglycerol lipase
Reaction: triacylglycerol + H2O = diacylglycerol + a carboxylate
Other name(s): lipase (ambiguous); butyrinase; tributyrinase; Tween hydrolase; steapsin; triacetinase; tributyrin esterase; Tweenase; amno N-AP; Takedo 1969-4-9; Meito MY 30; Tweenesterase; GA 56; capalase L; triglyceride hydrolase; triolein hydrolase; tween-hydrolyzing esterase; amano CE; cacordase; triglyceridase; triacylglycerol ester hydrolase; amano P; amano AP; PPL; glycerol-ester hydrolase; GEH; meito Sangyo OF lipase; hepatic lipase; lipazin; post-heparin plasma protamine-resistant lipase; salt-resistant post-heparin lipase; heparin releasable hepatic lipase; amano CES; amano B; tributyrase; triglyceride lipase; liver lipase; hepatic monoacylglycerol acyltransferase; PNLIP (gene name); LIPF (gene name)
Systematic name: triacylglycerol acylhydrolase
Comments: The enzyme is found in diverse organisms including animals, plants, fungi, and bacteria. It hydrolyses triglycerides into diglycerides and subsequently into monoglycerides and free fatty acids. The enzyme is highly soluble in water and acts at the surface of oil droplets. Access to the active site is controlled by the opening of a lid, which, when closed, hides the hydrophobic surface that surrounds the active site. The lid opens when the enzyme contacts an oil-water interface (interfacial activation). The pancreatic enzyme requires a protein cofactor, namely colipase, to counteract the inhibitory effects of bile salts.
References:
1.  Singer, T.P. and Hofstee, B.H.J. Studies on wheat germ lipase. I. Methods of estimation, purification and general properties of the enzyme. Arch. Biochem. 18 (1948) 229–243. [PMID: 18875045]
2.  Singer, T.P. and Hofstee, B.H.J. Studies on wheat germ lipase. II. Kinetics. Arch. Biochem. 18 (1948) 245–259. [PMID: 18875046]
3.  Sarda, L. and Desnuelle, P. Action de la lipase pancréatique sur les esters en émulsion. Biochim. Biophys. Acta 30 (1958) 513–521. [PMID: 13618257]
4.  Lynn, W.S. and Perryman, N.C. Properties and purification of adipose tissue lipase. J. Biol. Chem. 235 (1960) 1912–1916. [PMID: 14419169]
5.  Paznokas, J.L. and Kaplan, A. Purification and properties of a triacylglycerol lipase from Mycobacterium phlei. Biochim. Biophys. Acta 487 (1977) 405–421. [PMID: 18200]
6.  Tiruppathi, C. and Balasubramanian, K.A. Purification and properties of an acid lipase from human gastric juice. Biochim. Biophys. Acta 712 (1982) 692–697. [PMID: 7126632]
7.  Hills, M.J. and Mukherjee, K.D. Triacylglycerol lipase from rape (Brassica napus L.) suitable for biotechnological purposes. Appl. Biochem. Biotechnol. 26 (1990) 1–10. [PMID: 2268143]
8.  Winkler, F.K., D'Arcy, A. and Hunziker, W. Structure of human pancreatic lipase. Nature 343 (1990) 771–774. [PMID: 2106079]
9.  Kim, K.K., Song, H.K., Shin, D.H., Hwang, K.Y. and Suh, S.W. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5 (1997) 173–185. [PMID: 9032073]
10.  Kurat, C.F., Natter, K., Petschnigg, J., Wolinski, H., Scheuringer, K., Scholz, H., Zimmermann, R., Leber, R., Zechner, R. and Kohlwein, S.D. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J. Biol. Chem. 281 (2006) 491–500. [PMID: 16267052]
11.  Ranaldi, S., Belle, V., Woudstra, M., Bourgeas, R., Guigliarelli, B., Roche, P., Vezin, H., Carriere, F. and Fournel, A. Amplitude of pancreatic lipase lid opening in solution and identification of spin label conformational subensembles by combining continuous wave and pulsed EPR spectroscopy and molecular dynamics. Biochemistry 49 (2010) 2140–2149. [PMID: 20136147]
[EC 3.1.1.3 created 1961]
 
 
EC 3.1.1.4     
Accepted name: phospholipase A2
Reaction: phosphatidylcholine + H2O = 1-acylglycerophosphocholine + a carboxylate
Other name(s): lecithinase A; phosphatidase; phosphatidolipase; phospholipase A
Systematic name: phosphatidylcholine 2-acylhydrolase
Comments: Also acts on phosphatidylethanolamine, choline plasmalogen and phosphatides, removing the fatty acid attached to the 2-position. Requires Ca2+.
References:
1.  Doery, H.M. and Pearson, J.E. Haemolysins in venoms of Australian snakes. Observations on the haemolysins of the venoms of some Australian snakes and the separation of phospholipase A from the venom of Pseudechis porphyriacus. Biochem. J. 78 (1961) 820–827. [PMID: 13723433]
2.  Fraenkel-Conrat, H. and Fraenkel-Conrat, J. Inactivation of crotoxin by group-specific reagents. Biochim. Biophys. Acta 5 (1950) 98–104. [PMID: 15433984]
3.  Hanahan, D.J., Brockerhoff, H. and Barron, E.J. The site of attack of phospholipase (lecithinase) A on lecithin: a re-evaluation. Position of fatty acids on lecithins and triglycerides. J. Biol. Chem. 235 (1960) 1917–1923. [PMID: 14399412]
4.  Moore, J.H. and Williams, D.L. Some observations on the specificity of phospholipase A. Biochim. Biophys. Acta 84 (1964) 41–54. [PMID: 14124755]
5.  Saito, K. and Hanahan, D.J. A study of the purification and properties of the phospholipase A of Crotalus adamanteus venom. Biochemistry 1 (1962) 521–532. [PMID: 14496116]
6.  van den Bosch, H. Intracellular phospholipases A. Biochim. Biophys. Acta 604 (1980) 191–246. [PMID: 6252969]
[EC 3.1.1.4 created 1961, modified 1976, modified 1983]
 
 
EC 3.1.1.5     
Accepted name: lysophospholipase
Reaction: 2-lysophosphatidylcholine + H2O = glycerophosphocholine + a carboxylate
Other name(s): lecithinase B; lysolecithinase; phospholipase B; lysophosphatidase; lecitholipase; phosphatidase B; lysophosphatidylcholine hydrolase; lysophospholipase A1; lysophopholipase L2; lysophospholipase transacylase; neuropathy target esterase; NTE; NTE-LysoPLA; NTE-lysophospholipase
Systematic name: 2-lysophosphatidylcholine acylhydrolase
References:
1.  Abe, M., Ohno, K. and Sato, R. Possible identity of lysolecithin acyl-hydrolase with lysolecithin-lysolecithin acyl-transferase in rat-lung soluble fraction. Biochim. Biophys. Acta 369 (1974) 361–370.
2.  Contardi, A. and Ercoli, A. The enzymic cleavage of lecithin and lysolecithin. Biochem. Z. 261 (1933) 275–302.
3.  Dawson, R.M.C. Studies on the hydrolysis of lecithin by Penicillium notatum phospholipase B preparation. Biochem. J. 70 (1958) 559–570. [PMID: 13607409]
4.  Fairbairn, D. The preparation and properties of a lysophospholipase from Penicillium notatum. J. Biol. Chem. 173 (1948) 705–714. [PMID: 18910725]
5.  Shapiro, B. Purification and properties of a lysolecithinase from pancreas. Biochem. J. 53 (1953) 663–666. [PMID: 13032127]
6.  van den Bosch, H., Aarsman, A.J., De Jong, J.G.N. and van Deenen, L.L.M. Studies on lysophospholipases. I. Purification and some properties of a lysophospholipase from beef pancreas. Biochim. Biophys. Acta 296 (1973) 94–104. [PMID: 4693514]
7.  van den Bosch, H., Vianen, G.M. and van Heusden, G.P.H. Lysophospholipase-transacylase from rat lung. Methods Enzymol. 71 (1981) 513–521. [PMID: 7278668]
8.  van Tienhoven, M., Atkins, J., Li, Y. and Glynn, P. Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J. Biol. Chem. 277 (2002) 20942–20948. [PMID: 11927584]
9.  Quistad, G.B., Barlow, C., Winrow, C.J., Sparks, S.E. and Casida, J.E. Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc. Natl. Acad. Sci. USA 100 (2003) 7983–7987. [PMID: 12805562]
10.  Lush, M.J., Li, Y., Read, D.J., Willis, A.C. and Glynn, P. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem. J. 332 (1998) 1–4. [PMID: 9576844]
11.  Winrow, C.J., Hemming, M.L., Allen, D.M., Quistad, G.B., Casida, J.E. and Barlow, C. Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat. Genet. 33 (2003) 477–485. [PMID: 12640454]
[EC 3.1.1.5 created 1961, modified 1976, modified 1983]
 
 
EC 3.1.1.6     
Accepted name: acetylesterase
Reaction: an acetic ester + H2O = an alcohol + acetate
Other name(s): C-esterase (in animal tissues); acetic ester hydrolase; chloroesterase; p-nitrophenyl acetate esterase; Citrus acetylesterase
Systematic name: acetic-ester acetylhydrolase
References:
1.  Aldridge, W.N. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate and a method for their determination. Biochem. J. 53 (1953) 110–117. [PMID: 13032041]
2.  Bergmann, F. and Rimon, S. Fractionation of C-esterase from the hog's kidney extract. Biochem. J. 77 (1960) 209–214. [PMID: 16748846]
3.  Jansen, E.F., Nutting, M.-D.F. and Balls, A.K. The reversible inhibition of acetylesterase by diisopropyl fluorophosphate and tetraethyl pyrophosphate. J. Biol. Chem. 175 (1948) 975–987. [PMID: 18880795]
[EC 3.1.1.6 created 1961]
 
 
EC 3.1.1.7     
Accepted name: acetylcholinesterase
Reaction: acetylcholine + H2O = choline + acetate
Other name(s): true cholinesterase; choline esterase I; cholinesterase; acetylthiocholinesterase; acetylcholine hydrolase; acetyl.β-methylcholinesterase; AcCholE
Systematic name: acetylcholine acetylhydrolase
Comments: Acts on a variety of acetic esters; also catalyses transacetylations.
References:
1.  Augustinsson, K.-B. Cholinesterases. A study in comparative enzymology. Acta Physiol. Scand. 15, Suppl. 2 (1948) .
2.  Bergmann, F., Rimon, S. and Segal, R. Effect of pH on the activity of eel esterase towards different substrates. Biochem. J. 68 (1958) 493–499. [PMID: 13522650]
3.  Cilliv, G. and Ozand, P.T. Human erythrocyte acetylcholinesterase purification, properties and kinetic behavior. Biochim. Biophys. Acta 284 (1972) 136–156. [PMID: 5073758]
4.  Leuzinger, W., Baker, A.L. and Cauvin, E. Acetylcholinesterase. II. Crystallization, absorption spectra, isoionic point. Proc. Natl. Acad. Sci. USA 59 (1968) 620–623. [PMID: 5238989]
5.  Nachmansohn, D. and Wilson, I.B. The enzymic hydrolysis and synthesis of acetylcholine. Adv. Enzymol. Relat. Subj. Biochem. 12 (1951) 259–339. [PMID: 14885021]
6.  Zittle, C.A., DellaMonica, E.S., Custer, J.H. and Krikorian, R. Purification of human red cell acetylcholinesterase by electrophoresis, ultracentrifugation and gradient extraction. Arch. Biochem. Biophys. 56 (1955) 469–475. [PMID: 14377597]
[EC 3.1.1.7 created 1961]
 
 
EC 3.1.1.8     
Accepted name: cholinesterase
Reaction: an acylcholine + H2O = choline + a carboxylate
Other name(s): pseudocholinesterase; butyrylcholine esterase; non-specific cholinesterase; choline esterase II (unspecific); benzoylcholinesterase; choline esterase; butyrylcholinesterase; propionylcholinesterase; BtChoEase
Systematic name: acylcholine acylhydrolase
Comments: Acts on a variety of choline esters and a few other compounds.
References:
1.  Augustinsson, K.-B. Cholinesterases. A study in comparative enzymology. Acta Physiol. Scand. 15, Suppl. 2 (1948) .
2.  Augustinsson, K.-B. and Olsson, B. Esterases in the milk and blood plasma of swine. 1. Substrate specificity and electrophoresis studies. Biochem. J. 71 (1959) 477–484. [PMID: 13638253]
3.  Koelle, G.B. Cholinesterases of the tissues and sera of rabbits. Biochem. J. 53 (1953) 217–226. [PMID: 13032058]
4.  Nachmansohn, D. and Wilson, I.B. The enzymic hydrolysis and synthesis of acetylcholine. Adv. Enzymol. Relat. Subj. Biochem. 12 (1951) 259–339. [PMID: 14885021]
5.  Sawyer, C.H. Hydrolysis of choline esters by liver. Science 101 (1945) 385–386. [PMID: 17780326]
6.  Strelitz, F. Studies on cholinesterase. 4. Purification of pseudo-cholinesterase from horse serum. Biochem. J. 38 (1944) 86–88. [PMID: 16747753]
[EC 3.1.1.8 created 1961]
 
 
EC 3.1.1.9      
Deleted entry:  benzoylcholinesterase; a side reaction of EC 3.1.1.8 cholinesterase
[EC 3.1.1.9 created 1961, deleted 1972]
 
 
EC 3.1.1.10     
Accepted name: tropinesterase
Reaction: atropine + H2O = tropine + tropate
Other name(s): tropine esterase; atropinase; atropine esterase
Systematic name: atropine acylhydrolase
Comments: Also acts on cocaine and other tropine esters.
References:
1.  Glick, D., Glaubach, S. and Moore, D.H. Azolesterase activities of electrophoretically separated proteins of serum. J. Biol. Chem. 144 (1942) 525–528.
2.  Moog, P. and Krisch, K. [The purification and characterization of atropine esterase from rabbit liver microsomes] Hoppe-Seyler's Z. Physiol. Chem. 355 (1974) 529–542. [PMID: 4435736]
[EC 3.1.1.10 created 1961, deleted 1972, reinstated 1976]
 
 
EC 3.1.1.11     
Accepted name: pectinesterase
Reaction: pectin + n H2O = n methanol + pectate
Other name(s): pectin demethoxylase; pectin methoxylase; pectin methylesterase; pectase; pectin methyl esterase; pectinoesterase
Systematic name: pectin pectylhydrolase
References:
1.  Deuel, H. and Stutz, E. Pectic substances and pectic enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 20 (1958) 341–382. [PMID: 13605988]
2.  Lineweaver, H. and Jansen, E.F. Pectic enzymes. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 267–295.
3.  Mills, G.B. A biochemical study of Pseudomonas prunicola Wormald. I. Pectin esterase. Biochem. J. 44 (1949) 302–305. [PMID: 16748520]
[EC 3.1.1.11 created 1961]
 
 
EC 3.1.1.12      
Deleted entry:  vitamin A esterase, now believed to be identical with EC 3.1.1.1 carboxylesterase
[EC 3.1.1.12 created 1961, deleted 1972]
 
 
EC 3.1.1.13     
Accepted name: sterol esterase
Reaction: a steryl ester + H2O = a sterol + a fatty acid
Other name(s): cholesterol esterase; cholesteryl ester synthase; triterpenol esterase; cholesteryl esterase; cholesteryl ester hydrolase; sterol ester hydrolase; cholesterol ester hydrolase; cholesterase; acylcholesterol lipase
Systematic name: steryl-ester acylhydrolase
Comments: A group of enzymes of broad specificity, acting on esters of sterols and long-chain fatty acids, that may also bring about the esterification of sterols. Activated by bile salts.
References:
1.  Hyun, J., Kothari, H., Herm, E., Mortenson, J., Treadwell, C.R. and Vahouny, G.V. Purification and properties of pancreatic juice cholesterol esterase. J. Biol. Chem. 244 (1969) 1937–1945. [PMID: 5780846]
2.  Okawa, Y. and Yamaguchi, T. Studies on sterol-ester hydrolase from Fusarium oxysporum. I. Partial purification and properties. J. Biochem. (Tokyo) 81 (1977) 1209–1215. [PMID: 19426]
3.  Vahouny, G.V. and Tradwell, C.R. Enzymatic synthesis and hydrolysis of cholesterol esters. Methods Biochem. Anal. 16 (1968) 219–272. [PMID: 4877146]
4.  Warnaar, F. Triterpene ester synthesis in latex of Euphorbia species. Phytochemistry 26 (1987) 2715–2721.
[EC 3.1.1.13 created 1961, modified 1990]
 
 
EC 3.1.1.14     
Accepted name: chlorophyllase
Reaction: chlorophyll + H2O = phytol + chlorophyllide
Other name(s): CLH; Chlase
Systematic name: chlorophyll chlorophyllidohydrolase
Comments: Chlorophyllase has been found in higher plants, diatoms, and in the green algae Chlorella [3]. This enzyme forms part of the chlorophyll degradation pathway and is thought to take part in de-greening processes such as fruit ripening, leaf senescence and flowering, as well as in the turnover and homeostasis of chlorophyll [4]. This enzyme acts preferentially on chlorophyll a but will also accept chlorophyll b and pheophytins as substrates [5]. Ethylene and methyl jasmonate, which are known to accelerate senescence in many species, can enhance the activity of the hormone-inducible form of this enzyme [5].
References:
1.  Holden, M. The breakdown of chlorophyll by chlorophyllase. Biochem. J. 78 (1961) 359–364. [PMID: 13715233]
2.  Klein, A.O. and Vishniac, W. Activity and partial purification of chlorophyllase in aqueous systems. J. Biol. Chem. 236 (1961) 2544–2547. [PMID: 13756631]
3.  Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T. and Takamiya, K. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl. Acad. Sci. USA 96 (1999) 15362–15367. [PMID: 10611389]
4.  Okazawa, A., Tango, L., Itoh, Y., Fukusaki, E. and Kobayashi, A. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Z. Naturforsch. [C] 61 (2006) 111–117. [PMID: 16610227]
5.  Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57 (2006) 55–77. [PMID: 16669755]
[EC 3.1.1.14 created 1961, modified 2007]
 
 
EC 3.1.1.15     
Accepted name: L-arabinonolactonase
Reaction: L-arabinono-1,4-lactone + H2O = L-arabinonate
Systematic name: L-arabinono-1,4-lactone lactonohydrolase
References:
1.  Weimberg, R. and Doudoroff, M. The oxidation of L-arabinose by Pseudomonas saccharophila. J. Biol. Chem. 217 (1955) 607–624. [PMID: 13271422]
[EC 3.1.1.15 created 1961]
 
 
EC 3.1.1.16      
Deleted entry:  4-carboxymethyl-4-hydroxyisocrotonolactonase. This reaction was due to a mixture of EC 5.3.3.4 (muconolactone Δ-isomerase) and EC 3.1.1.24 (3-oxoadipate enol-lactonase)
[EC 3.1.1.16 created 1961, deleted 1972]
 
 
EC 3.1.1.17     
Accepted name: gluconolactonase
Reaction: D-glucono-1,5-lactone + H2O = D-gluconate
Other name(s): lactonase; aldonolactonase; glucono-δ-lactonase; gulonolactonase
Systematic name: D-glucono-1,5-lactone lactonohydrolase
Comments: Acts on a wide range of hexose-1,5-lactones. The hydrolysis of L-gulono-1,5-lactone was previously listed separately.
References:
1.  Brodie, A.F. and Lipmann, F. Identification of a gluconolactonase. J. Biol. Chem. 212 (1955) 677–685. [PMID: 14353869]
2.  Bublitz, C. and Lehninger, A.L. The role of aldonolactonase in the conversion of L-gulonate to L-ascorbate. Biochim. Biophys. Acta 47 (1961) 288–297.
3.  Suzuki, K., Kawada, M. and Shimazono, N. Soluble lactonase. Identity of lactonase I and aldonolactonase with gluconolactonase. J. Biochem. (Tokyo) 49 (1961) 448–449.
[EC 3.1.1.17 created 1961 (EC 3.1.1.18 created 1961, incorporated 1982)]
 
 
EC 3.1.1.18      
Deleted entry:  aldonolactonase. Now included with EC 3.1.1.17 gluconolactonase
[EC 3.1.1.18 created 1961, deleted 1982]
 
 
EC 3.1.1.19     
Accepted name: uronolactonase
Reaction: D-glucurono-6,2-lactone + H2O = D-glucuronate
Other name(s): glucuronolactonase
Systematic name: D-glucurono-6,2-lactone lactonohydrolase
References:
1.  Winkelman, J. and Lehninger, A.L. Aldono- and uronolactonase of animal tissues. J. Biol. Chem. 233 (1958) 794–799. [PMID: 13587494]
[EC 3.1.1.19 created 1961]
 
 
EC 3.1.1.20     
Accepted name: tannase
Reaction: digallate + H2O = 2 gallate
Glossary: gallate = 3,4,5-trihydroxybenzoate
digallate = 3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)benzoate
Other name(s): tannase S; tannin acetylhydrolase
Systematic name: tannin acylhydrolase
Comments: Also hydrolyses ester links in other tannins.
References:
1.  Dyckerhoff, H. and Armbruster, R. Zur Kenntnis der Tannase. Hoppe-Seyler's Z. Physiol. Chem. 219 (1933) 38–56.
[EC 3.1.1.20 created 1961]
 
 
EC 3.1.1.21      
Deleted entry: retinyl-palmitate esterase. Now known to be catalysed by EC 3.1.1.1, carboxylesterase and EC 3.1.1.3, triacylglycerol lipase.
[EC 3.1.1.21 created 1972, deleted 2011]
 
 
EC 3.1.1.22     
Accepted name: hydroxybutyrate-dimer hydrolase
Reaction: (R)-3-((R)-3-hydroxybutanoyloxy)butanoate + H2O = 2 (R)-3-hydroxybutanoate
Other name(s): D-(-)-3-hydroxybutyrate-dimer hydrolase
Systematic name: (R)-3-((R)-3-hydroxybutanoyloxy)butanoate hydroxybutanoylhydrolase
References:
1.  Delafield, F.P., Cooksey, K.E. and Doudoroff, M. β-Hydroxybutyric dehydrogenase and dimer hydrolase of Pseudomonas lemoignei. J. Biol. Chem. 240 (1965) 4023–4028. [PMID: 4954074]
[EC 3.1.1.22 created 1972]
 
 
EC 3.1.1.23     
Accepted name: acylglycerol lipase
Reaction: Hydrolyses glycerol monoesters of long-chain fatty acids
Other name(s): monoacylglycerol lipase; monoacylglycerolipase; monoglyceride lipase; monoglyceride hydrolase; fatty acyl monoester lipase; monoacylglycerol hydrolase; monoglyceridyllipase; monoglyceridase
Systematic name: glycerol-ester acylhydrolase
References:
1.  Mentlein, R., Heiland, S. and Heymann, E. Simultaneous purification and comparative characterization of six serine hydrolases from rat liver microsomes. Arch. Biochem. Biophys. 200 (1980) 547–559. [PMID: 6776896]
2.  Pope, J.L., McPherson, J.C. and Tidwell, H.C. A study of a monoglyceride-hydrolyzing enzyme of intestinal mucosa. J. Biol. Chem. 241 (1966) 2306–2310. [PMID: 5916497]
[EC 3.1.1.23 created 1972]
 
 
EC 3.1.1.24     
Accepted name: 3-oxoadipate enol-lactonase
Reaction: 3-oxoadipate enol-lactone + H2O = 3-oxoadipate
Other name(s): carboxymethylbutenolide lactonase; β-ketoadipic enol-lactone hydrolase; 3-ketoadipate enol-lactonase; 3-oxoadipic enol-lactone hydrolase; β-ketoadipate enol-lactone hydrolase
Systematic name: 4-carboxymethylbut-3-en-4-olide enol-lactonohydrolase
Comments: The enzyme acts on the product of EC 4.1.1.44 4-carboxymuconolactone decarboxylase.
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J. Biol. Chem. 241 (1966) 3787–3794. [PMID: 5916392]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 3.1.1.24 created 1961 as EC 3.1.1.16, part transferred 1972 to EC 3.1.1.24]
 
 
EC 3.1.1.25     
Accepted name: 1,4-lactonase
Reaction: a 1,4-lactone + H2O = a 4-hydroxyacid
Other name(s): γ-lactonase
Systematic name: 1,4-lactone hydroxyacylhydrolase
Comments: The enzyme is specific for 1,4-lactones with 4-8 carbon atoms. It does not hydrolyse simple aliphatic esters, acetylcholine, sugar lactones or substituted aliphatic lactones, e.g. 3-hydroxy-4-butyrolactone; requires Ca2+.
References:
1.  Fishbein, W.N. and Bessman, S.P. Purification and properties of an enzyme in human blood and rat liver microsomes catalyzing the formation and hydrolysis of γ-lactones. I. Tissue localization, stoichiometry, specificity, distinction from esterase. J. Biol. Chem. 241 (1966) 4835–4841. [PMID: 4958984]
2.  Fishbein, W.N. and Bessman, S.P. Purification and properties of an enzyme in human blood and rat liver microsomes catalyzing the formation and hydrolysis of γ-lactones. II. Metal ion effects, kinetics, and equilibria. J. Biol. Chem. 241 (1966) 4842–4847. [PMID: 4958985]
[EC 3.1.1.25 created 1972, modified 1981]
 
 
EC 3.1.1.26     
Accepted name: galactolipase
Reaction: 1,2-diacyl-3-β-D-galactosyl-sn-glycerol + 2 H2O = 3-β-D-galactosyl-sn-glycerol + 2 carboxylates
Other name(s): galactolipid lipase; polygalactolipase; galactolipid acylhydrolase
Systematic name: 1,2-diacyl-3-β-D-galactosyl-sn-glycerol acylhydrolase
Comments: Also acts on 2,3-di-O-acyl-1-O-(6-O-α-D-galactosyl-β-D-galactosyl)-D-glycerol, and phosphatidylcholine and other phospholipids.
References:
1.  Helmsing, P.J. Purification and properties of galactolipase. Biochim. Biophys. Acta 178 (1969) 519–533. [PMID: 5784904]
2.  Hirayama, O., Matsuda, H., Takeda, H., Maenaka, K. and Takatsuka, H. Purification and properties of a lipid acyl-hydrolase from potato tubers. Biochim. Biophys. Acta 384 (1975) 127–137. [PMID: 236765]
[EC 3.1.1.26 created 1972]
 
 
EC 3.1.1.27     
Accepted name: 4-pyridoxolactonase
Reaction: 4-pyridoxolactone + H2O = 4-pyridoxate
Systematic name: 4-pyridoxolactone lactonohydrolase
References:
1.  Burg, R.W. and Snell, E.E. The bacterial oxidation of vitamin B6. VI. Pyridoxal dehydrogenase and 4-pyridoxolactonase. J. Biol. Chem. 244 (1969) 2585–2589. [PMID: 4306030]
[EC 3.1.1.27 created 1972]
 
 
EC 3.1.1.28     
Accepted name: acylcarnitine hydrolase
Reaction: O-acylcarnitine + H2O = a fatty acid + L-carnitine
Other name(s): high activity acylcarnitine hydrolase; HACH; carnitine ester hydrolase; palmitoylcarnitine hydrolase; palmitoyl-L-carnitine hydrolase; long-chain acyl-L-carnitine hydrolase; palmitoyl carnitine hydrolase
Systematic name: O-acylcarnitine acylhydrolase
Comments: Acts on higher fatty acid (C6 to C18) esters of L-carnitine; highest activity is with O-decanoyl-L-carnitine.
References:
1.  Mahadevan, S. and Sauer, F. Carnitine ester hydrolase of rat liver. J. Biol. Chem. 244 (1969) 4448–4453. [PMID: 5806585]
2.  Mentlein, R., Reuter, G. and Heymann, E. Specificity of two different purified acylcarnitine hydrolases from rat liver, their identity with other carboxylesterases, and their possible function. Arch. Biochem. Biophys. 240 (1985) 801–810. [PMID: 4026306]
[EC 3.1.1.28 created 1972]
 
 
EC 3.1.1.29     
Accepted name: aminoacyl-tRNA hydrolase
Reaction: N-substituted aminoacyl-tRNA + H2O = N-substituted amino acid + tRNA
Other name(s): aminoacyl-transfer ribonucleate hydrolase; N-substituted aminoacyl transfer RNA hydrolase; peptidyl-tRNA hydrolase
Systematic name: aminoacyl-tRNA aminoacylhydrolase
References:
1.  Jost, J.-P. and Bock, R.M. Enzymatic hydrolysis of N-substituted aminoacyl transfer ribonucleic acid in yeast. J. Biol. Chem. 244 (1969) 5866–5873. [PMID: 4981785]
[EC 3.1.1.29 created 1972]
 
 
EC 3.1.1.30     
Accepted name: D-arabinonolactonase
Reaction: D-arabinono-1,4-lactone + H2O = D-arabinonate
Systematic name: D-arabinono-1,4-lactone lactonohydrolase
References:
1.  Palleroni, N.J. and Doudoroff, M. Metabolism of carbohydrates by Pseudomonas saccharophilla. III. Oxidation of D-arabinose. J. Bacteriol. 74 (1957) 180–185. [PMID: 13475218]
[EC 3.1.1.30 created 1972]
 
 
EC 3.1.1.31     
Accepted name: 6-phosphogluconolactonase
Reaction: 6-phospho-D-glucono-1,5-lactone + H2O = 6-phospho-D-gluconate
Other name(s): phosphogluconolactonase; 6-PGL
Systematic name: 6-phospho-D-glucono-1,5-lactone lactonohydrolase
References:
1.  Kawada, M., Kagawa, Y., Takiguchi, H. and Shimazono, N. Purification of 6-phosphogluconolactonase from rat liver and yeast; its separation from gluconolactonase. Biochim. Biophys. Acta 57 (1962) 404–407. [PMID: 14454532]
2.  Miclet, E., Stoven, V., Michels, P.A., Opperdoes, F.R., Lallemand, J.-Y. and Duffieux, F. NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J. Biol. Chem. 276 (2001) 34840–34846. [PMID: 11457850]
[EC 3.1.1.31 created 1972]
 
 
EC 3.1.1.32     
Accepted name: phospholipase A1
Reaction: phosphatidylcholine + H2O = 2-acylglycerophosphocholine + a carboxylate
Systematic name: phosphatidylcholine 1-acylhydrolase
Comments: This enzyme has a much broader specificity than EC 3.1.1.4 phospholipase A2. Requires Ca2+.
References:
1.  Gatt, S. Purification and properties of phospholipase A-1 from rat and calf brain. Biochim. Biophys. Acta 159 (1968) 304–316. [PMID: 5657461]
2.  Scandella, C.J. and Kornberg, A. A membrane-bound phospholipase A1 purified from Escherichia coli. Biochemistry 10 (1971) 4447–4456. [PMID: 4946924]
3.  van den Bosch, H. Intracellular phospholipases A. Biochim. Biophys. Acta 604 (1980) 191–246. [PMID: 6252969]
4.  van den Bosch, H., Aarsman, A.J. and van Deenen, L.L.M. Isolation and properties of a phospholipase A1 activity from beef pancreas. Biochim. Biophys. Acta 348 (1974) 197–209. [PMID: 4858811]
[EC 3.1.1.32 created 1972, modified 1976]
 
 
EC 3.1.1.33     
Accepted name: 6-acetylglucose deacetylase
Reaction: 6-acetyl-D-glucose + H2O = D-glucose + acetate
Other name(s): 6-O-acetylglucose deacetylase
Systematic name: 6-acetyl-D-glucose acetylhydrolase
References:
1.  Duff, R.B. and Webley, D.M. Metabolism of 6-O-acetyl-D-glucopyranose and other monoacetyl-sugars by strains of Bacillus megaterium and other soil organisms. Biochem. J. 70 (1958) 520–528. [PMID: 13596370]
[EC 3.1.1.33 created 1972]
 
 
EC 3.1.1.34     
Accepted name: lipoprotein lipase
Reaction: triacylglycerol + H2O = diacylglycerol + a carboxylate
Other name(s): clearing factor lipase; diacylglycerol lipase; postheparin esterase; diglyceride lipase; postheparin lipase; diacylglycerol hydrolase; lipemia-clearing factor; hepatic triacylglycerol lipase; LIPC (gene name); LPL (gene name); triacylglycero-protein acylhydrolase
Systematic name: triacylglycerol acylhydrolase (lipoprotein-dependent)
Comments: Hydrolyses triacylglycerols and diacylglycerol in chylomicrons and low-density lipoprotein particles. Human protein purified from post-heparin plasma (LPL) shows no activity against triglyceride in the absence of added lipoprotein. The principal reaction sequence of that enzyme is triglyceride → 1,2-diglyceride → 2-monoglyceride. The hepatic enzyme (LIPC) also hydrolyses triglycerides and phospholipids present in circulating plasma lipoproteins.
References:
1.  Egelrud, T. and Olivecrona, T. Purified bovine milk (lipoprotein) lipase: activity against lipid substrates in the absence of exogenous serum factors. Biochim. Biophys. Acta 306 (1973) 115–127. [PMID: 4703566]
2.  Fielding, C.J. Human lipoprotein lipase. I. Purification and substrate specificity. Biochim. Biophys. Acta 206 (1970) 109–117. [PMID: 5441398]
3.  Greten, H., Levy, R.I., Fales, H. and Fredrickson, D.S. Hydrolysis of diglyceride and glyceryl monoester diethers with lipoprotein lipase. Biochim. Biophys. Acta 210 (1970) 39–45. [PMID: 5466051]
4.  Morley, N. and Kuksis, A. Positional specificity of lipoprotein lipase. J. Biol. Chem. 247 (1972) 6389–6393. [PMID: 5076762]
5.  Nilsson-Ehle, P., Belfrage, P. and Borgström, B. Purified human lipoprotein lipase: positional specificity. Biochim. Biophys. Acta 248 (1971) 114–120. [PMID: 5168777]
6.  Santamarina-Fojo, S., Gonzalez-Navarro, H., Freeman, L., Wagner, E. and Nong, Z. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol 24 (2004) 1750–1754. [PMID: 15284087]
[EC 3.1.1.34 created 1972, modified 1976]
 
 
EC 3.1.1.35     
Accepted name: dihydrocoumarin hydrolase
Reaction: dihydrocoumarin + H2O = melilotate
Systematic name: dihydrocoumarin lactonohydrolase
Comments: Also hydrolyses some other benzenoid 1,4-lactones.
References:
1.  Kosuge, T. and Conn, E.E. The metabolism of aromatic compounds in higher plants. V. Purification and properties of dihydrocoumarin hydrolase of Melilotus alba. J. Biol. Chem. 237 (1962) 1653–1656. [PMID: 14458747]
[EC 3.1.1.35 created 1972]
 
 
EC 3.1.1.36     
Accepted name: limonin-D-ring-lactonase
Reaction: limonoate D-ring-lactone + H2O = limonoate
Other name(s): limonin-D-ring-lactone hydrolase; limonin lactone hydrolase
Systematic name: limonoate-D-ring-lactone lactonohydrolase
Comments: Limonoate is a triterpenoid.
References:
1.  Maier, V.P., Hasegawa, S. and Hera, E. Limonin D-ring-lactone hydrolase. A new enzyme from Citrus seeds. Phytochemistry 8 (1969) 405–407.
[EC 3.1.1.36 created 1972]
 
 
EC 3.1.1.37     
Accepted name: steroid-lactonase
Reaction: testololactone + H2O = testolate
Glossary: testololactone = 3-oxo-13,17-secoandrost-4-eno-17,13-lactone
testolate = 13-hydroxy-3-oxo-13,17-secoandrost-4-en-17-oate
Systematic name: testololactone lactonohydrolase
References:
1.  Holmlund, C.E. and Blank, R.H. Preparation and properties of a steroid lactonase. Arch. Biochem. Biophys. 109 (1965) 29–35. [PMID: 14281950]
[EC 3.1.1.37 created 1972]
 
 
EC 3.1.1.38     
Accepted name: triacetate-lactonase
Reaction: triacetate lactone + H2O = triacetate
Other name(s): triacetic lactone hydrolase; triacetic acid lactone hydrolase; TAL hydrolase; triacetate lactone hydrolase
Systematic name: triacetolactone lactonohydrolase
References:
1.  Kato, S., Ueda, H., Nonomura, S. and Tatsumi, C. [Degradation of dehydroacetic acid by microorganisms. III. Properties of triacetic acid lactone hydrolase.] Nippon Nogei Kagaku Kaishi 42 (1968) 596–600. (in Japanese)
[EC 3.1.1.38 created 1972]
 
 
EC 3.1.1.39     
Accepted name: actinomycin lactonase
Reaction: actinomycin + H2O = actinomycinic monolactone
Systematic name: actinomycin lactonohydrolase
References:
1.  Hou, C.T. and Perlman, D. Microbial transformations of peptide antibiotics. V. Purification and properties of the actinomycin lactonase from Actinoplanes missouriensis. J. Biol. Chem. 245 (1970) 1289–1295. [PMID: 4191854]
[EC 3.1.1.39 created 1972]
 
 
EC 3.1.1.40     
Accepted name: orsellinate-depside hydrolase
Reaction: orsellinate depside + H2O = 2 orsellinate
Glossary: orsellinate = 2,4-dihydroxy-6-methylbenzoate
Other name(s): lecanorate hydrolase
Systematic name: orsellinate-depside hydrolase
Comments: The enzyme will only hydrolyse those substrates based on the 2,4-dihydroxy-6-methylbenzoate structure that also have a free hydroxy group ortho to the depside linkage.
References:
1.  Schultz, J. and Mosbach, K. Studies on lichen enzymes. Purification and properties of an orsellinate depside hydrolase obtained from Lasallia pustulata. Eur. J. Biochem. 22 (1971) 153–157. [PMID: 5116606]
[EC 3.1.1.40 created 1976]
 
 
EC 3.1.1.41     
Accepted name: cephalosporin-C deacetylase
Reaction: cephalosporin C + H2O = deacetylcephalosporin C + acetate
Other name(s): cephalosporin C acetyl-hydrolase; cephalosporin C acetylase; cephalosporin acetylesterase; cephalosporin C acetylesterase; cephalosporin C acetyl-esterase; cephalosporin C deacetylase
Systematic name: cephalosporin-C acetylhydrolase
Comments: Hydrolyses the acetyl ester bond on the 10-position of the antibiotic cephalosporin C.
References:
1.  Fujisawa, Y., Shirafuji, H., Kida, M. and Nara, K. New findings on cephalosporin C biosynthesis. Nat. New Biol. 246 (1973) 154–155. [PMID: 4519146]
[EC 3.1.1.41 created 1976]
 
 
EC 3.1.1.42     
Accepted name: chlorogenate hydrolase
Reaction: chlorogenate + H2O = caffeate + quinate
Other name(s): chlorogenase; chlorogenic acid esterase
Systematic name: chlorogenate hydrolase
Comments: Also acts, more slowly, on isochlorogenate. No other substrates are known.
References:
1.  Schöbel, B. and Pollmann, W. Isolation and characterization of a chlorogenic acid esterase from Aspergillus niger. Z. Naturforsch. C: Biosci. 35 (1980) 209–212. [PMID: 7385941]
2.  Schöbel, B. and Pollmann, W. Weitere Charakterisierung einer Chlorogensäure - Hydrolase aus Aspergillus niger. Z. Naturforsch. C: Biosci. 35 (1980) 699–701. [PMID: 7445677]
[EC 3.1.1.42 created 1981]
 
 
EC 3.1.1.43     
Accepted name: α-amino-acid esterase
Reaction: an α-amino acid ester + H2O = an α-amino acid + an alcohol
Other name(s): α-amino acid ester hydrolase
Systematic name: α-amino-acid-ester aminoacylhydrolase
Comments: Also catalyses α-aminoacyl transfer to a number of amine nucleophiles.
References:
1.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Purification of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1069–1074.
2.  Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. Substrate specificity of an α-amino acid ester hydrolase from Xanthomonas citri. Agric. Biol. Chem. 44 (1980) 1075–1081.
3.  Takahashi, T., Yamazaki, Y. and Kato, K. Substrate specificity of an α-amino acid ester hydrolase produced by Acetobacter turbidans A. T.C.C. 9325. Biochem. J. 137 (1974) 497–503. [PMID: 4424889]
[EC 3.1.1.43 created 1983]
 
 
EC 3.1.1.44     
Accepted name: 4-methyloxaloacetate esterase
Reaction: oxaloacetate 4-methyl ester + H2O = oxaloacetate + methanol
Systematic name: oxaloacetate-4-methyl-ester oxaloacetohydrolase
References:
1.  Donnelly, M.I. and Dagley, S. Production of methanol from aromatic acids by Pseudomonas putida. J. Bacteriol. 142 (1980) 916–924. [PMID: 7380811]
[EC 3.1.1.44 created 1983]
 
 
EC 3.1.1.45     
Accepted name: carboxymethylenebutenolidase
Reaction: 4-carboxymethylenebut-2-en-4-olide + H2O = 4-oxohex-2-enedioate
Other name(s): maleylacetate enol-lactonase; dienelactone hydrolase; carboxymethylene butenolide hydrolase
Systematic name: 4-carboxymethylenebut-2-en-4-olide lactonohydrolase
References:
1.  Schmidt, E. and Knackmuss, H.-J. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem. J. 192 (1980) 339–347. [PMID: 7305906]
[EC 3.1.1.45 created 1983]
 
 
EC 3.1.1.46     
Accepted name: deoxylimonate A-ring-lactonase
Reaction: deoxylimonate + H2O = deoxylimononic acid D-ring-lactone
Systematic name: deoxylimonate A-ring-lactonohydrolase
Comments: The enzyme opens the A-ring-lactone of the triterpenoid deoxylimonic acid, leaving the D-ring-lactone intact.
References:
1.  Hasegawa, H., Bennett, R.D. and Verdon, C.P. Metabolism of limonoids via a deoxylimonoid pathway in Citrus. Phytochemistry 19 (1980) 1445–1447.
[EC 3.1.1.46 created 1983]
 
 
EC 3.1.1.47     
Accepted name: 1-alkyl-2-acetylglycerophosphocholine esterase
Reaction: 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine + H2O = 1-alkyl-sn-glycero-3-phosphocholine + acetate
Other name(s): 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetylhydrolase; alkylacetyl-GPC:acetylhydrolase
Systematic name: 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetohydrolase
References:
1.  Blank, M.L., Lee, T.-C., Fitzgerald, V. and Snyder, F. A specific acetylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid). J. Biol. Chem. 256 (1981) 175–178. [PMID: 7451433]
[EC 3.1.1.47 created 1984]
 
 
EC 3.1.1.48     
Accepted name: fusarinine-C ornithinesterase
Reaction: N5-acyl-L-ornithine ester + H2O = N5-acyl-L-ornithine + an alcohol
Other name(s): ornithine esterase; 5-N-acyl-L-ornithine-ester hydrolase
Systematic name: N5-acyl-L-ornithine-ester hydrolase
Comments: Hydrolyses the three ornithine ester bonds in fusarinine C. Also acts on N5-dinitrophenyl-L-ornithine methyl ester.
References:
1.  Emery, T. Fungal ornithine esterases: relationship to iron transport. Biochemistry 15 (1976) 2723–2728. [PMID: 949472]
[EC 3.1.1.48 created 1984]
 
 
EC 3.1.1.49     
Accepted name: sinapine esterase
Reaction: sinapoylcholine + H2O = sinapate + choline
Other name(s): aromatic choline esterase
Systematic name: sinapoylcholine sinapohydrolase
References:
1.  Nurmann, G. and Strack, D. Sinapine esterase. 1. Characterization of sinapine esterase from cotyledons of Raphanus sativus. Z. Naturforsch. C: Biosci. 34 (1979) 715–720.
[EC 3.1.1.49 created 1984]
 
 
EC 3.1.1.50     
Accepted name: wax-ester hydrolase
Reaction: a wax ester + H2O = a long-chain alcohol + a long-chain carboxylate
Other name(s): jojoba wax esterase; WEH
Systematic name: wax-ester acylhydrolase
Comments: Also acts on long-chain acylglycerol, but not diacyl- or triacylglycerols.
References:
1.  Huang, A.H.C., Moreau, R.A. and Liu, K.D.F. Development and properties of a wax ester hydrolase in the cotyledons of jojoba seedlings. Plant Physiol. 61 (1978) 339–341. [PMID: 16660288]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
[EC 3.1.1.50 created 1984]
 
 
EC 3.1.1.51     
Accepted name: phorbol-diester hydrolase
Reaction: phorbol 12,13-dibutanoate + H2O = phorbol 13-butanoate + butanoate
Other name(s): diacylphorbate 12-hydrolase; diacylphorbate 12-hydrolase; phorbol-12,13-diester 12-ester hydrolase; PDEH
Systematic name: 12,13-diacylphorbate 12-acylhydrolase
Comments: Hydrolyses the 12-ester bond in a variety of 12,13-diacylphorbols (phorbol is a diterpenoid); this reaction inactivates the tumour promotor 12-O-tetradecanoylphorbol-13-acetate from croton oil.
References:
1.  Shoyab, M., Warren, T.C. and Todaro, G.J. Isolation and characterization of an ester hydrolase active on phorbol diesters from murine liver. J. Biol. Chem. 256 (1981) 12529–12534. [PMID: 6946062]
[EC 3.1.1.51 created 1984]
 
 
EC 3.1.1.52     
Accepted name: phosphatidylinositol deacylase
Reaction: 1-phosphatidyl-D-myo-inositol + H2O = 1-acylglycerophosphoinositol + a carboxylate
Other name(s): phosphatidylinositol phospholipase A2; phospholipase A2
Systematic name: 1-phosphatidyl-D-myo-inositol 2-acylhydrolase
References:
1.  Gray, N.C.C. and Strickland, K.P. The purification and characterization of a phospholipase A2 activity from the 106,000 x g pellet (microsomal fraction) of bovine brain acting on phosphatidylinositol. Can. J. Biochem. 60 (1982) 108–117. [PMID: 7083039]
2.  Gray, N.C.C. and Strickland, K.P. On the specificity of a phospholipase A2 purified from the 106,000 X g pellet of bovine brain. Lipids 17 (1982) 91–96. [PMID: 7087686]
[EC 3.1.1.52 created 1984]
 
 
EC 3.1.1.53     
Accepted name: sialate O-acetylesterase
Reaction: N-acetyl-O-acetylneuraminate + H2O = N-acetylneuraminate + acetate
Other name(s): N-acetylneuraminate acetyltransferase; sialate 9(4)-O-acetylesterase; sialidase
Systematic name: N-acyl-O-acetylneuraminate O-acetylhydrolase
Comments: Acts on free and glycosidically bound N-acetyl- or N-glycoloyl-neuraminic acid; acts mainly on the 4-O- and 9-O-acetyl groups. Also acts on some other O-acetyl esters, both cyclic and acyclic compounds, which are not sialic acids.
References:
1.  Garcia-Sastre, A., Villar, E., Manuguerra, J.C., Hannoun, C. and Cabezas, J.A. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds. Biochem. J. 273 (1991) 435–441. [PMID: 1991039]
2.  Shukla, A.K. and Schauer, R. High performance liquid chromatography of enzymes of sialic acid metabolism. Hoppe-Seyler's Z. Physiol. Chem. 363 (1982) 1039–1040.
[EC 3.1.1.53 created 1984]
 
 
EC 3.1.1.54     
Accepted name: acetoxybutynylbithiophene deacetylase
Reaction: 5-(4-acetoxybut-1-ynyl)-2,2′-bithiophene + H2O = 5-(4-hydroxybut-1-ynyl)-2,2′-bithiophene + acetate
Other name(s): acetoxybutynylbithiophene esterase; 5-(4-acetoxy-1-butynyl)-2,2′-bithiophene:acetate esterase
Systematic name: 5-(4-acetoxybut-1-ynyl)-2,2′-bithiophene O-acetylhydrolase
Comments: The enzyme is highly specific.
References:
1.  Sütfeld, R. and Towers, G.H.N. 5-(4-Acetoxy-1-butinyl)-2,2′-bithiophene:acetate esterase from Tagetes patula. Phytochemistry 21 (1982) 277–279.
[EC 3.1.1.54 created 1986]
 
 
EC 3.1.1.55     
Accepted name: acetylsalicylate deacetylase
Reaction: acetylsalicylate + H2O = salicylate + acetate
Other name(s): aspirin esterase; aspirin esterase; acetylsalicylic acid esterase; aspirin hydrolase
Systematic name: acetylsalicylate O-acetylhydrolase
Comments: Not identical with EC 3.1.1.1 (carboxylesterase), EC 3.1.1.2 (arylesterase), EC 3.1.1.7 (acetylcholinesterase) or EC 3.1.1.8 (cholinesterase). The activity of the liver cytosol enzyme is highest with acetyl esters of aryl alcohols, and thioesters are also hydrolysed; the microsomal enzyme also hydrolyses some other negatively charged esters, with highest activity on esters of salicylate with long-chain alcohols.
References:
1.  Ali, B. and Kaur, S. Mammalian tissue acetylsalicylic acid esterase(s): identification, distribution and discrimination from other esterases. J. Pharmacol. Exp. Ther. 226 (1983) 589–594. [PMID: 6875867]
2.  Kim, D.-H., Yang, Y.-S. and Jakoby, W.B. Aspirin hydrolyzing esterases from rat liver cytosol. Biochem. Pharmacol. 40 (1990) 481–487. [PMID: 2383281]
3.  White, K.N. and Hope, D.B. Partial purification and characterization of a microsomal carboxylesterase specific for salicylate esters from guinea-pig liver. Biochim. Biophys. Acta 785 (1984) 138–147. [PMID: 6704404]
[EC 3.1.1.55 created 1986, modified 1989]
 
 
EC 3.1.1.56     
Accepted name: methylumbelliferyl-acetate deacetylase
Reaction: 4-methylumbelliferyl acetate + H2O = 4-methylumbelliferone + acetate
Other name(s): esterase D
Systematic name: 4-methylumbelliferyl-acetate acylhydrolase
Comments: Acts on short-chain acyl esters of 4-methylumbelliferone, but not on naphthyl, indoxyl or thiocholine esters.
References:
1.  Hopkinson, D.A., Mestriner, M.A., Cortner, J. and Harris, H. Esterase D: a new human polymorphism. Ann. Hum. Genet. 37 (1973) 119–137. [PMID: 4768551]
[EC 3.1.1.56 created 1986]
 
 
EC 3.1.1.57     
Accepted name: 2-pyrone-4,6-dicarboxylate lactonase
Reaction: 2-oxo-2H-pyran-4,6-dicarboxylate + H2O = (1E)-4-oxobut-1-ene-1,2,4-tricarboxylate
Other name(s): 2-pyrone-4,6-dicarboxylate hydrolase; 2-pyrone-4,6-dicarboxylate lactonohydrolase
Systematic name: 2-oxo-2H-pyran-4,6-dicarboxylate lactonohydrolase
Comments: The product is most likely the keto-form of 4-oxalomesaconate (as shown in the reaction) [1,2]. It can be converted to the enol-form, 4-hydroxybuta-1,3-diene-1,2,4-trioate, either spontaneously or by EC 5.3.2.8, 4-oxalomesaconate tautomerase [3].
References:
1.  Kersten, P.J., Dagley, S., Whittaker, J.W., Arciero, D.M. and Lipscomb, J.D. 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species. J. Bacteriol. 152 (1982) 1154–1162. [PMID: 7142106]
2.  Maruyama, K. Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J. Biochem. (Tokyo) 93 (1983) 557–565. [PMID: 6841353]
3.  Nogales, J., Canales, A., Jiménez-Barbero, J., Serra B., Pingarrón, J. M., García, J. L. and Díaz, E. Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol. Microbiol. 79 (2011) 359–374. [PMID: 21219457]
[EC 3.1.1.57 created 1986, modified 2010]
 
 
EC 3.1.1.58     
Accepted name: N-acetylgalactosaminoglycan deacetylase
Reaction: N-acetyl-D-galactosaminoglycan + H2O = D-galactosaminoglycan + acetate
Other name(s): polysaccharide deacetylase (misleading); Vi-polysaccharide deacetylase; N-acetyl galactosaminoglycan deacetylase
Systematic name: N-acetyl-D-galactosaminoglycan acetylhydrolase
References:
1.  Jorge, J.A., Kinney, S.G. and Reissig, J.L. Purification and characterization of Neurospora crassa N-acetyl galactosaminoglycan deacetylase. Braz. J. Med. Biol. Res. 15 (1982) 29–34. [PMID: 6217857]
[EC 3.1.1.58 created 1986]
 
 
EC 3.1.1.59     
Accepted name: juvenile-hormone esterase
Reaction: (1) juvenile hormone I + H2O = juvenile hormone I acid + methanol
(2) juvenile hormone III + H2O = juvenile hormone III acid + methanol
Glossary: juvenile hormone I = methyl (2E,6E,10R,11S)-10,11-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate
juvenile hormone I acid = (2E,6E,10R,11S)-10,11-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate
juvenile hormone III = methyl (2E,6E,10R)-10,11-epoxy-3,7,11-trimethyldodeca-2,6-dienoate
juvenile hormone III acid = (2E,6E,10R)-10,11-epoxy-3,7,11-trimethyldodeca-2,6-dienoate
Other name(s): JH-esterase; juvenile hormone analog esterase; juvenile hormone carboxyesterase; methyl-(2E,6E)-(10R,11S)-10,11-epoxy-3,7,11-trimethyltrideca-2,6-dienoate acylhydrolase
Systematic name: methyl-(2E,6E,10R)-10,11-epoxy-3,7,11-trimethyltrideca-2,6-dienoate acylhydrolase
Comments: Demethylates the insect juvenile hormones JH1 and JH3, but does not hydrolyse the analogous ethyl or isopropyl esters.
References:
1.  de Kort, C.A.D. and Granger, N.A. Regulation of the juvenile hormone titer. Annu. Rev. Entomol. 26 (1981) 1–28.
2.  Mitsui, T., Riddiford, L.M. and Bellamy, G. Metabolism of juvenile hormone by the epidermis of the tobacco hornworm (Manduca sexta). Insect Biochem. 9 (1979) 637–643.
[EC 3.1.1.59 created 1989, modified 2015]
 
 
EC 3.1.1.60     
Accepted name: bis(2-ethylhexyl)phthalate esterase
Reaction: bis(2-ethylhexyl)phthalate + H2O = 2-ethylhexyl phthalate + 2-ethylhexan-1-ol
Other name(s): DEHP esterase
Systematic name: bis(2-ethylhexyl)phthalate acylhydrolase
Comments: Also acts on 4-nitrophenyl esters, with optimum chain-length C6 to C8.
References:
1.  Krell, H.-W. and Sandermann, H., Jr. Plant biochemistry of xenobiotics. Purification and properties of a wheat esterase hydrolyzing the plasticizer chemical, bis(2-ethylhexyl)phthalate. Eur. J. Biochem. 143 (1984) 57–62. [PMID: 6468391]
[EC 3.1.1.60 created 1989]
 
 
EC 3.1.1.61     
Accepted name: protein-glutamate methylesterase
Reaction: protein L-glutamate O5-methyl ester + H2O = protein L-glutamate + methanol
Other name(s): chemotaxis-specific methylesterase; methyl-accepting chemotaxis protein methyl-esterase; CheB methylesterase; methylesterase CheB; protein methyl-esterase; protein carboxyl methylesterase; PME; protein methylesterase; protein-L-glutamate-5-O-methyl-ester acylhydrolase
Systematic name: protein-L-glutamate-O5-methyl-ester acylhydrolase
Comments: Hydrolyses the products of EC 2.1.1.77 (protein-L-isoaspartate(D-aspartate) O-methyltransferase), EC 2.1.1.78 (isoorientin 3′-O-methyltransferase), EC 2.1.1.80 (protein-glutamate O-methyltransferase) and EC 2.1.1.100 (protein-S-isoprenylcysteine O-methyltransferase).
References:
1.  Gagnon, C., Harbour, G. and Camato, R. Purification and characterization of protein methylesterase from rat kidney. J. Biol. Chem. 259 (1984) 10212–10215. [PMID: 6469959]
2.  Kehry, M.R., Doak, T.G. and Dahlquist, F.W. Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J. Biol. Chem. 259 (1984) 11828–11835. [PMID: 6384215]
[EC 3.1.1.61 created 1989, modified 2002]
 
 
EC 3.1.1.62      
Deleted entry: N-acetyldiaminopimelate deacylase. Now listed as EC 3.5.1.47, N-acetyldiaminopimelate deacetylase
[EC 3.1.1.62 created 1989, deleted 1992]
 
 
EC 3.1.1.63     
Accepted name: 11-cis-retinyl-palmitate hydrolase
Reaction: 11-cis-retinyl palmitate + H2O = 11-cis-retinol + palmitate
Other name(s): 11-cis-retinol palmitate esterase; RPH
Systematic name: 11-cis-retinyl-palmitate acylhydrolase
Comments: Activated by bile salts.
References:
1.  Blaner, W.S., Das, S.R., Gouras, P. and Flood, M.T. Hydrolysis of 11-cis- and all-trans-retinyl palmitate by homogenates of human retinal epithelial cells. J. Biol. Chem. 262 (1987) 53–58. [PMID: 3793734]
2.  Blaner, W.S., Prystowsky, J.H., Smith, J.E. and Goodman, D.S. Rat liver retinyl palmitate hydrolase activity. Relationship to cholesteryl oleate and triolein hydrolase activities. Biochim. Biophys. Acta 794 (1984) 419–427. [PMID: 6743673]
[EC 3.1.1.63 created 1989]
 
 
EC 3.1.1.64     
Accepted name: retinoid isomerohydrolase
Reaction: an all-trans-retinyl ester + H2O = 11-cis-retinol + a fatty acid
Other name(s): all-trans-retinyl-palmitate hydrolase (ambiguous); retinol isomerase (ambiguous); all-trans-retinol isomerase:hydrolase (ambiguous); all-trans-retinylester 11-cis isomerohydrolase; RPE65 (gene name)
Systematic name: all-trans-retinyl ester acylhydrolase, 11-cis retinol-forming
Comments: This enzyme, which operates in the retinal pigment epithelium (RPE), catalyses the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol, a key step in the regeneration of the visual chromophore in the vertebrate visual cycle [4]. Interaction of the enzyme with the membrane is critical for its enzymic activity [6].
References:
1.  Blaner, W.S., Das, S.R., Gouras, P. and Flood, M.T. Hydrolysis of 11-cis- and all-trans-retinyl palmitate by homogenates of human retinal epithelial cells. J. Biol. Chem. 262 (1987) 53–58. [PMID: 3793734]
2.  Bernstein, P.S., Law, W.C. and Rando, R.R. Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. Proc. Natl. Acad. Sci. USA 84 (1987) 1849–1853. [PMID: 3494246]
3.  Bridges, C.D. and Alvarez, R.A. The visual cycle operates via an isomerase acting on all-trans retinol in the pigment epithelium. Science 236 (1987) 1678–1680. [PMID: 3603006]
4.  Moiseyev, G., Chen, Y., Takahashi, Y., Wu, B.X. and Ma, J.X. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl. Acad. Sci. USA 102 (2005) 12413–12418. [PMID: 16116091]
5.  Nikolaeva, O., Takahashi, Y., Moiseyev, G. and Ma, J.X. Purified RPE65 shows isomerohydrolase activity after reassociation with a phospholipid membrane. FEBS J. 276 (2009) 3020–3030. [PMID: 19490105]
6.  Golczak, M., Kiser, P.D., Lodowski, D.T., Maeda, A. and Palczewski, K. Importance of membrane structural integrity for RPE65 retinoid isomerization activity. J. Biol. Chem. 285 (2010) 9667–9682. [PMID: 20100834]
[EC 3.1.1.64 created 1989 (EC 5.2.1.7 created 1989, incorporated 2011), modified 2011]
 
 
EC 3.1.1.65     
Accepted name: L-rhamnono-1,4-lactonase
Reaction: L-rhamnono-1,4-lactone + H2O = L-rhamnonate
Other name(s): L-rhamno-γ-lactonase; L-rhamnono-γ-lactonase; L-rhamnonate dehydratase
Systematic name: L-rhamnono-1,4-lactone lactonohydrolase
References:
1.  Rigo, L.U., Maréchal, L.R., Vieira, M.M. and Veiga, L.A. Oxidative pathway for L-rhamnose degradation in Pallularia pullulans. Can. J. Microbiol. 31 (1985) 817–822.
[EC 3.1.1.65 created 1989]
 
 
EC 3.1.1.66     
Accepted name: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene deacetylase
Reaction: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene + H2O = 5-(3-hydroxy-4-acetoxybut-1-ynyl)-2,2′-bithiophene + acetate
Other name(s): diacetoxybutynylbithiophene acetate esterase; 3,4-diacetoxybutinylbithiophene:4-acetate esterase
Systematic name: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene acetylhydrolase
Comments: A highly specific enzyme from Tagetes patula.
References:
1.  Pensl, R. and Suetfeld, R. Occurrence of 3,4-diacetoybutinylbithiophene in Tagetes patula and its enzymatic conversion. Z. Naturforsch. C: Biosci. 40 (1985) 3–7.
[EC 3.1.1.66 created 1989]
 
 
EC 3.1.1.67     
Accepted name: fatty-acyl-ethyl-ester synthase
Reaction: a long-chain-fatty-acyl ethyl ester + H2O = a long-chain-fatty acid + ethanol
Glossary: a long-chain-fatty acid = a fatty acid with an aliphatic chain of 13-22 carbons.
Other name(s): FAEES
Systematic name: long-chain-fatty-acyl-ethyl-ester acylhydrolase
Comments: The reaction, forms ethyl esters from fatty acids and ethanol in the absence of coenzyme A or ATP. Best substrates are unsaturated octadecanoic acids; palmitate, stearate and arachidonate also act, but more slowly.
References:
1.  Mogelson, S. and Lange, L.G. Nonoxidative ethanol metabolism in rabbit myocardium: purification to homogeneity of fatty acyl ethyl ester synthase. Biochemistry 23 (1984) 4075–4081. [PMID: 6487591]
[EC 3.1.1.67 created 1989]
 
 
EC 3.1.1.68     
Accepted name: xylono-1,4-lactonase
Reaction: D-xylono-1,4-lactone + H2O = D-xylonate
Other name(s): xylono-γ-lactonase; xylonolactonase
Systematic name: D-xylono-1,4-lactone lactonohydrolase
References:
1.  Buchert, J. and Viikari, L. The role of xylonolactone in xylonic acid production by Pseudomonas fragi. Appl. Microbiol. Biotechnol. 27 (1988) 333–336.
[EC 3.1.1.68 created 1990]
 
 
EC 3.1.1.69      
Transferred entry: N-acetylglucosaminylphosphatidylinositol deacetylase. Now EC 3.5.1.89, N-acetylglucosaminylphosphatidylinositol deacetylase. Previously classified erroneously as an enzyme that hydrolysed an ester and not an amide
[EC 3.1.1.69 created 1992, deleted 2002]
 
 
EC 3.1.1.70     
Accepted name: cetraxate benzylesterase
Reaction: cetraxate benzyl ester + H2O = cetraxate + benzyl alcohol
Systematic name: cetraxate-benzyl-ester benzylhydrolase
Comments: Acts on a number of benzyl esters of substituted phenyl propanoates, and on the benzyl esters of phenylalanine and tyrosine.
References:
1.  Kuroda, H., Miyadera, A., Imura, A. and Suzuki, A. Partial purification, and some properties and reactivities of cetraxate benzyl ester hydrochloride-hydrolyzing enzyme. Chem. Pharm. Bull. 37 (1989) 2929–2932. [PMID: 2632040]
[EC 3.1.1.70 created 1992]
 
 
EC 3.1.1.71     
Accepted name: acetylalkylglycerol acetylhydrolase
Reaction: 2-acetyl-1-alkyl-sn-glycerol + H2O = 1-alkyl-sn-glycerol + acetate
Other name(s): alkylacetylglycerol acetylhydrolase
Systematic name: 2-acetyl-1-alkyl-sn-glycerol acetylhydrolase
Comments: Hydrolysis of the acetyl group from the 1-alkyl-2-acetyl and 1-alkyl-3-acetyl substrates occurs at apparently identical rates. The enzyme from Erlich ascites cells is membrane-bound. It differs from lipoprotein lipase (EC 3.1.1.34) since 1,2-diacetyl-sn-glycerols are not substrates. It also differs from EC 3.1.1.47, 1-acetyl-2-alkyl-glycerophosphocholine esterase.
References:
1.  Blank, M.L., Smith, Z.L., Cress, E.A., Snyder, F. Characterization of the enzymatic hydrolysis of acetate from alkylacetylglycerols in the de novo pathway of PAF biosynthesis. Biochim. Biophys. Acta 1042 (1990) 153–158. [PMID: 2302414]
[EC 3.1.1.71 created 1999]
 
 
EC 3.1.1.72     
Accepted name: acetylxylan esterase
Reaction: Deacetylation of xylans and xylo-oligosaccharides
Systematic name: acetylxylan esterase
Comments: Catalyses the hydrolysis of acetyl groups from polymeric xylan, acetylated xylose, acetylated glucose, α-napthyl acetate, p-nitrophenyl acetate but not from triacetylglycerol. Does not act on acetylated mannan or pectin.
References:
1.  Sundberg, M., Poutanen, K. Purification and properties of two acetylxylan esterases of Trichoderma reesei. Biotechnol. Appl. Biochem. 13 (1991) 1–11.
2.  Poutanen, K., Sundberg, M., Korte, H., Puls, J. Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl. Microbiol. Biotechnol. 33 (1990) 506–510.
3.  Margolles-Clark, E., Tenkanen, M., Söderland, H., Penttilä, M. Acetyl xylan esterase from Trichoderma reesei contains an active site serine and a cellulose binding domain. Eur. J. Biochem. 237 (1996) 553–560. [PMID: 8647098]
[EC 3.1.1.72 created 1999]
 
 
EC 3.1.1.73     
Accepted name: feruloyl esterase
Reaction: feruloyl-polysaccharide + H2O = ferulate + polysaccharide
Glossary: ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): ferulic acid esterase; hydroxycinnamoyl esterase; hemicellulase accessory enzyme; FAE-III; cinnamoyl ester hydrolase; FAEA; cinnAE; FAE-I; FAE-II
Systematic name: 4-hydroxy-3-methoxycinnamoyl-sugar hydrolase
Comments: Catalyses the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose in "natural" substrates. p-Nitrophenol acetate and methyl ferulate are poorer substrates. All microbial ferulate esterases are secreted into the culture medium. They are sometimes called hemicellulase accessory enzymes, since they help xylanases and pectinases to break down plant cell wall hemicellulose.
References:
1.  Faulds, C.B. and Williamson, G. The purification and characterisation of 4-hydroxy-3-methoxy-cinnamic (ferulic) acid esterase from Streptomyces olivochromogenes (3232). J. Gen. Microbiol. 137 (1991) 2339–2345. [PMID: 1663152]
2.  Faulds, C.B. and Williamson, G. Purification and characterisation of a ferulic acid esterase (FAE-III) from Aspergillus niger. Specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140 (1994) 779–787.
3.  Kroon, P.A., Faulds, C.B. and Williamson, G. Purification and characterisation of a novel ferulic acid esterase induced by growth of Aspergillus niger on sugarbeet pulp. Biotechnol. Appl. Biochem. 23 (1996) 255–262. [PMID: 8679110]
4.  deVries, R.P. , Michelsen,B., Poulsen, C.H., Kroon, P.A., van den Heuvel, R.H.H., Faulds, C.B., Williamson, G., van den Homberg, J.P.T.W. and Visser, J. The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl. Environ. Microbiol. 63 (1997) 4638–4644. [PMID: 9406381]
5.  Castanares, A., Mccrae, S.I. and Wood, T.M. Purification and properties of a feruloyl/p-coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microbiol. Technol. 14 (1992) 875–884.
[EC 3.1.1.73 created 2000]
 
 
EC 3.1.1.74     
Accepted name: cutinase
Reaction: cutin + H2O = cutin monomers
Systematic name: cutin hydrolase
Comments: Cutin, a polymeric structural component of plant cuticles, is a polymer of hydroxy fatty acids that are usually C16 or C18 and contain up to three hydroxy groups. The enzyme from several fungal sources also hydrolyses the p-nitrophenyl esters of hexadecanoic acid. It is however inactive towards several esters that are substrates for non-specific esterases.
References:
1.  Garcia-Lepe, R., Nuero, O.M., Reyes, F. and Santamaria, F. Lipases in autolysed cultures of filamentous fungi. Lett. Appl. Microbiol. 25 (1997) 127–130. [PMID: 9281862]
2.  Purdy, R.E. and Kolattukudy, P.E. Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isoenzymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 14 (1975) 2824–2831. [PMID: 1156575]
3.  Purdy, R.E. and Kolattukudy, P.E. Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry 14 (1975) 2832–2840. [PMID: 239740]
[EC 3.1.1.74 created 2000]
 
 
EC 3.1.1.75     
Accepted name: poly(3-hydroxybutyrate) depolymerase
Reaction: [(R)-3-hydroxybutanoate]n + H2O = [(R)-3-hydroxybutanoate]n-x + [(R)-3-hydroxybutanoate]x; x = 1–5
Other name(s): PHB depolymerase; poly(3HB) depolymerase; poly[(R)-hydroxyalkanoic acid] depolymerase; poly(HA) depolymerase; poly(HASCL) depolymerase; poly[(R)-3-hydroxybutyrate] hydrolase
Systematic name: poly[(R)-3-hydroxybutanoate] hydrolase
Comments: Reaction also occurs with esters of other short-chain-length (C1-C5) hydroxyalkanoic acids (HA). There are two types of polymers: native (intracellular) granules are amorphous and have an intact surface layer; denatured (extracellular) granules either have no surface layer or a damaged surface layer and are partially crystalline.
References:
1.  Jendrossek, D. Microbial degradation of polyesters. Adv. Biochem. Eng./Biotechnol. 71 (2001) 293–325. [PMID: 11217416]
2.  García, B., Olivera, E.R., Miñambres, B., Fernández-Valverde, Cañedo, L.M., Prieto, M.A., García, J.L., Martínez, M. and Luengo, J.M. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J. Biol. Chem. 274 (1999) 29228–29241. [PMID: 10506180]
[EC 3.1.1.75 created 2001]
 
 
EC 3.1.1.76     
Accepted name: poly(3-hydroxyoctanoate) depolymerase
Reaction: Hydrolyses the polyester poly{oxycarbonyl[(R)-2-pentylethylene]} to oligomers
Other name(s): PHO depolymerase; poly(3HO) depolymerase; poly[(R)-hydroxyalkanoic acid] depolymerase; poly(HA) depolymerase; poly(HAMCL) depolymerase; poly[(R)-3-hydroxyoctanoate] hydrolase
Systematic name: poly{oxycarbonyl[(R)-2-pentylethylene]} hydrolase
Comments: The main product after prolonged incubation is the dimer [3]. Besides hydrolysing polymers of 3-hydroxyoctanoic acid, the enzyme also hydrolyses other polymers derived from medium-chain-length (C6-C12) hydroxyalkanoic acids and copolymers of mixtures of these. It also hydrolyses p-nitrophenyl esters of fatty acids. Polymers of short-chain-length hydroxyalkanoic acids such as poly[(R)-3-hydroxybutanoic acid] and poly[(R)-3-hydroxypentanoic acid] are not hydrolysed.
References:
1.  Jendrossek, D. Microbial degradation of polyesters. Adv. Biochem. Eng./Biotechnol. 71 (2001) 293–325. [PMID: 11217416]
2.  García, B., Olivera, E.R., Miñambres, B., Fernández-Valverde, Cañedo, L.M., Prieto, M.A., García, J.L., Martínez, M. and Luengo, J.M. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J. Biol. Chem. 274 (1999) 29228–29241. [PMID: 10506180]
3.  Schirmer, A., Jendrossek, D. and Schlegel, H.G. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59 (1993) 1220–1227. [PMID: 8476295]
[EC 3.1.1.76 created 2001, modified 2005]
 
 
EC 3.1.1.77     
Accepted name: acyloxyacyl hydrolase
Reaction: 3-(acyloxy)acyl group of bacterial toxin + H2O = 3-hydroxyacyl group of bacterial toxin + a fatty acid
Comments: The substrate is lipid A on the reducing end of the toxic lipopolysaccharide (LPS) of Salmonella typhimurium and related organisms. It consists of diglucosamine, β-D-GlcN-(1→ 6)-D-GlcN, attached by glycosylation on O-6 of its non-reducing residue, phosphorylated on O-4 of this residue and on O-1 of its potentially reducing residue. Both residues carry 3-(acyloxy)acyl groups on N-2 and O-3. The enzyme from human leucocytes detoxifies the lipid by hydrolysing the secondary acyl groups from O-3 of the 3-hydroxyacyl groups on the disaccharide (LPS). It also possesses a wide range of phospholipase and acyltransferase activities [e.g. EC 3.1.1.4 (phospholipase A2), EC 3.1.1.5 (lysophospholipase), EC 3.1.1.32 (phospholipase A1) and EC 3.1.1.52 (phosphatidylinositol deacylase)], hydrolysing diacylglycerol and phosphatidyl compounds, but not triacylglycerols. It has a preference for saturated C12-C16 acyl groups.
References:
1.  Erwin, A.L. and Munford, R.S. Deacylation of structurally diverse lipopolysaccharides by human acyloxyacyl hydrolase. J. Biol. Chem. 265 (1990) 16444–16449. [PMID: 2398058]
2.  Hagen, F.S., Grant, F.J., Kuijper, J.L., Slaughter, C.A., Moomaw, C.R., Orth, K., O'Hara, P.J. and Munford, R.S. Expression and characterization of recombinant human acyloxyacyl hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides. Biochemistry 30 (1991) 8415–8423. [PMID: 1883828]
3.  Munford, R.S. and Hunter, J.P. Acyloxyacyl hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides, has phospholipase, lysophospholipase, diacylglycerollipase, and acyltransferase activities in vitro. J. Biol. Chem. 267 (1992) 10116–10121. [PMID: 1577781]
[EC 3.1.1.77 created 2001]
 
 
EC 3.1.1.78     
Accepted name: polyneuridine-aldehyde esterase
Reaction: polyneuridine aldehyde + H2O = 16-epivellosimine + CO2 + methanol
Other name(s): polyneuridine aldehyde esterase; PNAE
Systematic name: polyneuridine aldehyde hydrolase (decarboxylating)
Comments: Following hydrolysis of this indole alkaloid ester the carboxylic acid decarboxylates spontaneously giving the sarpagan skeleton. The enzyme also acts on akuammidine aldehyde (the 16-epimer of polyneuridine aldehyde).
References:
1.  Pfitzner, A. and Stöckigt, J. Characterization of polyneuridine aldehyde esterase, a key enzyme in the biosynthesis of sarpagine ajmaline type alkaloids. Planta Med. 48 (1983) 221–227. [PMID: 17404987]
2.  Pfitzner, A. and Stöckigt, J. Polyneuridine aldehyde esterase: an unusual specific enzyme involved in the biosynthesis of sarpagine type alkaloids. J. Chem. Soc. Chem. Commun. (1983) 459–460.
3.  Dogru, E., Warzecha, H., Seibel, F., Haebel, S., Lottspeich, F. and Stöckigt, J. The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the hydrolase super family. Eur. J. Biochem. 267 (2000) 1397–1406. [PMID: 10691977]
4.  Mattern-Dogru, E., Ma, X., Hartmann, J., Decker, H. and Stöckigt, J. Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesis. Eur. J. Biochem. 269 (2002) 2889–2896. [PMID: 12071952]
[EC 3.1.1.78 created 2002]
 
 
EC 3.1.1.79     
Accepted name: hormone-sensitive lipase
Reaction: (1) diacylglycerol + H2O = monoacylglycerol + a carboxylate
(2) triacylglycerol + H2O = diacylglycerol + a carboxylate
(3) monoacylglycerol + H2O = glycerol + a carboxylate
Other name(s): HSL
Systematic name: diacylglycerol acylhydrolase
Comments: This enzyme is a serine hydrolase. Compared with other lipases, hormone-sensitive lipase has a uniquely broad substrate specificity. It hydrolyses all acylglycerols (triacylglycerol, diacylglycerol and monoacylglycerol) [2,3,4] as well as cholesteryl esters [2,4], steroid fatty acid esters [5], retinyl esters [6] and p-nitrophenyl esters [4,7]. It exhibits a preference for the 1- or 3-ester bond of its acylglycerol substrate compared with the 2-ester bond [8]. The enzyme shows little preference for the fatty acids in the triacylglycerol, although there is some increase in activity with decreasing chain length. The enzyme activity is increased in response to hormones that elevate intracellular levels of cAMP.
References:
1.  Holm, C., Osterlund, T., Laurell, H. and Contreras, J.A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 20 (2000) 365–393. [PMID: 10940339]
2.  Fredrikson, G., Stralfors, P., Nilsson, N.O. and Belfrage, P. Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J. Biol. Chem. 256 (1981) 6311–6320. [PMID: 7240206]
3.  Vaughan, M., Berger, J.E. and Steinberg, D. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239 (1964) 401–409. [PMID: 14169138]
4.  Østerlund, T., Danielsson, B., Degerman, E., Contreras, J.A., Edgren, G., Davis, R.C., Schotz, M.C. and Holm, C. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem. J. 319 ( Pt 2) (1996) 411–420. [PMID: 8912675]
5.  Lee, F.T., Adams, J.B., Garton, A.J. and Yeaman, S.J. Hormone-sensitive lipase is involved in the hydrolysis of lipoidal derivatives of estrogens and other steroid hormones. Biochim. Biophys. Acta 963 (1988) 258–264. [PMID: 3196730]
6.  Wei, S., Lai, K., Patel, S., Piantedosi, R., Shen, H., Colantuoni, V., Kraemer, F.B. and Blaner, W.S. Retinyl ester hydrolysis and retinol efflux from BFC-1β adipocytes. J. Biol. Chem. 272 (1977) 14159–14165. [PMID: 9162045]
7.  Tsujita, T., Ninomiya, H. and Okuda, H. p-Nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. J. Lipid Res. 30 (1989) 997–1004. [PMID: 2794798]
8.  Yeaman, S.J. Hormone-sensitive lipase - new roles for an old enzyme. Biochem. J. 379 (2004) 11–22. [PMID: 14725507]
[EC 3.1.1.79 created 2004]
 
 
EC 3.1.1.80     
Accepted name: acetylajmaline esterase
Reaction: (1) 17-O-acetylajmaline + H2O = ajmaline + acetate
(2) 17-O-acetylnorajmaline + H2O = norajmaline + acetate
Other name(s): AAE; 2β(R)-17-O-acetylajmalan:acetylesterase; acetylajmalan esterase
Systematic name: 17-O-acetylajmaline O-acetylhydrolase
Comments: This plant enzyme is responsible for the last stages in the biosynthesis of the indole alkaloid ajmaline. The enzyme is highly specific for the substrates 17-O-acetylajmaline and 17-O-acetylnorajmaline as the structurally related acetylated alkaloids vinorine, vomilenine, 1,2-dihydrovomilenine and 1,2-dihydroraucaffricine cannot act as substrates [2]. This is a novel member of the GDSL family of serine esterases/lipases.
References:
1.  Polz, L., Schübel, H. and Stöckigt, J. Characterization of 2β(R)-17-O-acetylajmalan:acetylesterase—a specific enzyme involved in the biosynthesis of the Rauwolfia alkaloid ajmaline. Z. Naturforsch. [C] 42 (1987) 333–342. [PMID: 2955586]
2.  Ruppert, M., Woll, J., Giritch, A., Genady, E., Ma, X. and Stöckigt, J. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta 222 (2005) 888–898. [PMID: 16133216]
[EC 3.1.1.80 created 2006]
 
 
EC 3.1.1.81     
Accepted name: quorum-quenching N-acyl-homoserine lactonase
Reaction: an N-acyl-L-homoserine lactone + H2O = an N-acyl-L-homoserine
Other name(s): acyl homoserine degrading enzyme; acyl-homoserine lactone acylase; AHL lactonase; AHL-degrading enzyme; AHL-inactivating enzyme; AHLase; AhlD; AhlK; AiiA; AiiA lactonase; AiiA-like protein; AiiB; AiiC; AttM; delactonase; lactonase-like enzyme; N-acyl homoserine lactonase; N-acyl homoserine lactone hydrolase; N-acyl-homoserine lactone lactonase; N-acyl-L-homoserine lactone hydrolase; quorum-quenching lactonase; quorum-quenching N-acyl homoserine lactone hydrolase
Systematic name: N-acyl-L-homoserine-lactone lactonohydrolase
Comments: Acyl-homoserine lactones (AHLs) are produced by a number of bacterial species and are used by them to regulate the expression of virulence genes in a process known as quorum-sensing. Each bacterial cell has a basal level of AHL and, once the population density reaches a critical level, it triggers AHL-signalling which, in turn, initiates the expression of particular virulence genes [5]. Plants or animals capable of degrading AHLs would have a therapeutic advantage in avoiding bacterial infection as they could prevent AHL-signalling and the expression of virulence genes in quorum-sensing bacteria [5]. N-(3-Oxohexanoyl)-L-homoserine lactone, N-(3-oxododecanoyl)-L-homoserine lactone, N-butanoyl-L-homoserine lactone and N-(3-oxooctanoyl)-L-homoserine lactone can act as substrates [5].
References:
1.  Thomas, P.W., Stone, E.M., Costello, A.L., Tierney, D.L. and Fast, W. The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry 44 (2005) 7559–7569. [PMID: 15895999]
2.  Dong, Y.H., Gusti, A.R., Zhang, Q., Xu, J.L. and Zhang, L.H. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68 (2002) 1754–1759. [PMID: 11916693]
3.  Wang, L.H., Weng, L.X., Dong, Y.H. and Zhang, L.H. Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J. Biol. Chem. 279 (2004) 13645–13651. [PMID: 14734559]
4.  Dong, Y.H., Xu, J.L., Li, X.Z. and Zhang, L.H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97 (2000) 3526–3531. [PMID: 10716724]
5.  Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F. and Zhang, L.H. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411 (2001) 813–817. [PMID: 11459062]
6.  Lee, S.J., Park, S.Y., Lee, J.J., Yum, D.Y., Koo, B.T. and Lee, J.K. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68 (2002) 3919–3924. [PMID: 12147491]
7.  Park, S.Y., Lee, S.J., Oh, T.K., Oh, J.W., Koo, B.T., Yum, D.Y. and Lee, J.K. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149 (2003) 1541–1550. [PMID: 12777494]
8.  Ulrich, R.L. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70 (2004) 6173–6180. [PMID: 15466564]
9.  Kim, M.H., Choi, W.C., Kang, H.O., Lee, J.S., Kang, B.S., Kim, K.J., Derewenda, Z.S., Oh, T.K., Lee, C.H. and Lee, J.K. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA 102 (2005) 17606–17611. [PMID: 16314577]
10.  Liu, D., Lepore, B.W., Petsko, G.A., Thomas, P.W., Stone, E.M., Fast, W. and Ringe, D. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 102 (2005) 11882–11887. [PMID: 16087890]
11.  Yang, F., Wang, L.H., Wang, J., Dong, Y.H., Hu, J.Y. and Zhang, L.H. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579 (2005) 3713–3717. [PMID: 15963993]
[EC 3.1.1.81 created 2007]
 
 
EC 3.1.1.82     
Accepted name: pheophorbidase
Reaction: pheophorbide a + H2O = pyropheophorbide a + methanol + CO2 (overall reaction)
(1a) pheophorbide a + H2O = C-132-carboxypyropheophorbide a + methanol
(1b) C-132-carboxypyropheophorbide a = pyropheophorbide a + CO2 (spontaneous)
Other name(s): phedase; PPD
Systematic name: pheophorbide-a hydrolase
Comments: This enzyme forms part of the chlorophyll degradation pathway, and is found in higher plants and in algae. In higher plants it participates in de-greening processes such as fruit ripening, leaf senescence, and flowering. The enzyme exists in two forms: type 1 is induced by senescence whereas type 2 is constitutively expressed [1,2]. The enzyme is highly specific for pheophorbide as substrate (with a preference for pheophorbide a over pheophorbide b) as other chlorophyll derivatives such as protochlorophyllide a, pheophytin a and c, chlorophyll a and b, and chlorophyllide a cannot act as substrates [2]. Another enzyme, called pheophorbide demethoxycarbonylase (PDC), produces pyropheophorbide a from pheophorbide a without forming an intermediate although the precise reaction is not yet known [1].
References:
1.  Suzuki, Y., Doi, M. and Shioi, Y. Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth. Res. 74 (2002) 225–233. [PMID: 16228561]
2.  Suzuki, Y., Amano, T. and Shioi, Y. Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. Plant Physiol. 140 (2006) 716–725. [PMID: 16384908]
3.  Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57 (2006) 55–77. [PMID: 16669755]
[EC 3.1.1.82 created 2007]
 
 
EC 3.1.1.83     
Accepted name: monoterpene ε-lactone hydrolase
Reaction: (1) isoprop(en)ylmethyloxepan-2-one + H2O = 6-hydroxyisoprop(en)ylmethylhexanoate (general reaction)
(2) 4-isopropenyl-7-methyloxepan-2-one + H2O = 6-hydroxy-3-isopropenylheptanoate
(3) 7-isopropyl-4-methyloxepan-2-one + H2O = 6-hydroxy-3,7-dimethyloctanoate
Other name(s): MLH
Systematic name: isoprop(en)ylmethyloxepan-2-one lactonohydrolase
Comments: The enzyme catalyses the ring opening of ε-lactones which are formed during degradation of dihydrocarveol by the Gram-positive bacterium Rhodococcus erythropolis DCL14. The enzyme also acts on ethyl caproate, indicating that it is an esterase with a preference for lactones (internal cyclic esters). The enzyme is not stereoselective.
References:
1.  van der Vlugt-Bergmans , C.J. and van der Werf , M.J. Genetic and biochemical characterization of a novel monoterpene ε-lactone hydrolase from Rhodococcus erythropolis DCL14. Appl. Environ. Microbiol. 67 (2001) 733–741. [PMID: 11157238]
[EC 3.1.1.83 created 2008]
 
 
EC 3.1.1.84     
Accepted name: cocaine esterase
Reaction: cocaine + H2O = ecgonine methyl ester + benzoate
Glossary: ecgonine methyl ester = 2β-carbomethoxy-3β-tropine = methyl (1R,2R,3S,5S)-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
Other name(s): CocE; hCE2; hCE-2; human carboxylesterase 2
Systematic name: cocaine benzoylhydrolase
Comments: Rhodococcus sp. strain MB1 and Pseudomonas maltophilia strain MB11L can utilize cocaine as sole source of carbon and energy [2,3].
References:
1.  Gao, D., Narasimhan, D.L., Macdonald, J., Brim, R., Ko, M.C., Landry, D.W., Woods, J.H., Sunahara, R.K. and Zhan, C.G. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol. Pharmacol. 75 (2009) 318–323. [PMID: 18987161]
2.  Bresler, M.M., Rosser, S.J., Basran, A. and Bruce, N.C. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Appl. Environ. Microbiol. 66 (2000) 904–908. [PMID: 10698749]
3.  Britt, A.J., Bruce, N.C. and Lowe, C.R. Identification of a cocaine esterase in a strain of Pseudomonas maltophilia. J. Bacteriol. 174 (1992) 2087–2094. [PMID: 1551831]
4.  Larsen, N.A., Turner, J.M., Stevens, J., Rosser, S.J., Basran, A., Lerner, R.A., Bruce, N.C. and Wilson, I.A. Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9 (2002) 17–21. [PMID: 11742345]
5.  Pindel, E.V., Kedishvili, N.Y., Abraham, T.L., Brzezinski, M.R., Zhang, J., Dean, R.A. and Bosron, W.F. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J. Biol. Chem. 272 (1997) 14769–14775. [PMID: 9169443]
[EC 3.1.1.84 created 2010]
 
 
EC 3.1.1.85     
Accepted name: pimelyl-[acyl-carrier protein] methyl ester esterase
Reaction: pimeloyl-[acyl-carrier protein] methyl ester + H2O = pimeloyl-[acyl-carrier protein] + methanol
Other name(s): BioH
Systematic name: pimeloyl-[acyl-carrier protein] methyl ester hydrolase
Comments: Involved in biotin biosynthesis in Gram-negative bacteria. The enzyme exhibits carboxylesterase activity, particularly toward substrates with short acyl chains [1,2]. Even though the enzyme can interact with coenzyme A thioesters [3], the in vivo role of the enzyme is to hydrolyse the methyl ester of pimeloyl-[acyl carrier protein], terminating the part of the biotin biosynthesis pathway that is catalysed by the fatty acid elongation enzymes [4].
References:
1.  Sanishvili, R., Yakunin, A.F., Laskowski, R.A., Skarina, T., Evdokimova, E., Doherty-Kirby, A., Lajoie, G.A., Thornton, J.M., Arrowsmith, C.H., Savchenko, A., Joachimiak, A. and Edwards, A.M. Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J. Biol. Chem. 278 (2003) 26039–26045. [PMID: 12732651]
2.  Lemoine, Y., Wach, A. and Jeltsch, J.M. To be free or not: the fate of pimelate in Bacillus sphaericus and in Escherichia coli. Mol. Microbiol. 19 (1996) 645–647. [PMID: 8830257]
3.  Tomczyk, N.H., Nettleship, J.E., Baxter, R.L., Crichton, H.J., Webster, S.P. and Campopiano, D.J. Purification and characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Lett. 513 (2002) 299–304. [PMID: 11904168]
4.  Lin, S., Hanson, R.E. and Cronan, J.E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol. 6 (2010) 682–688. [PMID: 20693992]
[EC 3.1.1.85 created 2011]
 
 
EC 3.1.1.86     
Accepted name: rhamnogalacturonan acetylesterase
Reaction: Hydrolytic cleavage of 2-O-acetyl- or 3-O-acetyl groups of α-D-galacturonic acid in rhamnogalacturonan I.
Other name(s): RGAE
Systematic name: rhamnogalacturonan 2/3-O-acetyl-α-D-galacturonate O-acetylhydrolase
Comments: The degradation of rhamnogalacturonan by rhamnogalacturonases depends on the removal of the acetyl esters from the substrate [1].
References:
1.  Kauppinen, S., Christgau, S., Kofod, L.V., Halkier, T., Dorreich, K. and Dalboge, H. Molecular cloning and characterization of a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. Synergism between rhamnogalacturonan degrading enzymes. J. Biol. Chem. 270 (1995) 27172–27178. [PMID: 7592973]
2.  Molgaard, A., Kauppinen, S. and Larsen, S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8 (2000) 373–383. [PMID: 10801485]
[EC 3.1.1.86 created 2011]
 
 
EC 3.1.1.87     
Accepted name: fumonisin B1 esterase
Reaction: fumonisin B1 + 2 H2O = aminopentol + 2 propane-1,2,3-tricarboxylate
Glossary: fumonisin B1 = (2R,2′R)-2,2′-{[(5R,6R,7S,9S,11R,16R,18S,19S)-19-amino-11,16,18-trihydroxy-5,9-dimethylicosane-6,7-diyl]bis[oxy(2-oxoethane-2,1-diyl)]}dibutanedioic acid
aminopentol = (2S,3S,5R,10R,12S,14S,15R,16R)-2-amino-12,16-dimethylicosane-3,5,10,14,15-pentol
Other name(s): fumD (gene name)
Systematic name: fumonisin B1 acylhydrolase
Comments: The enzyme is involved in degradation of fumonisin B1 [1].
References:
1.  Heinl, S., Hartinger, D., Thamhesl, M., Vekiru, E., Krska, R., Schatzmayr, G., Moll, W.D. and Grabherr, R. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. J. Biotechnol. 145 (2010) 120–129. [PMID: 19922747]
[EC 3.1.1.87 created 2011]
 
 
EC 3.1.1.88     
Accepted name: pyrethroid hydrolase
Reaction: trans-permethrin + H2O = (3-phenoxyphenyl)methanol + (1S,3R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate
Other name(s): pyrethroid-hydrolyzing carboxylesterase; pyrethroid-hydrolysing esterase; pyrethroid-hydrolyzing esterase; pyrethroid-selective esterase; pyrethroid-cleaving enzyme; permethrinase; PytH; EstP
Systematic name: pyrethroid-ester hydrolase
Comments: The enzyme is involved in degradation of pyrethroid pesticides. The enzymes from Sphingobium sp., Klebsiella sp. and Aspergillus niger hydrolyse cis-permethrin at approximately equal rate to trans-permethrin [1-3]. The enzyme from mouse hydrolyses trans-permethrin at a rate about 22-fold higher than cis-permethrin [4].
References:
1.  Wang, B.Z., Guo, P., Hang, B.J., Li, L., He, J. and Li, S.P. Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl. Environ. Microbiol. 75 (2009) 5496–5500. [PMID: 19581484]
2.  Wu, P.C., Liu, Y.H., Wang, Z.Y., Zhang, X.Y., Li, H., Liang, W.Q., Luo, N., Hu, J.M., Lu, J.Q., Luan, T.G. and Cao, L.X. Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. J. Agric. Food Chem. 54 (2006) 836–842. [PMID: 16448191]
3.  Liang, W.Q., Wang, Z.Y., Li, H., Wu, P.C., Hu, J.M., Luo, N., Cao, L.X. and Liu, Y.H. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J. Agric. Food Chem. 53 (2005) 7415–7420. [PMID: 16159167]
4.  Stok, J.E., Huang, H., Jones, P.D., Wheelock, C.E., Morisseau, C. and Hammock, B.D. Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes. J. Biol. Chem. 279 (2004) 29863–29869. [PMID: 15123619]
5.  Maloney, S.E., Maule, A. and Smith, A.R. Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Appl. Environ. Microbiol. 59 (1993) 2007–2013. [PMID: 8357241]
6.  Guo, P., Wang, B., Hang, B., Li, L., Ali, W., He, J. and Li, S. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int. Biodeter. Biodegrad. 63 (2009) 1107–1112.
[EC 3.1.1.88 created 2011]
 
 
EC 3.1.1.89     
Accepted name: protein phosphatase methylesterase-1
Reaction: [phosphatase 2A protein]-leucine methyl ester + H2O = [phosphatase 2A protein]-leucine + methanol
Other name(s): PME-1; PPME1
Systematic name: [phosphatase 2A protein]-leucine ester acylhydrolase
Comments: A key regulator of protein phosphatase 2A. The methyl ester is formed by EC 2.1.1.233 (leucine carboxy methyltransferase-1). Occurs mainly in the nucleus.
References:
1.  Ogris, E., Du, X., Nelson, K.C., Mak, E.K., Yu, X.X., Lane, W.S. and Pallas, D.C. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J. Biol. Chem. 274 (1999) 14382–14391. [PMID: 10318862]
2.  Xing, Y., Li, Z., Chen, Y., Stock, J.B., Jeffrey, P.D. and Shi, Y. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133 (2008) 154–163. [PMID: 18394995]
[EC 3.1.1.89 created 2011]
 
 
EC 3.1.1.90     
Accepted name: all-trans-retinyl ester 13-cis isomerohydrolase
Reaction: an all-trans-retinyl ester + H2O = 13-cis-retinol + a fatty acid
Systematic name: all-trans-retinyl ester acylhydrolase, 13-cis-retinol-forming
Comments: All-trans-retinyl esters, which are a storage form of vitamin A, are generated by the activity of EC 2.3.1.135, phosphatidylcholine—retinol O-acyltransferase (LRAT). They can be hydrolysed to 11-cis-retinol by EC 3.1.1.64, retinoid isomerohydrolase (RPE65), or to 13-cis-retinol by this enzyme.
References:
1.  Takahashi, Y., Moiseyev, G., Chen, Y., Farjo, K., Nikolaeva, O. and Ma, J.X. An enzymatic mechanism for generating the precursor of endogenous 13-cis retinoic acid in the brain. FEBS J. 278 (2011) 973–987. [PMID: 21235714]
[EC 3.1.1.90 created 2011]
 
 
EC 3.1.1.91     
Accepted name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonase
Reaction: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + H2O = maleylpyruvate
Other name(s): naaC (gene name)
Systematic name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonohydrolase
Comments: This enzyme, characterized from the soil bacterium Bradyrhizobium sp. JS329, is involved in the pathway of 5-nitroanthranilate degradation.
References:
1.  Qu, Y. and Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193 (2011) 3057–3063. [PMID: 21498645]
[EC 3.1.1.91 created 2012]
 
 
EC 3.1.1.92     
Accepted name: 4-sulfomuconolactone hydrolase
Reaction: 4-sulfomuconolactone + H2O = maleylacetate + sulfite
Glossary: 4-sulfomuconolactone = 4-carboxymethylen-4-sulfobut-2-en-olide = 2-(5-oxo-2-sulfo-2,5-dihydrofuran-2-yl)acetic acid
maleylacetate = (2Z)-4-oxohex-2-enedioate
Systematic name: 4-sulfomuconolactone sulfohydrolase
Comments: The enzyme was isolated from the bacteria Hydrogenophaga intermedia and Agrobacterium radiobacter S2. It catalyses a step in the degradation of 4-sulfocatechol.
References:
1.  Halak, S., Basta, T., Burger, S., Contzen, M., Wray, V., Pieper, D.H. and Stolz, A. 4-sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. J. Bacteriol. 189 (2007) 6998–7006. [PMID: 17660282]
[EC 3.1.1.92 created 2012]
 
 
EC 3.1.1.93     
Accepted name: mycophenolic acid acyl-glucuronide esterase
Reaction: mycophenolic acid O-acyl-glucuronide + H2O = mycophenolate + D-glucuronate
Glossary: mycophenolate = (4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoate
mycophenolic acid O-acyl-glucuronide = 1-O-[(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoyl]-β-D-glucopyranuronic acid
Other name(s): mycophenolic acid acyl-glucuronide deglucuronidase; AcMPAG deglucuronidase
Systematic name: mycophenolic acid O-acyl-glucuronide-ester hydrolase
Comments: This liver enzyme deglucuronidates mycophenolic acid O-acyl-glucuronide, a metabolite of the immunosuppressant drug mycophenolate that is thought to be immunotoxic.
References:
1.  Iwamura, A., Fukami, T., Higuchi, R., Nakajima, M. and Yokoi, T. Human α/β hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver. J. Biol. Chem. 287 (2012) 9240–9249. [PMID: 22294686]
[EC 3.1.1.93 created 2012]
 
 
EC 3.1.1.94     
Accepted name: versiconal hemiacetal acetate esterase
Reaction: (1) versiconal hemiacetal acetate + H2O = versiconal + acetate
(2) versiconol acetate + H2O = versiconol + acetate
Glossary: versiconal = (2S,3S)-2,4,6,8-tetrahydroxy-3-(2-hydroxyethyl)anthra[2,3-b]furan-5,10-dione
versiconal hemiacetal acetate = 2-[(2S,3S)-2,4,6,8-tetrahydroxy-5,10-dioxo-5,10-dihydroanthra[2,3-b]furan-3-yl]ethyl acetate
versiconol = 1,3,6,8-tetrahydroxy-3-[(2S)-1,4-dihydroxybutan-2-yl]anthracene-5,10-dione
versiconol acetate = (3S)-4-hydroxy-3-[1,3,6,8-tetrahydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl]butyl acetate
Other name(s): VHA esterase
Systematic name: versiconal-hemiacetal-acetate O-acetylhydrolase
Comments: Isolated from the mold Aspergillus parasiticus. Involved in a metabolic grid that leads to aflatoxin biosynthesis.
References:
1.  Kusumoto, K. and Hsieh, D.P. Purification and characterization of the esterases involved in aflatoxin biosynthesis in Aspergillus parasiticus. Can. J. Microbiol. 42 (1996) 804–810. [PMID: 8776851]
2.  Chang, P.K., Yabe, K. and Yu, J. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70 (2004) 3593–3599. [PMID: 15184162]
[EC 3.1.1.94 created 2013]
 
 
EC 3.1.1.95     
Accepted name: aclacinomycin methylesterase
Reaction: aclacinomycin T + H2O = 15-demethylaclacinomycin T + methanol
Glossary: aclacinomycin T = 2-ethyl-1,2,3,4,6,11-hexahydro-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1-naphthacenecarboxylic acid methyl ester = methyl (1R,2R,4S)-2-ethyl-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
15-demethoxyaclacinomycin T = (1R,2R,4S)-2-ethyl-1,2,3,4,6,11-hexahydro-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1-naphthacenecarboxylic acid = (1R,2R,4S)-2-ethyl-2,5,7-trihydroxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy}-1,2,3,4,6,11-hexahydrotetracene-1-carboxylic acid
Other name(s): RdmC; aclacinomycin methyl esterase
Systematic name: aclacinomycin T acylhydrolase
Comments: The enzyme is involved in the modification of the aklavinone skeleton in the biosynthesis of anthracyclines in Streptomyces species.
References:
1.  Wang, Y., Niemi, J., Airas, K., Ylihonko, K., Hakala, J. and Mantsala, P. Modifications of aclacinomycin T by aclacinomycin methyl esterase (RdmC) and aclacinomycin-10-hydroxylase (RdmB) from Streptomyces purpurascens. Biochim. Biophys. Acta 1480 (2000) 191–200. [PMID: 11004563]
2.  Jansson, A., Niemi, J., Mantsala, P. and Schneider, G. Crystal structure of aclacinomycin methylesterase with bound product analogues: implications for anthracycline recognition and mechanism. J. Biol. Chem. 278 (2003) 39006–39013. [PMID: 12878604]
[EC 3.1.1.95 created 2013]
 
 
EC 3.1.1.96     
Accepted name: D-aminoacyl-tRNA deacylase
Reaction: (1) a D-aminoacyl-tRNA + H2O = a D-amino acid + tRNA
(2) glycyl-tRNAAla + H2O = glycine + tRNAAla
Other name(s): Dtd2; D-Tyr-tRNA(Tyr) deacylase; D-Tyr-tRNATyr deacylase; D-tyrosyl-tRNATyr aminoacylhydrolase; dtdA (gene name)
Systematic name: D-aminoacyl-tRNA aminoacylhydrolase
Comments: The enzyme, found in all domains of life, can cleave mischarged glycyl-tRNAAla [5]. The enzyme from Escherichia coli can cleave D-tyrosyl-tRNATyr, D-aspartyl-tRNAAsp and D-tryptophanyl-tRNATrp [1]. Whereas the enzyme from the archaeon Pyrococcus abyssi is a zinc protein, the enzyme from Escherichia coli does not carry any zinc [2].
References:
1.  Soutourina, J., Plateau, P. and Blanquet, S. Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J. Biol. Chem. 275 (2000) 32535–32542. [PMID: 10918062]
2.  Ferri-Fioni, M.L., Schmitt, E., Soutourina, J., Plateau, P., Mechulam, Y. and Blanquet, S. Structure of crystalline D-Tyr-tRNA(Tyr) deacylase. A representative of a new class of tRNA-dependent hydrolases. J. Biol. Chem. 276 (2001) 47285–47290. [PMID: 11568181]
3.  Ferri-Fioni, M.L., Fromant, M., Bouin, A.P., Aubard, C., Lazennec, C., Plateau, P. and Blanquet, S. Identification in archaea of a novel D-Tyr-tRNATyr deacylase. J. Biol. Chem. 281 (2006) 27575–27585. [PMID: 16844682]
4.  Wydau, S., Ferri-Fioni, M.L., Blanquet, S. and Plateau, P. GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase. Nucleic Acids Res. 35 (2007) 930–938. [PMID: 17251192]
5.  Pawar, K.I., Suma, K., Seenivasan, A., Kuncha, S.K., Routh, S.B., Kruparani, S.P. and Sankaranarayanan, R. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. Elife 6:e24001 (2017). [PMID: 28362257]
[EC 3.1.1.96 created 2014, modified 2019]
 
 
EC 3.1.1.97     
Accepted name: methylated diphthine methylhydrolase
Reaction: diphthine methyl ester-[translation elongation factor 2] + H2O = diphthine-[translation elongation factor 2] + methanol
Glossary: diphthine methyl ester = 2-[(3S)-3-carboxy methyl ester-3-(trimethylammonio)propyl]-L-histidine
diphthine = 2-[(3S)-3-carboxy-3-(trimethylammonio)propyl]-L-histidine
Other name(s): Dph7; diphthine methylesterase (incorrect)
Systematic name: diphthine methyl ester acylhydrolase
Comments: The protein is only present in eukaryotes.
References:
1.  Lin, Z., Su, X., Chen, W., Ci, B., Zhang, S. and Lin, H. Dph7 catalyzes a previously unknown demethylation step in diphthamide biosynthesis. J. Am. Chem. Soc. 136 (2014) 6179–6182. [PMID: 24739148]
[EC 3.1.1.97 created 2014, modified 2015]
 
 
EC 3.1.1.98     
Accepted name: [Wnt protein] O-palmitoleoyl-L-serine hydrolase
Reaction: [Wnt]-O-(9Z)-hexadec-9-enoyl-L-serine + H2O = [Wnt]-L-serine + (9Z)-hexadec-9-enoate
Glossary: (9Z)-hexadec-9-enoate = palmitoleoate
Other name(s): Notum
Systematic name: [Wnt]-O-(9Z)-hexadec-9-enoyl-L-serine acylhydrolase
Comments: The enzyme removes the palmitoleate modification that is introduced to specific L-serine residues in Wnt proteins by EC 2.3.1.250, [Wnt protein]-O-palmitoleoyl transferase.
References:
1.  Kakugawa, S., Langton, P.F., Zebisch, M., Howell, S.A., Chang, T.H., Liu, Y., Feizi, T., Bineva, G., O'Reilly, N., Snijders, A.P., Jones, E.Y. and Vincent, J.P. Notum deacylates Wnt proteins to suppress signalling activity. Nature (2015) . [PMID: 25731175]
[EC 3.1.1.98 created 2015]
 
 
EC 3.1.1.99     
Accepted name: 6-deoxy-6-sulfogluconolactonase
Reaction: 6-deoxy-6-sulfo-D-glucono-1,5-lactone + H2O = 6-deoxy-6-sulfo-D-gluconate
Other name(s): SGL lactonase
Systematic name: 6-deoxy-6-sulfo-D-glucono-1,5-lactone lactonohydrolase
Comments: The enzyme, characterized from the bacterium Pseudomonas putida SQ1, participates in a sulfoquinovose degradation pathway.
References:
1.  Felux, A.K., Spiteller, D., Klebensberger, J. and Schleheck, D. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proc. Natl. Acad. Sci. USA 112 (2015) E4298–E4305. [PMID: 26195800]
[EC 3.1.1.99 created 2016]
 
 
EC 3.1.1.100     
Accepted name: chlorophyllide a hydrolase
Reaction: chlorophyllide a + H2O = 8-ethyl-12-methyl-3-vinyl-bacteriochlorophyllide d + methanol + CO2
Other name(s): bciC (gene name)
Systematic name: chlorophyllide-a hydrolase
Comments: This enzyme, found in green sulfur bacteria (Chlorobiaceae) and green filamentous bacteria (Chloroflexaceae), catalyses the first committed step in the biosynthesis of bacteriochlorophylls c, d and e, the removal of the C-132-methylcarboxyl group from chlorophyllide a. The reaction is very similar to the conversion of pheophorbide a to pyropheophorbide a during chlorophyll a degradation, which is catalysed by EC 3.1.1.82, pheophorbidase.
References:
1.  Liu, Z. and Bryant, D.A. Identification of a gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. J. Biol. Chem. 286 (2011) 22393–22402. [PMID: 21550979]
[EC 3.1.1.100 created 2016]
 
 
EC 3.1.1.101     
Accepted name: poly(ethylene terephthalate) hydrolase
Reaction: (ethylene terephthalate)n + H2O = (ethylene terephthalate)n-1 + 4-[(2-hydroxyethoxy)carbonyl]benzoate
Glossary: poly(ethylene terephthalate) = PET
4-[(2-hydroxyethoxy)carbonyl]benzoate = mono(ethylene terephthalate) = MHET
Other name(s): PETase; PET hydrolase
Systematic name: poly(ethylene terephthalate) hydrolase
Comments: The enzyme, isolated from the bacterium Ideonella sakaiensis, also produces small amounts of terephthalate (cf. EC 3.1.1.102, mono(ethylene terephthalate) hydrolase). The reaction takes place on PET-film placed in solution.
References:
1.  Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. and Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351 (2016) 1196–1199. [PMID: 26965627]
[EC 3.1.1.101 created 2016]
 
 
EC 3.1.1.102     
Accepted name: mono(ethylene terephthalate) hydrolase
Reaction: 4-[(2-hydroxyethoxy)carbonyl]benzoate + H2O = terephthalate + ethylene glycol
Glossary: 4-[(2-hydroxyethoxy)carbonyl]benzoate = mono(ethylene terephthalate) = MHET
Other name(s): MHET hydrolase; MHETase
Systematic name: 4-[(2-hydroxyethoxy)carbonyl]benzoate acylhydrolase
Comments: The enzyme, isolated from the bacterium Ideonella sakaiensis, has no activity with poly(ethylene terephthalate) PET (cf. EC 3.1.1.101, poly(ethylene terephthalate) hydrolase).
References:
1.  Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. and Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351 (2016) 1196–1199. [PMID: 26965627]
[EC 3.1.1.102 created 2016]
 
 
EC 3.1.1.103     
Accepted name: teichoic acid D-alanine hydrolase
Reaction: [(4-D-Ala)-(2-GlcNAc)-Rib-ol-P]n-[Gro-P]m-β-D-ManNAc-(1→4)-α-D-GlcNAc-P-peptidoglycan + n H2O = [(2-GlcNAc)-Rib-ol-P]n-[Gro-P]m-β-D-ManNAc-(1→4)-α-D-GlcNAc-P-peptidoglycan + n D-alanine
Glossary: Rib-ol = ribitol
Other name(s): fmtA (gene name)
Systematic name: teichoic acid D-alanylhydrolase
Comments: The enzyme, characterized from the bacterium Staphylococcus aureus, removes D-alanine groups from the teichoic acid produced by this organism, thus modulating the electrical charge of the bacterial surface. The activity greatly increases methicillin resistance in MRSA strains.
References:
1.  Komatsuzawa, H., Sugai, M., Ohta, K., Fujiwara, T., Nakashima, S., Suzuki, J., Lee, C.Y. and Suginaka, H. Cloning and characterization of the fmt gene which affects the methicillin resistance level and autolysis in the presence of triton X-100 in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 41 (1997) 2355–2361. [PMID: 9371333]
2.  Qamar, A. and Golemi-Kotra, D. Dual roles of FmtA in Staphylococcus aureus cell wall biosynthesis and autolysis. Antimicrob. Agents Chemother. 56 (2012) 3797–3805. [PMID: 22564846]
3.  Rahman, M.M., Hunter, H.N., Prova, S., Verma, V., Qamar, A. and Golemi-Kotra, D. The Staphylococcus aureus methicillin resistance factor FmtA is a D-amino esterase that acts on teichoic acids. MBio 7 (2016) e02070. [PMID: 26861022]
[EC 3.1.1.103 created 2018]
 
 
EC 3.1.1.104     
Accepted name: 5-phospho-D-xylono-1,4-lactonase
Reaction: (1) D-xylono-1,4-lactone 5-phosphate + H2O = 5-phospho-D-xylonate
(2) L-arabino-1,4-lactone 5-phosphate + H2O = 5-phospho-L-arabinate
Systematic name: 5-phospho-D-xylono-1,4-lactone hydrolase
Comments: The enzyme, characterized from Mycoplasma spp., contains a binuclear metal center with two zinc cations. The enzyme is specific for the phosphorylated forms, and is unable to hydrolyse non-phosphorylated 1,4-lactones.
References:
1.  Korczynska, M., Xiang, D.F., Zhang, Z., Xu, C., Narindoshvili, T., Kamat, S.S., Williams, H.J., Chang, S.S., Kolb, P., Hillerich, B., Sauder, J.M., Burley, S.K., Almo, S.C., Swaminathan, S., Shoichet, B.K. and Raushel, F.M. Functional annotation and structural characterization of a novel lactonase hydrolyzing D-xylono-1,4-lactone-5-phosphate and L-arabino-1,4-lactone-5-phosphate. Biochemistry 53 (2014) 4727–4738. [PMID: 24955762]
[EC 3.1.1.104 created 2018]
 
 
EC 3.1.1.105     
Accepted name: 3-O-acetylpapaveroxine carboxylesterase
Reaction: 3-O-acetylpapaveroxine + H2O = narcotine hemiacetal + acetate
Glossary: 3-O-acetylpapaveroxine = 6-{(S)-acetoxy[(5R)-4-methoxy-6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinolin-5-yl]methyl}-2,3-dimethoxybenzaldehyde
narcotine hemiacetal = (3S)-6,7-dimethoxy-3-[(5R)-4-methoxy-6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinolin-5-yl]-1,3-dihydroisobenzofuran-1-ol
Other name(s): CXE1 (gene name)
Systematic name: 3-O-acetylpapaveroxine acetatehydrolase
Comments: The enzyme, characterized from the plant Papaver somniferum (opium poppy), participates in the biosynthesis of the isoquinoline alkaloid noscapine.
References:
1.  Dang, T.T., Chen, X. and Facchini, P.J. Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat. Chem. Biol. 11 (2015) 104–106. [PMID: 25485687]
2.  Park, M.R., Chen, X., Lang, D.E., Ng, K.KS. and Facchini, P.J. Heterodimeric O-methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant J. 95 (2018) 252–267. [PMID: 29723437]
[EC 3.1.1.105 created 2019]
 
 
EC 3.1.1.106     
Accepted name: O-acetyl-ADP-ribose deacetylase
Reaction: (1) 3′′-O-acetyl-ADP-D-ribose + H2O = ADP-D-ribose + acetate
(2) 2′′-O-acetyl-ADP-D-ribose + H2O = ADP-D-ribose + acetate
Other name(s): ymdB (gene name); MACROD1 (gene name)
Systematic name: O-acetyl-ADP-D-ribose carboxylesterase
Comments: The enzyme, characterized from the bacterium Escherichia coli and from human cells, removes the acetyl group from either the 2′′ or 3′′ position of O-acetyl-ADP-ribose, which are formed by the action of EC 2.3.1.286, protein acetyllysine N-acetyltransferase. The human enzyme can also remove ADP-D-ribose from phosphorylated double stranded DNA adducts.
References:
1.  Chen, D., Vollmar, M., Rossi, M.N., Phillips, C., Kraehenbuehl, R., Slade, D., Mehrotra, P.V., von Delft, F., Crosthwaite, S.K., Gileadi, O., Denu, J.M. and Ahel, I. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 286 (2011) 13261–13271. [PMID: 21257746]
2.  Zhang, W., Wang, C., Song, Y., Shao, C., Zhang, X. and Zang, J. Structural insights into the mechanism of Escherichia coli YmdB: A 2′-O-acetyl-ADP-ribose deacetylase. J. Struct. Biol. 192 (2015) 478–486. [PMID: 26481419]
3.  Agnew, T., Munnur, D., Crawford, K., Palazzo, L., Mikoc, A. and Ahel, I. MacroD1 is a promiscuous ADP-ribosyl hydrolase localized to mitochondria. Front. Microbiol. 9:20 (2018). [PMID: 29410655]
[EC 3.1.1.106 created 2019]
 
 
EC 3.1.1.107     
Accepted name: apo-salmochelin esterase
Reaction: (1) enterobactin + H2O = N-(2,3-dihydroxybenzoyl)-L-serine trimer
(2) triglucosyl-enterobactin + H2O = triglucosyl-(2,3-dihydroxybenzoylserine)3
(3) diglucosyl-enterobactin + H2O = diglucosyl-(2,3-dihydroxybenzoylserine)3
(4) monoglucosyl-enterobactin + H2O = monoglucosyl-(2,3-dihydroxybenzoylserine)3
Glossary: N-(2,3-dihydroxybenzoyl)-L-serine trimer = O-3-{O-3-[N-(2,3-dihydroxybenzoyl)-L-seryl]-N-(2,3-dihydroxybenzoyl)-L-seryl}-N-(2,3-dihydroxybenzoyl)-L-serine
diglucosyl-(2,3-dihydroxybenzoylserine)3 = salmochelin S2 = O-3-{O-3-[N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl]-N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl}-N-(2,3-dihydroxybenzoyl)-L-serine
enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-3→1(3)-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
triglucosyl-enterobactin = N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = tri-C-glucosyl-enterobactin = salmochelin TGE
Other name(s): iroE (gene name)
Systematic name: apo-salmochelin esterase
Comments: This bacterial enzyme is present in pathogenic Salmonella species, uropathogenic and avian pathogenic Escherichia coli strains, and certain Klebsiella strains. Unlike EC 3.1.1.108, ferric enterobactin esterase, which acts only on enterobactin, this enzyme can also act on the C-glucosylated forms known as salmochelins. Unlike EC 3.1.1.109, ferric salmochelin esterase (IroD), IroE prefers apo siderophores as substrates, and is assumed to act before the siderophores are exported out of the cell. It hydrolyses the trilactone only once, producing linearized trimers.
References:
1.  Lin, H., Fischbach, M.A., Liu, D.R. and Walsh, C.T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127 (2005) 11075–11084. [PMID: 16076215]
[EC 3.1.1.107 created 2019]
 
 
EC 3.1.1.108     
Accepted name: iron(III)-enterobactin esterase
Reaction: iron(III)-enterobactin + 3 H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine complex + 2 N-(2,3-dihydroxybenzoyl)-L-serine (overall reaction)
(1a) iron(III)-enterobactin + H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine trimer complex
(1b) iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine trimer complex + H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine dimer complex + N-(2,3-dihydroxybenzoyl)-L-serine
(1c) iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine dimer complex + H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine complex + N-(2,3-dihydroxybenzoyl)-L-serine
Other name(s): fes (gene name); pfeE (gene name); enterochelin hydrolase; enterochelin esterase; ferric enterobactin esterase
Systematic name: iron(III)-enterobactin hydrolase
Comments: The enzyme, isolated from the bacterium Escherichia coli, allows the bacterium to grow in limited iron conditions. It can also act on enterobactin (with no complexed iron) and the aluminium(III) analogue of iron(III)-enterobactin. The trimer formed is further hydrolysed to form the dimer and the monomer.
References:
1.  O'Brien, I.G., Cox, G.B. and Gibson, F. Enterochelin hydrolysis and iron metabolism in Escherichia coli. Biochim. Biophys. Acta 237 (1971) 537–549. [PMID: 4330269]
2.  Greenwood, K.T. and Luke, R.K. Enzymatic hydrolysis of enterochelin and its iron complex in Escherichia Coli K-12. Properties of enterochelin esterase. Biochim. Biophys. Acta 525 (1978) 209–218. [PMID: 150859]
3.  Pettis, G.S. and McIntosh, M.A. Molecular characterization of the Escherichia coli enterobactin cistron entF and coupled expression of entF and the fes gene. J. Bacteriol. 169 (1987) 4154–4162. [PMID: 3040679]
4.  Brickman, T.J. and McIntosh, M.A. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J. Biol. Chem. 267 (1992) 12350–12355. [PMID: 1534808]
5.  Winkelmann, G., Cansier, A., Beck, W. and Jung, G. HPLC separation of enterobactin and linear 2,3-dihydroxybenzoylserine derivatives: a study on mutants of Escherichia coli defective in regulation (fur), esterase (fes) and transport (fepA). Biometals 7 (1994) 149–154. [PMID: 8148617]
6.  Perraud, Q., Moynie, L., Gasser, V., Munier, M., Godet, J., Hoegy, F., Mely, Y., Mislin, G.LA., Naismith, J.H. and Schalk, I.J. A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa. ACS Chem. Biol. 13 (2018) 2603–2614. [PMID: 30086222]
[EC 3.1.1.108 created 2019]
 
 
EC 3.1.1.109     
Accepted name: iron(III)-salmochelin esterase
Reaction: (1) iron(III)-[diglucosyl-enterobactin] complex + H2O = iron(III)-[salmochelin S2] complex
(2) iron(III)-[monoglucosyl-enterobactin] complex + H2O = iron(III)-[monoglucosyl-(2,3-dihydroxybenzoylserine)3] complex
(3) iron(III)-[salmochelin S2] complex + H2O = iron(III)-[diglucosyl-(2,3-dihydroxybenzoylserine)2] complex + N-(2,3-dihydroxybenzoyl)-L-serine
(4) iron(III)-[salmochelin S2] complex + H2O = iron(III)-[salmochelin S1] complex + salmochelin SX
(5) iron(III)-[monoglucosyl-(2,3-dihydroxybenzoylserine)3] complex + H2O = iron(III)-[salmochelin S1] complex + N-(2,3-dihydroxybenzoyl)-L-serine
(6) iron(III)-[diglucosyl-(2,3-dihydroxybenzoylserine)2] complex + H2O = iron(III)-[salmochelin SX] complex + salmochelin SX
Glossary: salmochelin S2 = O-3-{O-3-[N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl]-N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl}-N-(2,3-dihydroxybenzoyl)-L-serine
salmochelin S1 = O-3-[N-(2,3-dihydroxybenzoyl)-L-seryl]-N-(C-5-deoxy-β-D-glucosyl-2,3-dihydroxybenzoyl)-L-serine
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-[3→1(3)]-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-[3→1(3)]-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
salmochelin SX = N-(C-5-deoxy-β-D-glucosyl-2,3-dihydroxybenzoyl)-L-serine
Other name(s): iroD (gene name); ferric-salmochelin esterase
Systematic name: iron(III)-salmochelin complex hydrolase
Comments: This bacterial enzyme is present in pathogenic Salmonella species, uropathogenic and avian pathogenic Escherichia coli strains, and certain Klebsiella strains. The enzyme acts on iron(III)-bound enterobactin and C-glucosylated derivatives known as salmochelins. Unlike EC 3.1.1.107, apo-salmochelin esterase (IroE), IroD prefers iron(III)-bound siderophores as substrates, and is assumed to act after the iron-siderophore complexes are imported into the cell. It catalyses several hydrolytic reactions, producing a mixture of iron(III)-[N-(2,3-dihydroxybenzoyl)-L-serine] complex and salmochelin SX.
References:
1.  Lin, H., Fischbach, M.A., Liu, D.R. and Walsh, C.T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127 (2005) 11075–11084. [PMID: 16076215]
[EC 3.1.1.109 created 2019]
 
 
EC 3.1.1.110     
Accepted name: xylono-1,5-lactonase
Reaction: D-xylono-1,5-lactone + H2O = D-xylonate
Other name(s): xylC (gene name); D-xylono-1,5-lactone lactonase
Systematic name: D-xylono-1,5-lactone lactonohydrolase
Comments: The enzyme, found in bacteria, participates in the degradation of D-xylose. cf. EC 3.1.1.68, xylono-1,4-lactonase.
References:
1.  Toivari, M., Nygard, Y., Kumpula, E.P., Vehkomaki, M.L., Bencina, M., Valkonen, M., Maaheimo, H., Andberg, M., Koivula, A., Ruohonen, L., Penttila, M. and Wiebe, M.G. Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metab. Eng. 14 (2012) 427–436. [PMID: 22709678]
2.  Nygard, Y., Maaheimo, H., Mojzita, D., Toivari, M., Wiebe, M., Resnekov, O., Gustavo Pesce, C., Ruohonen, L. and Penttila, M. Single cell and in vivo analyses elucidate the effect of xylC lactonase during production of D-xylonate in Saccharomyces cerevisiae. Metab. Eng. 25 (2014) 238–247. [PMID: 25073011]
[EC 3.1.1.110 created 2019]
 
 
EC 3.1.1.111     
Accepted name: phosphatidylserine sn-1 acylhydrolase
Reaction: (1) a phosphatidylserine + H2O = a 2-acyl-1-lyso-phosphatidylserine + a fatty acid
(2) a 1-acyl-2-lyso-phosphatidylserine + H2O = glycerophosphoserine + a fatty acid
Glossary: phosphatidylserine = 3-sn-phosphatidyl-L-serine = 1,2-diacyl-sn-glycero-3-phospho-L-serine
glycerophosphoserine = sn-glycero-3-phospho-L-serine
Other name(s): phosphatidylserine-specific phospholipase A1; PS-PLA1; PLA1A (gene name)
Systematic name: 3-sn-phosphatidyl-L-serine sn-1 acylhydrolase
Comments: The enzyme, which has been described from mammals, is specific for phosphatidylserine and 2-lysophosphatidylserine, and does not act on phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid or phosphatidylinositol.
References:
1.  Sato, T., Aoki, J., Nagai, Y., Dohmae, N., Takio, K., Doi, T., Arai, H. and Inoue, K. Serine phospholipid-specific phospholipase A that is secreted from activated platelets. A new member of the lipase family. J. Biol. Chem. 272 (1997) 2192–2198. [PMID: 8999922]
2.  Nagai, Y., Aoki, J., Sato, T., Amano, K., Matsuda, Y., Arai, H. and Inoue, K. An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J. Biol. Chem. 274 (1999) 11053–11059. [PMID: 10196188]
3.  Hosono, H., Aoki, J., Nagai, Y., Bandoh, K., Ishida, M., Taguchi, R., Arai, H. and Inoue, K. Phosphatidylserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2-acyl-1-lysophosphatidylserine. J. Biol. Chem. 276 (2001) 29664–29670. [PMID: 11395520]
4.  Aoki, J., Nagai, Y., Hosono, H., Inoue, K. and Arai, H. Structure and function of phosphatidylserine-specific phospholipase A1. Biochim. Biophys. Acta 1582 (2002) 26–32. [PMID: 12069807]
[EC 3.1.1.111 created 2019]
 
 
EC 3.1.1.112     
Accepted name: isoamyl acetate esterase
Reaction: 3-methylbutyl acetate + H2O = 3-methylbutanol + acetate
Other name(s): IAH1 (gene name)
Systematic name: 3-methylbutyl acetate acetohydrolase
Comments: The enzyme, characterized from the yeast Saccharomyces cerevisiae, hydrolyses acetate esters. It acts preferentially on 3-methylbutyl acetate, a major determinant of sake flavor.
References:
1.  Fukuda, K., Kiyokawa, Y., Yanagiuchi, T., Wakai, Y., Kitamoto, K., Inoue, Y. and Kimura, A. Purification and characterization of isoamyl acetate-hydrolyzing esterase encoded by the IAH1 gene of Saccharomyces cerevisiae from a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 53 (2000) 596–600. [PMID: 10855721]
[EC 3.1.1.112 created 2019]
 
 
EC 3.1.1.113     
Accepted name: ethyl acetate hydrolase
Reaction: ethyl acetate + H2O = acetate + ethanol
Other name(s): mekB (gene name); estZ (gene name)
Systematic name: ethyl acetate acetohydrolase
Comments: The enzyme, characterized from Pseudomonas strains, is involved in degradation of short chain alkyl methyl ketones.
References:
1.  Hasona, A., York, S.W., Yomano, L.P., Ingram, L.O. and Shanmugam, K.T. Decreasing the level of ethyl acetate in ethanolic fermentation broths of Escherichia coli KO11 by expression of Pseudomonas putida estZ esterase. Appl. Environ. Microbiol. 68 (2002) 2651–2659. [PMID: 12039716]
2.  Onaca, C., Kieninger, M., Engesser, K.H. and Altenbuchner, J. Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700. J. Bacteriol. 189 (2007) 3759–3767. [PMID: 17351032]
[EC 3.1.1.113 created 2019]
 
 
EC 3.1.1.114     
Accepted name: methyl acetate hydrolase
Reaction: methyl acetate + H2O = acetate + methanol
Other name(s): acmB (gene name)
Systematic name: methyl acetate acetohydrolase
Comments: The enzyme, characterized from the bacterium Gordonia sp. TY-5, participates in a propane utilization pathway.
References:
1.  Kotani, T., Yurimoto, H., Kato, N. and Sakai, Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J. Bacteriol. 189 (2007) 886–893. [PMID: 17071761]
[EC 3.1.1.114 created 2019]
 
 
EC 3.1.1.115     
Accepted name: D-apionolactonase
Reaction: D-apionolactone + H2O = D-apionate
Glossary: D-apionolactone = (3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-one
Other name(s): apnL (gene name)
Systematic name: D-apionolactone lactonohydrolase
Comments: The enzyme, characterized from several bacterial species, is involved in a catabolic pathway for D-apiose.
References:
1.  Carter, M.S., Zhang, X., Huang, H., Bouvier, J.T., Francisco, B.S., Vetting, M.W., Al-Obaidi, N., Bonanno, J.B., Ghosh, A., Zallot, R.G., Andersen, H.M., Almo, S.C. and Gerlt, J.A. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14 (2018) 696–705. [PMID: 29867142]
[EC 3.1.1.115 created 2020]
 
 
EC 3.1.1.116     
Accepted name: sn-1-specific diacylglycerol lipase
Reaction: a 1,2-diacyl-sn-glycerol + H2O = a 2-acylglycerol + a fatty acid
Other name(s): DAGLA (gene name); DAGLB (gene name)
Systematic name: diacylglycerol sn-1-acylhydrolase
Comments: The enzyme, present in animals, is specific for the sn-1 position. When acting on 1-acyl-2-arachidonoyl-sn-glycerol, the enzyme forms 2-arachidonoylglycerol, the most abundant endocannabinoid in the mammalian brain.
References:
1.  Chau, L.Y. and Tau, H.H. Release of arachidonate from diglyceride in human platelets requires the sequential action of a diglyceride lipase and a monoglyceride lipase. Biochem. Biophys. Res. Commun. 100 (1988) 1688–1695. [PMID: 7295321]
2.  Bisogno, T., Howell, F., Williams, G., Minassi, A., Cascio, M.G., Ligresti, A., Matias, I., Schiano-Moriello, A., Paul, P., Williams, E.J., Gangadharan, U., Hobbs, C., Di Marzo, V. and Doherty, P. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163 (2003) 463–468. [PMID: 14610053]
3.  Bisogno, T. Assay of DAGLα/β activity. Methods Mol. Biol. 1412 (2016) 149–156. [PMID: 27245901]
[EC 3.1.1.116 created 2021]
 
 
EC 3.1.1.117     
Accepted name: (4-O-methyl)-D-glucuronate—lignin esterase
Reaction: a 4-O-methyl-D-glucopyranuronate ester + H2O = 4-O-methyl-D-glucuronic acid + an alcohol
Other name(s): glucuronoyl esterase (ambiguous); 4-O-methyl-glucuronoyl methylesterase; glucuronoyl-lignin ester hydrolase
Systematic name: (4-O-methyl)-D-glucuronate—lignin ester hydrolase
Comments: The enzyme occurs in microorganisms and catalyses the cleavage of the ester bonds between glucuronoyl or 4-O-methyl-glucuronoyl groups attached to xylan and aliphatic or aromatic alcohols in lignin polymers.
References:
1.  Spanikova, S. and Biely, P. Glucuronoyl esterase--novel carbohydrate esterase produced by Schizophyllum commune. FEBS Lett. 580 (2006) 4597–4601. [PMID: 16876163]
2.  Charavgi, M.D., Dimarogona, M., Topakas, E., Christakopoulos, P. and Chrysina, E.D. The structure of a novel glucuronoyl esterase from Myceliophthora thermophila gives new insights into its role as a potential biocatalyst. Acta Crystallogr. D Biol. Crystallogr. 69 (2013) 63–73. [PMID: 23275164]
3.  Arnling Baath, J., Giummarella, N., Klaubauf, S., Lawoko, M. and Olsson, L. A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds. FEBS Lett. 590 (2016) 2611–2618. [PMID: 27397104]
4.  Huttner, S., Klaubauf, S., de Vries, R.P. and Olsson, L. Characterisation of three fungal glucuronoyl esterases on glucuronic acid ester model compounds. Appl. Microbiol. Biotechnol. 101 (2017) 5301–5311. [PMID: 28429057]
5.  Huynh, H.H. and Arioka, M. Functional expression and characterization of a glucuronoyl esterase from the fungus Neurospora crassa: identification of novel consensus sequences containing the catalytic triad. J. Gen. Appl. Microbiol. 62 (2016) 217–224. [PMID: 27600355]
6.  Arnling Baath, J., Mazurkewich, S., Knudsen, R.M., Poulsen, J.N., Olsson, L., Lo Leggio, L. and Larsbrink, J. Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnol Biofuels 11:213 (2018). [PMID: 30083226]
7.  Mazurkewich, S., Poulsen, J.N., Lo Leggio, L. and Larsbrink, J. Structural and biochemical studies of the glucuronoyl esterase OtCE15A illuminate its interaction with lignocellulosic components. J. Biol. Chem. 294 (2019) 19978–19987. [PMID: 31740581]
8.  Ernst, H.A., Mosbech, C., Langkilde, A.E., Westh, P., Meyer, A.S., Agger, J.W. and Larsen, S. The structural basis of fungal glucuronoyl esterase activity on natural substrates. Nat. Commun. 11:1026 (2020). [PMID: 32094331]
[EC 3.1.1.117 created 2021]
 
 
EC 3.1.1.118     
Accepted name: phospholipid sn-1 acylhydrolase
Reaction: (1) a 1-phosphatidyl-1D-myo-inositol + H2O = a 2-acyl-sn-glycero-3-phospho-1D-myo-inositol + a fatty acid
(2) a 1,2-diacyl-sn-glycerol 3-phosphate + H2O = a 2-acyl-sn-glycerol 3-phosphate + a fatty acid
Glossary: a 1,2-diacyl-sn-glycerol 3-phosphate = a phosphatidate
Other name(s): phospholipase DDHD1; phosphatidic acid-preferring phospholipase A1; PA-PLA1; DDHD1 (gene name)
Systematic name: phospholipid sn-1 acylhydrolase
Comments: The human enzyme shows broad specificity, and has a preference for phosphatidate over other phospholipids. Unlike EC 3.1.1.32, phospholipase A1, it is also active against phosphatidylinositol. It is not active towards acyl groups linked at the sn-2 position.
References:
1.  Yamashita, A., Kumazawa, T., Koga, H., Suzuki, N., Oka, S. and Sugiura, T. Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): Possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. Biochim. Biophys. Acta 1801 (2010) 711–720. [PMID: 20359546]
2.  Baba, T., Kashiwagi, Y., Arimitsu, N., Kogure, T., Edo, A., Maruyama, T., Nakao, K., Nakanishi, H., Kinoshita, M., Frohman, M.A., Yamamoto, A. and Tani, K. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J. Biol. Chem. 289 (2014) 11497–11511. [PMID: 24599962]
[EC 3.1.1.118 created 2021]
 
 
EC 3.1.2.1     
Accepted name: acetyl-CoA hydrolase
Reaction: acetyl-CoA + H2O = CoA + acetate
Other name(s): acetyl-CoA deacylase; acetyl-CoA acylase; acetyl coenzyme A hydrolase; acetyl coenzyme A deacylase; acetyl coenzyme A acylase; acetyl-CoA thiol esterase
Systematic name: acetyl-CoA hydrolase
References:
1.  Gergely, J., Hele, P. and Ramakrishnan, C.V. Succinyl and acetyl coenzyme A deacylases. J. Biol. Chem. 198 (1952) 323–334. [PMID: 12999747]
[EC 3.1.2.1 created 1961]
 
 
EC 3.1.2.2     
Accepted name: palmitoyl-CoA hydrolase
Reaction: palmitoyl-CoA + H2O = CoA + palmitate
Other name(s): long-chain fatty-acyl-CoA hydrolase; palmitoyl coenzyme A hydrolase; palmitoyl thioesterase; palmitoyl coenzyme A hydrolase; palmitoyl-CoA deacylase; palmityl thioesterase; palmityl-CoA deacylase; fatty acyl thioesterase I; palmityl thioesterase I
Systematic name: palmitoyl-CoA hydrolase
Comments: Also hydrolyses CoA thioesters of other long-chain fatty acids.
References:
1.  Barnes, E.M., Jr. and Wakil, S.J. Studies on the mechanism of fatty acid synthesis. XIX. Preparation and general properties of palmityl thioesterase. J. Biol. Chem. 243 (1968) 2955–2962. [PMID: 4871199]
2.  Berge, R.K. and Farstad, M. Long-chain fatty acyl-CoA hydrolase from rat liver mitochondria. Methods Enzymol. 71 (1981) 234–242. [PMID: 6116156]
3.  Miyazawa, S., Furuta, S. and Hashimoto, T. Induction of a novel long-chain acyl-CoA hydrolase in rat liver by administration of peroxisome proliferators. Eur. J. Biochem. 117 (1981) 425–430. [PMID: 6115749]
4.  Srere, P.A., Seubert, W. and Lynen, F. Palmityl coenzyme A deacylase. Biochim. Biophys. Acta 33 (1959) 313–319. [PMID: 13670899]
5.  Yabusaki, K.K. and Ballou, C.E. Long-chain fatty acyl-CoA thioesterases from Mycobacterium smegmatis. Methods Enzymol. 71 (1981) 242–246.
[EC 3.1.2.2 created 1961]
 
 
EC 3.1.2.3     
Accepted name: succinyl-CoA hydrolase
Reaction: succinyl-CoA + H2O = CoA + succinate
Other name(s): succinyl-CoA acylase; succinyl coenzyme A hydrolase; succinyl coenzyme A deacylase
Systematic name: succinyl-CoA hydrolase
References:
1.  Gergely, J., Hele, P. and Ramakrishnan, C.V. Succinyl and acetyl coenzyme A deacylases. J. Biol. Chem. 198 (1952) 323–334. [PMID: 12999747]
[EC 3.1.2.3 created 1961]
 
 
EC 3.1.2.4     
Accepted name: 3-hydroxyisobutyryl-CoA hydrolase
Reaction: 3-hydroxy-2-methylpropanoyl-CoA + H2O = CoA + 3-hydroxy-2-methylpropanoate
Other name(s): 3-hydroxy-isobutyryl CoA hydrolase; HIB CoA deacylase
Systematic name: 3-hydroxy-2-methylpropanoyl-CoA hydrolase
Comments: Also hydrolyses 3-hydroxypropanoyl-CoA.
References:
1.  Rendina, G. and Coon, M.J. Enzymatic hydrolysis of the coenzyme A thiol esters of β-hydroxypropionic and β-hydroxyisobutyric acids. J. Biol. Chem. 225 (1957) 523–534. [PMID: 13457352]
[EC 3.1.2.4 created 1961]
 
 
EC 3.1.2.5     
Accepted name: hydroxymethylglutaryl-CoA hydrolase
Reaction: (S)-3-hydroxy-3-methylglutaryl-CoA + H2O = CoA + 3-hydroxy-3-methylglutarate
Other name(s): β-hydroxy-β-methylglutaryl coenzyme A hydrolase; β-hydroxy-β-methylglutaryl coenzyme A deacylase; hydroxymethylglutaryl coenzyme A hydrolase; hydroxymethylglutaryl coenzyme A deacylase; 3-hydroxy-3-methylglutaryl-CoA hydrolase
Systematic name: (S)-3-hydroxy-3-methylglutaryl-CoA hydrolase
References:
1.  Dekker, E.E., Schlesinger, M.J. and Coon, M.J. β-Hydroxy-β-methylglutaryl coenzyme A deacetylase. J. Biol. Chem. 233 (1958) 434–438. [PMID: 13563516]
[EC 3.1.2.5 created 1961]
 
 
EC 3.1.2.6     
Accepted name: hydroxyacylglutathione hydrolase
Reaction: S-(2-hydroxyacyl)glutathione + H2O = glutathione + a 2-hydroxy carboxylate
Other name(s): glyoxalase II; S-2-hydroxylacylglutathione hydrolase; hydroxyacylglutathione hydrolase; acetoacetylglutathione hydrolase
Systematic name: S-(2-hydroxyacyl)glutathione hydrolase
Comments: Also hydrolyses S-acetoacetylglutathione, but more slowly.
References:
1.  Racker, E. Spectrophotometric measurements of the metabolic formation and degradation of thiol esters and enediol compounds. Biochim. Biophys. Acta 9 (1952) 577–579. [PMID: 13032160]
2.  Uotila, L. Preparation and assay of glutathione thiol esters. Survey of human liver glutathione thiol esterases. Biochemistry 12 (1973) 3938–3943. [PMID: 4200890]
3.  Uotila, L. Purification and characterization of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from human liver. Biochemistry 12 (1973) 3944–3951. [PMID: 4745654]
[EC 3.1.2.6 created 1961 (EC 3.1.2.8 created 1961, incorporated 1978)]
 
 
EC 3.1.2.7     
Accepted name: glutathione thiolesterase
Reaction: S-acylglutathione + H2O = glutathione + a carboxylate
Other name(s): citryl-glutathione thioesterhydrolase
Systematic name: S-acylglutathione hydrolase
References:
1.  Kielley, W.W. and Bradley, L.B. Glutathione thiolesterase. J. Biol. Chem. 206 (1954) 327–338. [PMID: 13130552]
[EC 3.1.2.7 created 1961]
 
 
EC 3.1.2.8      
Deleted entry:  S-acetoacylglutathione hydrolase. Now included with EC 3.1.2.6 hydroxyacylglutathione hydrolase
[EC 3.1.2.8 created 1961, deleted 1978]
 
 
EC 3.1.2.9      
Deleted entry:  S-acetoacetylhydrolipoate hydrolase
[EC 3.1.2.9 created 1961, deleted 1964]
 
 
EC 3.1.2.10     
Accepted name: formyl-CoA hydrolase
Reaction: formyl-CoA + H2O = CoA + formate
Other name(s): formyl coenzyme A hydrolase
Systematic name: formyl-CoA hydrolase
References:
1.  Sly, W.S. and Stadtman, E.R. Formate metabolism. I. Formyl coenzyme A, an intermediate in the formate-dependent decomposition of acetyl phosphate in Clostridium kluyveri. J. Biol. Chem. 238 (1963) 2632–2638. [PMID: 14063284]
[EC 3.1.2.10 created 1965]
 
 
EC 3.1.2.11     
Accepted name: acetoacetyl-CoA hydrolase
Reaction: acetoacetyl-CoA + H2O = CoA + acetoacetate
Other name(s): acetoacetyl coenzyme A hydrolase; acetoacetyl CoA deacylase; acetoacetyl coenzyme A deacylase
Systematic name: acetoacetyl-CoA hydrolase
References:
1.  Aragón, J.J. and Lowenstein, J.M. A survey of enzymes which generate or use acetoacetyl thioesters in rat liver. J. Biol. Chem. 258 (1983) 4725–4733. [PMID: 6131897]
2.  Drummond, G.I. and Stern, J.R. Enzymes of ketone body metabolism. II. Properties of an acetoacetate-synthesizing enzyme prepared from ox liver. J. Biol. Chem. 235 (1960) 318–325. [PMID: 13818236]
[EC 3.1.2.11 created 1972]
 
 
EC 3.1.2.12     
Accepted name: S-formylglutathione hydrolase
Reaction: S-formylglutathione + H2O = glutathione + formate
Systematic name: S-formylglutathione hydrolase
Comments: Also hydrolyses S-acetylglutathione, but more slowly.
References:
1.  Uotila, L. Preparation and assay of glutathione thiol esters. Survey of human liver glutathione thiol esterases. Biochemistry 12 (1973) 3938–3943. [PMID: 4200890]
2.  Uotila, L. and Koivusalo, M. Purification and properties of S-formylglutathione hydrolase from human liver. J. Biol. Chem. 249 (1974) 7664–7672. [PMID: 4436331]
3.  Harms, N., Ras, J., Reijnders, W.N., van Spanning, R.J. and Stouthamer, A.H. S-Formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification? J. Bacteriol. 178 (1996) 6296–6299. [PMID: 8892832]
[EC 3.1.2.12 created 1978]
 
 
EC 3.1.2.13     
Accepted name: S-succinylglutathione hydrolase
Reaction: S-succinylglutathione + H2O = glutathione + succinate
Systematic name: S-succinylglutathione hydrolase
References:
1.  Uotila, L. Preparation and assay of glutathione thiol esters. Survey of human liver glutathione thiol esterases. Biochemistry 12 (1973) 3938–3943. [PMID: 4200890]
2.  Uotila, L. Purification and properties of S-succinylglutathione hydrolase from human liver. J. Biol. Chem. 254 (1979) 7024–7029. [PMID: 457667]
[EC 3.1.2.13 created 1978]
 
 
EC 3.1.2.14     
Accepted name: oleoyl-[acyl-carrier-protein] hydrolase
Reaction: an oleoyl-[acyl-carrier protein] + H2O = an [acyl-carrier protein] + oleate
Other name(s): acyl-[acyl-carrier-protein] hydrolase; acyl-ACP-hydrolase; acyl-acyl carrier protein hydrolase; oleoyl-ACP thioesterase; oleoyl-acyl carrier protein thioesterase; oleoyl-[acyl-carrier-protein] hydrolase
Systematic name: oleoyl-[acyl-carrier protein] hydrolase
Comments: Acts on acyl-carrier-protein thioesters of fatty acids from C12 to C18, but the derivative of oleic acid is hydrolysed much more rapidly than any other compound tested.
References:
1.  Ohlrogge, J.B., Shine, W.E. and Stumpf, P.K. Fat metabolism in higher plants. Characterization of plant acyl-ACP and acyl-CoA hydrolases. Arch. Biochem. Biophys. 189 (1978) 382–391. [PMID: 30409]
2.  Shine, W.E., Mancha, M. and Stumpf, P.K. Fat metabolism in higher plants. The function of acyl thioesterases in the metabolism of acyl-coenzymes A and acyl-acyl carrier proteins. Arch. Biochem. Biophys. 172 (1976) 110–116. [PMID: 3134]
[EC 3.1.2.14 created 1984]
 
 
EC 3.1.2.15      
Deleted entry: This activity is covered by EC 3.4.19.12, ubiquitinyl hydrolase 1
[EC 3.1.2.15 created 1986, deleted 2014]
 
 
EC 3.1.2.16     
Accepted name: citrate-lyase deacetylase
Reaction: acetyl-[citrate (pro-3S)-lyase] + H2O = holo-[citrate (pro-3S)-lyase] + acetate
Other name(s): [citrate-(pro-3S)-lyase] thiolesterase; acetyl-S-(acyl-carrier protein) enzyme thioester hydrolase; citrate lyase deacetylase; [citrate-(pro-3S)-lyase](acetyl-form) hydrolase
Systematic name: acetyl-[citrate-(pro-3S)-lyase] hydrolase
Comments: In the proteobacterium Rubrivivax gelatinosus, this enzyme modulates the activity of EC 4.1.3.6, citrate (pro-3S)-lyase, by converting it from its active acetyl form into its inactive thiol form by removal of its acetyl groups [2]. The activity of citrate-lyase deacetylase is itself inhibited by L-glutamate [2].
References:
1.  Giffhorn, F. and Gottschalk, G. Inactivation of citrate lyase from Rhodopseudomonas gelatinosa by a specific deacetylase and inhibition of this inactivation by L-(+)-glutamate. J. Bacteriol. 124 (1975) 1052–1061. [PMID: 356]
2.  Giffhorn, F., Rode, H., Kuhn, A. and Gottschalk, G. Citrate lyase deacetylase of Rhodopseudomonas gelatinosa. Isolation of the enzyme and studies on the inhibition by L-glutamate. Eur. J. Biochem. 111 (1980) 461–471. [PMID: 7460909]
[EC 3.1.2.16 created 1989]
 
 
EC 3.1.2.17     
Accepted name: (S)-methylmalonyl-CoA hydrolase
Reaction: (S)-methylmalonyl-CoA + H2O = methylmalonate + CoA
Other name(s): D-methylmalonyl-coenzyme A hydrolase
Systematic name: (S)-methylmalonyl-CoA hydrolase
References:
1.  Kovachy, R.J., Copley, S.D. and Allen, R.H. Recognition, isolation, and characterization of rat liver D-methylmalonyl coenzyme A hydrolase. J. Biol. Chem. 258 (1983) 11415–11421. [PMID: 6885824]
[EC 3.1.2.17 created 1989]
 
 
EC 3.1.2.18     
Accepted name: ADP-dependent short-chain-acyl-CoA hydrolase
Reaction: acyl-CoA + H2O = CoA + a carboxylate
Other name(s): short-chain acyl coenzyme A hydrolase; propionyl coenzyme A hydrolase; propionyl-CoA hydrolase; propionyl-CoA thioesterase; short-chain acyl-CoA hydrolase; short-chain acyl-CoA thioesterase
Systematic name: ADP-dependent-short-chain-acyl-CoA hydrolase
Comments: Requires ADP; inhibited by NADH. Maximum activity is shown with propanoyl-CoA.
References:
1.  Alexson, S.E.H. and Nedergaard, J. A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria. J. Biol. Chem. 263 (1988) 13564–13571. [PMID: 2901416]
2.  Alexson, S.E.H., Svensson, L.T. and Nedergaard, J. NADH-sensitive propionyl-CoA hydrolase in brown-adipose-tissue mitochondria of the rat. Biochim. Biophys. Acta 1005 (1989) 13–19. [PMID: 2570608]
[EC 3.1.2.18 created 1992]
 
 
EC 3.1.2.19     
Accepted name: ADP-dependent medium-chain-acyl-CoA hydrolase
Reaction: acyl-CoA + H2O = CoA + a carboxylate
Other name(s): medium-chain acyl coenzyme A hydrolase; medium-chain acyl-CoA hydrolase; medium-chain acyl-thioester hydrolase; medium-chain hydrolase; myristoyl-CoA thioesterase
Systematic name: ADP-dependent-medium-chain-acyl-CoA hydrolase
Comments: Requires ADP; inhibited by NADH. Maximum activity is shown with nonanoyl-CoA.
References:
1.  Alexson, S.E.H. and Nedergaard, J. A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria. J. Biol. Chem. 263 (1988) 13564–13571. [PMID: 2901416]
[EC 3.1.2.19 created 1992]
 
 
EC 3.1.2.20     
Accepted name: acyl-CoA hydrolase
Reaction: acyl-CoA + H2O = CoA + a carboxylate
Other name(s): acyl coenzyme A thioesterase; acyl-CoA thioesterase; acyl coenzyme A hydrolase; thioesterase B; thioesterase II; acyl-CoA thioesterase
Systematic name: acyl-CoA hydrolase
Comments: Broad specificity for medium- to long-chain acyl-CoA. Insensitive to NAD+ (cf. EC 3.1.2.19 ADP-dependent medium-chain-acyl-CoA hydrolase)
References:
1.  Alexson, S.E.H., Svensson, L.T. and Nedergaard, J. NADH-sensitive propionyl-CoA hydrolase in brown-adipose-tissue mitochondria of the rat. Biochim. Biophys. Acta 1005 (1989) 13–19. [PMID: 2570608]
[EC 3.1.2.20 created 1992]
 
 
EC 3.1.2.21     
Accepted name: dodecanoyl-[acyl-carrier-protein] hydrolase
Reaction: a dodecanoyl-[acyl-carrier protein] + H2O = an [acyl-carrier protein] + dodecanoate
Other name(s): lauryl-acyl-carrier-protein hydrolase; dodecanoyl-acyl-carrier-protein hydrolase; dodecyl-acyl-carrier protein hydrolase; dodecanoyl-[acyl-carrier protein] hydrolase; dodecanoyl-[acyl-carrier-protein] hydrolase
Systematic name: dodecanoyl-[acyl-carrier protein] hydrolase
Comments: Acts on the acyl-carrier-protein thioester of C12 and, with a much lower activity, C14 fatty acids. The derivative of oleic acid is hydrolysed very slowly (cf. EC 3.1.2.14, oleoyl-[acyl-carrier-protein] hydrolase).
References:
1.  Pollard, M.R., Anderson, L., Fan, C., Hawkins, D.J., Davies, H.M. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys. 284 (1991) 306–312. [PMID: 1989513]
2.  Davies, H.M., Anderson, L., Fan, C., Hawkins, D.J. Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys. 290 (1991) 37–45. [PMID: 1898097]
[EC 3.1.2.21 created 1999]
 
 
EC 3.1.2.22     
Accepted name: palmitoyl[protein] hydrolase
Reaction: palmitoyl[protein] + H2O = palmitate + protein
Other name(s): palmitoyl-protein thioesterase; palmitoyl-(protein) hydrolase
Systematic name: palmitoyl[protein] hydrolase
Comments: Specific for long-chain thioesters of fatty acids. Hydrolyses fatty acids from S-acylated cysteine residues in proteins, palmitoyl cysteine and palmitoyl-CoA.
References:
1.  Camp, L.A., Hofmann, S.L. Assay and isolation of palmitoyl-protein thioesterase from bovine brain using palmitoylated H-Ras as substrate. Methods Enzymol. 250 (1995) 336–347. [PMID: 7651163]
2.  Schriner, J.E., Yi, W., Hofmann, S.L. cDNA and genomic cloning of human palmitoyl-protein thioesterase (PPT), the enzyme defective in infantile neuronal ceroid lipofuscinosis. Genomics 34 (1996) 317–322. [PMID: 8786130]
3.  Verkruyse, L.A., Hofmann, S.L. Lysosomal targeting of palmitoyl-protein thioesterase. J. Biol. Chem. 271 (1996) 15831–15836. [PMID: 8663305]
[EC 3.1.2.22 created 1999]
 
 
EC 3.1.2.23     
Accepted name: 4-hydroxybenzoyl-CoA thioesterase
Reaction: 4-hydroxybenzoyl-CoA + H2O = 4-hydroxybenzoate + CoA
Systematic name: 4-hydroxybenzoyl-CoA hydrolase
Comments: This enzyme is part of the bacterial 2,4-dichlorobenzoate degradation pathway.
References:
1.  Chang, K.H., Liang, P.H., Beck, W., Scholten, J.D., Dunaway-Mariano, D. Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry 31 (1992) 5605–5610. [PMID: 1610806]
2.  Dunaway-Mariano, D., Babbitt, P.C. On the origins and functions of the enzymes of the 4-chlorobenzoate to 4-hydroxybenzoate converting pathway. Biodegradation 5 (1994) 259–276. [PMID: 7765837]
[EC 3.1.2.23 created 1999]
 
 
EC 3.1.2.24      
Transferred entry: 2-(2-hydroxyphenyl)benzenesulfinate hydrolase. Now EC 3.13.1.3, 2′-hydroxybiphenyl-2-sulfinate desulfinase. The enzyme was incorrectly classified as a thioester hydrolase when the bond broken is a C-S bond, which is not an ester
[EC 3.1.2.24 created 2000, deleted 2005]
 
 
EC 3.1.2.25     
Accepted name: phenylacetyl-CoA hydrolase
Reaction: phenylglyoxylyl-CoA + H2O = phenylglyoxylate + CoA
Systematic name: phenylglyoxylyl-CoA hydrolase
Comments: This is the second step in the conversion of phenylacetyl-CoA to phenylglyoxylate, the first step being carried out by EC 1.17.5.1, phenylacetyl-CoA dehydrogenase.
References:
1.  Rhee, S.K. and Fuchs, G. Phenylacetyl-CoA:acceptor oxidoreductase, a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica. Eur. J. Biochem. 262 (1999) 507–515. [PMID: 10336636]
2.  Schneider, S. and Fuchs, G. Phenylacetyl-CoA:acceptor oxidoreductase, a new α-oxidizing enzyme that produces phenylglyoxylate. Assay, membrane localization, and differential production in Thauera aromatica. Arch. Microbiol. 169 (1998) 509–516. [PMID: 9575237]
[EC 3.1.2.25 created 2004]
 
 
EC 3.1.2.26      
Transferred entry: bile-acid-CoA hydrolase. Now EC 2.8.3.25, bile acid CoA transferase
[EC 3.1.2.26 created 2005, deleted 2016]
 
 
EC 3.1.2.27     
Accepted name: choloyl-CoA hydrolase
Reaction: choloyl-CoA + H2O = cholate + CoA
Other name(s): PTE-2 (ambiguous); choloyl-coenzyme A thioesterase; chenodeoxycholoyl-coenzyme A thioesterase; peroxisomal acyl-CoA thioesterase 2
Systematic name: choloyl-CoA hydrolase
Comments: Also acts on chenodeoxycholoyl-CoA and to a lesser extent on short- and medium- to long-chain acyl-CoAs, and other substrates, including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA and branched chain acyl-CoAs, all of which are present in peroxisomes. The enzyme is strongly inhibited by CoA and may be involved in controlling CoA levels in the peroxisome [1].
References:
1.  Hunt, M.C., Solaas, K., Kase, B.F. and Alexson, S.E. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J. Biol. Chem. 277 (2002) 1128–1138. [PMID: 11673457]
2.  Solaas, K., Sletta, R.J., Soreide, O. and Kase, B.F. Presence of choloyl- and chenodeoxycholoyl-coenzyme A thioesterase activity in human liver. Scand. J. Clin. Lab. Invest. 60 (2000) 91–102. [PMID: 10817395]
3.  Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72 (2003) 137–174. [PMID: 12543708]
[EC 3.1.2.27 created 2005]
 
 
EC 3.1.2.28     
Accepted name: 1,4-dihydroxy-2-naphthoyl-CoA hydrolase
Reaction: 1,4-dihydroxy-2-naphthoyl-CoA + H2O = 1,4-dihydroxy-2-naphthoate + CoA
Other name(s): menI (gene name); ydiL (gene name)
Systematic name: 1,4-dihydroxy-2-naphthoyl-CoA hydrolase
Comments: This enzyme participates in the synthesis of menaquinones [4], phylloquinone [3], as well as several plant pigments [1,2]. The enzyme from the cyanobacterium Synechocystis sp. PCC 6803 does not accept benzoyl-CoA or phenylacetyl-CoA as substrates [3].
References:
1.  Muller, W. and Leistner, E. 1,4-Naphthoquinone, an intermediate in juglone (5-hydroxy-1,4-naphthoquinone) biosynthesis. Phytochemistry 15 (1976) 407–410.
2.  Eichinger, D., Bacher, A., Zenk, M.H. and Eisenreich, W. Quantitative assessment of metabolic flux by 13C NMR analysis. Biosynthesis of anthraquinones in Rubia tinctorum. J. Am. Chem. Soc. 121 (1999) 7469–7475.
3.  Widhalm, J.R., van Oostende, C., Furt, F. and Basset, G.J. A dedicated thioesterase of the Hotdog-fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1. Proc. Natl. Acad. Sci. USA 106 (2009) 5599–5603. [PMID: 19321747]
4.  Chen, M., Ma, X., Chen, X., Jiang, M., Song, H. and Guo, Z. Identification of a hotdog fold thioesterase involved in the biosynthesis of menaquinone in Escherichia coli. J. Bacteriol. 195 (2013) 2768–2775. [PMID: 23564174]
[EC 3.1.2.28 created 2010]
 
 
EC 3.1.2.29     
Accepted name: fluoroacetyl-CoA thioesterase
Reaction: fluoroacetyl-CoA + H2O = fluoroacetate + CoA
Systematic name: fluoroacetyl-CoA hydrolase
Comments: Fluoroacetate is extremely toxic. It reacts with CoA to form fluoroacetyl-CoA, which substitutes for acetyl CoA and reacts with EC 2.3.3.1 (citrate synthase) to produce fluorocitrate, a metabolite of which binds very tightly to EC 4.2.1.3 (aconitase) and halts the TCA cycle. This enzyme hydrolyses fluoroacetyl-CoA before it can react with citrate synthase, and thus confers fluoroacetate resistance on the organisms that produce it. It has been described in the poisonous plant Dichapetalum cymosum and the bacterium Streptomyces cattleya, both of which are fluoroacetate producers.
References:
1.  Meyer, J.J.M., Grobbelaar, N., Vleggaar, R. and Louw, A.I. Fluoroacetyl-coenzyme-A hydrolase-like activity in Dichapetalum cymosum. J. Plant Physiol. 139 (1992) 369–372.
2.  Huang, F., Haydock, S.F., Spiteller, D., Mironenko, T., Li, T.L., O'Hagan, D., Leadlay, P.F. and Spencer, J.B. The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: a thioesterase confers resistance to fluoroacetyl-coenzyme A. Chem. Biol. 13 (2006) 475–484. [PMID: 16720268]
3.  Dias, M.V., Huang, F., Chirgadze, D.Y., Tosin, M., Spiteller, D., Dry, E.F., Leadlay, P.F., Spencer, J.B. and Blundell, T.L. Structural basis for the activity and substrate specificity of fluoroacetyl-CoA thioesterase FlK. J. Biol. Chem. 285 (2010) 22495–22504. [PMID: 20430898]
[EC 3.1.2.29 created 2011]
 
 
EC 3.1.2.30     
Accepted name: (3S)-malyl-CoA thioesterase
Reaction: (S)-malyl-CoA + H2O = (S)-malate + CoA
Glossary: (S)-malate = (2S)-2-hydroxybutanedioate
(S)-malyl-CoA = (3S)-3-carboxy-3-hydroxypropanoyl-CoA
Other name(s): mcl2 (gene name)
Systematic name: (S)-malyl-CoA hydrolase
Comments: Stimulated by Mg2+ or Mn2+. The enzyme has no activity with (2R,3S)-2-methylmalyl-CoA (cf. EC 4.1.3.24, malyl-CoA lyase) or other CoA esters.
References:
1.  Erb, T.J., Frerichs-Revermann, L., Fuchs, G. and Alber, B.E. The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-malyl-coenzyme A (CoA)/β-methylmalyl-CoA lyase and (3S)-malyl-CoA thioesterase. J. Bacteriol. 192 (2010) 1249–1258. [PMID: 20047909]
[EC 3.1.2.30 created 2014]
 
 
EC 3.1.2.31     
Accepted name: dihydromonacolin L-[lovastatin nonaketide synthase] thioesterase
Reaction: dihydromonacolin L-[lovastatin nonaketide synthase] + H2O = holo-[lovastatin nonaketide synthase] + dihydromonacolin L acid
Glossary: dihydromonacolin L acid = (3R,5R)-7-[(1S,2S,4aR,6R,8aS)-2,6-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl]-3,5-dihydroxyheptanoate
Other name(s): LovG
Systematic name: dihydromonacolin L-[lovastatin nonaketide synthase] hydrolase
Comments: Dihydromonacolin L acid is synthesized while bound to an acyl-carrier protein domain of the lovastatin nonaketide synthase (EC 2.3.1.161). Since that enzyme lacks a thioesterase domain, release of the dihydromonacolin L acid moiety from the polyketide synthase requires this dedicated enzyme.
References:
1.  Xu, W., Chooi, Y.H., Choi, J.W., Li, S., Vederas, J.C., Da Silva, N.A. and Tang, Y. LovG: the thioesterase required for dihydromonacolin L release and lovastatin nonaketide synthase turnover in lovastatin biosynthesis. Angew. Chem. Int. Ed. Engl. 52 (2013) 6472–6475. [PMID: 23653178]
[EC 3.1.2.31 created 2015]
 
 
EC 3.1.2.32     
Accepted name: 2-aminobenzoylacetyl-CoA thioesterase
Reaction: (2-aminobenzoyl)acetyl-CoA + H2O = (2-aminobenzoyl)acetate + CoA
Other name(s): pqsE (gene name)
Systematic name: (2-aminobenzoyl)acetyl-CoA hydrolase
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, participates in the production of the signal molecule 2-heptyl-4(1H)-quinolone (HHQ).
References:
1.  Yu, S., Jensen, V., Seeliger, J., Feldmann, I., Weber, S., Schleicher, E., Haussler, S. and Blankenfeldt, W. Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48 (2009) 10298–10307. [PMID: 19788310]
2.  Drees, S.L. and Fetzner, S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem. Biol. 22 (2015) 611–618. [PMID: 25960261]
[EC 3.1.2.32 created 2016]
 
 
EC 3.1.3.1     
Accepted name: alkaline phosphatase
Reaction: a phosphate monoester + H2O = an alcohol + phosphate
Other name(s): alkaline phosphomonoesterase; phosphomonoesterase; glycerophosphatase; alkaline phosphohydrolase; alkaline phenyl phosphatase; orthophosphoric-monoester phosphohydrolase (alkaline optimum)
Systematic name: phosphate-monoester phosphohydrolase (alkaline optimum)
Comments: Wide specificity. Also catalyses transphosphorylations. The human placental enzyme is a zinc protein. Some enzymes hydrolyse diphosphate (cf. EC 3.6.1.1 inorganic diphosphatase)
References:
1.  Engström, L. Studies on calf-intestinal alkaline phosphatase. I. Chromatographic purification, microheterogeneity and some other properties of the purified enzyme. Biochim. Biophys. Acta 52 (1961) 36–48. [PMID: 13890304]
2.  Harkness, D.R. Studies on human placental alkaline phosphatase. II. Kinetic properties and studies on the apoenzyme. Arch. Biochem. Biophys. 126 (1968) 513–523. [PMID: 4970479]
3.  Malamy, M.H. and Horecker, B.L. Purification and crystallization of the alkaline phosphatase of Escherichia coli. Biochemistry 3 (1964) 1893–1897. [PMID: 14269306]
4.  Morton, R.K. Alkaline phosphatase of milk. 2. Purification of the enzyme. Biochem. J. 55 (1953) 795–800. [PMID: 13115375]
5.  Stadtman, T.C. Alkaline phosphatases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 5, Academic Press, New York, 1961, pp. 55–71.
[EC 3.1.3.1 created 1961]
 
 
EC 3.1.3.2     
Accepted name: acid phosphatase
Reaction: a phosphate monoester + H2O = an alcohol + phosphate
Other name(s): acid phosphomonoesterase; phosphomonoesterase; glycerophosphatase; acid monophosphatase; acid phosphohydrolase; acid phosphomonoester hydrolase; uteroferrin; acid nucleoside diphosphate phosphatase; orthophosphoric-monoester phosphohydrolase (acid optimum)
Systematic name: phosphate-monoester phosphohydrolase (acid optimum)
Comments: Wide specificity. Also catalyses transphosphorylations.
References:
1.  Joyce, B.K. and Grisolia, S. Purification and properties of a nonspecific acid phosphatase from wheat germ. J. Biol. Chem. 235 (1960) 2278–2281. [PMID: 14408027]
2.  Kuo, M.-H. and Blumenthal, H.J. Purification and properties of an acid phosphomonoesterase from Neurospora crassa. Biochim. Biophys. Acta 52 (1961) 13–29. [PMID: 14460641]
3.  Tsuboi, K.K., Wiener, G. and Hudson, P.B. Acid phosphatase. VII. Yeast phosphomonoesterase; isolation procedure and stability characteristics. J. Biol. Chem. 224 (1957) 621–635. [PMID: 13405892]
[EC 3.1.3.2 created 1961]
 
 
EC 3.1.3.3     
Accepted name: phosphoserine phosphatase
Reaction: O-phospho-L(or D)-serine + H2O = L(or D)-serine + phosphate
Systematic name: O-phosphoserine phosphohydrolase
References:
1.  Borkenhagen, L.F. and Kennedy, E.P. The enzymatic exchange of L-serine with O-phospho-L-serine catalyzed by a specific phosphatase. J. Biol. Chem. 234 (1959) 849–853. [PMID: 13654276]
2.  Byrne, W.L. Glucose-6-phosphatase and phosphoserine phosphatase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 5, Academic Press, New York, 1961, pp. 73–78.
3.  Neuhaus, F.C. and Byrne, W.L. Metabolism of phosphoserine. II. Purification and properties of O-phosphoserine phosphatase. J. Biol. Chem. 234 (1959) 113–121. [PMID: 13610904]
[EC 3.1.3.3 created 1961]
 
 
EC 3.1.3.4     
Accepted name: phosphatidate phosphatase
Reaction: a 1,2-diacylglycerol 3-phosphate + H2O = a 1,2-diacyl-sn-glycerol + phosphate
Glossary: a 1,2-diacylglycerol 3-phosphate = a 3-sn-phosphatidate
a 1,2-diacyl-sn-glycerol = diacylglycerol = DAG
Other name(s): phosphatic acid phosphatase; acid phosphatidyl phosphatase; phosphatic acid phosphohydrolase; PAP; Lipin
Systematic name: diacylglycerol-3-phosphate phosphohydrolase
Comments: This enzyme catalyses the Mg2+-dependent dephosphorylation of a 1,2-diacylglycerol-3-phosphate, yielding a 1,2-diacyl-sn-glycerol (DAG), the substrate for de novo lipid synthesis via the Kennedy pathway and for the synthesis of triacylglycerol. In lipid signalling, the enzyme generates a pool of DAG to be used for protein kinase C activation. The mammalian enzymes are known as lipins.
References:
1.  Smith, S.W., Weiss, S.B. and Kennedy, E.P. The enzymatic dephosphorylation of phosphatidic acids. J. Biol. Chem. 228 (1957) 915–922. [PMID: 13475370]
2.  Carman, G.M. and Han, G.S. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 284 (2009) 2593–2597. [PMID: 18812320]
[EC 3.1.3.4 created 1961, modified 2010]
 
 
EC 3.1.3.5     
Accepted name: 5′-nucleotidase
Reaction: a 5′-ribonucleotide + H2O = a ribonucleoside + phosphate
Other name(s): uridine 5′-nucleotidase; 5′-adenylic phosphatase; adenosine 5′-phosphatase; AMP phosphatase; adenosine monophosphatase; 5′-mononucleotidase; AMPase; UMPase; snake venom 5′-nucleotidase; thimidine monophosphate nucleotidase; 5′-AMPase; 5′-AMP nucleotidase; AMP phosphohydrolase; IMP 5′-nucleotidase
Systematic name: 5′-ribonucleotide phosphohydrolase
Comments: Wide specificity for 5′-nucleotides.
References:
1.  Gulland, J.M. and Jackson, E.M. 5-Nucleotidase. Biochem. J. 32 (1938) 597–601. [PMID: 16746659]
2.  Heppel, L.A. and Hilmoe, R.J. Purification and properties of 5-nucleotidase. J. Biol. Chem. 188 (1951) 665–676. [PMID: 14824154]
3.  Segal, H.L. and Brenner, B.M. 5′-Nucleotidase of rat liver microsomes. J. Biol. Chem. 235 (1960) 471–474. [PMID: 14444527]
[EC 3.1.3.5 created 1961]
 
 
EC 3.1.3.6     
Accepted name: 3′-nucleotidase
Reaction: a 3′-ribonucleotide + H2O = a ribonucleoside + phosphate
Other name(s): 3′-mononucleotidase; 3′-phosphatase; 3′-ribonucleotidase
Systematic name: 3′-ribonucleotide phosphohydrolase
Comments: Wide specificity for 3′-nucleotides.
References:
1.  Shuster, L. and Kaplan, N.O. A specific b nucleotidase. J. Biol. Chem. 201 (1953) 535–546. [PMID: 13061389]
[EC 3.1.3.6 created 1961]
 
 
EC 3.1.3.7     
Accepted name: 3′(2′),5′-bisphosphate nucleotidase
Reaction: adenosine 3′,5′-bisphosphate + H2O = AMP + phosphate
Other name(s): phosphoadenylate 3′-nucleotidase; 3′-phosphoadenylylsulfate 3′-phosphatase; 3′(2′),5′-bisphosphonucleoside 3′(2′)-phosphohydrolase
Systematic name: adenosine-3′(2′),5′-bisphosphate 3′(2′)-phosphohydrolase
Comments: Also acts on 3′-phosphoadenylyl sulfate, and on the corresponding 2′-phosphates.
References:
1.  Brungraber, E.G. Nucleotides involved in the enzymatic conjugation of phenols with sulfate. J. Biol. Chem. 233 (1958) 472–477. [PMID: 13563523]
2.  Farooqui, A.A. and Balasubramanian, A.S. Enzymatic dephosphorylation 3′-phosphoadenosine 5′-phosphosulfate to adenosine 5′-phosphosulfate in sheep brain. Biochim. Biophys. Acta 198 (1970) 56–65. [PMID: 4313079]
3.  Ramaswamy, S.G. and Jakoby, W.B. (2′)3′,5′-Bisphosphate nucleotidase. J. Biol. Chem. 262 (1987) 10044–10047. [PMID: 3038862]
4.  Tsang, M. L.-S. and Schiff, J.A. Properties of enzyme fraction A from Chlorella and copurification of 3′ (2′), 5′-biphosphonucleoside 3′ (2′)-phosphohydrolase, adenosine 5′phosphosulfate sulfohydrolase and adenosine-5′-phosphosulfate cyclase activities. Eur. J. Biochem. 65 (1976) 113–121. [PMID: 179817]
[EC 3.1.3.7 created 1961]
 
 
EC 3.1.3.8     
Accepted name: 3-phytase
Reaction: myo-inositol hexakisphosphate + H2O = 1D-myo-inositol 1,2,4,5,6-pentakisphosphate + phosphate
Other name(s): 1-phytase; phytase; phytate 1-phosphatase; phytate 6-phosphatase
Systematic name: myo-inositol-hexakisphosphate 3-phosphohydrolase
References:
1.  Cosgrove, D.J. Ion-exchange chromatography of inositol polyphosphates. Ann. N.Y. Acad. Sci. 165 (1969) 677–686. [PMID: 4310381]
2.  Johnson, L.F. and Tate, M.E. The structure of myo-inositol pentaphosphates. Ann. N.Y. Acad. Sci. 165 (1969) 526–532. [PMID: 4310376]
3.  Irving, G.C.J. and Cosgrove, D.J. Inositol phosphate phosphatases of microbiological origin: the inositol pentaphosphate products of Aspergillus ficuum phytases. J. Bacteriol. 112 (1972) 434–438. [PMID: 4342816]
4.  Cosgrove, D.J. Inositol Phosphates: Their Chemistry, Biochemistry, and Physiology, Elsevier, Amsterdam, 1980.
[EC 3.1.3.8 created 1961, modified 1976, modified 2002]
 
 
EC 3.1.3.9     
Accepted name: glucose-6-phosphatase
Reaction: D-glucose 6-phosphate + H2O = D-glucose + phosphate
Other name(s): glucose 6-phosphate phosphatase
Systematic name: D-glucose-6-phosphate phosphohydrolase
Comments: Wide distribution in animal tissues. Also catalyses potent transphosphorylations from carbamoyl phosphate, hexose phosphates, diphosphate, phosphoenolpyruvate and nucleoside di- and triphosphates, to D-glucose, D-mannose, 3-methyl-D-glucose or 2-deoxy-D-glucose [cf. EC 2.7.1.62 (phosphoramidate—hexose phosphotransferase), EC 2.7.1.79 (diphosphate—glycerol phosphotransferase) and EC 3.9.1.1 (phosphoamidase)].
References:
1.  Anchors, J.M. and Karnovsky, N.L. Purification of cerebral glucose-6-phosphatase. An enzyme involved in sleep. J. Biol. Chem. 250 (1975) 6408–6416. [PMID: 169241]
2.  Colilla, W., Jorgenson, R.A. and Nordlie, R.C. Mammalian carbamyl phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase: extended tissue distribution. Biochim. Biophys. Acta 377 (1975) 117. [PMID: 164220]
3.  Nordlie, R.C. Glucose-6-phosphatase, hydrolytic and synthetic activities. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 4, Academic Press, New York, 1971, pp. 543–610.
4.  Nordlie, R.C. Metabolic regulation by multifunctional glucose-6-phosphatase. Curr. Top. Cell. Regul. 8 (1974) 33. [PMID: 4370737]
[EC 3.1.3.9 created 1961]
 
 
EC 3.1.3.10     
Accepted name: glucose-1-phosphatase
Reaction: α-D-glucose 1-phosphate + H2O = D-glucose + phosphate
Systematic name: α-D-glucose-1-phosphate phosphohydrolase
Comments: Also acts, more slowly, on D-galactose 1-phosphate.
References:
1.  Faulkner, P. A hexose-1-phosphatase in silkworm blood. Biochem. J. 60 (1955) 590–596. [PMID: 13249953]
2.  Turner, D.H. and Turner, J.F. The hydrolysis of glucose monophosphates by a phosphatase preparation from pea seeds. Biochem. J. 74 (1960) 486–491. [PMID: 13839934]
[EC 3.1.3.10 created 1961]
 
 
EC 3.1.3.11     
Accepted name: fructose-bisphosphatase
Reaction: D-fructose 1,6-bisphosphate + H2O = D-fructose 6-phosphate + phosphate
Other name(s): hexose diphosphatase; FBPase; fructose 1,6-diphosphatase; fructose 1,6-diphosphate phosphatase; D-fructose 1,6-diphosphatase; fructose 1,6-bisphosphatase; fructose diphosphatase; fructose diphosphate phosphatase; fructose bisphosphate phosphatase; fructose 1,6-bisphosphate 1-phosphatase; fructose 1,6-bisphosphate phosphatase; hexose bisphosphatase; D-fructose-1,6-bisphosphate phosphatase
Systematic name: D-fructose-1,6-bisphosphate 1-phosphohydrolase
Comments: The animal enzyme also acts on sedoheptulose 1,7-bisphosphate.
References:
1.  El-Badry, A.M. Hexosediphosphatase from spinach chloroplasts. Purification, crystallization and some properties. Biochim. Biophys. Acta 333 (1974) 366–377. [PMID: 19400047]
2.  Gomori, G. Hexosediphosphatase. J. Biol. Chem. 148 (1943) 139–149.
3.  Mokrash, L.C. and McGilvery, R.N. Purification and properties of fructose-1,6-diphosphatase. J. Biol. Chem. 221 (1956) 909–917. [PMID: 13357486]
4.  Pontremoli, S., Traniello, S., Luppis, B. and Wood, W.A. Fructose diphosphatase from rabbit liver. I. Purification and properties. J. Biol. Chem. 240 (1965) 3459–3463. [PMID: 4284291]
[EC 3.1.3.11 created 1961, modified 1976]
 
 
EC 3.1.3.12     
Accepted name: trehalose-phosphatase
Reaction: α,α-trehalose 6-phosphate + H2O = α,α-trehalose + phosphate
Other name(s): trehalose 6-phosphatase; trehalose 6-phosphate phosphatase; trehalose-6-phosphate phosphohydrolase
Systematic name: α,α-trehalose-6-phosphate phosphohydrolase
References:
1.  Cabib, E. and Leloir, L.F. The biosynthesis of trehalose phosphate. J. Biol. Chem. 231 (1958) 259–275. [PMID: 13538966]
2.  Candy, D.J. and Kilby, B.A. The biosynthesis of trehalose in the locust fat body. Biochem. J. 78 (1961) 531–536. [PMID: 13690400]
[EC 3.1.3.12 created 1961]
 
 
EC 3.1.3.13      
Deleted entry: bisphosphoglycerate phosphatase. Recent studies have shown that this is a partial activity of EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent)
[EC 3.1.3.13 created 1961, deleted 2016]
 
 
EC 3.1.3.14     
Accepted name: methylphosphothioglycerate phosphatase
Reaction: S-methyl-3-phospho-1-thio-D-glycerate + H2O = S-methyl-1-thio-D-glycerate + phosphate
Other name(s): methylthiophosphoglycerate phosphatase
Systematic name: S-methyl-3-phospho-1-thio-D-glycerate phosphohydrolase
References:
1.  Black, S. and Wright, N.G. Enzymatic formation of glyceryl and phosphoglyceryl methylthiol esters. J. Biol. Chem. 221 (1956) 171–180. [PMID: 13345808]
[EC 3.1.3.14 created 1961]
 
 
EC 3.1.3.15     
Accepted name: histidinol-phosphatase
Reaction: L-histidinol phosphate + H2O = L-histidinol + phosphate
Other name(s): histidinol phosphate phosphatase; L-histidinol phosphate phosphatase; histidinolphosphate phosphatase; HPpase; histidinolphosphatase
Systematic name: L-histidinol-phosphate phosphohydrolase
References:
1.  Ames, B.N. The biosynthesis of histidine; L-histidinol phosphate phosphatase. J. Biol. Chem. 226 (1957) 583–593. [PMID: 13438843]
[EC 3.1.3.15 created 1961]
 
 
EC 3.1.3.16     
Accepted name: protein-serine/threonine phosphatase
Reaction: [a protein]-serine/threonine phosphate + H2O = [a protein]-serine/threonine + phosphate
Other name(s): phosphoprotein phosphatase (ambiguous); protein phosphatase-1; protein phosphatase-2A; protein phosphatase-2B; protein phosphatase-2C; protein D phosphatase; phosphospectrin phosphatase; casein phosphatase; Aspergillus awamori acid protein phosphatase; calcineurin; phosphatase 2A; phosphatase 2B; phosphatase II; phosphatase IB; phosphatase C-II; polycation modulated (PCM-) phosphatase; phosphopyruvate dehydrogenase phosphatase; phosphatase SP; branched-chain α-keto acid dehydrogenase phosphatase; BCKDH phosphatase; 3-hydroxy 3-methylglutaryl coenzymeA reductase phosphatase; HMG-CoA reductase phosphatase; phosphatase H-II; phosphatase III; phosphatase I; protein phosphatase; phosphatase IV; phosphoprotein phosphohydrolase
Systematic name: protein-serine/threonine-phosphate phosphohydrolase
Comments: A group of enzymes removing the serine- or threonine-bound phosphate group from a wide range of phosphoproteins, including a number of enzymes that have been phosphorylated under the action of a kinase (cf. EC 3.1.3.48 protein-tyrosine-phosphatase). The spleen enzyme also acts on phenolic phosphates and phosphamides (cf. EC 3.9.1.1, phosphoamidase).
References:
1.  Deutscher, J., Kessler, U. and Hengstenberg, W. Streptococcal phosphoenolpyruvate: sugar phosphotransferase system: purification and characterization of a phosphoprotein phosphatase which hydrolyzes the phosphoryl bond in seryl-phosphorylated histidine-containing protein. J. Bacteriol. 163 (1985) 1203–1209. [PMID: 2993239]
2.  Ingebritsen, T.S. and Cohen, P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur. J. Biochem. 132 (1983) 255–261. [PMID: 6301824]
3.  Sundarajan, T.A. and Sarma, P.S. Substrate specificity of phosphoprotein phosphatase from spleen. Biochem. J. 71 (1959) 537–544. [PMID: 13638262]
4.  Tonks, N.K. and Cohen, P. The protein phosphatases involved in cellular regulation. Identification of the inhibitor-2 phosphatases in rabbit skeletal muscle. Eur. J. Biochem. 145 (1984) 65–70. [PMID: 6092084]
[EC 3.1.3.16 created 1961, modified 1989, modified 2013]
 
 
EC 3.1.3.17     
Accepted name: [phosphorylase] phosphatase
Reaction: [phosphorylase a] + 4 H2O = 2 [phosphorylase b] + 4 phosphate
Other name(s): PR-enzyme; phosphorylase a phosphatase; glycogen phosphorylase phosphatase; protein phosphatase C; type 1 protein phosphatase
Systematic name: [phosphorylase a] phosphohydrolase
References:
1.  Brandt, H., Capulong, Z.L. and Lee, E.Y.C. Purification and properties of rabbit liver phosphorylase phosphatase. J. Biol. Chem. 250 (1975) 8038–8044. [PMID: 240850]
2.  Graves, D.J., Fischer, E.H. and Krebs, E.G. Specificity studies on muscle phosphorylase phosphatase. J. Biol. Chem. 235 (1960) 805–809. [PMID: 13829077]
3.  Rall, T.W., Wosilait, W.D. and Sutherland, E.W. The interconversion of phosphorylase a and phosphorylase b from dog heart muscle. Biochim. Biophys. Acta 20 (1956) 69–76. [PMID: 13315351]
[EC 3.1.3.17 created 1961]
 
 
EC 3.1.3.18     
Accepted name: phosphoglycolate phosphatase
Reaction: 2-phosphoglycolate + H2O = glycolate + phosphate
Other name(s): phosphoglycolate hydrolase; 2-phosphoglycolate phosphatase; P-glycolate phosphatase; phosphoglycollate phosphatase
Systematic name: 2-phosphoglycolate phosphohydrolase
References:
1.  Christeller, J.T. and Tolbert, N.E. Phosphoglycolate phosphatase. Purification and properties. J. Biol. Chem. 253 (1978) 1780–1785. [PMID: 204630]
[EC 3.1.3.18 created 1965]
 
 
EC 3.1.3.19     
Accepted name: glycerol-2-phosphatase
Reaction: glycerol 2-phosphate + H2O = glycerol + phosphate
Other name(s): β-glycerophosphatase; β-glycerophosphate phosphatase; 2-glycerophosphatase
Systematic name: glycerol-2-phosphate phosphohydrolase
References:
1.  Schmidt, G. Nonspecific acid phosphomonoesterases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 5, Academic Press, New York, 1961, pp. 37–47.
2.  Tsuboi, K.K., Wiener, G. and Hudson, P.B. Acid phosphatase. VII. Yeast phosphomonoesterase; isolation procedure and stability characteristics. J. Biol. Chem. 224 (1957) 621–635. [PMID: 13405892]
[EC 3.1.3.19 created 1965]
 
 
EC 3.1.3.20     
Accepted name: phosphoglycerate phosphatase
Reaction: D-glycerate 2-phosphate + H2O = D-glycerate + phosphate
Other name(s): D-2-phosphoglycerate phosphatase; glycerophosphate phosphatase
Systematic name: D-glycerate-2-phosphate phosphohydrolase
References:
1.  Fallon, H.J. and Byrne, W.L. 2-Phosphoglyceric acid phosphatase: identification and properties of the beef-liver enzyme. Biochim. Biophys. Acta 105 (1965) 43–53. [PMID: 4284998]
[EC 3.1.3.20 created 1972]
 
 
EC 3.1.3.21     
Accepted name: glycerol-1-phosphatase
Reaction: glycerol 1-phosphate + H2O = glycerol + phosphate
Other name(s): α-glycerophosphatase; α-glycerol phosphatase; glycerol 3-phosphatase; glycerol-3-phosphate phosphatase; glycerol 3-phosphate phosphohydrolase
Systematic name: glycerol-1-phosphate phosphohydrolase
Comments: The Dunaliella enzyme acts more rapidly on sn-glycerol 1-phosphate than on the 3-phosphate. The enzyme from yeast also acts on propane-1,2-diol 1-phosphate, but not on a variety of other phosphate esters.
References:
1.  Sussman, I. and Avron, M. Characterization and partial purification of DL-glycerol-1-phosphatase from Dunaliella salina. Biochim. Biophys. Acta 661 (1981) 199–204.
[EC 3.1.3.21 created 1972, modified 1986]
 
 
EC 3.1.3.22     
Accepted name: mannitol-1-phosphatase
Reaction: D-mannitol 1-phosphate + H2O = D-mannitol + phosphate
Other name(s): mannitol-1-phosphate phosphatase
Systematic name: D-mannitol-1-phosphate phosphohydrolase
References:
1.  Rumpho, M.E., Edwards, G.E. and Loescher, W.H. A pathway for photosynthetic carbon flow to mannitol in celery leaves. Activity and localization of key enzymes. Plant Physiol. 73 (1983) 869–873. [PMID: 16663332]
2.  Yamada, H., Okamoto, K., Kodama, K., Noguchi, F. and Tanaka, S. Enzymatic studies on mannitol formation by Piricularia oryzae. J. Biochem. (Tokyo) 49 (1961) 404–410. [PMID: 13787089]
[EC 3.1.3.22 created 1972]
 
 
EC 3.1.3.23     
Accepted name: sugar-phosphatase
Reaction: sugar phosphate + H2O = sugar + phosphate
Systematic name: sugar-phosphate phosphohydrolase
Comments: Has a wide specificity, acting on aldohexose 1-phosphates, ketohexose 1-phosphates, aldohexose 6-phosphates, ketohexose 6-phosphates, both phosphate ester bonds of fructose 1,6-bisphosphate, phosphoric esters of disaccharides, and on pentose and triose phosphates, but at a slower rate.
References:
1.  Lee, Y.-P., Sowokinos, J.R. and Erwin, M.J. Sugar phosphate phosphohydrolase. I. Substrate specificity, intracellular localization, and purification from Neisseria meningitidis. J. Biol. Chem. 242 (1967) 2264–2271. [PMID: 4290224]
[EC 3.1.3.23 created 1972]
 
 
EC 3.1.3.24     
Accepted name: sucrose-phosphate phosphatase
Reaction: sucrose 6F-phosphate + H2O = sucrose + phosphate
Other name(s): sucrose 6-phosphate hydrolase; sucrose-phosphate hydrolase; sucrose-phosphate phosphohydrolase; sucrose-6-phosphatase; sucrose phosphatase; sucrose-6-phosphate phosphatase; SPP
Systematic name: sucrose-6F-phosphate phosphohydrolase
Comments: Requires Mg2+ for maximal activity [2]. This is the final step in the sucrose-biosynthesis pathway. The enzyme is highly specific for sucrose 6-phosphate, with fructose 6-phosphate unable to act as a substrate [2]. Belongs in the haloacid dehydrogenase (HAD) superfamily. The F of sucrose 6F-phosphate is used to indicate that the fructose residue of sucrose carries the substituent.
References:
1.  Hawker, J.S. and Hatch, M.D. A specific sucrose phosphatase from plant tissues. Biochem. J. 99 (1966) 102–107. [PMID: 4290548]
2.  Lunn, J.E., Ashton, A.R., Hatch, M.D. and Heldt, H.W. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proc. Natl. Acad. Sci. USA 97 (2000) 12914–12919. [PMID: 11050182]
3.  Lunn, J.E. and MacRae, E. New complexities in the synthesis of sucrose. Curr. Opin. Plant Biol. 6 (2003) 208–214. [PMID: 12753969]
4.  Fieulaine, S., Lunn, J.E., Borel, F. and Ferrer, J.L. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Plant Cell 17 (2005) 2049–2058. [PMID: 15937230]
[EC 3.1.3.24 created 1972, modified 2008]
 
 
EC 3.1.3.25     
Accepted name: inositol-phosphate phosphatase
Reaction: myo-inositol phosphate + H2O = myo-inositol + phosphate
Other name(s): myo-inositol-1(or 4)-monophosphatase; inositol 1-phosphatase; L-myo-inositol-1-phosphate phosphatase; myo-inositol 1-phosphatase; inositol phosphatase; inositol monophosphate phosphatase; inositol-1(or 4)-monophosphatase; myo-inositol-1(or 4)-phosphate phosphohydrolase; myo-inositol monophosphatase; myo-inositol-1-phosphatase
Systematic name: myo-inositol-phosphate phosphohydrolase
Comments: Acts on five of the six isomers of myo-inositol phosphate, all except myo-inositol 2-phosphate, but does not act on myo-inositol bearing more than one phosphate group. It also acts on adenosine 2′-phosphate (but not the 3′- or 5′- phosphates), sn-glycerol 3-phosphate and glycerol 2-phosphate. Two isoforms are known [4].
References:
1.  Eisenberg, F., Jr. D-Myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242 (1967) 1375–1382. [PMID: 4290245]
2.  Gee, N.S., Ragan, C.I., Watling, K.J., Aspley, S., Jackson, R.G., Reid, G.G., Gani, D. and Shute, J.K. The purification and properties of myo-inositol monophosphatase from bovine brain. Biochem. J. 249 (1988) 883–889. [PMID: 2833231]
3.  Hallcher, L.M. and Sherman, W.R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255 (1980) 10896–10901. [PMID: 6253491]
4.  Yoshikawa, T., Turner, G., Esterling, L.E., Sanders, A.R. and Detera-Wadleigh, S.D. A novel human myo-inositol monophosphatase gene, IMP.18p, maps to a susceptibility region for bipolar disorder. Mol. Psychiatry 2 (1997) 393–397. [PMID: 9322233]
5.  Woscholski, R. and Parker, P.J. Inositol phosphatases: constructive destruction of phosphoinositides and inositol phosphates. In: Cockcroft, S. (Ed.), Biology of Phosphoinositides, Biology of Phosphoinositides, Oxford, 2000, pp. 320–338.
6.  Ackermann, K.E., Gish, B.G., Honchar, M.P. and Sherman, W.R. Evidence that inositol 1-phosphate in brain of lithium-treated rats results mainly from phosphatidylinositol metabolism. Biochem. J. 242 (1987) 517–524. [PMID: 3036092]
[EC 3.1.3.25 created 1972, modified 1990, modified 2002, modified 2004]
 
 
EC 3.1.3.26     
Accepted name: 4-phytase
Reaction: myo-inositol hexakisphosphate + H2O = 1D-myo-inositol 1,2,3,5,6-pentakisphosphate + phosphate
Other name(s): 6-phytase (name based on 1L-numbering system and not 1D-numbering); phytase; phytate 6-phosphatase; myo-inositol-hexakisphosphate 6-phosphohydrolase (name based on 1L-numbering system and not 1D-numbering)
Systematic name: myo-inositol-hexakisphosphate 4-phosphohydrolase
References:
1.  Johnson, L.F. and Tate, M.E. The structure of myo-inositol pentaphosphates. Ann. N.Y. Acad. Sci. 165 (1969) 526–532. [PMID: 4310376]
2.  Tomlinson, R.V. and Ballou, C.E. Myoinositol polyphosphate intermediates in the dephosphorylation of phytic acid by phytase. Biochemistry 1 (1962) 166–171. [PMID: 13921788]
3.  Lim, P.E. and Tate, M.E. The phytases. II. Properties of phytase fractions F1 and F2 from wheat bran and the myo-inositol phosphates produced by fraction F2. Biochim. Biophys. Acta 302 (1973) 316–328. [PMID: 4349266]
4.  Cosgrove, D.J. Inositol Phosphates: Their Chemistry, Biochemistry, and Physiology, Elsevier, Amsterdam, 1980.
[EC 3.1.3.26 created 1972, modified 1976, modified 2002]
 
 
EC 3.1.3.27     
Accepted name: phosphatidylglycerophosphatase
Reaction: phosphatidylglycerophosphate + H2O = phosphatidylglycerol + phosphate
Other name(s): phosphatidylglycerol phosphate phosphatase; phosphatidylglycerol phosphatase; PGP phosphatase
Systematic name: phosphatidylglycerophosphate phosphohydrolase
References:
1.  Chang, Y.Y. and Kennedy, E.P. Phosphatidyl glycerophosphate phosphatase. J. Lipid Res. 8 (1967) 456–462. [PMID: 4292860]
[EC 3.1.3.27 created 1972]
 
 
EC 3.1.3.28     
Accepted name: ADP-phosphoglycerate phosphatase
Reaction: 3-(ADP)-2-phosphoglycerate + H2O = 3-(ADP)-glycerate + phosphate
Other name(s): adenosine diphosphate phosphoglycerate phosphatase
Systematic name: 3-(ADP)-2-phosphoglycerate phosphohydrolase
Comments: Also acts on 2,3-bisphosphoglycerate.
References:
1.  Zancan, G.T., Recondo, E.F. and Leloir, L.F. Enzymic dephosphorylation of adenosine diphosphate phosphoglyceric acid. Biochim. Biophys. Acta 92 (1964) 125–131. [PMID: 14243760]
[EC 3.1.3.28 created 1972]
 
 
EC 3.1.3.29     
Accepted name: N-acylneuraminate-9-phosphatase
Reaction: N-acylneuraminate 9-phosphate + H2O = N-acylneuraminate + phosphate
Other name(s): acylneuraminate 9-phosphatase; N-acylneuraminic acid 9-phosphate phosphatase; N-acylneuraminic (sialic) acid 9-phosphatase
Systematic name: N-acylneuraminate-9-phosphate phosphohydrolase
References:
1.  Jourdian, G.W., Swanson, A., Watson, D. and Roseman, S. N-Acetylneuraminic (sialic) acid 9-phosphatase. Methods Enzymol. 8 (1966) 205–208.
[EC 3.1.3.29 created 1972]
 
 
EC 3.1.3.30      
Deleted entry:  3′-phosphoadenylylsulfate 3′-phosphatase. The activity may be that of an acid phosphatase.
[EC 3.1.3.30 created 1972, deleted 1992]
 
 
EC 3.1.3.31      
Deleted entry: nucleotidase. The activity may be that of an acid phosphatase.
[EC 3.1.3.31 created 1972 (EC 3.1.3.30 created 1972, incorporated 1992), deleted 2020]
 
 
EC 3.1.3.32     
Accepted name: polynucleotide 3′-phosphatase
Reaction: a 3′-phosphopolynucleotide + H2O = a polynucleotide + phosphate
Other name(s): 2′(3′)-polynucleotidase; DNA 3′-phosphatase; deoxyribonucleate 3′-phosphatase; 5′-polynucleotidekinase 3′-phosphatase
Systematic name: polynucleotide 3′-phosphohydrolase
Comments: Also hydrolyses nucleoside 2′-, 3′- and 5′-monophosphates, but only 2′- and 3′-phosphopolynucleotides.
References:
1.  Becker, A. and Hurwitz, J. The enzymatic cleavage of phosphate termini from polynucleotides. J. Biol. Chem. 242 (1967) 936–950. [PMID: 4289819]
[EC 3.1.3.32 created 1972]
 
 
EC 3.1.3.33     
Accepted name: polynucleotide 5′-phosphatase
Reaction: a 5′-phosphopolynucleotide + H2O = a polynucleotide + phosphate
Other name(s): 5′-polynucleotidase
Systematic name: polynucleotide 5′-phosphohydrolase
Comments: Does not act on nucleoside monophosphates. Induced in Escherichia coli by T-even phages.
References:
1.  Becker, A. and Hurwitz, J. The enzymatic cleavage of phosphate termini from polynucleotides. J. Biol. Chem. 242 (1967) 936–950. [PMID: 4289819]
[EC 3.1.3.33 created 1972]
 
 
EC 3.1.3.34     
Accepted name: deoxynucleotide 3′-phosphatase
Reaction: a 2′-deoxyribonucleoside 3′-phosphate + H2O = a 2′-deoxyribonucleoside + phosphate
Other name(s): 3′-deoxynucleotidase; 3′-deoxyribonucleotidase
Systematic name: 2′-deoxyribonucleotide 3′-phosphohydrolase
Comments: Also catalyses the selective removal of 3′-phosphate groups from DNA and oligodeoxyribonucleotides. Induced in Escherichia coli by T-even phages.
References:
1.  Becker, A. and Hurwitz, J. The enzymatic cleavage of phosphate termini from polynucleotides. J. Biol. Chem. 242 (1967) 936–950. [PMID: 4289819]
[EC 3.1.3.34 created 1972]
 
 
EC 3.1.3.35     
Accepted name: thymidylate 5′-phosphatase
Reaction: thymidylate + H2O = thymidine + phosphate
Other name(s): thymidylate 5′-nucleotidase; deoxythymidylate 5′-nucleotidase; thymidylate nucleotidase; deoxythymidylic 5′-nucleotidase; deoxythymidylate phosphohydrolase; dTMPase
Systematic name: thymidylate 5′-phosphohydrolase
Comments: Acts on 5-methyl-dCMP and on TMP, but more slowly than on dTMP.
References:
1.  Aposhian, H.V. and Tremblay, G.Y. Deoxythymidylate 5′-nucleotidase. Purification and properties of an enzyme found after infection of Bacillus subtilis with phage SP5C. J. Biol. Chem. 241 (1966) 5095–5101. [PMID: 4958986]
[EC 3.1.3.35 created 1972]
 
 
EC 3.1.3.36     
Accepted name: phosphoinositide 5-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 4-phosphate + phosphate
Glossary: 1-phosphatidyl-1D-myo-inositol 4-phosphate = PtdIns4P
1-phosphatidyl-1D-myo-inositol 1,4-bisphosphate = PtdIns(1,4)P2
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate = PtdIns(4,5)P2
1-phosphatidyl-1D-myo-inositol 1,3,4-trisphosphate = PtdIns(1,3,4)P3
1-phosphatidyl-1D-myo-inositol 1,4,5-trisphosphate = PtdIns(1,4,5)P3
1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate = PtdIns(3,4,5)P3
1-phosphatidyl-1D-myo-inositol 1,3,4,5-tetrakisphosphate = PtdIns(1,3,4,5)P4
Other name(s): type II inositol polyphosphate 5-phosphatase; triphosphoinositide phosphatase; IP3 phosphatase; PtdIns(4,5)P2 phosphatase; triphosphoinositide phosphomonoesterase; diphosphoinositide phosphatase; inositol 1,4,5-triphosphate 5-phosphomonoesterase; inositol triphosphate 5-phosphomonoesterase; phosphatidylinositol-bisphosphatase; phosphatidyl-myo-inositol-4,5-bisphosphate phosphatase; phosphatidylinositol 4,5-bisphosphate phosphatase; polyphosphoinositol lipid 5-phosphatase; phosphatidyl-inositol-bisphosphate phosphatase
Systematic name: phosphatidyl-myo-inositol-4,5-bisphosphate 4-phosphohydrolase
Comments: These enzymes can also remove the 5-phosphate from Ins(1,4,5)P3 and/or Ins(1,3,4,5)P4. They are a diverse family of enzymes, with differing abilities to catalyse two or more of the four reactions listed. They are thought to use inositol lipids rather than inositol phosphates as substrates in vivo. All of them can use either or both of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 as substrates; this is the main property that distinguishes them from EC 3.1.3.56, inositol-polyphosphate 5-phosphatase.
References:
1.  Dawson, R.M.C. and Thompson, W. The triphosphoinositide phosphomonoesterase of brain tissue. Biochem. J. 91 (1964) 244–250. [PMID: 4284485]
2.  Roach, P.D. and Palmer, F.B.S. Human erythrocyte cytosol phosphatidyl-inositol-bisphosphate phosphatase. Biochim. Biophys. Acta 661 (1981) 323–333. [PMID: 6271223]
3.  Woscholski, R. and Parker, P.J. Inositol phosphatases: constructive destruction of phosphoinositides and inositol phosphates. In: Cockcroft, S. (Ed.), Biology of Phosphoinositides, Biology of Phosphoinositides, Oxford, 2000, pp. 320–338.
[EC 3.1.3.36 created 1972, modified 2002]
 
 
EC 3.1.3.37     
Accepted name: sedoheptulose-bisphosphatase
Reaction: sedoheptulose 1,7-bisphosphate + H2O = sedoheptulose 7-phosphate + phosphate
Other name(s): SBPase; sedoheptulose 1,7-diphospate phosphatase; sedoheptulose 1,7-diphosphatase; sedoheptulose diphosphatase; sedoheptulose bisphosphatase; sedoheptulose 1,7-bisphosphatase
Systematic name: sedoheptulose-1,7-bisphosphate 1-phosphohydrolase
References:
1.  Racker, E. Sedoheptulose-1,7-diphosphatase from yeast. Methods Enzymol. 5 (1962) 270–272.
2.  Traniello, S., Calcagno, M. and Pontremoli, S. Fructose 1,6-diphosphatase and sedoheptulose 1,7-diphosphatase from Candida utilis: purification and properties. Arch. Biochem. Biophys. 146 (1971) 603–610. [PMID: 4329855]
[EC 3.1.3.37 created 1976]
 
 
EC 3.1.3.38     
Accepted name: 3-phosphoglycerate phosphatase
Reaction: D-glycerate 3-phosphate + H2O = D-glycerate + phosphate
Other name(s): D-3-Phosphoglycerate phosphatase; 3-PGA phosphatase
Systematic name: D-glycerate-3-phosphate phosphohydrolase
Comments: Wide specificity, but 3-phosphoglycerate is the best substrate.
References:
1.  Randall, D.D. and Tolbert, N.E. 3-Phosphoglycerate phosphatase in plants. I. Isolation and characterization from sugarcane leaves. J. Biol. Chem. 246 (1971) 5510–5517. [PMID: 10970181]
[EC 3.1.3.38 created 1976]
 
 
EC 3.1.3.39     
Accepted name: streptomycin-6-phosphatase
Reaction: streptomycin 6-phosphate + H2O = streptomycin + phosphate
Other name(s): streptomycin 6-phosphate phosphatase; streptomycin 6-phosphate phosphohydrolase; streptomycin-6-P phosphohydrolase
Systematic name: streptomycin-6-phosphate phosphohydrolase
Comments: Also acts on dihydrostreptomycin 3′α,6-bisphosphate and streptidine 6-phosphate.
References:
1.  Walker, J.B. and Skorvaga, M. Streptomycin biosynthesis and metabolism. Phosphate transfer from dihydrostreptomycin 6-phosphate to inosamines, streptamine, and 2-deoxystreptamine. J. Biol. Chem. 248 (1973) 2441–2446. [PMID: 4121457]
2.  Walker, M.S. and Walker, J.B. Streptomycin biosynthesis. Separation and substrate specificities of phosphatases acting on guanidinodeoxy-scyllo-inositol phosphate and streptomycin-(streptidino)phosphate. J. Biol. Chem. 246 (1971) 7034–7040. [PMID: 4331203]
[EC 3.1.3.39 created 1976]
 
 
EC 3.1.3.40     
Accepted name: guanidinodeoxy-scyllo-inositol-4-phosphatase
Reaction: 1-guanidino-1-deoxy-scyllo-inositol 4-phosphate + H2O = 1-guanidino-1-deoxy-scyllo-inositol + phosphate
Other name(s): 1-guanidino-scyllo-inositol 4-phosphatase; 1-guanidino-1-deoxy-scyllo-inositol-4-P phosphohydrolase
Systematic name: 1-guanidino-1-deoxy-scyllo-inositol-4-phosphate 4-phosphohydrolase
References:
1.  Walker, M.S. and Walker, J.B. Streptomycin biosynthesis. Separation and substrate specificities of phosphatases acting on guanidinodeoxy-scyllo-inositol phosphate and streptomycin-(streptidino)phosphate. J. Biol. Chem. 246 (1971) 7034–7040. [PMID: 4331203]
[EC 3.1.3.40 created 1976]
 
 
EC 3.1.3.41     
Accepted name: 4-nitrophenylphosphatase
Reaction: 4-nitrophenyl phosphate + H2O = 4-nitrophenol + phosphate
Other name(s): nitrophenyl phosphatase; p-nitrophenylphosphatase; para-nitrophenyl phosphatase; K-pNPPase; NPPase; PNPPase; Ecto-p-nitrophenyl phosphatase; p-nitrophenylphosphate phosphohydrolase
Systematic name: 4-nitrophenylphosphate phosphohydrolase
Comments: A number of other substances, including phenyl phosphate, 4-nitrophenyl sulfate, acetyl phosphate and glycerol phosphate, are not substrates.
References:
1.  Attias, J. and Bonnet, J.L. A specific alkaline p-nitrophenylphosphatase activity from baker's yeast. Biochim. Biophys. Acta 268 (1972) 422–430. [PMID: 4554643]
2.  Attias, J. and Durand, H. Further characterization of a specific p-nitrophenylphosphatase from baker's yeast. Biochim. Biophys. Acta 321 (1973) 561–568. [PMID: 4357666]
[EC 3.1.3.41 created 1976]
 
 
EC 3.1.3.42     
Accepted name: [glycogen-synthase-D] phosphatase
Reaction: [glycogen-synthase D] + H2O = [glycogen-synthase I] + phosphate
Other name(s): uridine diphosphoglucose-glycogen glucosyltransferase phosphatase; UDP-glycogen glucosyltransferase phosphatase; UDPglucose-glycogen glucosyltransferase phosphatase; glycogen glucosyltransferase phosphatase; glycogen synthetase phosphatase; glycogen synthase phosphatase; glycogen synthase D phosphatase; Mg2+ dependent glycogen synthase phosphatase; phosphatase type 2°C
Systematic name: [UDP-glucose:glycogen 4-α-D-glucosyltransferase-D] phosphohydrolase
Comments: The product is EC 2.4.1.11 glycogen(starch) synthase.
References:
1.  Abe, N. and Tsuiki, S. Studies on glycogen synthase D phosphatase of rat liver - multiple nature. Biochim. Biophys. Acta 350 (1974) 383–391. [PMID: 4367978]
[EC 3.1.3.42 created 1976]
 
 
EC 3.1.3.43     
Accepted name: [pyruvate dehydrogenase (acetyl-transferring)]-phosphatase
Reaction: [pyruvate dehydrogenase (acetyl-transferring)] phosphate + H2O = [pyruvate dehydrogenase (acetyl-transferring)] + phosphate
Glossary: lipoyl group
Other name(s): pyruvate dehydrogenase phosphatase; phosphopyruvate dehydrogenase phosphatase; [pyruvate dehydrogenase (lipoamide)]-phosphatase; [pyruvate dehydrogenase (lipoamide)]-phosphate phosphohydrolase
Systematic name: [pyruvate dehydrogenase (acetyl-transferring)]-phosphate phosphohydrolase
Comments: A mitochondrial enzyme associated with EC 1.2.4.1 pyruvate dehydrogenase (acetyl-transferring), in the pyruvate dehydrogenase complex.
References:
1.  Linn, T.C., Pelley, J.W., Petit, F.H., Hucho, F., Randall, D.D. and Reed, L.J. α-Keto acid dehydrogenase complexes. XV. Purification and properties of the component enzymes of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch. Biochem. Biophys. 148 (1972) 327–342. [PMID: 4401694]
2.  Reed, L.J., Damuni, Z. and Merryfield, M.L. Regulation of mammalian pyruvate and branched-chain α-keto acid dehydrogenase complexes by phosphorylation-dephosphorylation. Curr. Top. Cell. Regul. 27 (1985) 41–49. [PMID: 3004826]
[EC 3.1.3.43 created 1978]
 
 
EC 3.1.3.44     
Accepted name: [acetyl-CoA carboxylase]-phosphatase
Reaction: [acetyl-CoA carboxylase] phosphate + H2O = [acetyl-CoA carboxylase] + phosphate
Systematic name: [acetyl-CoA:carbon-dioxide ligase (ADP-forming)]-phosphate phosphohydrolase
Comments: Simultaneously dephosphorylates and activates EC 6.4.1.2 acetyl-CoA carboxylase. Acts similarly on EC 1.1.1.88 (hydroxymethylglutaryl-CoA reductase), EC 2.4.1.1 (phosphorylase), EC 2.4.1.11 [glycogen(starch) synthase], and dephosphorylates phosphoprotamine and 4-nitrophenyl phosphate. Not identical to EC 3.1.3.17 ([phosphorylase] phosphatase ) or EC 3.1.3.43 {[pyruvate dehydrogenase (acetyl-transferring)]-phosphatase}.
References:
1.  Krakower, G.R. and Kim, K.-H. Purification and properties of acetyl-CoA carboxylase phosphatase. J. Biol. Chem. 256 (1980) 2408–2413. [PMID: 6257718]
[EC 3.1.3.44 created 1983]
 
 
EC 3.1.3.45     
Accepted name: 3-deoxy-manno-octulosonate-8-phosphatase
Reaction: 3-deoxy-D-manno-octulosonate 8-phosphate + H2O = 3-deoxy-D-manno-octulosonate + phosphate
Systematic name: 3-deoxy-D-manno-octulosonate-8-phosphate 8-phosphohydrolase
References:
1.  Ray, P.H. and Benedict, C.D. Purification and characterization of specific 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Escherichia coli B. J. Bacteriol. 142 (1980) 60–68. [PMID: 6246070]
[EC 3.1.3.45 created 1983]
 
 
EC 3.1.3.46     
Accepted name: fructose-2,6-bisphosphate 2-phosphatase
Reaction: β-D-fructose 2,6-bisphosphate + H2O = D-fructose 6-phosphate + phosphate
Other name(s): fructose-2,6-bisphosphatase; D-fructose-2,6-bisphosphate 2-phosphohydrolase
Systematic name: β-D-fructose-2,6-bisphosphate 2-phosphohydrolase
Comments: The enzyme copurifies with EC 2.7.1.105 6-phosphofructo-2-kinase. (cf. EC 3.1.3.54 fructose-2,6-bisphosphate 6-phosphatase).
References:
1.  Van Schaftingen, E., Davies, D.R. and Hers, H.-G. Fructose-2,6-bisphosphatase from rat liver. Eur. J. Biochem. 124 (1982) 143–149. [PMID: 6282585]
[EC 3.1.3.46 created 1984]
 
 
EC 3.1.3.47     
Accepted name: [hydroxymethylglutaryl-CoA reductase (NADPH)]-phosphatase
Reaction: [hydroxymethylglutaryl-CoA reductase (NADPH)] phosphate + H2O = [hydroxymethylglutaryl-CoA reductase (NADPH)] + phosphate
Other name(s): reductase phosphatase
Systematic name: [hydroxymethylglutaryl-CoA reductase (NADPH)]-phosphate phosphohydrolase
Comments: Acts on the product of the reaction catalysed by EC 2.7.11.31 [hydroxymethylglutaryl-CoA reductase (NADPH)] kinase, simultaneously dephosphorylating and activating EC 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH).
References:
1.  Gil, G. and Hegardt, F.G. Some properties of purified 3-hydroxy-3-methylglutaryl coenzyme A reductase phosphatases from rat liver. Arch. Biochem. Biophys. 214 (1982) 192–198. [PMID: 6282220]
2.  Gil, G., Sitges, M. and Hegardt, F.G. Purification and properties of rat liver hydroxymethylglutaryl coenzyme A reductase phosphatases. Biochim. Biophys. Acta 663 (1981) 211–221. [PMID: 6260210]
[EC 3.1.3.47 created 1984]
 
 
EC 3.1.3.48     
Accepted name: protein-tyrosine-phosphatase
Reaction: [a protein]-tyrosine phosphate + H2O = [a protein]-tyrosine + phosphate
Other name(s): phosphotyrosine phosphatase; phosphoprotein phosphatase (phosphotyrosine); phosphotyrosine histone phosphatase; protein phosphotyrosine phosphatase; tyrosylprotein phosphatase; phosphotyrosine protein phosphatase; phosphotyrosylprotein phosphatase; tyrosine O-phosphate phosphatase; PPT-phosphatase; PTPase; [phosphotyrosine]protein phosphatase; PTP-phosphatase
Systematic name: protein-tyrosine-phosphate phosphohydrolase
Comments: Dephosphorylates O-phosphotyrosine groups in phosphoproteins, such as the products of EC 2.7.10.2, non-specific protein-tyrosine kinase.
References:
1.  Foulkes, J.G., Howard, R.F. and Ziemiecki, A. Detection of a novel mammalian protein phosphatase with activity for phosphotyrosine. FEBS Lett. 130 (1981) 197–200. [PMID: 6169552]
2.  Gallis, B., Bornstein, P. and Brautigan, D.L. Tyrosylprotein kinase and phosphatase activities in membrane vesicles from normal and Rous sarcoma virus-transformed rat cells. Proc. Natl. Acad. Sci. USA 78 (1981) 6689–6693. [PMID: 6273884]
[EC 3.1.3.48 created 1984]
 
 
EC 3.1.3.49     
Accepted name: [pyruvate kinase]-phosphatase
Reaction: [pyruvate kinase] phosphate + H2O = [pyruvate kinase] + phosphate
Other name(s): pyruvate kinase phosphatase
Systematic name: [ATP:pyruvate 2-O-phosphotransferase]-phosphate phosphohydrolase
Comments: Simultaneously dephosphorylates and activates EC 2.7.1.40 pyruvate kinase, that has been inactivated by protein kinase.
References:
1.  Jett, M.-F., Hue, L. and Hers, H.-G. Pyruvate kinase phosphatase. FEBS Lett. 132 (1981) 183–186. [PMID: 6271587]
[EC 3.1.3.49 created 1984]
 
 
EC 3.1.3.50     
Accepted name: sorbitol-6-phosphatase
Reaction: sorbitol 6-phosphate + H2O = sorbitol + phosphate
Other name(s): sorbitol-6-phosphate phosphatase
Systematic name: sorbitol-6-phosphate phosphohydrolase
Comments: Acts, very slowly, on hexose 6-phosphates.
References:
1.  Grant, C.R. and ap Rees, T. Sorbitol metabolism by apple seedlings. Phytochemistry 20 (1981) 1505–1511.
[EC 3.1.3.50 created 1984]
 
 
EC 3.1.3.51     
Accepted name: dolichyl-phosphatase
Reaction: dolichyl phosphate + H2O = dolichol + phosphate
Other name(s): dolichol phosphate phosphatase; dolichol phosphatase; dolichol monophosphatase; dolichyl monophosphate phosphatase; dolichyl phosphate phosphatase; polyisoprenyl phosphate phosphatase; polyprenylphosphate phosphatase; Dol-P phosphatase
Systematic name: dolichyl-phosphate phosphohydrolase
References:
1.  Adrian, G.S. and Keenan, R.W. A dolichyl phosphate-cleaving acid phosphatase from Tetrahymena pyriformis. Biochim. Biophys. Acta 575 (1979) 431–438. [PMID: 229909]
2.  Rip, J.W., Rupar, C.A., Chaudhary, N. and Carroll, K.K. Localization of a dolichyl phosphate phosphatase in plasma membranes of rat liver. J. Biol. Chem. 256 (1981) 1929–1934. [PMID: 6257694]
3.  Wedgwood, J.F. and Strominger, J.L. Enzymatic activities in cultured human lymphocytes that dephosphorylate dolichyl pyrophosphate and dolichyl phosphate. J. Biol. Chem. 255 (1980) 1120–1123. [PMID: 6243292]
[EC 3.1.3.51 created 1984]
 
 
EC 3.1.3.52     
Accepted name: [3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring)]-phosphatase
Reaction: [3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring)] phosphate + H2O = [3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring)] + phosphate
Glossary: lipoyl group
Other name(s): branched-chain oxo-acid dehydrogenase phosphatase; branched-chain 2-keto acid dehydrogenase phosphatase; branched-chain α-keto acid dehydrogenase phosphatase; BCKDH (ambiguous); [3-methyl-2-oxobutanoate dehydrogenase (lipoamide)]-phosphatase; [3-methyl-2-oxobutanoate dehydrogenase (lipoamide)]-phosphate phosphohydrolase
Systematic name: [3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring)]-phosphate phosphohydrolase
Comments: A mitochondrial enzyme associated with the 3-methyl-2-oxobutanoate dehydrogenase complex. Simultaneously dephosphorylates and activates EC 1.2.4.4 3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring), that has been inactivated by phosphorylation.
References:
1.  Fatania, H.R., Patston, P.A. and Randle, P.J. Dephosphorylation and reactivation of phosphorylated purified ox-kidney branched-chain dehydrogenase complex by co-purified phosphatase. FEBS Lett. 158 (1983) 234–238. [PMID: 6307746]
2.  Reed, L.J., Damuni, Z. and Merryfield, M.L. Regulation of mammalian pyruvate and branched-chain α-keto acid dehydrogenase complexes by phosphorylation-dephosphorylation. Curr. Top. Cell. Regul. 27 (1985) 41–49. [PMID: 3004826]
[EC 3.1.3.52 created 1986]
 
 
EC 3.1.3.53     
Accepted name: [myosin-light-chain] phosphatase
Reaction: [myosin light-chain] phosphate + H2O = [myosin light-chain] + phosphate
Other name(s): myosin light chain kinase phosphatase; myosin phosphatase; myosin phosphatase; protein phosphatase 2A; myosin-light-chain-phosphatase
Systematic name: [myosin-light-chain]-phosphate phosphohydrolase
Comments: The enzyme is composed of three subunits. The holoenzyme dephosphorylates myosin light chains and EC 2.7.11.18, myosin-light-chain kinase, but not myosin; the catalytic subunit acts on all three substrates.
References:
1.  Pato, M.D. and Adelstein, R.S. Purification and characterization of a multisubunit phosphatase from turkey gizzard smooth muscle. The effect of calmodulin binding to myosin light chain kinase on dephosphorylation. J. Biol. Chem. 258 (1983) 7047–7054. [PMID: 6304072]
[EC 3.1.3.53 created 1986]
 
 
EC 3.1.3.54     
Accepted name: fructose-2,6-bisphosphate 6-phosphatase
Reaction: β-D-fructose 2,6-bisphosphate + H2O = β-D-fructofuranose 2-phosphate + phosphate
Other name(s): fructose 2,6-bisphosphate-6-phosphohydrolase; fructose-2,6-bisphosphate 6-phosphohydrolase; D-fructose-2,6-bisphosphate 6-phosphohydrolase
Systematic name: β-D-fructose-2,6-bisphosphate 6-phosphohydrolase
Comments: cf. EC 3.1.3.46 fructose-2,6-bisphosphate 2-phosphatase.
References:
1.  Purwin, C., Laux, M. and Holzer, H. Fructose 2-phosphate, an intermediate of the dephosphorylation of fructose 2,6-bisposphate with purified yeast enzyme. Eur. J. Biochem. 164 (1986) 27–30.
2.  Purwin, C., Laux, M. and Holzer, H. Fructofuranose 2-phosphate is the product of dephosphorylation of fructose 2,6-bisphosphate. Eur. J. Biochem. 165 (1987) 543–545. [PMID: 3036508]
[EC 3.1.3.54 created 1989]
 
 
EC 3.1.3.55     
Accepted name: caldesmon-phosphatase
Reaction: caldesmon phosphate + H2O = caldesmon + phosphate
Other name(s): SMP-I; smooth muscle caldesmon phosphatase
Systematic name: caldesmon-phosphate phosphohydrolase
Comments: Dephosphorylation activates the calmodulin- and actin-binding ability of the protein caldesmon.
References:
1.  Ngai, P.K. and Walsh, M.P. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J. Biol. Chem. 259 (1984) 13656–13659. [PMID: 6150036]
[EC 3.1.3.55 created 1989]
 
 
EC 3.1.3.56     
Accepted name: inositol-polyphosphate 5-phosphatase
Reaction: (1) D-myo-inositol 1,4,5-trisphosphate + H2O = myo-inositol 1,4-bisphosphate + phosphate
(2) 1D-myo-inositol 1,3,4,5-tetrakisphosphate + H2O = 1D-myo-inositol 1,3,4-trisphosphate + phosphate
Other name(s): type I inositol-polyphosphate phosphatase; inositol trisphosphate phosphomonoesterase; InsP3/Ins(1,3,4,5)P4 5-phosphatase; inosine triphosphatase; D-myo-inositol 1,4,5-triphosphate 5-phosphatase; D-myo-inositol 1,4,5-trisphosphate 5-phosphatase; L-myo-inositol 1,4,5-trisphosphate-monoesterase; inositol phosphate 5-phosphomonoesterase; inositol-1,4,5-trisphosphate/1,3,4,5-tetrakisphosphate 5-phosphatase; Ins(1,4,5)P3 5-phosphatase; D-myo-inositol(1,4,5)/(1,3,4,5)-polyphosphate 5-phosphatase; inositol 1,4,5-trisphosphate phosphatase; inositol polyphosphate-5-phosphatase; myo-inositol-1,4,5-trisphosphate 5-phosphatase; inositol-1,4,5-trisphosphate 5-phosphatase
Systematic name: 1D-myo-inositol-1,4,5-trisphosphate 5-phosphohydrolase
Comments: One mammalian isoform is known. This enzyme is distinguished from the family of enzymes classified under EC 3.1.3.36, phosphoinositide 5-phosphatase, by its inability to dephosphorylate inositol lipids.
References:
1.  Downes, C.P., Mussat, M.C. and Michell, R.H. The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem. J. 203 (1982) 169–177. [PMID: 6285891]
2.  Erneux, C., Lemos, M., Verjans, B., Vanderhaeghen, P., Delvaux, A. and Dumont, J.E. Soluble and particulate Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase in bovine brain. Eur. J. Biochem. 181 (1989) 317–322. [PMID: 2540972]
3.  Woscholski, R. and Parker, P.J. Inositol phosphatases: constructive destruction of phosphoinositides and inositol phosphates. In: Cockcroft, S. (Ed.), Biology of Phosphoinositides, Biology of Phosphoinositides, Oxford, 2000, pp. 320–338.
4.  Verjans, B., De Smedt, F., Lecocq, R., Vanweyenberg, V., Moreau, C. and Erneux, C. Cloning and expression in Escherichia coli of a dog thyroid cDNA encoding a novel inositol 1,4,5-trisphosphate 5-phosphatase. Biochem. J. 300 (1994) 85–90. [PMID: 8198557]
[EC 3.1.3.56 created 1989, modified 2002]
 
 
EC 3.1.3.57     
Accepted name: inositol-1,4-bisphosphate 1-phosphatase
Reaction: 1D-myo-inositol 1,4-bisphosphate + H2O = 1D-myo-inositol 4-phosphate + phosphate
Other name(s): inositol-polyphosphate 1-phosphatase
Systematic name: 1D-myo-inositol-1,4-bisphosphate 1-phosphohydrolase
Comments: The enzyme acts on inositol 1,4-bisphosphate and inositol 1,3,4-trisphosphate (forming inositol 3,4-bisphosphate) with similar Vmax values for both substrates, but with a five-times higher affinity for the bisphosphate. Does not act on inositol 1-phosphate, inositol 1,4,5-trisphosphate or inositol 1,3,4,5-tetrakisphosphate.
References:
1.  Berridge, M.J., Dawson, R.M.C., Downes, C.P., Heslop, J.P. and Irvine, R.F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212 (1983) 473–482. [PMID: 6309146]
2.  Connolly, T.M., Bansal, V.S., Bross, T.E., Irvine, R.F. and Majerus, P.W. The metabolism of tris- and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J. Biol. Chem. 262 (1987) 2146–2149. [PMID: 3029066]
3.  Inhorn, R.C. and Majerus, P.W. Inositol polyphosphate 1-phosphatase from calf brain. Purification and inhibition by Li+, Ca2+, and Mn2+. J. Biol. Chem. 262 (1987) 15946–15952. [PMID: 2824473]
[EC 3.1.3.57 created 1989, modified 2002]
 
 
EC 3.1.3.58     
Accepted name: sugar-terminal-phosphatase
Reaction: D-glucose 6-phosphate + H2O = D-glucose + phosphate
Other name(s): xylitol-5-phosphatase
Systematic name: sugar-ω-phosphate phosphohydrolase
Comments: Acts on sugars and polyols phosphorylated on the terminal carbon, with a preference for sugars with a D-erythro-configuration, e.g. good substrates are glucose 6-phosphate, mannose 6-phosphate, 6-phosphogluconate, erythrose 4-phosphate and xylitol 5-phosphate.
References:
1.  London, J., Hausman, S.Z. and Thompson, J. Characterization of a membrane-regulated sugar phosphate phosphohydrolase from Lactobacillus casei. J. Bacteriol. 163 (1985) 951–956. [PMID: 2993253]
[EC 3.1.3.58 created 1989]
 
 
EC 3.1.3.59     
Accepted name: alkylacetylglycerophosphatase
Reaction: 1-alkyl-2-acetyl-sn-glycero-3-phosphate + H2O = 1-alkyl-2-acetyl-sn-glycerol + phosphate
Other name(s): 1-alkyl-2-lyso-sn-glycero-3-P:acetyl-CoA acetyltransferase; alkylacetylglycerophosphate phosphatase
Systematic name: 1-alkyl-2-acetyl-sn-glycero-3-phosphate phosphohydrolase
Comments: Involved in the biosynthesis of thrombocyte activating factor in animal tissues.
References:
1.  Lee, T.-C., Malone, B. and Snyder, F. A new de novo pathway for the formation of 1-alkyl-2-acetyl-sn-glycerols, precursors of platelet activating factor. Biochemical characterization of 1-alkyl-2-lyso-sn-glycero-3-P:acetyl-CoA acetyltransferase in rat spleen. J. Biol. Chem. 261 (1986) 5373–5377. [PMID: 3007498]
[EC 3.1.3.59 created 1989]
 
 
EC 3.1.3.60     
Accepted name: phosphoenolpyruvate phosphatase
Reaction: phosphoenolpyruvate + H2O = pyruvate + phosphate
Other name(s): PEP phosphatase
Systematic name: phosphoenolpyruvate phosphohydrolase
Comments: Also acts, but more slowly, on a wide range of other monophosphates.
References:
1.  Duff, S.M.G., Lefebvre, D.D. and Plaxton, W.C. Purification and characterization of a phosphoenolpyruvate phosphatase from Brassica nigra suspension cells. Plant Physiol. 90 (1989) 734–741. [PMID: 16666836]
2.  Malhotra, O.P. and Kayastha, A.M. Chemical inactivation and active site groups of phosphoenolpyruvate-phosphatase from germinating mung beans (Vigna radiata). Plant Sci. 65 (1989) 161–170.
3.  Malhotra, O.P. and Kayastha, A.M. Isolation and characterization of phosphoenolpyruvate phosphatase from germinating mung beans (Vigna radiata). Plant Physiol. 93 (1990) 194–200. [PMID: 16667434]
[EC 3.1.3.60 created 1992]
 
 
EC 3.1.3.61      
Deleted entry:  inositol-1,4,5-trisphosphate 1-phosphatase, as its existence has not been established
[EC 3.1.3.61 created 1992, deleted 2002]
 
 
EC 3.1.3.62     
Accepted name: multiple inositol-polyphosphate phosphatase
Reaction: myo-inositol hexakisphosphate + H2O = myo-inositol pentakisphosphate (mixed isomers) + phosphate
Other name(s): inositol (1,3,4,5)-tetrakisphosphate 3-phosphatase; inositol 1,3,4,5-tetrakisphosphate 3-phosphomonoesterase; inositol 1,3,4,5-tetrakisphosphate-5-phosphomonoesterase; inositol tetrakisphosphate phosphomonoesterase; inositol-1,3,4,5-tetrakisphosphate 3-phosphatase; MIPP
Systematic name: 1D-myo-inositol-hexakisphosphate 5-phosphohydrolase
Comments: This enzyme exists in two isoforms. It also acts on Ins(1,3,4,5)P4 to yield Ins(1,4,5)P3.
References:
1.  Cullen, P.J., Irvine, R.F., Drøbak, B.J. and Dawson, A.P. Inositol 1,3,4,5-tetrakisphosphate causes release of Ca2+ from permeabilized mouse lymphoma L1210 cells by its conversion into inositol 1,4,5-trisphosphate. Biochem. J. 259 (1989) 931–933. [PMID: 2786415]
2.  Craxton, A., Caffrey, J.J., Burkhart, W., Safrany, S.T. and Shears, S.B. Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem. J. 328 (1997) 75–81. [PMID: 9359836]
[EC 3.1.3.62 created 1992, modified 2002]
 
 
EC 3.1.3.63     
Accepted name: 2-carboxy-D-arabinitol-1-phosphatase
Reaction: 2-carboxy-D-arabinitol 1-phosphate + H2O = 2-carboxy-D-arabinitol + phosphate
Other name(s): 2-carboxyarabinitol 1-phosphatase; 2-carboxy-D-arabinitol 1-phosphate phosphohydrolase
Systematic name: 2-carboxy-D-arabinitol-1-phosphate 1-phosphohydrolase
References:
1.  Salvucci, M.E. and Holbrook, G.P. Purification and properties of 2-carboxy-D-arabinitol 1-phosphatase. Plant Physiol. 90 (1989) 679–685. [PMID: 16666827]
[EC 3.1.3.63 created 1992]
 
 
EC 3.1.3.64     
Accepted name: phosphatidylinositol-3-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 3-phosphate + H2O = 1-phosphatidyl-1D-myo-inositol + phosphate
Glossary: inositol 1-phosphate = Ins-1-P
inositol 1,3-bisphosphate = Ins(1,3)P2
1-phosphatidyl-1D-myo-inositol = PtdIns
1-phosphatidyl-1D-myo-inositol 3-phosphate = PtdIns3P
Other name(s): inositol-1,3-bisphosphate 3-phosphatase; inositol 1,3-bisphosphate phosphatase; inositol-polyphosphate 3-phosphatase; D-myo-inositol-1,3-bisphosphate 3-phosphohydrolase; phosphatidyl-3-phosphate 3-phosphohydrolase
Systematic name: 1-phosphatidyl-1D-myo-inositol-3-phosphate 3-phosphohydrolase
Comments: This enzyme still works when the 2,3-bis(acyloxy)propyl group is removed, i.e., it hydrolyses Ins(1,3)P2 to Ins-1-P.
References:
1.  Lips, D.L. and Majerus, P.W. The discovery of a 3-phosphomonoesterase that hydrolyzes phosphatidylinositol 3-phosphate in NIH 3T3 cells. J. Biol. Chem. 264 (1989) 19911–19915. [PMID: 2555336]
2.  Caldwell, K.K., Lips, D.L., Bansal, V.S. and Majerus, P.W. Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate. J. Biol. Chem. 266 (1991) 18378–18386. [PMID: 1655747]
[EC 3.1.3.64 created 1992, [EC 3.1.3.65 created 1992, incorporated 2002], modified 2002]]
 
 
EC 3.1.3.65      
Deleted entry:  inositol-1,3-bisphosphate 3-phosphatase. Now included with EC 3.1.3.64, phosphatidylinositol-3-phosphatase
[EC 3.1.3.65 created 1992, deleted 2002]
 
 
EC 3.1.3.66     
Accepted name: phosphatidylinositol-3,4-bisphosphate 4-phosphatase
Reaction: 1-phosphatidyl-myo-inositol 3,4-bisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 3-phosphate + phosphate
Glossary: inositol 3-phosphate = Ins-3-P
inositol 1,3-bisphosphate = Ins(1,3)P2
inositol 3,4-bisphosphate = Ins(3,4)P2
inositol 1,3,4-trisphosphate = Ins(1,3,4)P3
1-phosphatidyl-1D-myo-inositol 3-phosphate = PtdIns3P
1-phosphatidyl-1D-myo-inositol 4-phosphate = PtdIns4P
Other name(s): inositol-3,4-bisphosphate 4-phosphatase; D-myo-inositol-3,4-bisphosphate 4-phosphohydrolase; phosphoinositide 4-phosphatase; inositol polyphosphate 4-phosphatase; inositol polyphosphate 4-phosphatase type II
Systematic name: 1-phosphatidyl-1D-myo-inositol-3,4-bisphosphate 4-phosphohydrolase
Comments: Mg2+-independent. This enzyme still works when the 2,3-bis(acyloxy)propyl group is removed, i.e., it hydrolyses Ins(1,3,4)P3 to Ins(1,3)P2. It also converts Ins(3,4)P2 into Ins-3-P.
References:
1.  Howell, S., Barnaby, R.J., Rowe, T., Ragan, C.I. and Gee, N.S. Evidence for at least four different inositol bisphosphatases in bovine brain. Eur. J. Biochem. 183 (1989) 169–172. [PMID: 2546770]
2.  Norris, F.A., Auethavekiat, V. and Majerus, P.W. The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J. Biol. Chem. 270 (1995) 16128–16133. [PMID: 7608176]
3.  Norris, F.A., Atkins, R.C. and Majerus, P.W. The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J. Biol. Chem. 272 (1997) 23859–23864. [PMID: 9295334]
[EC 3.1.3.66 created 1992, modified 2002]
 
 
EC 3.1.3.67     
Accepted name: phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + phosphate
Glossary: inositol 1,4,5-trisphosphate = Ins(1,4,5)P3
inositol 1,3,4,5-tetrakisphosphate = Ins(1,3,4,5)P4
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate = PtdIns(4,5)P2
1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate = PtdIns(3,4,5)P3
Other name(s): PTEN; MMAC1; phosphatidylinositol-3,4,5-trisphosphate 3-phosphohydrolase
Systematic name: 1-phosphatidyl-1D-myo-inositol-3,4,5-trisphosphate 3-phosphohydrolase
Comments: Requires Mg2+. Does not dephosphorylate inositol 4,5-bisphosphate. This enzyme still works when the 2,3-bis(acyloxy)propyl group is removed, i.e., it hydrolyses Ins(1,3,4,5)P4 to Ins(1,4,5)P3
References:
1.  Kabuyama, Y., Nakatsu, N., Homma, Y., Fukui, Y. Purification and characterization of phosphatidyl inositol-3,4,5-trisphosphate phosphatase in bovine thymus. Eur. J. Biochem. 238 (1996) 350–356. [PMID: 8681945]
2.  Maehama, T. and Dixon, J.E. The tumor suppressor, PTEN /MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273 (1998) 13375–13378. [PMID: 9593664]
[EC 3.1.3.67 created 1999, modified 2002]
 
 
EC 3.1.3.68     
Accepted name: 2-deoxyglucose-6-phosphatase
Reaction: 2-deoxy-D-glucose 6-phosphate + H2O = 2-deoxy-D-glucose + phosphate
Other name(s): 2-deoxyglucose-6-phosphate phosphatase
Systematic name: 2-deoxy-D-glucose-6-phosphate phosphohydrolase
Comments: Also active towards fructose 1-phosphate
References:
1.  Johnston, M., Andrews, S., Brinkman, R., Cooper, J., Ding, H., Dover, J., Du, Z., Favello, A., Fulton, L., Gattung, S., Geisel, C., Kirsten, J., Kucaba, T., Hillier, L., Jier, M., Johnston, L., Langston, Y., Latreille, P., Louis, E.J., Macri, C., M , St.Peter, H., Trevaskis, E., Vaughan, K., Vignati, D., Wilcox, L., Wohldman, P., Waterston, R., Wilson, R., Vaudin, M. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 265 (1994) 2077–2082. [PMID: 8091229]
2.  Randez-Gil, F., Blasco, A., Prieto, J.A., Sanz, P. DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast 11 (1995) 1233–1240. [PMID: 8553694]
[EC 3.1.3.68 created 1999]
 
 
EC 3.1.3.69     
Accepted name: glucosylglycerol 3-phosphatase
Reaction: 2-O-(α-D-glucosyl)-sn-glycerol-3-phosphate + H2O = 2-O-(α-D-glucopyranosyl)glycerol + phosphate
Other name(s): salt tolerance protein A; StpA; 2-(β-D-glucosyl)-sn-glycerol-3-phosphate phosphohydrolase (incorrect)
Systematic name: 2-O-(α-D-glucopyranosyl)-sn-glycerol-3-phosphate phosphohydrolase
Comments: Acts with EC 2.4.1.213 (glucosylglycerol-phosphate synthase) to form glucosylglycerol, an osmolyte that endows cyanobacteria with resistance to salt.
References:
1.  Hagemann, M. and Erdmann, N. Activation and pathway of glucosylglycerol biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 140 (1994) 1427–1431.
2.  Hagemann, M., Richter, S., Zuther, E. and Schoor, A. Characterization of a glucosylglycerol-phosphate-accumulating salt-sensitive mutant of the cyanobacterium Synechocystis sp. strain PCC 6803. Arch. Microbiol. 166 (1996) 83–91. [PMID: 8772170]
3.  Hagemann, M., Schoor, A., Jeanjean, R., Zuther, E. and Joset, F. The gene stpA from Synechocystis sp. strain PCC 6803 encodes for the glucosylglycerol-phosphate phosphatase involved in cyanobacterial salt adaptation. J. Bacteriol. 179 (1997) 1727–1733. [PMID: 9045835]
[EC 3.1.3.69 created 2001, modified 2015]
 
 
EC 3.1.3.70     
Accepted name: mannosyl-3-phosphoglycerate phosphatase
Reaction: 2-O-(α-D-mannosyl)-3-phosphoglycerate + H2O = 2-O-(α-D-mannosyl)-D-glycerate + phosphate
Systematic name: 2-O-(α-D-mannosyl)-3-phosphoglycerate phosphohydrolase
Comments: Requires Mg2+. The enzyme from Pyrococcus horikoshii is specific for α-D-mannosyl-3-phosphoglycerate and forms part of the pathway for the synthesis of mannosylglycerate.
References:
1.  Empadinhas, N., Marugg, J.D., Borges, N., Santos, H. and da Costa, M.S. Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key-enzymes. J. Biol. Chem. 276 (2001) 43580–43588. [PMID: 11562374]
[EC 3.1.3.70 created 2002]
 
 
EC 3.1.3.71     
Accepted name: 2-phosphosulfolactate phosphatase
Reaction: (2R)-2-phospho-3-sulfolactate + H2O = (2R)-3-sulfolactate + phosphate
Other name(s): (2R)-phosphosulfolactate phosphohydrolase; ComB phosphatase
Systematic name: (R)-2-phospho-3-sulfolactate phosphohydrolase
Comments: Requires Mg2+. The enzyme from Methanococcus jannaschii acts on both stereoisoimers of the substrate and also hydrolyses a number of phosphate monoesters of (S)-2-hydroxycarboxylic acids, including 2-phosphomalate, 2-phospholactate and 2-phosphoglycolate. This enzyme can also hydrolyse phosphate monoesters of (R)-2-hydroxycarboxylic acids such as (S)-2-phospho-3-sulfolactate and (R)-2-phosphomalate, which, presumably, bind to the enzyme in opposite orientations.
References:
1.  Graham, D.E., Graupner, M., Xu, H. and White, R.H. Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase. Eur. J. Biochem. 268 (2001) 5176–5188. [PMID: 11589710]
[EC 3.1.3.71 created 2002]
 
 
EC 3.1.3.72     
Accepted name: 5-phytase
Reaction: myo-inositol hexakisphosphate + H2O = 1L-myo-inositol 1,2,3,4,6-pentakisphosphate + phosphate
Systematic name: myo-inositol-hexakisphosphate 5-phosphohydrolase
Comments: The enzyme attacks the product of the above reaction more slowly to yield Ins(1,2,3)P3.
References:
1.  Barrientos, L., Scott, J.J. and Murthy, P.P. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol. 106 (1994) 1489–1495. [PMID: 7846160]
[EC 3.1.3.72 created 2002]
 
 
EC 3.1.3.73     
Accepted name: adenosylcobalamin/α-ribazole phosphatase
Reaction: (1) adenosylcobalamin 5′-phosphate + H2O = coenzyme B12 + phosphate
(2) α-ribazole 5′-phosphate + H2O = α-ribazole + phosphate
Other name(s): CobC; adenosylcobalamin phosphatase; α-ribazole phosphatase
Systematic name: adenosylcobalamin/α-ribazole-5′-phosphate phosphohydrolase
Comments: This enzyme catalyses the last step in the anaerobic (early cobalt insertion) pathway of adenosylcobalamin biosynthesis, characterized in Salmonella enterica [3]. It also participates in a salvage pathway that recycles cobinamide into adenosylcobalamin [1].
References:
1.  O'Toole, G.A., Trzebiatowski, J.R. and Escalante-Semerena, J.C. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J. Biol. Chem. 269 (1994) 26503–26511. [PMID: 7929373]
2.  Warren, M.J., Raux, E., Schubert, H.L. and Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19 (2002) 390–412. [PMID: 12195810]
3.  Zayas, C.L. and Escalante-Semerena, J.C. Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: evidence that dephosphorylation of adenosylcobalamin-5′-phosphate by the CobC phosphatase is the last step of the pathway. J. Bacteriol. 189 (2007) 2210–2218. [PMID: 17209023]
[EC 3.1.3.73 created 2004, modified 2011]
 
 
EC 3.1.3.74     
Accepted name: pyridoxal phosphatase
Reaction: pyridoxal 5′-phosphate + H2O = pyridoxal + phosphate
Other name(s): vitamine B6 (pyridoxine) phosphatase; PLP phosphatase; vitamin B6-phosphate phosphatase; PNP phosphatase
Systematic name: pyridoxal-5′-phosphate phosphohydrolase
Comments: Requires Mg2+. This enzyme is specific for phosphorylated vitamin B6 compounds: it acts not only on pyridoxal phosphate (PLP), but also on pyridoxine phosphate (PNP), pyridoxamine phosphate (PMP), 4-pyridoxic acid phosphate and 4-deoxypyridoxine phosphate. This reaction can also be carried out by EC 3.1.3.1 (alkaline phosphatase) and EC 3.1.3.2 (acid phosphatase), but these enzymes have very broad substrate specificities.
References:
1.  Fonda, M.L. Purification and characterization of vitamin B6-phosphate phosphatase from human erythrocytes. J. Biol. Chem. 267 (1992) 15978–15983. [PMID: 1322411]
2.  Fonda, M.L. and Zhang, Y.N. Kinetic mechanism and divalent metal activation of human erythrocyte pyridoxal phosphatase. Arch. Biochem. Biophys. 320 (1995) 345–352. [PMID: 7625842]
3.  Jang, Y.M., Kim, D.W., Kang, T.C., Won, M.H., Baek, N.I., Moon, B.J., Choi, S.Y. and Kwon, O.S. Human pyridoxal phosphatase. Molecular cloning, functional expression, and tissue distribution. J. Biol. Chem. 278 (2003) 50040–50046. [PMID: 14522954]
[EC 3.1.3.74 created 2004]
 
 
EC 3.1.3.75     
Accepted name: phosphoethanolamine/phosphocholine phosphatase
Reaction: (1) O-phosphoethanolamine + H2O = ethanolamine + phosphate
(2) phosphocholine + H2O = choline + phosphate
Other name(s): PHOSPHO1; 3X11A
Systematic name: phosphoethanolamine phosphohydrolase
Comments: Requires active site Mg2+ but also works, to a lesser extent, with Co2+ and Mn2+. The enzyme is highly specific for phosphoethanolamine and phosphocholine.
References:
1.  Houston, B., Seawright, E., Jefferies, D., Hoogland, E., Lester, D., Whitehead, C. and Farquharson, C. Identification and cloning of a novel phosphatase expressed at high levels in differentiating growth plate chondrocytes. Biochim. Biophys. Acta 1448 (1999) 500–506. [PMID: 9990301]
2.  Stewart, A.J., Schmid, R., Blindauer, C.A., Paisey, S.J. and Farquharson, C. Comparative modelling of human PHOSPHO1 reveals a new group of phosphatases within the haloacid dehalogenase superfamily. Protein Eng. 16 (2003) 889–895. [PMID: 14983068]
3.  Roberts, S.J., Stewart, A.J., Sadler, P.J. and Farquharson, C. Human PHOSPHO1 displays high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochem. J. 382 (2004) 59–65. [PMID: 15175005]
[EC 3.1.3.75 created 2004]
 
 
EC 3.1.3.76     
Accepted name: lipid-phosphate phosphatase
Reaction: (9S,10S)-10-hydroxy-9-(phosphooxy)octadecanoate + H2O = (9S,10S)-9,10-dihydroxyoctadecanoate + phosphate
Other name(s): hydroxy fatty acid phosphatase; dihydroxy fatty acid phosphatase; hydroxy lipid phosphatase; sEH (ambiguous); soluble epoxide hydrolase (ambiguous); (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoate phosphohydrolase
Systematic name: (9S,10S)-10-hydroxy-9-(phosphooxy)octadecanoate phosphohydrolase
Comments: Requires Mg2+ for maximal activity. The enzyme from mammals is a bifunctional enzyme: the N-terminal domain exhibits lipid-phosphate-phosphatase activity and the C-terminal domain has the activity of EC 3.3.2.10, soluble epoxide hydrolase (sEH) [1]. The best substrates for this enzyme are 10-hydroxy-9-(phosphooxy)octadecanoates, with the threo- form being a better substrate than the erythro- form [1]. The phosphatase activity is not found in plant sEH or in EC 3.3.2.9, microsomal epoxide hydrolase, from mammals [1].
References:
1.  Newman, J.W., Morisseau, C., Harris, T.R. and Hammock, B.D. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc. Natl. Acad. Sci. USA 100 (2003) 1558–1563. [PMID: 12574510]
2.  Cronin, A., Mowbray, S., Dürk, H., Homburg, S., Fleming, I., Fisslthaler, B., Oesch, F. and Arand, M. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc. Natl. Acad. Sci. USA 100 (2003) 1552–1557. [PMID: 12574508]
3.  Morisseau, C. and Hammock, B.D. Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu. Rev. Pharmacol. Toxicol. 45 (2005) 311–333. [PMID: 15822179]
4.  Tran, K.L., Aronov, P.A., Tanaka, H., Newman, J.W., Hammock, B.D. and Morisseau, C. Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the mammalian soluble epoxide hydrolase. Biochemistry 44 (2005) 12179–12187. [PMID: 16142916]
5.  Newman, J.W., Morisseau, C. and Hammock, B.D. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog. Lipid Res. 44 (2005) 1–51. [PMID: 15748653]
6.  Srivastava, P.K., Sharma, V.K., Kalonia, D.S. and Grant, D.F. Polymorphisms in human soluble epoxide hydrolase: effects on enzyme activity, enzyme stability, and quaternary structure. Arch. Biochem. Biophys. 427 (2004) 164–169. [PMID: 15196990]
7.  Gomez, G.A., Morisseau, C., Hammock, B.D. and Christianson, D.W. Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry 43 (2004) 4716–4723. [PMID: 15096040]
[EC 3.1.3.76 created 2006]
 
 
EC 3.1.3.77     
Accepted name: acireductone synthase
Reaction: 5-(methylsulfanyl)-2,3-dioxopentyl phosphate + H2O = 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + phosphate (overall reaction)
(1a) 5-(methylsulfanyl)-2,3-dioxopentyl phosphate = 2-hydroxy-5-(methylsulfanyl)-3-oxopent-1-enyl phosphate (probably spontaneous)
(1b) 2-hydroxy-5-(methylsulfanyl)-3-oxopent-1-enyl phosphate + H2O = 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + phosphate
Glossary: acireductone = 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one
Other name(s): E1; E-1 enolase-phosphatase; 5-(methylthio)-2,3-dioxopentyl-phosphate phosphohydrolase (isomerizing)
Systematic name: 5-(methylsulfanyl)-2,3-dioxopentyl-phosphate phosphohydrolase (isomerizing)
Comments: This bifunctional enzyme first enolizes the substrate to form the intermediate 2-hydroxy-5-(methylsulfanyl)-3-oxopent-1-enyl phosphate, which is then dephosphorylated to form the acireductone 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one [2]. The acireductone represents a branch point in the methione-salvage pathway as it is used in the formation of formate, CO and 3-(methylsulfanyl)propanoate by EC 1.13.11.53 [acireductone dioxygenase (Ni2+-requiring)] and of formate and 4-(methylsulfanyl)-2-oxobutanoate either by a spontaneous reaction under aerobic conditions or by EC 1.13.11.54 {acireductone dioxygenase [iron(II)-requiring]} [1,2].
References:
1.  Myers, R.W., Wray, J.W., Fish, S. and Abeles, R.H. Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae. J. Biol. Chem. 268 (1993) 24785–24791. [PMID: 8227039]
2.  Wray, J.W. and Abeles, R.H. The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases. J. Biol. Chem. 270 (1995) 3147–3153. [PMID: 7852397]
3.  Wang, H., Pang, H., Bartlam, M. and Rao, Z. Crystal structure of human E1 enzyme and its complex with a substrate analog reveals the mechanism of its phosphatase/enolase activity. J. Mol. Biol. 348 (2005) 917–926. [PMID: 15843022]
[EC 3.1.3.77 created 2006]
 
 
EC 3.1.3.78     
Accepted name: phosphatidylinositol-4,5-bisphosphate 4-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 5-phosphate + phosphate
Glossary: 1-phosphatidyl-1D-myo-inositol 3-phosphate = PtdIns3P
1-phosphatidyl-1D-myo-inositol 4-phosphate = PtdIns4P
1-phosphatidyl-1D-myo-inositol 5-phosphate = PtdIns5P
1-phosphatidyl-1D-myo-inositol 3,4-bisphosphate = PtdIns(3,4)P2
1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate = PtdIns(3,5)P2
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate = PtdIns(4,5)P2
1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate = PtdIns(3,4,5)P3
Other name(s): phosphatidylinositol-4,5-bisphosphate 4-phosphatase I; phosphatidylinositol-4,5-bisphosphate 4-phosphatase II; type I PtdIns-4,5-P2 4-Ptase; type II PtdIns-4,5-P2 4-Ptase; IpgD; PtdIns-4,5-P2 4-phosphatase type I; PtdIns-4,5-P2 4-phosphatase type II; type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase; type 1 4-phosphatase
Systematic name: 1-phosphatidyl-1D-myo-inositol-4,5-bisphosphate 4-phosphohydrolase
Comments: Two pathways exist in mammalian cells to degrade 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate [PtdIns(4,5)P2] [2]. One is catalysed by this enzyme and the other by EC 3.1.3.36, phosphoinositide 5-phosphatase, where the product is PtdIns4P. The enzyme from human is specific for PtdIns(4,5)P2 as substrate, as it cannot use PtdIns(3,4,5)P3, PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns5P, PtdIns4P or PtdIns3P [2]. In humans, the enzyme is localized to late endosomal/lysosomal membranes [2]. It can control nuclear levels of PtdIns5P and thereby control p53-dependent apoptosis [3].
References:
1.  Niebuhr, K., Giuriato, S., Pedron, T., Philpott, D.J., Gaits, F., Sable, J., Sheetz, M.P., Parsot, C., Sansonetti, P.J. and Payrastre, B. Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21 (2002) 5069–5078. [PMID: 12356723]
2.  Ungewickell, A., Hugge, C., Kisseleva, M., Chang, S.C., Zou, J., Feng, Y., Galyov, E.E., Wilson, M. and Majerus, P.W. The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc. Natl. Acad. Sci. USA 102 (2005) 18854–18859. [PMID: 16365287]
3.  Zou, J., Marjanovic, J., Kisseleva, M.V., Wilson, M. and Majerus, P.W. Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc. Natl. Acad. Sci. USA 104 (2007) 16834–16839. [PMID: 17940011]
4.  Mason, D., Mallo, G.V., Terebiznik, M.R., Payrastre, B., Finlay, B.B., Brumell, J.H., Rameh, L. and Grinstein, S. Alteration of epithelial structure and function associated with PtdIns(4,5)P2 degradation by a bacterial phosphatase. J. Gen. Physiol. 129 (2007) 267–283. [PMID: 17389247]
[EC 3.1.3.78 created 2008]
 
 
EC 3.1.3.79     
Accepted name: mannosylfructose-phosphate phosphatase
Reaction: β-D-fructofuranosyl-α-D-mannopyranoside 6F-phosphate + H2O = β-D-fructofuranosyl-α-D-mannopyranoside + phosphate
Glossary: mannosylfructose = β-D-fructofuranosyl-α-D-mannopyranoside
Other name(s): mannosylfructose-6-phosphate phosphatase; MFPP
Systematic name: β-D-fructofuranosyl-α-D-mannopyranoside-6F-phosphate phosphohydrolase
Comments: This enzyme, from the soil proteobacterium and plant pathogen Agrobacterium tumefaciens strain C58, requires Mg2+ for activity. Mannosylfructose is the major endogenous osmolyte produced by several α-proteobacteria in response to osmotic stress and is synthesized by the sequential action of EC 2.4.1.246 (mannosylfructose-phosphate synthase) followed by this enzyme. While mannosylfructose 6-phosphate is the physiological substrate, the enzyme can use sucrose 6-phosphate very efficiently. The F in mannosylfructose 6F-phosphate is used to indicate that the fructose residue of sucrose carries the substituent.
References:
1.  Torres, L.L. and Salerno, G.L. A metabolic pathway leading to mannosylfructose biosynthesis in Agrobacterium tumefaciens uncovers a family of mannosyltransferases. Proc. Natl. Acad. Sci. USA 104 (2007) 14318–14323. [PMID: 17728402]
[EC 3.1.3.79 created 2009]
 
 
EC 3.1.3.80     
Accepted name: 2,3-bisphosphoglycerate 3-phosphatase
Reaction: 2,3-bisphospho-D-glycerate + H2O = 2-phospho-D-glycerate + phosphate
Other name(s): MIPP1; 2,3-BPG 3-phosphatase
Systematic name: 2,3-bisphospho-D-glycerate 3-phosphohydrolase
Comments: This reaction is a shortcut in the Rapoport-Luebering shunt. It bypasses the reactions of EC 5.4.2.11/EC 5.4.2.12 [phosphoglycerate mutases (2,3-diphosphoglycerate-dependent and independent)] and directly forms 2-phospho-D-glycerate by removing the 3-phospho-group of 2,3-diphospho-D-glycerate [1]. The MIPP1 protein also catalyses the reaction of EC 3.1.3.62 (multiple inositol-polyphosphate phosphatase).
References:
1.  Cho, J., King, J.S., Qian, X., Harwood, A.J. and Shears, S.B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. USA 105 (2008) 5998–6003. [PMID: 18413611]
[EC 3.1.3.80 created 2010]
 
 
EC 3.1.3.81     
Accepted name: diacylglycerol diphosphate phosphatase
Reaction: 1,2-diacyl-sn-glycerol 3-diphosphate + H2O = 1,2-diacyl-sn-glycerol 3-phosphate + phosphate
Other name(s): DGPP phosphatase; DGPP phosphohydrolase; DPP1; DPPL1; DPPL2; PAP2; pyrophosphate phosphatase
Systematic name: 1,2-diacyl-sn-glycerol 3-phosphate phosphohydrolase
Comments: The bifunctional enzyme catalyses the dephosphorylation of diacylglycerol diphosphate to phosphatidate and the subsequent dephosphorylation of phosphatidate to diacylglycerol (cf. phosphatidate phosphatase (EC 3.1.3.4)). It regulates intracellular levels of diacylglycerol diphosphate and phosphatidate, phospholipid molecules believed to play a signalling role in stress response [6]. The phosphatase activity of the bifunctional enzyme is Mg2+-independent and N-ethylmaleimide-insensitive and is distinct from the Mg2+-dependent and N-ethylmaleimide-sensitive enzyme EC 3.1.3.4 (phosphatidate phosphatase) [5].The diacylglycerol pyrophosphate phosphatase activity in Saccharomyces cerevisiae is induced by zinc depletion, by inositol supplementation, and when cells enter the stationary phase [4].
References:
1.  Dillon, D.A., Wu, W.I., Riedel, B., Wissing, J.B., Dowhan, W. and Carman, G.M. The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J. Biol. Chem. 271 (1996) 30548–30553. [PMID: 8940025]
2.  Dillon, D.A., Chen, X., Zeimetz, G.M., Wu, W.I., Waggoner, D.W., Dewald, J., Brindley, D.N. and Carman, G.M. Mammalian Mg2+-independent phosphatidate phosphatase (PAP2) displays diacylglycerol pyrophosphate phosphatase activity. J. Biol. Chem. 272 (1997) 10361–10366. [PMID: 9099673]
3.  Wu, W.I., Liu, Y., Riedel, B., Wissing, J.B., Fischl, A.S. and Carman, G.M. Purification and characterization of diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae. J. Biol. Chem. 271 (1996) 1868–1876. [PMID: 8567632]
4.  Oshiro, J., Han, G.S. and Carman, G.M. Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1635 (2003) 1–9. [PMID: 14642771]
5.  Carman, G.M. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli. Biochim. Biophys. Acta 1348 (1997) 45–55. [PMID: 9370315]
6.  Han, G.S., Johnston, C.N., Chen, X., Athenstaedt, K., Daum, G. and Carman, G.M. Regulation of the Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase by zinc. J. Biol. Chem. 276 (2001) 10126–10133. [PMID: 11139591]
[EC 3.1.3.81 created 2010]
 
 
EC 3.1.3.82     
Accepted name: D-glycero-β-D-manno-heptose 1,7-bisphosphate 7-phosphatase
Reaction: D-glycero-β-D-manno-heptose 1,7-bisphosphate + H2O = D-glycero-β-D-manno-heptose 1-phosphate + phosphate
Other name(s): gmhB (gene name); yaeD (gene name)
Systematic name: D-glycero-β-D-manno-heptose 1,7-bisphosphate 7-phosphohydrolase
Comments: The enzyme is involved in biosynthesis of ADP-L-glycero-β-D-manno-heptose, which is utilized for assembly of the lipopolysaccharide inner core in Gram-negative bacteria. In vitro the catalytic efficiency with the β-anomer is 100-200-fold higher than with the α-anomer [3].
References:
1.  Kneidinger, B., Marolda, C., Graninger, M., Zamyatina, A., McArthur, F., Kosma, P., Valvano, M.A. and Messner, P. Biosynthesis pathway of ADP-L-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol. 184 (2002) 363–369. [PMID: 11751812]
2.  Valvano, M.A., Messner, P. and Kosma, P. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148 (2002) 1979–1989. [PMID: 12101286]
3.  Wang, L., Huang, H., Nguyen, H.H., Allen, K.N., Mariano, P.S. and Dunaway-Mariano, D. Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB). Biochemistry 49 (2010) 1072–1081. [PMID: 20050615]
[EC 3.1.3.82 created 2010]
 
 
EC 3.1.3.83     
Accepted name: D-glycero-α-D-manno-heptose 1,7-bisphosphate 7-phosphatase
Reaction: D-glycero-α-D-manno-heptose 1,7-bisphosphate + H2O = D-glycero-α-D-manno-heptose 1-phosphate + phosphate
Other name(s): gmhB (gene name)
Systematic name: D-glycero-α-D-manno-heptose 1,7-bisphosphate 7-phosphohydrolase
Comments: The enzyme is involved in biosynthesis of GDP-D-glycero-α-D-manno-heptose, which is required for assembly of S-layer glycoprotein in some Gram-positive bacteria. The in vitro catalytic efficiency of the enzyme from Bacteroides thetaiotaomicron is 6-fold higher with the α-anomer than with the β-anomer [1].
References:
1.  Wang, L., Huang, H., Nguyen, H.H., Allen, K.N., Mariano, P.S. and Dunaway-Mariano, D. Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB). Biochemistry 49 (2010) 1072–1081. [PMID: 20050615]
[EC 3.1.3.83 created 2010]
 
 
EC 3.1.3.84     
Accepted name: ADP-ribose 1′′-phosphate phosphatase
Reaction: ADP-D-ribose 1′′-phosphate + H2O = ADP-D-ribose + phosphate
Other name(s): POA1; Appr1p phosphatase; Poa1p; ADP-ribose 1′′-phosphate phosphohydrolase
Systematic name: ADP-D-ribose 1′′-phosphate phosphohydrolase
Comments: The enzyme is highly specific for ADP-D-ribose 1′′-phosphate. Involved together with EC 3.1.4.37, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, in the breakdown of adenosine diphosphate ribose 1′′,2′′-cyclic phosphate (Appr>p), a by-product of tRNA splicing.
References:
1.  Shull, N.P., Spinelli, S.L. and Phizicky, E.M. A highly specific phosphatase that acts on ADP-ribose 1′′-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 33 (2005) 650–660. [PMID: 15684411]
[EC 3.1.3.84 created 2011]
 
 
EC 3.1.3.85     
Accepted name: glucosyl-3-phosphoglycerate phosphatase
Reaction: 2-O-(α-D-glucopyranosyl)-3-phospho-D-glycerate + H2O = 2-O-(α-D-glucopyranosyl)-D-glycerate + phosphate
Other name(s): GpgP protein
Systematic name: α-D-glucosyl-3-phospho-D-glycerate phosphohydrolase
Comments: The enzyme is involved in biosynthesis of 2-O-(α-D-glucopyranosyl)-D-glycerate via the two-step pathway in which EC 2.4.1.266 (glucosyl-3-phosphoglycerate synthase) catalyses the conversion of GDP-glucose and 3-phospho-D-glycerate into 2-O-(α-D-glucopyranosyl)-3-phospho-D-glycerate, which is then converted to 2-O-(α-D-glucopyranosyl)-D-glycerate by glucosyl-3-phosphoglycerate phosphatase. In vivo the enzyme catalyses the dephosphorylation of 2-O-(α-D-mannopyranosyl)-3-phospho-D-glycerate with lower efficiency [1,2]. Divalent metal ions (Mg2+, Mn2+ or Co2+) stimulate activity [1,2].
References:
1.  Costa, J., Empadinhas, N. and da Costa, M.S. Glucosylglycerate biosynthesis in the deepest lineage of the bacteria: characterization of the thermophilic proteins GpgS and GpgP from Persephonella marina. J. Bacteriol. 189 (2007) 1648–1654. [PMID: 17189358]
2.  Costa, J., Empadinhas, N., Goncalves, L., Lamosa, P., Santos, H. and da Costa, M.S. Characterization of the biosynthetic pathway of glucosylglycerate in the archaeon Methanococcoides burtonii. J. Bacteriol. 188 (2006) 1022–1030. [PMID: 16428406]
3.  Mendes, V., Maranha, A., Alarico, S., da Costa, M.S. and Empadinhas, N. Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis. Sci. Rep. 1:177 (2011). [PMID: 22355692]
[EC 3.1.3.85 created 2011]
 
 
EC 3.1.3.86     
Accepted name: phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 3,4-bisphosphate + phosphate
Glossary: 1-phosphatidyl-1D-myo-inositol 3,4-bisphosphate = PtdIns(3,4)P2
1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate = PtdIns(3,4,5)P3
1-phosphatidyl-1D-myo-inositol 1,3,4,5-trisphosphate = PtdIns(1,3,4,5)P4
Other name(s): SHIP1; SHIP2; SHIP; p150Ship
Systematic name: 1-phosphatidyl-1D-myo-inositol-3,4,5-trisphosphate 5-phosphohydrolase
Comments: This enzyme hydrolyses 1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways. The enzyme also shows activity toward (PtdIns(1,3,4,5)P4) [5]. The enzyme is involved in several signal transduction pathways in the immune system leading to an adverse range of effects.
References:
1.  Lioubin, M.N., Algate, P.A., Tsai, S., Carlberg, K., Aebersold, A. and Rohrschneider, L.R. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 10 (1996) 1084–1095. [PMID: 8654924]
2.  Damen, J.E., Liu, L., Rosten, P., Humphries, R.K., Jefferson, A.B., Majerus, P.W. and Krystal, G. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 93 (1996) 1689–1693. [PMID: 8643691]
3.  Giuriato, S., Payrastre, B., Drayer, A.L., Plantavid, M., Woscholski, R., Parker, P., Erneux, C. and Chap, H. Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J. Biol. Chem. 272 (1997) 26857–26863. [PMID: 9341117]
4.  Drayer, A.L., Pesesse, X., De Smedt, F., Woscholski, R., Parker, P. and Erneux, C. Cloning and expression of a human placenta inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase. Biochem. Biophys. Res. Commun. 225 (1996) 243–249. [PMID: 8769125]
5.  Pesesse, X., Moreau, C., Drayer, A.L., Woscholski, R., Parker, P. and Erneux, C. The SH2 domain containing inositol 5-phosphatase SHIP2 displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity. FEBS Lett. 437 (1998) 301–303. [PMID: 9824312]
[EC 3.1.3.86 created 2011]
 
 
EC 3.1.3.87     
Accepted name: 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase
Reaction: 2-hydroxy-5-(methylsulfanyl)-3-oxopent-1-en-1-yl phosphate + H2O = 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + phosphate
Other name(s): HK-MTPenyl-1-P phosphatase; MtnX; YkrX; 2-hydroxy-5-(methylthio)-3-oxopent-1-enyl phosphate phosphohydrolase; 2-hydroxy-5-(methylsulfanyl)-3-oxopent-1-enyl phosphate phosphohydrolase
Systematic name: 2-hydroxy-5-(methylsulfanyl)-3-oxopent-1-en-1-yl phosphate phosphohydrolase
Comments: The enzyme participates in the methionine salvage pathway in Bacillus subtilis [2]. In some species a single bifunctional enzyme, EC 3.1.3.77, acireductone synthase, catalyses both this reaction and EC 5.3.2.5, 2,3-diketo-5-methylthiopentyl-1-phosphate enolase [1].
References:
1.  Myers, R.W., Wray, J.W., Fish, S. and Abeles, R.H. Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae. J. Biol. Chem. 268 (1993) 24785–24791. [PMID: 8227039]
2.  Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N. and Yokota, A. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302 (2003) 286–290. [PMID: 14551435]
[EC 3.1.3.87 created 2012]
 
 
EC 3.1.3.88     
Accepted name: 5′′-phosphoribostamycin phosphatase
Reaction: 5′′-phosphoribostamycin + H2O = ribostamycin + phosphate
Other name(s): btrP (gene name); neoI (gene name)
Systematic name: 5′′-phosphoribostamycin phosphohydrolase
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including ribostamycin, neomycin and butirosin. No metal is required for activity.
References:
1.  Kudo, F., Fujii, T., Kinoshita, S. and Eguchi, T. Unique O-ribosylation in the biosynthesis of butirosin. Bioorg. Med. Chem. 15 (2007) 4360–4368. [PMID: 17482823]
[EC 3.1.3.88 created 2012]
 
 
EC 3.1.3.89     
Accepted name: 5′-deoxynucleotidase
Reaction: a 2′-deoxyribonucleoside 5′-monophosphate + H2O = a 2′-deoxyribonucleoside + phosphate
Other name(s): yfbR (gene name)
Systematic name: 2′-deoxyribonucleoside 5′-monophosphate phosphohydrolase
Comments: The enzyme, characterized from the bacterium Escherichia coli, shows strict specificity towards deoxyribonucleoside 5′-monophosphates and does not dephosphorylate 5′-ribonucleotides or ribonucleoside 3′-monophosphates. A divalent metal cation is required for activity, with cobalt providing the highest activity.
References:
1.  Proudfoot, M., Kuznetsova, E., Brown, G., Rao, N.N., Kitagawa, M., Mori, H., Savchenko, A. and Yakunin, A.F. General enzymatic screens identify three new nucleotidases in Escherichia coli. Biochemical characterization of SurE, YfbR, and YjjG. J. Biol. Chem. 279 (2004) 54687–54694. [PMID: 15489502]
2.  Zimmerman, M.D., Proudfoot, M., Yakunin, A. and Minor, W. Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5′-deoxyribonucleotidase YfbR from Escherichia coli. J. Mol. Biol. 378 (2008) 215–226. [PMID: 18353368]
[EC 3.1.3.89 created 2013]
 
 
EC 3.1.3.90     
Accepted name: maltose 6′-phosphate phosphatase
Reaction: maltose 6′-phosphate + H2O = maltose + phosphate
Other name(s): maltose 6′-P phosphatase; mapP (gene name)
Systematic name: maltose 6′-phosphate phosphohydrolase
Comments: The enzyme from the bacterium Enterococcus faecalis also has activity with the sucrose isomer turanose 6′-phosphate (α-D-glucopyranosyl-(1→3)-D-fructose 6-phosphate).
References:
1.  Mokhtari, A., Blancato, V.S., Repizo, G.D., Henry, C., Pikis, A., Bourand, A., de Fatima Alvarez, M., Immel, S., Mechakra-Maza, A., Hartke, A., Thompson, J., Magni, C. and Deutscher, J. Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose 6′-phosphate phosphatase (MapP). Mol. Microbiol. 88 (2013) 234–253. [PMID: 23490043]
[EC 3.1.3.90 created 2013]
 
 
EC 3.1.3.91     
Accepted name: 7-methylguanosine nucleotidase
Reaction: (1) N7-methyl-GMP + H2O = N7-methyl-guanosine + phosphate
(2) CMP + H2O = cytidine + phosphate
Other name(s): cytosolic nucleotidase III-like; cNIII-like; N7-methylguanylate 5′-phosphatase
Systematic name: N7-methyl-GMP phosphohydrolase
Comments: The enzyme also has low activity with N7-methyl-GDP, producing N7-methyl-GMP. Does not accept AMP or GMP, and has low activity with UMP.
References:
1.  Buschmann, J., Moritz, B., Jeske, M., Lilie, H., Schierhorn, A. and Wahle, E. Identification of Drosophila and human 7-methyl GMP-specific nucleotidases. J. Biol. Chem. 288 (2013) 2441–2451. [PMID: 23223233]
[EC 3.1.3.91 created 2013]
 
 
EC 3.1.3.92     
Accepted name: kanosamine-6-phosphate phosphatase
Reaction: kanosamine 6-phosphate + H2O = kanosamine + phosphate
Glossary: kanosamine = 3-amino-3-deoxy-D-glucose
Other name(s): ntdB (gene name)
Systematic name: kanosamine-6-phosphate phosphohydrolase
Comments: The enzyme, found in the bacterium Bacillus subtilis, is involved in a kanosamine biosynthesis pathway.
References:
1.  Vetter, N.D., Langill, D.M., Anjum, S., Boisvert-Martel, J., Jagdhane, R.C., Omene, E., Zheng, H., van Straaten, K.E., Asiamah, I., Krol, E.S., Sanders, D.A. and Palmer, D.R. A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis. J. Am. Chem. Soc. 135 (2013) 5970–5973. [PMID: 23586652]
[EC 3.1.3.92 created 2013]
 
 
EC 3.1.3.93     
Accepted name: L-galactose 1-phosphate phosphatase
Reaction: β-L-galactose 1-phosphate + H2O = L-galactose + phosphate
Other name(s): VTC4 (gene name) (ambiguous); IMPL2 (gene name) (ambiguous)
Systematic name: β-L-galactose-1-phosphate phosphohydrolase
Comments: The enzyme from plants also has the activity of EC 3.1.3.25, inositol-phosphate phosphatase. The enzymes have very low activity with D-galactose 1-phosphate (cf. EC 3.1.3.94, D-galactose 1-phosphate phosphatase).
References:
1.  Laing, W.A., Bulley, S., Wright, M., Cooney, J., Jensen, D., Barraclough, D. and MacRae, E. A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc. Natl. Acad. Sci. USA 101 (2004) 16976–16981. [PMID: 15550539]
2.  Torabinejad, J., Donahue, J.L., Gunesekera, B.N., Allen-Daniels, M.J. and Gillaspy, G.E. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol. 150 (2009) 951–961. [PMID: 19339506]
3.  Petersen, L.N., Marineo, S., Mandala, S., Davids, F., Sewell, B.T. and Ingle, R.A. The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol. 152 (2010) 1186–1196. [PMID: 20023146]
[EC 3.1.3.93 created 2014]
 
 
EC 3.1.3.94     
Accepted name: D-galactose 1-phosphate phosphatase
Reaction: α-D-galactose 1-phosphate + H2O = D-galactose + phosphate
Systematic name: α-D-galactose-1-phosphate phosphohydrolase
Comments: The human enzyme also has the activity of EC 3.1.3.25, inositol-phosphate phosphatase. The enzyme has very low activity with L-galactose 1-phosphate (cf. EC 3.1.3.93, L-galactose 1-phosphate phosphatase).
References:
1.  Parthasarathy, R., Parthasarathy, L. and Vadnal, R. Brain inositol monophosphatase identified as a galactose 1-phosphatase. Brain Res. 778 (1997) 99–106. [PMID: 9462881]
[EC 3.1.3.94 created 2014]
 
 
EC 3.1.3.95     
Accepted name: phosphatidylinositol-3,5-bisphosphate 3-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 5-phosphate + phosphate
Glossary: 1-phosphatidyl-1D-myo-inositol 5-phosphate = PtdIns5P
1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate = PtdIns(3,5)P2
Other name(s): MTMR; PtdIns-3,5-P2 3-Ptase
Systematic name: 1-phosphatidyl-1D-myo-inositol-3,5-bisphosphate 3-phosphohydrolase
Comments: The enzyme is found in both plants and animals. It also has the activity of EC 3.1.3.64 (phosphatidylinositol-3-phosphatase).
References:
1.  Walker, D.M., Urbe, S., Dove, S.K., Tenza, D., Raposo, G. and Clague, M.J. Characterization of MTMR3. an inositol lipid 3-phosphatase with novel substrate specificity. Curr. Biol. 11 (2001) 1600–1605. [PMID: 11676921]
2.  Berger, P., Bonneick, S., Willi, S., Wymann, M. and Suter, U. Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum. Mol. Genet. 11 (2002) 1569–1579. [PMID: 12045210]
3.  Ding, Y., Lapko, H., Ndamukong, I., Xia, Y., Al-Abdallat, A., Lalithambika, S., Sadder, M., Saleh, A., Fromm, M., Riethoven, J.J., Lu, G. and Avramova, Z. The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM and the response to drought. Plant Signal. Behav. 4 (2009) 1049–1058. [PMID: 19901554]
[EC 3.1.3.95 created 2014]
 
 
EC 3.1.3.96     
Accepted name: pseudouridine 5′-phosphatase
Reaction: pseudouridine 5′-phosphate + H2O = pseudouridine + phosphate
Other name(s): pseudouridine 5′-monophosphatase; 5′-PsiMPase; HDHD1
Systematic name: pseudouridine 5′-phosphohydrolase
Comments: Requires Mg2+ for activity.
References:
1.  Preumont, A., Rzem, R., Vertommen, D. and Van Schaftingen, E. HDHD1, which is often deleted in X-linked ichthyosis, encodes a pseudouridine-5′-phosphatase. Biochem. J. 431 (2010) 237–244. [PMID: 20722631]
[EC 3.1.3.96 created 2014]
 
 
EC 3.1.3.97     
Accepted name: 3′,5′-nucleoside bisphosphate phosphatase
Reaction: nucleoside 3′,5′-bisphosphate + H2O = nucleoside 5′-phosphate + phosphate
Systematic name: nucleoside-3′,5′-bisphosphate 3′-phosphohydrolase
Comments: The enzyme, characterized from the bacterium Chromobacterium violaceum, has similar catalytic efficiencies with all the bases. The enzyme has similar activity with ribonucleoside and 2′-deoxyribonucleoside 3′,5′-bisphosphates, but shows no activity with nucleoside 2′,5′-bisphosphates (cf. EC 3.1.3.7, 3′(2′),5′-bisphosphate nucleotidase).
References:
1.  Cummings, J.A., Vetting, M., Ghodge, S.V., Xu, C., Hillerich, B., Seidel, R.D., Almo, S.C. and Raushel, F.M. Prospecting for unannotated enzymes: discovery of a 3′,5′-nucleotide bisphosphate phosphatase within the amidohydrolase superfamily. Biochemistry 53 (2014) 591–600. [PMID: 24401123]
[EC 3.1.3.97 created 2015]
 
 
EC 3.1.3.98      
Transferred entry: geranyl diphosphate phosphohydrolase, transferred to EC 3.6.1.68, geranyl diphosphate phosphohydrolase
[EC 3.1.3.98 created 2015, deleted 2016]
 
 
EC 3.1.3.99     
Accepted name: IMP-specific 5′-nucleotidase
Reaction: IMP + H2O = inosine + phosphate
Other name(s): ISN1 (gene name)
Systematic name: inosine 5′-phosphate phosphohydrolase
Comments: The enzyme, isolated from the yeast Saccharomyces cerevisiae, is highly specific for inosine 5′-phosphate, and has no detectable activity with other purine and pyrimidine nucleotides. Requires divalent metals, such as Mg2+, Co2+ or Mn2+.
References:
1.  Itoh, R. Purification and some properties of an IMP-specific 5′-nucleotidase from yeast. Biochem. J. 298 (1994) 593–598. [PMID: 8141771]
2.  Itoh, R., Saint-Marc, C., Chaignepain, S., Katahira, R., Schmitter, J.M. and Daignan-Fornier, B. The yeast ISN1 (YOR155c) gene encodes a new type of IMP-specific 5′-nucleotidase. BMC Biochem. 4:4 (2003). [PMID: 12735798]
[EC 3.1.3.99 created 2016]
 
 
EC 3.1.3.100     
Accepted name: thiamine phosphate phosphatase
Reaction: thiamine phosphate + H2O = thiamine + phosphate
Systematic name: thiamine phosphate phosphohydrolase
Comments: The enzyme participates in the thiamine biosynthesis pathway in eukaryotes and a few prokaryotes. These organisms lack EC 2.7.4.16, thiamine-phosphate kinase, and need to convert thiamine phosphate to thiamine diphosphate, the active form of the vitamin, by first removing the phosphate group, followed by diphosphorylation by EC 2.7.6.2, thiamine diphosphokinase.
References:
1.  Sanemori, H., Egi, Y. and Kawasaki, T. Pathway of thiamine pyrophosphate synthesis in Micrococcus denitrificans. J. Bacteriol. 126 (1976) 1030–1036. [PMID: 181359]
2.  Komeda, Y., Tanaka, M. and Nishimune, T. A th-1 mutant of Arabidopsis thaliana is defective for a thiamin-phosphate-synthesizing enzyme: thiamin phosphate pyrophosphorylase. Plant Physiol. 88 (1988) 248–250. [PMID: 16666289]
3.  Schweingruber, A.M., Dlugonski, J., Edenharter, E. and Schweingruber, M.E. Thiamine in Schizosaccharomyces pombe: dephosphorylation, intracellular pool, biosynthesis and transport. Curr. Genet. 19 (1991) 249–254. [PMID: 1868574]
4.  Muller, I.B., Bergmann, B., Groves, M.R., Couto, I., Amaral, L., Begley, T.P., Walter, R.D. and Wrenger, C. The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS One 4:e7656 (2009). [PMID: 19888457]
5.  Kolos, I.K. and Makarchikov, A.F. [Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver] Ukr. Biochem. J. 86 (2014) 39–49. [PMID: 25816604] (in Russian)
6.  Mimura, M., Zallot, R., Niehaus, T.D., Hasnain, G., Gidda, S.K., Nguyen, T.N., Anderson, E.M., Mullen, R.T., Brown, G., Yakunin, A.F., de Crecy-Lagard, V., Gregory, J.F., 3rd, McCarty, D.R. and Hanson, A.D. Arabidopsis TH2 encodes the orphan enzyme thiamin monophosphate phosphatase. Plant Cell 28 (2016) 2683–2696. [PMID: 27677881]
[EC 3.1.3.100 created 2016]
 
 
EC 3.1.3.101     
Accepted name: validoxylamine A 7′-phosphate phosphatase
Reaction: validoxylamine A 7′-phosphate + H2O = validoxylamine A + phosphate
Glossary: validoxylamine A = (1S,2S,3R,6S)-4-(hydroxymethyl)-6-{[(1S,2S,3S,4R,5R)-2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]amino}cyclohex-4-ene-1,2,3-triol
Other name(s): vldH (gene name)
Systematic name: validoxylamine-A 7′-phosphate phosphohydrolase
Comments: The enzyme, characterized from the bacterium Streptomyces hygroscopicus subsp. limoneus, is involved in the biosynthesis of the antifungal agent validamycin A.
References:
1.  Asamizu, S., Yang, J., Almabruk, K.H. and Mahmud, T. Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin a biosynthesis. J. Am. Chem. Soc. 133 (2011) 12124–12135. [PMID: 21766819]
[EC 3.1.3.101 created 2016]
 
 
EC 3.1.3.102     
Accepted name: FMN hydrolase
Reaction: FMN + H2O = riboflavin + phosphate
Other name(s): FMN phosphatase; AtcpFHy1
Systematic name: FMN phosphohydrolase
Comments: Requires Mg2+. The enzyme, found in many isoforms purified from both bacteria and plants, is a member of the haloacid dehalogenase superfamily. Most of the isoforms have a wide substrate specificity [2], but isoforms specific for FMN also exist [3].
References:
1.  Sandoval, F.J. and Roje, S. An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J. Biol. Chem. 280 (2005) 38337–38345. [PMID: 16183635]
2.  Kuznetsova, E., Proudfoot, M., Gonzalez, C.F., Brown, G., Omelchenko, M.V., Borozan, I., Carmel, L., Wolf, Y.I., Mori, H., Savchenko, A.V., Arrowsmith, C.H., Koonin, E.V., Edwards, A.M. and Yakunin, A.F. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J. Biol. Chem. 281 (2006) 36149–36161. [PMID: 16990279]
3.  Rawat, R., Sandoval, F.J., Wei, Z., Winkler, R. and Roje, S. An FMN hydrolase of the haloacid dehalogenase superfamily is active in plant chloroplasts. J. Biol. Chem. 286 (2011) 42091–42098. [PMID: 22002057]
[EC 3.1.3.102 created 2016]
 
 
EC 3.1.3.103     
Accepted name: 3-deoxy-D-glycero-D-galacto-nonulopyranosonate 9-phosphatase
Reaction: 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate 9-phosphate + H2O = 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate + phosphate
Other name(s): 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate-9-phosphate phosphatase
Systematic name: 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate 9-phosphohydrolase
Comments: The enzyme, characterized from the bacterium Bacteroides thetaiotaomicron, is part of the biosynthesis pathway of the sialic acid 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate (Kdn). Kdn is abundant in extracellular glycoconjugates of lower vertebrates such as fish and amphibians, but is also found in the capsular polysaccharides of bacteria that belong to the Bacteroides genus.
References:
1.  Wang, L., Lu, Z., Allen, K.N., Mariano, P.S. and Dunaway-Mariano, D. Human symbiont Bacteroides thetaiotaomicron synthesizes 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN). Chem. Biol. 15 (2008) 893–897. [PMID: 18804026]
2.  Lu, Z., Wang, L., Dunaway-Mariano, D. and Allen, K.N. Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members. J. Biol. Chem. 284 (2009) 1224–1233. [PMID: 18986982]
[EC 3.1.3.103 created 2016]
 
 
EC 3.1.3.104     
Accepted name: 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase
Reaction: 5-amino-6-(5-phospho-D-ribitylamino)uracil + H2O = 5-amino-6-(D-ribitylamino)uracil + phosphate
Other name(s): 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-phosphate phosphatase
Systematic name: 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphohydrolase
Comments: Requires Mg2+. The enzyme, which is found in plants and bacteria, is part of a pathway for riboflavin biosynthesis. Most forms of the enzyme has a broad substrate specificity [1,3].
References:
1.  Haase, I., Sarge, S., Illarionov, B., Laudert, D., Hohmann, H.P., Bacher, A. and Fischer, M. Enzymes from the haloacid dehalogenase (HAD) superfamily catalyse the elusive dephosphorylation step of riboflavin biosynthesis. ChemBioChem 14 (2013) 2272–2275. [PMID: 24123841]
2.  London, N., Farelli, J.D., Brown, S.D., Liu, C., Huang, H., Korczynska, M., Al-Obaidi, N.F., Babbitt, P.C., Almo, S.C., Allen, K.N. and Shoichet, B.K. Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases. Biochemistry 54 (2015) 528–537. [PMID: 25513739]
3.  Sarge, S., Haase, I., Illarionov, B., Laudert, D., Hohmann, H.P., Bacher, A. and Fischer, M. Catalysis of an essential step in vitamin B2 biosynthesis by a consortium of broad spectrum hydrolases. ChemBioChem 16 (2015) 2466–2469. [PMID: 26316208]
[EC 3.1.3.104 created 2016]
 
 
EC 3.1.3.105     
Accepted name: N-acetyl-D-muramate 6-phosphate phosphatase
Reaction: N-acetyl-D-muramate 6-phosphate + H2O = N-acetyl-D-muramate + phosphate
Other name(s): mupP (gene name)
Systematic name: N-acetyl-D-muramate 6-phosphate phosphohydrolase
Comments: The enzyme, characterized from Pseudomonas species, participates in a peptidoglycan salvage pathway.
References:
1.  Borisova, M., Gisin, J. and Mayer, C. The N-acetylmuramic acid 6-phosphate phosphatase MupP completes the Pseudomonas peptidoglycan recycling pathway leading to intrinsic fosfomycin resistance. mBio 8 (2017) e00092-17. [PMID: 28351914]
[EC 3.1.3.105 created 2017]
 
 
EC 3.1.3.106     
Accepted name: 2-lysophosphatidate phosphatase
Reaction: a 1-acyl-sn-glycerol 3-phosphate + H2O = a 1-acyl-sn-glycerol + phosphate
Other name(s): 1-acyl-sn-glycerol 3-phosphatase; CPC3 (gene name); PHM8 (gene name)
Systematic name: 1-acyl-sn-glycerol 3-phosphate phosphohydrolase
Comments: The enzyme has been studied from the plants Arachis hypogaea (peanut) and Arabidopsis thaliana (thale cress) and from the yeast Saccharomyces cerevisiae. The enzyme from yeast, but not from the plants, requires Mg2+.
References:
1.  Shekar, S., Tumaney, A.W., Rao, T.J. and Rajasekharan, R. Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons. Plant Physiol. 128 (2002) 988–996. [PMID: 11891254]
2.  Reddy, V.S., Singh, A.K. and Rajasekharan, R. The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase. J. Biol. Chem. 283 (2008) 8846–8854. [PMID: 18234677]
3.  Reddy, V.S., Rao, D.K. and Rajasekharan, R. Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim. Biophys. Acta 1801 (2010) 455–461. [PMID: 20045079]
[EC 3.1.3.106 created 2019]
 
 
EC 3.1.3.107     
Accepted name: amicoumacin phosphatase
Reaction: amicoumacin A 2-phosphate + H2O = amicoumacin A + phosphate
Other name(s): amiO (gene name)
Systematic name: amicoumacin 2-phosphate phosphohydrolase
Comments: This bacterial enzyme activates the antibiotic amicoumacin A by removing a phosphate group that is added by EC 2.7.1.230, amicoumacin kinase.
References:
1.  Terekhov, S.S., Smirnov, I.V., Malakhova, M.V., Samoilov, A.E., Manolov, A.I., Nazarov, A.S., Danilov, D.V., Dubiley, S.A., Osterman, I.A., Rubtsova, M.P., Kostryukova, E.S., Ziganshin, R.H., Kornienko, M.A., Vanyushkina, A.A., Bukato, O.N., Ilina, E.N., Vlasov, V.V., Severinov, K.V., Gabibov, A.G. and Altman, S. Ultrahigh-throughput functional profiling of microbiota communities. Proc. Natl. Acad. Sci. USA 115 (2018) 9551–9556. [PMID: 30181282]
[EC 3.1.3.107 created 2019]
 
 
EC 3.1.3.108     
Accepted name: nocturnin
Reaction: (1) NADPH + H2O = NADH + phosphate
(2) NADP+ + H2O = NAD+ + phosphate
Other name(s): NOCT (gene name); nocturnin (curled); MJ0109 (gene name); NADP phosphatase; NADPase
Systematic name: NADPH 2′-phosphohydrolase
Comments: The mammalian mitochondrial enzyme is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has a slight preference for NADPH over NADP+. The archaeal enzyme, identified in Methanocaldococcus jannaschii, is bifunctional acting as NAD+ kinase (EC 2.7.1.23) and NADP+ phosphatase with a slight preference for NADP+ over NADPH.
References:
1.  Kawai, S. and Murata, K. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci. Biotechnol. Biochem. 72 (2008) 919–930. [PMID: 18391451]
2.  Abshire, E.T., Chasseur, J., Bohn, J.A., Del Rizzo, P.A., Freddolino, P.L., Goldstrohm, A.C. and Trievel, R.C. The structure of human nocturnin reveals a conserved ribonuclease domain that represses target transcript translation and abundance in cells. Nucleic Acids Res. 46 (2018) 6257–6270. [PMID: 29860338]
3.  Estrella, M.A., Du, J. and Korennykh, A. Crystal structure of human nocturnin catalytic domain. Sci. Rep. 8:16294 (2018). [PMID: 30389976]
4.  Estrella, M.A., Du, J., Chen, L., Rath, S., Prangley, E., Chitrakar, A., Aoki, T., Schedl, P., Rabinowitz, J. and Korennykh, A. The metabolites NADP+ and NADPH are the targets of the circadian protein nocturnin (curled). Nat. Commun. 10:2367 (2019). [PMID: 31147539]
[EC 3.1.3.108 created 2020]
 
 
EC 3.1.4.1     
Accepted name: phosphodiesterase I
Reaction: Hydrolytically removes 5′-nucleotides successively from the 3′-hydroxy termini of 3′-hydroxy-terminated oligonucleotides
Other name(s): 5′-exonuclease; 5′-phosphodiesterase; 5′-nucleotide phosphodiesterase; oligonucleate 5′-nucleotidohydrolase; 5′ nucleotide phosphodiesterase/alkaline phosphodiesterase I; 5′-NPDase; 5′-PDase; 5′-PDE; 5’NPDE; alkaline phosphodiesterase; nucleotide pyrophosphatase/phosphodiesterase I; orthophosphoric diester phosphohydrolase; PDE I; phosphodiesterase (ambiguous); exonuclease I
Systematic name: oligonucleotide 5′-nucleotidohydrolase
Comments: Hydrolyses both ribonucleotides and deoxyribonucleotides. Has low activity towards polynucleotides. A 3′-phosphate terminus on the substrate inhibits hydrolysis.
References:
1.  Khorana, G.H. Phosphodiesterases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 5, Academic Press, New York, 1961, pp. 79–94.
[EC 3.1.4.1 created 1961]
 
 
EC 3.1.4.2     
Accepted name: glycerophosphocholine phosphodiesterase
Reaction: sn-glycero-3-phosphocholine + H2O = choline + sn-glycerol 3-phosphate
Other name(s): glycerophosphinicocholine diesterase; glycerylphosphorylcholinediesterase; sn-glycero-3-phosphorylcholine diesterase; glycerolphosphorylcholine phosphodiesterase; glycerophosphohydrolase
Systematic name: sn-glycero-3-phosphocholine glycerophosphohydrolase
Comments: Also acts on sn-glycero-3-phosphoethanolamine.
References:
1.  Dawson, R.M.C. Liver glycerylphosphorylcholine diesterase. Biochem. J. 62 (1956) 689–693. [PMID: 13315235]
2.  Hayaishi, O. and Kornberg, A. Metabolism of phospholipides by bacterial enzymes. J. Biol. Chem. 206 (1954) 647–663. [PMID: 13143024]
3.  Webster, G.R., Marples, E.A. and Thompson, R.H.S. Glycerylphosphorylcholine diesterase activity in nervous tissue. Biochem. J. 65 (1957) 374–377. [PMID: 13403918]
[EC 3.1.4.2 created 1961, modified 1976]
 
 
EC 3.1.4.3     
Accepted name: phospholipase C
Reaction: a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
Other name(s): lipophosphodiesterase I; lecithinase C; Clostridium welchii α-toxin; Clostridium oedematiens β- and γ-toxins; lipophosphodiesterase C; phosphatidase C; heat-labile hemolysin; α-toxin
Systematic name: phosphatidylcholine cholinephosphohydrolase
Comments: The bacterial enzyme, which is a zinc protein, also acts on sphingomyelin and phosphatidylinositol; that from seminal plasma does not act on phosphatidylinositol.
References:
1.  Druzhinina, K.V. and Kritzman, M.G. [Lecithinase from animal tissues.] Biokhimiya 17 (1952) 77–81. [PMID: 13066482] (in Russian)
2.  Little, C. and Otnass, A.-B. The metal ion dependence of phospholipase C from Bacillus cereus. Biochim. Biophys. Acta 391 (1975) 326–333. [PMID: 807246]
3.  Sheiknejad, R.G. and Srivastava, P.N. Isolation and properties of a phosphatidylcholine-specific phospholipase C from bull seminal plasma. J. Biol. Chem. 261 (1986) 7544–7549. [PMID: 3086312]
4.  Takahashi, T., Sugahara, T. and Ohsaka, A. Purification of Clostridium perfringens phospholipase C (α-toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein. Biochim. Biophys. Acta 351 (1974) 155–171. [PMID: 4365891]
[EC 3.1.4.3 created 1961]
 
 
EC 3.1.4.4     
Accepted name: phospholipase D
Reaction: a phosphatidylcholine + H2O = choline + a phosphatidate
Other name(s): lipophosphodiesterase II; lecithinase D; choline phosphatase
Systematic name: phosphatidylcholine phosphatidohydrolase
Comments: Also acts on other phosphatidyl esters.
References:
1.  Astrachan, L. The bond hydrolyzed by cardiolipin-specific phospholipase D. Biochim. Biophys. Acta 296 (1973) 79–88. [PMID: 4632675]
2.  Einset, E. and Clark, W.L. The enzymatically catalyzed release of choline from lecithin. J. Biol. Chem. 231 (1958) 703–715. [PMID: 13539005]
3.  Hanahan, D.J. and Chaikoff, I.L. On the nature of the phosphorus-containing lipides of cabbage leaves and their relation to a phospholipide-splitting enzyme contained in these leaves. J. Biol. Chem. 172 (1948) 191–198. [PMID: 18920784]
4.  Tookey, H.L. and Balls, A.K. Plant phospholipase D. I. Studies on cottonseed and cabbage phospholipase D. J. Biol. Chem. 218 (1956) 213–224. [PMID: 13278329]
[EC 3.1.4.4 created 1961]
 
 
EC 3.1.4.5      
Transferred entry: deoxyribonuclease. Now EC 3.1.21.1, deoxyribonuclease I
[EC 3.1.4.5 created 1961, deleted 1978]
 
 
EC 3.1.4.6      
Transferred entry: deoxyribonuclease II. Now EC 3.1.22.1, deoxyribonuclease II
[EC 3.1.4.6 created 1961, deleted 1978]
 
 
EC 3.1.4.7      
Transferred entry: micrococcal nuclease. Now EC 3.1.31.1, micrococcal nuclease
[EC 3.1.4.7 created 1961, deleted 1978]
 
 
EC 3.1.4.8      
Transferred entry: Aspergillus oryzae ribonuclease. Now EC 3.1.27.3, ribonuclease T1
[EC 3.1.4.8 created 1961, transferred 1965 to EC 2.7.7.26, reinstated 1972, deleted 1978]
 
 
EC 3.1.4.9      
Transferred entry: nucleate endonuclease. Now EC 3.1.30.2, Serratia marcescens nuclease
[EC 3.1.4.9 created 1965, deleted 1978]
 
 
EC 3.1.4.10      
Transferred entry: 1-phosphatidylinositol phosphodiesterase. Now EC 4.6.1.13, phosphatidylinositol diacylglycerol-lyase. As there is no hydrolysis of the inositol 1,2-cyclic phosphate formed, previous classification of the enzyme as a hydrolase was incorrect
[EC 3.1.4.10 created 1972, modified 1976, deleted 2002]
 
 
EC 3.1.4.11     
Accepted name: phosphoinositide phospholipase C
Reaction: 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H2O = 1D-myo-inositol 1,4,5-trisphosphate + diacylglycerol
Other name(s): triphosphoinositide phosphodiesterase; phosphoinositidase C; 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase; monophosphatidylinositol phosphodiesterase; phosphatidylinositol phospholipase C; PI-PLC; 1-phosphatidyl-D-myo-inositol-4,5-bisphosphate inositoltrisphosphohydrolase
Systematic name: 1-phosphatidyl-1D-myo-inositol-4,5-bisphosphate inositoltrisphosphohydrolase
Comments: These enzymes form some of the cyclic phosphate Ins(cyclic1,2)P(4,5)P2 as well as Ins(1,4,5)P3. They show activity towards phosphatidylinositol, i.e., the activity of EC 4.6.1.13, phosphatidylinositol diacylglycerol-lyase, in vitro at high [Ca2+]. Four β-isoforms regulated by G-proteins, two γ-forms regulated by tyrosine kinases, four δ-forms regulated at least in part by calcium and an ε-form, probably regulated by the oncogene ras, have been found.
References:
1.  Downes, C.P. and Michell, R.H. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem. J. 198 (1981) 133–140. [PMID: 6275838]
2.  Thompson, W. and Dawson, R.M.C. The triphosphoinositide phosphodiesterase of brain tissue. Biochem. J. 91 (1964) 237–243. [PMID: 4284484]
3.  Rhee, S.G. and Bae, Y.S. Regulation of phosphoinositide-specific phospholipase C isozymes. J. Biol. Chem. 272 (1997) 15045–15048. [PMID: 9182519]
[EC 3.1.4.11 created 1972, modified 2002]
 
 
EC 3.1.4.12     
Accepted name: sphingomyelin phosphodiesterase
Reaction: a sphingomyelin + H2O = a ceramide + phosphocholine
Glossary: a ceramide = an N-acylsphingosine
Other name(s): neutral sphingomyelinase
Systematic name: sphingomyelin cholinephosphohydrolase
Comments: Has very little activity on phosphatidylcholine.
References:
1.  Barnholz, Y., Roitman, A. and Gatt, S. Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain. J. Biol. Chem. 241 (1966) 3731–3737. [PMID: 5916388]
2.  Chatterjee, S. and Ghosh, N. Neutral sphingomyelinase from human urine. Purification and preparation of monospecific antibodies. J. Biol. Chem. 264 (1989) 12554–12561. [PMID: 2545711]
3.  Heller, M. and Shapiro, B. Enzymic hydrolysis of sphingomyelin by rat liver. Biochem. J. 98 (1966) 763–769. [PMID: 5911524]
4.  Kanfer, J.N., Young, O.M., Shapiro, D. and Brady, R.O. The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue. J. Biol. Chem. 241 (1966) 1081–1084. [PMID: 5933867]
[EC 3.1.4.12 created 1972]
 
 
EC 3.1.4.13     
Accepted name: serine-ethanolaminephosphate phosphodiesterase
Reaction: serine phosphoethanolamine + H2O = serine + ethanolamine phosphate
Other name(s): serine ethanolamine phosphodiester phosphodiesterase; SEP diesterase
Systematic name: serine-phosphoethanolamine ethanolaminephosphohydrolase
Comments: Acts only on those phosphodiesters that have ethanolamine as a component part of the molecule.
References:
1.  Hagerman, D.D., Rosenberg, H., Ennor, A.H., Schiff, P. and Inove, S. The isolation and properties of chicken kidney serine ethanolamine phosphate phosphodiesterase. J. Biol. Chem. 240 (1965) 1108. [PMID: 14284710]
[EC 3.1.4.13 created 1972, modified 1976]
 
 
EC 3.1.4.14     
Accepted name: [acyl-carrier-protein] phosphodiesterase
Reaction: holo-[acyl-carrier protein] + H2O = 4′-phosphopantetheine + apo-[acyl-carrier protein]
Other name(s): ACP hydrolyase; ACP phosphodiesterase; AcpH; [acyl-carrier-protein] 4′-pantetheine-phosphohydrolase; holo-[acyl-carrier-protein] 4′-pantetheine-phosphohydrolase
Systematic name: holo-[acyl-carrier protein] 4′-pantetheine-phosphohydrolase
Comments: The enzyme cleaves acyl-[acyl-carrier-protein] species with acyl chains of 6-16 carbon atoms although it appears to demonstrate a preference for the unacylated acyl-carrier protein (ACP) and short-chain ACPs over the medium- and long-chain species [3]. Deletion of the gene encoding this enzyme abolishes ACP prosthetic-group turnover in vivo [3]. Activation of apo-ACP to form the holoenzyme is carried out by EC 2.7.8.7, holo-[acyl-carrier-protein] synthase.
References:
1.  Sobhy, C. Regulation of fatty acid synthetase activity. The 4′-phosphopantetheine hydrolase of rat liver. J. Biol. Chem. 254 (1979) 8561–8566. [PMID: 224058]
2.  Vagelos, P.R. and Larrabee, A.R. Acyl carrier protein. IX. Acyl carrier protein hydrolase. J. Biol. Chem. 242 (1967) 1776–1781. [PMID: 4290442]
3.  Thomas, J. and Cronan, J.E. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J. Biol. Chem. 280 (2005) 34675–34683. [PMID: 16107329]
[EC 3.1.4.14 created 1972, modified 2006]
 
 
EC 3.1.4.15      
Transferred entry: adenylyl-[glutamateammonia ligase] hydrolase. As it has been shown that the enzyme catalyses a transfer of the adenylyl group to phosphate, the enzyme has been transferred to EC 2.7.7.89, adenylyl-[glutamateammonia ligase] phosphorylase
[EC 3.1.4.15 created 1972, deleted 2015]
 
 
EC 3.1.4.16     
Accepted name: 2′,3′-cyclic-nucleotide 2′-phosphodiesterase
Reaction: nucleoside 2′,3′-cyclic phosphate + H2O = nucleoside 3′-phosphate
Other name(s): ribonucleoside 2′,3′-cyclic phosphate diesterase; 2′,3 '-cyclic AMP phosphodiesterase; 2′,3′-cyclic nucleotidase; cyclic 2′,3′-nucleotide 2′-phosphodiesterase; cyclic 2′,3′-nucleotide phosphodiesterase; 2′,3′-cyclic nucleoside monophosphate phosphodiesterase; 2′,3′-cyclic AMP 2′-phosphohydrolase; cyclic phosphodiesterase:3′-nucleotidase; 2′,3′-cyclic nucleotide phosphohydrolase; 2′:3′-cyclic phosphodiesterase; 2′:3′-cyclic nucleotide phosphodiesterase:3′-nucleotidase
Systematic name: nucleoside-2′,3′-cyclic-phosphate 3′-nucleotidohydrolase
Comments: Also hydrolyses 3′-nucleoside monophosphates and bis-4-nitrophenyl phosphate, but not 3′-deoxynucleotides. Similar reactions are carried out by EC 4.6.1.24 (ribonuclease T1) and EC 4.6.1.18 (pancreatic ribonuclease).
References:
1.  Anraku, Y. A new cyclic phosphodiesterase having a 3′-nucleotidase activity from Escherichia coli B. I. Purification and some properties of the enzyme. J. Biol. Chem. 239 (1964) 3412–3419. [PMID: 14245396]
2.  Anraku, Y. A new cyclic phosphodiesterase having a 3′-nucleotidase activity from Escherichia coli B. II. Further studies on substrate specificity and mode of action of the enzyme. J. Biol. Chem. 239 (1964) 3420–3424. [PMID: 14245397]
3.  Center, M.S. and Behal, F.J. A cyclic phosphodiesterase with 3′-nucleotidase activity from Proteus mirabilis. J. Biol. Chem. 243 (1968) 138–143. [PMID: 4295113]
4.  Olafson, R.W., Drummond, G.I. and Lee, J.F. Studies on 2′,3′-cyclic nucleotide-3′-phosphohydrolase from brain. Can. J. Biochem. 47 (1969) 961–966. [PMID: 4310670]
5.  Unemoto, T. and Hayashi, M. Chloride ion as a modifier of 2′,3′-cyclic phosphodiesterase purified from halophilic Vibrio alginolyticus. Biochim. Biophys. Acta 171 (1969) 89–102. [PMID: 4303200]
[EC 3.1.4.16 created 1972, modified 1976]
 
 
EC 3.1.4.17     
Accepted name: 3′,5′-cyclic-nucleotide phosphodiesterase
Reaction: nucleoside 3′,5′-cyclic phosphate + H2O = nucleoside 5′-phosphate
Other name(s): cyclic 3′,5′-mononucleotide phosphodiesterase; PDE; cyclic 3′,5′-nucleotide phosphodiesterase; cyclic 3′,5′-phosphodiesterase; 3′,5′-nucleotide phosphodiesterase; 3′:5′-cyclic nucleotide 5′-nucleotidohydrolase; 3′,5′-cyclonucleotide phosphodiesterase; cyclic nucleotide phosphodiesterase; 3′, 5′-cyclic nucleoside monophosphate phosphodiesterase; 3′: 5′-monophosphate phosphodiesterase (cyclic CMP); cytidine 3′:5′-monophosphate phosphodiesterase (cyclic CMP); cyclic 3′,5-nucleotide monophosphate phosphodiesterase; nucleoside 3′,5′-cyclic phosphate diesterase; nucleoside-3′,5-monophosphate phosphodiesterase
Systematic name: 3′,5′-cyclic-nucleotide 5′-nucleotidohydrolase
Comments: Acts on 3′,5′-cyclic AMP, 3′,5′-cyclic dAMP, 3′,5′-cyclic IMP, 3′,5′-cyclic GMP and 3′,5′-cyclic CMP.
References:
1.  Fischer, U. and Amrhein, N. Cyclic nucleotide phosphodiesterase of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 341 (1974) 412–420. [PMID: 4365506]
2.  Nair, K.G. Purification and properties of 3′,5′-cyclic nucleotide phosphodiesterase from dog heart. Biochemistry 5 (1966) 150–157. [PMID: 4287216]
[EC 3.1.4.17 created 1972, modified 1976]
 
 
EC 3.1.4.18      
Transferred entry: phosphodiesterase II. Now EC 3.1.16.1, spleen exonuclease
[EC 3.1.4.18 created 1972, deleted 1978]
 
 
EC 3.1.4.19      
Transferred entry: oligonucleotidase. Now EC 3.1.13.3, oligonucleotidase
[EC 3.1.4.19 created 1972, deleted 1978]
 
 
EC 3.1.4.20      
Transferred entry: exoribonuclease. Now EC 3.1.13.1, exoribonuclease II
[EC 3.1.4.20 created 1972, deleted 1978]
 
 
EC 3.1.4.21      
Transferred entry: single-stranded-nucleate endonuclease. Now EC 3.1.30.1, Aspergillus nuclease S1
[EC 3.1.4.21 created 1972, deleted 1978]
 
 
EC 3.1.4.22      
Transferred entry: ribonuclease I. Now EC 3.1.27.5, pancreatic ribonuclease
[EC 3.1.4.22 created 1972, deleted 1978]
 
 
EC 3.1.4.23      
Transferred entry: ribonuclease II. Now EC 3.1.27.1, ribonuclease T2
[EC 3.1.4.23 created 1972, deleted 1978]
 
 
EC 3.1.4.24      
Deleted entry:  endoribonuclease III
[EC 3.1.4.24 created 1972, deleted 1978]
 
 
EC 3.1.4.25      
Transferred entry: exodeoxyribonuclease I. Now EC 3.1.11.1, exodeoxyribonuclease I
[EC 3.1.4.25 created 1972, deleted 1978]
 
 
EC 3.1.4.26      
Deleted entry:  exodeoxyribonuclease II
[EC 3.1.4.26 created 1972, deleted 1978]
 
 
EC 3.1.4.27      
Transferred entry: exodeoxyribonuclease III. Now EC 3.1.11.2, exodeoxyribonuclease III
[EC 3.1.4.27 created 1972, deleted 1978]
 
 
EC 3.1.4.28      
Transferred entry: exodeoxyribonuclease IV. Now EC 3.1.11.3, exodeoxyribonuclease (lambda-induced)
[EC 3.1.4.28 created 1972, deleted 1978]
 
 
EC 3.1.4.29      
Deleted entry:  oligodeoxyribonucleate exonuclease
[EC 3.1.4.29 created 1972, deleted 1978]
 
 
EC 3.1.4.30      
Transferred entry: endodeoxyribonuclease. Now EC 3.1.21.2, deoxyribonuclease IV (phage-T4-induced)
[EC 3.1.4.30 created 1972, deleted 1978]
 
 
EC 3.1.4.31      
Transferred entry: DNA 5′-dinucleotidohydrolase. Now EC 3.1.11.4, exodeoxyribonuclease (phage SP3-induced)
[EC 3.1.4.31 created 1972, deleted 1978]
 
 
EC 3.1.4.32      
Deleted entry:  endodeoxyribonuclease (ATP- and S-adenosylmethionine-dependent). See EC 3.1.21.3 type 1 site-specific deoxyribonuclease and EC 3.1.21.5 type III site-specific deoxyribonuclease
[EC 3.1.4.32 created 1972, deleted 1978]
 
 
EC 3.1.4.33      
Deleted entry:  endodeoxyribonuclease (ATP-hydrolysing). See EC 3.1.21.3 type 1 site-specific deoxyribonuclease and EC 3.1.21.5 type III site-specific deoxyribonuclease
[EC 3.1.4.33 created 1972, deleted 1978]
 
 
EC 3.1.4.34      
Deleted entry:  hybrid nuclease. See subclasses EC 3.1.15, EC 3.1.16, EC 3.1.30 and EC 3.1.31
[EC 3.1.4.34 created 1972, deleted 1978]
 
 
EC 3.1.4.35     
Accepted name: 3′,5′-cyclic-GMP phosphodiesterase
Reaction: guanosine 3′,5′-cyclic phosphate + H2O = GMP
Glossary: GMP = guanosine 5′-phosphate
Other name(s): guanosine cyclic 3′,5′-phosphate phosphodiesterase; cyclic GMP phosphodiesterase; cyclic 3′,5′-GMP phosphodiesterase; cyclic guanosine 3′,5′-monophosphate phosphodiesterase; cyclic guanosine 3′,5′-phosphate phosphodiesterase; cGMP phosphodiesterase; cGMP-PDE
Systematic name: 3′,5′-cyclic-GMP 5′-nucleotidohydrolase
References:
1.  Marks, F. and Raab, I. The second messenger system of mouse epidermis. IV. Cyclic AMP and cyclic GMP phosphodiesterase. Biochim. Biophys. Acta 334 (1974) 368–377.
[EC 3.1.4.35 created 1976]
 
 
EC 3.1.4.36      
Deleted entry:  1,2-cyclic-inositol-phosphate phosphodiesterase. Now included with EC 3.1.4.43, glycerophosphoinositol inositolphosphodiesterase
[EC 3.1.4.36 created 1976, deleted 2002]
 
 
EC 3.1.4.37     
Accepted name: 2′,3′-cyclic-nucleotide 3′-phosphodiesterase
Reaction: nucleoside 2′,3′-cyclic phosphate + H2O = nucleoside 2′-phosphate
Other name(s): cyclic-CMP phosphodiesterase; 2′,3′-cyclic AMP phosphodiesterase; cyclic 2′,3′-nucleotide 3′-phosphodiesterase; cyclic 2′,3′-nucleotide phosphodiesterase; 2′,3′-cyclic nucleoside monophosphate phosphodiesterase; 2′,3′-cyclic nucleotide 3′-phosphohydrolase; CNPase; 2′,3′-cyclic nucleotide phosphohydrolase; 2′:3′-cyclic nucleotide 3′-phosphodiesterase; 2′:3′-CNMP-3′-ase
Systematic name: nucleoside-2′,3′-cyclic-phosphate 2′-nucleotidohydrolase
Comments: The brain enzyme acts on 2′,3′-cyclic AMP more rapidly than on the UMP or CMP derivatives. An enzyme from liver acts on 2′,3′-cyclic CMP more rapidly than on the purine derivatives; it also hydrolyses the corresponding 3′,5′-cyclic phosphates, but more slowly. This latter enzyme has been called cyclic-CMP phosphodiesterase.
References:
1.  Drummond, G.I., Iyer, N.T. and Keith, J. Hydrolysis of ribonucleoside 2′,3′-cyclic phosphates by a diesterase from brain. J. Biol. Chem. 237 (1962) 3535–3539.
2.  Helfman, D.M. and Kuo, J.F. A homogeneous cyclic CMP phosphodiesterase hydrolyzes both pyrimidine and purine cyclic 2′:3′- and 3′:5′-nucleotides. J. Biol. Chem. 257 (1982) 1044–1047. [PMID: 6274851]
3.  Helfman, D.M., Shoji, M. and Kuo, J.F. Purification to homogeneity and general properties of a novel phosphodiesterase hydrolyzing cyclic CMP and cyclic AMP. J. Biol. Chem. 256 (1981) 6327–6334. [PMID: 6263914]
4.  Kurihara, T., Nishizawa, Y., Takahashi, Y. and Odani, S. Chemical, immunological and catalytic properties of 2′:3′-cyclic nucleotide 3′-phosphodiesterase purified from brain white matter. Biochem. J. 195 (1981) 153–157. [PMID: 6272743]
5.  Nishizawa, Y., Kurihara, T. and Takahashi, Y. Spectrophotometric assay, solubilization and purification of brain 2′:3′-cyclic nucleotide 3′-phosphodiesterase. Biochem. J. 191 (1980) 71–82. [PMID: 6258586]
[EC 3.1.4.37 created 1976]
 
 
EC 3.1.4.38     
Accepted name: glycerophosphocholine cholinephosphodiesterase
Reaction: sn-glycero-3-phosphocholine + H2O = glycerol + phosphocholine
Other name(s): L-3-glycerylphosphinicocholine cholinephosphohydrolase
Systematic name: sn-glycero-3-phosphocholine cholinephosphohydrolase
Comments: No activity on sn-3-glycerophosphoethanolamine.
References:
1.  Abra, R.M. and Quinn, P.J. A novel pathway for phosphatidylcholine catabolism in rat brain homogenates. Biochim. Biophys. Acta 380 (1975) 436–441. [PMID: 166661]
[EC 3.1.4.38 created 1976]
 
 
EC 3.1.4.39     
Accepted name: alkylglycerophosphoethanolamine phosphodiesterase
Reaction: 1-alkyl-sn-glycero-3-phosphoethanolamine + H2O = 1-alkyl-sn-glycerol 3-phosphate + ethanolamine
Other name(s): lysophospholipase D
Systematic name: 1-alkyl-sn-glycero-3-phosphoethanolamine ethanolaminehydrolase
Comments: Also acts on acyl and choline analogues.
References:
1.  Wykle, R.L. and Schremmer, J.M. A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes. J. Biol. Chem. 249 (1974) 1742–1746. [PMID: 4855486]
[EC 3.1.4.39 created 1976]
 
 
EC 3.1.4.40     
Accepted name: CMP-N-acylneuraminate phosphodiesterase
Reaction: CMP-N-acylneuraminate + H2O = CMP + N-acylneuraminate
Other name(s): CMP-sialate hydrolase; CMP-sialic acid hydrolase; CMP-N-acylneuraminic acid hydrolase; cytidine monophosphosialic hydrolase; cytidine monophosphosialate hydrolase; cytidine monophosphate-N-acetylneuraminic acid hydrolase; CMP-N-acetylneuraminate hydrolase
Systematic name: CMP-N-acylneuraminate N-acylneuraminohydrolase
References:
1.  Kean, E.L. and Bighouse, K.J. Cytidine 5′-monophosphosialic acid hydrolase. Subcellular location and properties. J. Biol. Chem. 249 (1974) 7813–7823. [PMID: 4372219]
[EC 3.1.4.40 created 1976]
 
 
EC 3.1.4.41     
Accepted name: sphingomyelin phosphodiesterase D
Reaction: sphingomyelin + H2O = ceramide phosphate + choline
Other name(s): sphingomyelinase D
Systematic name: sphingomyelin ceramide-phosphohydrolase
Comments: Does not act on phosphatidylcholine, but hydrolyses 2-lysophosphatidylcholine to choline and 2-lysophosphatidate.
References:
1.  Carne, H.R. and Onon, E. Action of Corynebacterium ovis exotoxin on endothelial cells of blood vessels. Nature 271 (1978) 246–248. [PMID: 622164]
2.  Soucek, A., Michalec, C. and Souckov, A. Identification and characterization of a new enzyme of the group phospholipase D isolated from Corynebacterium ovis. Biochim. Biophys. Acta 227 (1971) 116–128. [PMID: 5543581]
[EC 3.1.4.41 created 1978]
 
 
EC 3.1.4.42     
Accepted name: glycerol-1,2-cyclic-phosphate 2-phosphodiesterase
Reaction: glycerol 1,2-cyclic phosphate + H2O = glycerol 1-phosphate
Other name(s): rac-glycerol 1:2-cyclic phosphate 2-phosphodiesterase
Systematic name: rac-glycerol-1,2-cyclic-phosphate 2-glycerophosphohydrolase
Comments: Acts on both stereoisomers of the substrate and also, more slowly, on 3′,5′-cyclic AMP and on 2′,3′-cyclic AMP.
References:
1.  Clarke, N. and Dawson, R.M.C. rac-Glycerol 1:2-cyclic phosphate 2-phosphodiesterase, a new soluble phosphodiesterase of mammalian tissues. Biochem. J. 173 (1978) 579–589. [PMID: 212014]
[EC 3.1.4.42 created 1984]
 
 
EC 3.1.4.43     
Accepted name: glycerophosphoinositol inositolphosphodiesterase
Reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = glycerol + 1D-myo-inositol 1-phosphate
Other name(s): 1,2-cyclic-inositol-phosphate phosphodiesterase; D-myo-inositol 1:2-cyclic phosphate 2-phosphohydrolase; D-inositol 1,2-cyclic phosphate 2-phosphohydrolase; D-myo-inositol 1,2-cyclic phosphate 2-phosphohydrolase; 1-D-myo-inositol-1,2-cyclic-phosphate 2-inositolphosphohydrolase; inositol-1,2-cyclic-phosphate 2-inositolphosphohydrolase
Systematic name: 1-(sn-glycero-3-phospho)-1D-myo-inositol inositolphosphohydrolase
Comments: This enzyme also hydrolyses Ins(cyclic1,2)P to Ins-1-P
References:
1.  Dawson, R.M.C. and Hemington, N. A phosphodiesterase in rat kidney cortex that hydrolyses glycerylphosphorylinositol. Biochem. J. 162 (1977) 241–245. [PMID: 192216]
2.  Dawson, R.M.C. and Clarke, N.G. D-myoInositol 1:2-cyclic phosphate 2-phosphohydrolase. Biochem. J. 127 (1972) 113–118. [PMID: 4342209]
3.  Dawson, R.M.C. and Clarke, N.G. A comparison of D-inositol 1:2-cyclic phosphate 2-phosphohydrolase with other phosphodiesterases of kidney. Biochem. J. 134 (1973) 59–67. [PMID: 4353088]
4.  Ross, T.S. and Majerus, P.W. Inositol-1,2-cyclic-phosphate 2-inositolphosphohydrolase. Substrate specificity and regulation of activity by phospholipids, metal ion chelators, and inositol 2-phosphate. J. Biol. Chem. 266 (1991) 851–856. [PMID: 1845995]
[EC 3.1.4.43 created 1984, (EC 3.1.4.36 created 1976, incorporated 2002), modified 2002]
 
 
EC 3.1.4.44     
Accepted name: glycerophosphoinositol glycerophosphodiesterase
Reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = myo-inositol + sn-glycerol 3-phosphate
Other name(s): sn-glycero(3)phosphoinositol glycerophosphohydrolase; sn-glycero-3-phospho-1-inositol glycerophosphohydrolase
Systematic name: 1-(sn-glycero-3-phospho)-1D-myo-inositol glycerophosphohydrolase
References:
1.  Dawson, R.M.C., Hemington, N., Richards, D.E. and Irvine, R.F. sn-Glycero(3)phosphoinositol glycerophosphohydrolase. A new phosphodiesterase in rat tissues. Biochem. J. 182 (1979) 39–49. [PMID: 40550]
[EC 3.1.4.44 created 1984, modified 2002]
 
 
EC 3.1.4.45     
Accepted name: N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase
Reaction: glycoprotein N-acetyl-D-glucosaminyl-phospho-D-mannose + H2O = N-acetyl-D-glucosamine + glycoprotein phospho-D-mannose
Other name(s): α-N-acetylglucosaminyl phosphodiesterase; lysosomal α-N-acetylglucosaminidase; phosphodiester glycosidase; α-N-acetyl-D-glucosamine-1-phosphodiester N-acetylglucosaminidase; 2-acetamido-2-deoxy-α-D-glucose 1-phosphodiester acetamidodeoxyglucohydrolase
Systematic name: glycoprotein-N-acetyl-D-glucosaminyl-phospho-D-mannose N-acetyl-D-glucosaminylphosphohydrolase
Comments: Acts on a variety of compounds in which N-acetyl-D-glucosamine is α-linked to a phosphate group, including the biosynthetic intermediates of the high mannose oligosaccharide components of some lysosomal enzymes and the products of EC 2.7.8.17 UDP-N-acetylglucosamine—lysosomal-enzyme N-acetylglucosaminephosphotransferase.
References:
1.  Van den Tweel, W.J.J., Smits, J.P., Ogg, R.L.H.P. and de Bont, J.A.M. The involvement of an enantioselective transaminase in the metabolism of D-3- and D-4-hydroxyphenylglycine in Pseudomonas putida. Appl. Microbiol. Biotechnol. 29 (1988) 224–230.
2.  van der Drift, C., van Helvoort, P.E. and Vogels, G.D. S-Ureidoglycolate dehydrogenase: purification and properties. Arch. Biochem. Biophys. 145 (1971) 465–469. [PMID: 4399430]
3.  van der Drift, L., Vogels, G.D. and van der Drift, C. Allantoin racemase: a new enzyme from Pseudomonas species. Biochim. Biophys. Acta 391 (1975) 240–248. [PMID: 237557]
4.  Waheed, A., Hasilik, A. and von Figura, K. Processing of the phosphorylated recognition marker in lysosomal enzymes. Characterization and partial purification of a microsomal α-N-acetylglucosaminyl phosphodiesterase. J. Biol. Chem. 256 (1981) 5717–5721. [PMID: 6263889]
[EC 3.1.4.45 created 1984]
 
 
EC 3.1.4.46     
Accepted name: glycerophosphodiester phosphodiesterase
Reaction: a glycerophosphodiester + H2O = an alcohol + sn-glycerol 3-phosphate
Other name(s): gene hpd protein; glycerophosphoryl diester phosphodiesterase; IgD-binding protein D
Systematic name: glycerophosphodiester glycerophosphohydrolase
Comments: Broad specificity for glycerophosphodiesters; glycerophosphocholine, glycerophosphoethanolamine, glycerophosphoglycerol and bis(glycerophospho)-glycerol are hydrolysed.
References:
1.  Larson, T.J., Ehrmann, M. and Boos, W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J. Biol. Chem. 258 (1983) 5428–5432. [PMID: 6304089]
[EC 3.1.4.46 created 1986]
 
 
EC 3.1.4.47      
Transferred entry: variant-surface-glycoprotein phospholipase C. Now EC 4.6.1.14, glycosylphosphatidylinositol diacylglycerol-lyase
[EC 3.1.4.47 created 1989, deleted 2002]
 
 
EC 3.1.4.48     
Accepted name: dolichylphosphate-glucose phosphodiesterase
Reaction: dolichyl β-D-glucosyl phosphate + H2O = dolichyl phosphate + D-glucose
Other name(s): dolichol phosphoglucose phosphodiesterase; Dol-P-Glc phosphodiesterase
Systematic name: dolichyl-β-D-glucosyl-phosphate dolichylphosphohydrolase
References:
1.  Crean, E.V. Synthesis and degradation of dolichyl phosphoryl glucose by the cellular slime mold, Dictyostelium discoideum. Biochim. Biophys. Acta 792 (1984) 149–157.
[EC 3.1.4.48 created 1989]
 
 
EC 3.1.4.49     
Accepted name: dolichylphosphate-mannose phosphodiesterase
Reaction: dolichyl β-D-mannosyl phosphate + H2O = dolichyl phosphate + D-mannose
Other name(s): mannosylphosphodolichol phosphodiesterase
Systematic name: dolichyl-β-D-mannosyl-phosphate dolichylphosphohydrolase
References:
1.  Tomita, Y. and Motokawa, Y. Characterization and partial purification of a novel mannosylphosphodolichol phosphodiesterase from chicken liver microsomes. Eur. J. Biochem. 170 (1987) 363–368. [PMID: 2826159]
[EC 3.1.4.49 created 1990]
 
 
EC 3.1.4.50     
Accepted name: glycosylphosphatidylinositol phospholipase D
Reaction: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H2O = 6-(α-D-glucosaminyl)-1D-myo-inositol + 3-sn-phosphatidate
Other name(s): GPI-PLD; glycoprotein phospholipase D; phosphatidylinositol phospholipase D; phosphatidylinositol-specific phospholipase D
Systematic name: glycoprotein-phosphatidylinositol phosphatidohydrolase
Comments: This enzyme is also active when O-4 of the glucosamine is substituted by carrying the oligosaccharide that can link a protein to the structure. It therefore cleaves proteins from the lipid part of the glycosylphosphatidylinositol (GPI) anchors, but does so by hydrolysis, whereas glycosylphosphatidylinositol diacylglycerol-lyase (EC 4.6.1.14) does so by elimination. It acts on plasma membranes only after solubilization of the substrate with detergents or solvents, but it may act on intracellular membranes.
References:
1.  Low, M.G. and Prasad, A.R.S. A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc. Natl. Acad. Sci. USA 85 (1988) 980–984. [PMID: 3422494]
2.  Malik, A.-S. and Low, M.G. Conversion of human placental alkaline phosphatase from a high Mr form to a low Mr form during butanol extraction. An investigation of the role of endogenous phosphoinositide-specific phospholipases. Biochem. J. 240 (1986) 519–527. [PMID: 3028377]
3.  Li, J.Y., Hollfelder, K., Huang, K.S. and Low, M.G. Structural features of GPI-specific phospholipase D revealed by fragmentation and Ca2+ binding studies. J. Biol. Chem. 269 (1994) 28963–28971. [PMID: 7961859]
4.  Deeg, M.A, Vierman, E.L. and Cheung, M.C. GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J. Lipid Res. 42 (2001) 442–451. [PMID: 11254757]
[EC 3.1.4.50 created 1990, modified 2002]
 
 
EC 3.1.4.51     
Accepted name: glucose-1-phospho-D-mannosylglycoprotein phosphodiesterase
Reaction: 6-(D-glucose-1-phospho)-D-mannosylglycoprotein + H2O = α-D-glucose 1-phosphate + D-mannosylglycoprotein
Other name(s): α-glucose-1-phosphate phosphodiesterase
Systematic name: 6-(D-glucose-1-phospho)-D-mannosylglycoprotein glucose-1-phosphohydrolase
Comments: The enzyme is specific for the product of EC 2.7.8.19 UDP-glucose—glycoprotein glucose phosphotransferase.
References:
1.  Srisomsap, C., Richardson, K.L., Jay, J.C. and Marchase, R.B. An α-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol. J. Biol. Chem. 264 (1989) 20540–20546. [PMID: 2555363]
[EC 3.1.4.51 created 1992]
 
 
EC 3.1.4.52     
Accepted name: cyclic-guanylate-specific phosphodiesterase
Reaction: cyclic di-3′,5′-guanylate + H2O = 5′-phosphoguanylyl(3′→5′)guanosine
Glossary: c-di-GMP = c-di-guanylate = cyclic di-3′,5′-guanylate = cyclic-bis(3′→5′) dimeric GMP
Other name(s): cyclic bis(3′→5′)diguanylate phosphodiesterase; c-di-GMP-specific phosphodiesterase; c-di-GMP phosphodiesterase; phosphodiesterase (misleading); phosphodiesterase A1; PDEA1; VieA
Systematic name: cyclic bis(3′→5′)diguanylate 3′-guanylylhydrolase
Comments: Requires Mg2+ or Mn2+ for activity and is inhibited by Ca2+ and Zn2+. Contains a heme unit. This enzyme linearizes cyclic di-3′,5′-guanylate, the product of EC 2.7.7.65, diguanylate cyclase and an allosteric activator of EC 2.4.1.12, cellulose synthase (UDP-forming), rendering it inactive [1]. It is the balance between these two enzymes that determines the cellular level of c-di-GMP [1].
References:
1.  Chang, A.L., Tuckerman, J.R., Gonzalez, G., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M. and Gilles-Gonzalez, M.A. Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40 (2001) 3420–3426. [PMID: 11297407]
2.  Christen, M., Christen, B., Folcher, M., Schauerte, A. and Jenal, U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280 (2005) 30829–30837. [PMID: 15994307]
3.  Schmidt, A.J., Ryjenkov, D.A. and Gomelsky, M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187 (2005) 4774–4781. [PMID: 15995192]
4.  Tamayo, R., Tischler, A.D. and Camilli, A. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem. 280 (2005) 33324–33330. [PMID: 16081414]
[EC 3.1.4.52 created 2008]
 
 
EC 3.1.4.53     
Accepted name: 3′,5′-cyclic-AMP phosphodiesterase
Reaction: adenosine 3′,5′-cyclic phosphate + H2O = AMP
Glossary: AMP = adenosine 5′-phosphate
Other name(s): cAMP-specific phosphodiesterase; cAMP-specific PDE; PDE1; PDE2A; PDE2B; PDE4; PDE7; PDE8; PDEB1; PDEB2
Systematic name: 3′,5′-cyclic-AMP 5′-nucleotidohydrolase
Comments: Requires Mg2+ or Mn2+ for activity [2]. This enzyme is specific for 3′,5′-cAMP and does not hydrolyse other nucleoside 3′,5′-cyclic phosphates such as cGMP (cf. EC 3.1.4.17, 3,5-cyclic-nucleotide phosphodiesterase and EC 3.1.4.35, 3,5-cyclic-GMP phosphodiesterase). It is involved in modulation of the levels of cAMP, which is a mediator in the processes of cell transformation and proliferation [3].
References:
1.  Alonso, G.D., Schoijet, A.C., Torres, H.N. and Flawiá, M.M. TcPDE4, a novel membrane-associated cAMP-specific phosphodiesterase from Trypanosoma cruzi. Mol. Biochem. Parasitol. 145 (2006) 40–49. [PMID: 16225937]
2.  Bader, S., Kortholt, A., Snippe, H. and Van Haastert, P.J. DdPDE4, a novel cAMP-specific phosphodiesterase at the surface of Dictyostelium cells. J. Biol. Chem. 281 (2006) 20018–20026. [PMID: 16644729]
3.  Rascón, A., Soderling, S.H., Schaefer, J.B. and Beavo, J.A. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 99 (2002) 4714–4719. [PMID: 11930017]
4.  Johner, A., Kunz, S., Linder, M., Shakur, Y. and Seebeck, T. Cyclic nucleotide specific phosphodiesterases of Leishmania major. BMC Microbiol. 6:25 (2006). [PMID: 16522215]
5.  Lugnier, C., Keravis, T., Le Bec, A., Pauvert, O., Proteau, S. and Rousseau, E. Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolated cardiac nuclei. Biochim. Biophys. Acta 1472 (1999) 431–446. [PMID: 10564757]
6.  Imamura, R., Yamanaka, K., Ogura, T., Hiraga, S., Fujita, N., Ishihama, A. and Niki, H. Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. J. Biol. Chem. 271 (1996) 25423–25429. [PMID: 8810311]
[EC 3.1.4.53 created 2008, modified 2011]
 
 
EC 3.1.4.54     
Accepted name: N-acetylphosphatidylethanolamine-hydrolysing phospholipase D
Reaction: N-acylphosphatidylethanolamine + H2O = N-acylethanolamine + a 1,2-diacylglycerol 3-phosphate
Other name(s): NAPE-PLD; anandamide-generating phospholipase D; N-acyl phosphatidylethanolamine phospholipase D; NAPE-hydrolyzing phospholipase D
Systematic name: N-acetylphosphatidylethanolamine phosphatidohydrolase
Comments: This enzyme is involved in the biosynthesis of anandamide. It does not hydrolyse phosphatidylcholine and phosphatidylethanolamine [1]. No transphosphatidation [1]. The enzyme contains Zn2+ and is activated by Mg2+ or Ca2+ [2].
References:
1.  Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. and Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279 (2004) 5298–5305. [PMID: 14634025]
2.  Wang, J., Okamoto, Y., Morishita, J., Tsuboi, K., Miyatake, A. and Ueda, N. Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-β-lactamase family. J. Biol. Chem. 281 (2006) 12325–12335. [PMID: 16527816]
[EC 3.1.4.54 created 2011]
 
 
EC 3.1.4.55     
Accepted name: phosphoribosyl 1,2-cyclic phosphate phosphodiesterase
Reaction: 5-phospho-α-D-ribose 1,2-cyclic phosphate + H2O = α-D-ribose 1,5-bisphosphate
Other name(s): phnP (gene name)
Systematic name: 5-phospho-α-D-ribose 1,2-cyclic phosphate 2-phosphohydrolase (α-D-ribose 1,5-bisphosphate-forming)
Comments: Binds Mn2+ and Zn2+. Isolated from the bacterium Escherichia coli, where it participates in the degradation of methylphosphonate.
References:
1.  Podzelinska, K., He, S.M., Wathier, M., Yakunin, A., Proudfoot, M., Hove-Jensen, B., Zechel, D.L. and Jia, Z. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation. J. Biol. Chem. 284 (2009) 17216–17226. [PMID: 19366688]
2.  Hove-Jensen, B., McSorley, F.R. and Zechel, D.L. Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway. J. Am. Chem. Soc. 133 (2011) 3617–3624. [PMID: 21341651]
3.  He, S.M., Wathier, M., Podzelinska, K., Wong, M., McSorley, F.R., Asfaw, A., Hove-Jensen, B., Jia, Z. and Zechel, D.L. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway. Biochemistry 50 (2011) 8603–8615. [PMID: 21830807]
[EC 3.1.4.55 created 2013]
 
 
EC 3.1.4.56     
Accepted name: 7,8-dihydroneopterin 2′,3′-cyclic phosphate phosphodiesterase
Reaction: (1) 7,8-dihydroneopterin 2′,3′-cyclic phosphate + H2O = 7,8-dihydroneopterin 3′-phosphate
(2) 7,8-dihydroneopterin 2′,3′-cyclic phosphate + H2O = 7,8-dihydroneopterin 2′-phosphate
Glossary: 7,8-dihydroneopterin 2′,3′-cyclic phosphate = 2-amino-6-{(S)-hydroxy[(4R)-2-hydroxy-2-oxido-1,3,2-dioxaphospholan-4-yl]methyl}-7,8-dihydropteridin-4(1H)-one = 2-amino-6-[(1S,2R)-1,2,3-trihydroxypropyl]-7,8-dihydro-4(1H)-pteridinone 1,2-cyclic phosphate
7,8-dihydroeopterin 3′-phosphate = (2R,3S)-3-(2-amino-4-oxo-1,4,7,8-tetrahydropteridin-6-yl)-2,3-dihydroxypropyl phosphate
7,8-dihydroneopterin 2′-phosphate = (1S,2R)-1-(2-amino-4-oxo-1,4,7,8-tetrahydropteridin-6-yl)-1,3-dihydroxypropan-2-yl phosphate
Other name(s): MptB
Systematic name: 7,8-dihydroneopterin 2′,3′-cyclic phosphate 2′/3′-phosphodiesterase
Comments: Contains one zinc atom and one iron atom per subunit of the dodecameric enzyme. It hydrolyses 7,8-dihydroneopterin 2′,3′-cyclic phosphate, a step in tetrahydromethanopterin biosynthesis. In vitro the enzyme forms 7,8-dihydroneopterin 2′-phosphate and 7,8-dihydroneopterin 3′-phosphate at a ratio of 4:1.
References:
1.  Mashhadi, Z., Xu, H. and White, R.H. An Fe2+-dependent cyclic phosphodiesterase catalyzes the hydrolysis of 7,8-dihydro-D-neopterin 2′,3′-cyclic phosphate in methanopterin biosynthesis. Biochemistry 48 (2009) 9384–9392. [PMID: 19746965]
[EC 3.1.4.56 created 2013]
 
 
EC 3.1.4.57     
Accepted name: phosphoribosyl 1,2-cyclic phosphate 1,2-diphosphodiesterase
Reaction: (1) 5-phospho-α-D-ribose 1,2-cyclic phosphate + H2O = D-ribofuranose 2,5-bisphosphate
(2) D-ribofuranose 2,5-bisphosphate + H2O = D-ribofuranose 5-phosphate + phosphate
Other name(s): cyclic phosphate dihydrolase; phnPP (gene name)
Systematic name: 5-phospho-α-D-ribose 1,2-cyclic phosphate 1,2-diphosphophosphohydrolase
Comments: The enzyme, characterized from the bacterium Eggerthella lenta, is involed in degradation of methylphosphonate.
References:
1.  Ghodge, S.V., Cummings, J.A., Williams, H.J. and Raushel, F.M. Discovery of a cyclic phosphodiesterase that catalyzes the sequential hydrolysis of both ester bonds to phosphorus. J. Am. Chem. Soc. 135 (2013) 16360–16363. [PMID: 24147537]
[EC 3.1.4.57 created 2014]
 
 
EC 3.1.4.58     
Accepted name: RNA 2′,3′-cyclic 3′-phosphodiesterase
Reaction: (ribonucleotide)n-2′,3′-cyclic phosphate + H2O = (ribonucleotide)n-2′-phosphate
Other name(s): thpR (gene name); ligT (gene name)
Systematic name: (ribonucleotide)n-2′,3′-cyclic phosphate 3′-nucleotidohydrolase
Comments: The enzyme hydrolyses RNA 2′,3′-cyclic phosphodiester to an RNA 2′-phosphomonoester. In vitro the enzyme can also ligate tRNA molecules with 2′,3′-cyclic phosphate to tRNA with 5′-hydroxyl termini, forming a 2′-5′ phosphodiester linkage. However, the ligase activity is unlikely to be relevant in vivo.
References:
1.  Kanai, A., Sato, A., Fukuda, Y., Okada, K., Matsuda, T., Sakamoto, T., Muto, Y., Yokoyama, S., Kawai, G. and Tomita, M. Characterization of a heat-stable enzyme possessing GTP-dependent RNA ligase activity from a hyperthermophilic archaeon, Pyrococcus furiosus. RNA 15 (2009) 420–431. [PMID: 19155324]
2.  Remus, B.S., Jacewicz, A. and Shuman, S. Structure and mechanism of E. coli RNA 2′,3′-cyclic phosphodiesterase. RNA 20 (2014) 1697–1705. [PMID: 25239919]
[EC 3.1.4.58 created 2017]
 
 
EC 3.1.4.59     
Accepted name: cyclic-di-AMP phosphodiesterase
Reaction: cyclic di-3′,5′-adenylate + H2O = 5′-O-phosphonoadenylyl-(3′→5′)-adenosine
Glossary: cyclic di-3′,5′-adenylate = cyclic bis(3′→5′)diadenylate
5′-O-phosphonoadenylyl-(3′→5′)-adenosine = pApA
Other name(s): gdpP (gene name)
Systematic name: cyclic bis(3′→5′)diadenylate 3′-adenylylhydrolase
Comments: The enzyme, described from Gram-positive bacteria, degrades the second messenger cyclic di-3′,5′-adenylate. It is a membrane-bound protein that contains a cytoplasmic facing Per-Arnt-Sim (PAS) domain, a modified GGDEF domain, and a DHH/DHHA1 domain, which confers the phosphodiesterase activity. Activity requires Mn2+ and is inhibited by pApA.
References:
1.  Rao, F., See, R.Y., Zhang, D., Toh, D.C., Ji, Q. and Liang, Z.X. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem. 285 (2010) 473–482. [PMID: 19901023]
2.  Corrigan, R.M., Abbott, J.C., Burhenne, H., Kaever, V. and Grundling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7:e1002217 (2011). [PMID: 21909268]
3.  Griffiths, J.M. and O'Neill, A.J. Loss of function of the gdpP protein leads to joint β-lactam/glycopeptide tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 56 (2012) 579–581. [PMID: 21986827]
4.  Bowman, L., Zeden, M.S., Schuster, C.F., Kaever, V. and Grundling, A. New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the requirement of the cyclic dinucleotide for acid stress resistance in Staphylococcus aureus. J. Biol. Chem. 291 (2016) 26970–26986. [PMID: 27834680]
[EC 3.1.4.59 created 2019]
 
 
EC 3.1.4.60     
Accepted name: pApA phosphodiesterase
Reaction: 5′-O-phosphonoadenylyl-(3′→5′)-adenosine + H2O = 2 AMP
Other name(s): pde2 (gene name); pApA hydrolase
Systematic name: 5′-O-phosphonoadenylyl-(3′→5′)-adenosine phosphohydrolase
Comments: The enzyme, characterized from the Gram-positive bacterium Staphylococcus aureus, is a cytoplasmic protein that contains a DHH/DHHA1 domain. It can act on cyclic di-3′,5′-adenylate with a much lower activity (cf. EC 3.1.4.59, cyclic-di-AMP phosphodiesterase). Activity requires Mn2+ and is inhibited by ppGpp.
References:
1.  Bai, Y., Yang, J., Eisele, L.E., Underwood, A.J., Koestler, B.J., Waters, C.M., Metzger, D.W. and Bai, G. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J. Bacteriol. 195 (2013) 5123–5132. [PMID: 24013631]
2.  Ye, M., Zhang, J.J., Fang, X., Lawlis, G.B., Troxell, B., Zhou, Y., Gomelsky, M., Lou, Y. and Yang, X.F. DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi, is essential for cell growth and virulence. Infect. Immun. 82 (2014) 1840–1849. [PMID: 24566626]
3.  Tang, Q., Luo, Y., Zheng, C., Yin, K., Ali, M.K., Li, X. and He, J. Functional analysis of a c-di-AMP-specific phosphodiesterase MsPDE from Mycobacterium smegmatis. Int J Biol Sci 11 (2015) 813–824. [PMID: 26078723]
4.  Kuipers, K., Gallay, C., Martinek, V., Rohde, M., Martinkova, M., van der Beek, S.L., Jong, W.S., Venselaar, H., Zomer, A., Bootsma, H., Veening, J.W. and de Jonge, M.I. Highly conserved nucleotide phosphatase essential for membrane lipid homeostasis in Streptococcus pneumoniae. Mol. Microbiol. 101 (2016) 12–26. [PMID: 26691161]
5.  Bowman, L., Zeden, M.S., Schuster, C.F., Kaever, V. and Grundling, A. New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the requirement of the cyclic dinucleotide for acid stress resistance in Staphylococcus aureus. J. Biol. Chem. 291 (2016) 26970–26986. [PMID: 27834680]
[EC 3.1.4.60 created 2019]
 
 
EC 3.1.4.61     
Accepted name: cyclic 2,3-diphosphoglycerate hydrolase
Reaction: cyclic 2,3-bisphosphoglycerate + H2O = 2,3-diphosphoglycerate
Systematic name: cyclic 2,3-diphosphoglycerate phosphohydrolyase
Comments: The enzyme degrades cyclic 2,3-bisphosphoglycerate, a thermoprotectant that is produced by certain archaeal genera. Two different enzymes that catalyse this activity, one soluble and one membrane-bound, have been characterized from the archaeon Methanothermobacter thermautotrophicus.
References:
1.  Sastry, M.V., Robertson, D.E., Moynihan, J.A. and Roberts, M.F. Enzymatic degradation of cyclic 2,3-diphosphoglycerate to 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Biochemistry 31 (1992) 2926–2935. [PMID: 1550819]
2.  Alebeek G, J.WM., Kreuwels, M.JJ., Keltjens, J.T. and Vogels, G.D. Methanobacterium thermoautotrophicum (strain ΔH) contains a membrane-bound cyclic 2,3-diphosphoglycerate hydrolase. Arch. Microbiol. 161 (1994) 514–520.
[EC 3.1.4.61 created 2021]
 
 
EC 3.1.5.1     
Accepted name: dGTPase
Reaction: dGTP + H2O = deoxyguanosine + triphosphate
Other name(s): deoxy-GTPase; deoxyguanosine 5-triphosphate triphosphohydrolase; deoxyguanosine triphosphatase; deoxyguanosine triphosphate triphosphohydrolase
Systematic name: dGTP triphosphohydrolase
Comments: Also acts on GTP.
References:
1.  Kornberg, S.R., Lehman, I.R., Bessman, M.J., Simms, E.S. and Kornberg, A. Enzymatic cleavage of deoxyguanosine triphosphate to deoxyguanosine and tripolyphosphate. J. Biol. Chem. 233 (1958) 159–162. [PMID: 13563461]
[EC 3.1.5.1 created 1961]
 
 
EC 3.1.6.1     
Accepted name: arylsulfatase (type I)
Reaction: an aryl sulfate + H2O = a phenol + sulfate
Other name(s): sulfatase; nitrocatechol sulfatase; phenolsulfatase; phenylsulfatase; p-nitrophenyl sulfatase; arylsulfohydrolase; 4-methylumbelliferyl sulfatase; estrogen sulfatase; type I sulfatase; arylsulfatase
Systematic name: aryl-sulfate sulfohydrolase
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. Arylsulfatases are type I enzymes, found in both prokaryotes and eukaryotes, with rather similar specificities. The key catalytic residue 3-oxo-L-alanine initiates the reaction through a nucleophilic attack on the sulfur atom in the substrate. This residue is generated by posttranslational modification of a conserved cysteine or serine residue by EC 1.8.3.7, formylglycine-generating enzyme, EC 1.1.98.7, serine-type anaerobic sulfatase-maturating enzyme, or EC 1.8.98.7, cysteine-type anaerobic sulfatase-maturating enzyme.
References:
1.  Dodgson, K.S., Spencer, B. and Williams, K. Studies on sulphatases. 13. The hydrolysis of substituted phenyl sulphates by the arylsulphatase of Alcaligenes metacaligenes. Biochem. J. 64 (1956) 216–221. [PMID: 13363831]
2.  Webb, E.C. and Morrow, P.F.W. The activation of an arysulphatase from ox liver by chloride and other anions. Biochem. J. 73 (1959) 7–15. [PMID: 13843260]
3.  Roy, A.B. The synthesis and hydrolysis of sulfate esters. Adv. Enzymol. Relat. Subj. Biochem. 22 (1960) 205–235. [PMID: 13744184]
4.  Roy, A.B. Sulphatases, lysosomes and disease. Aust. J. Exp. Biol. Med. Sci. 54 (1976) 111–135. [PMID: 13772]
5.  Schmidt, B., Selmer, T., Ingendoh, A. and von Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82 (1995) 271–278. [PMID: 7628016]
6.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [PMID: 9748219]
[EC 3.1.6.1 created 1961, modified 2011, modified 2021]
 
 
EC 3.1.6.2     
Accepted name: steryl-sulfatase
Reaction: 3β-hydroxyandrost-5-en-17-one 3-sulfate + H2O = 3β-hydroxyandrost-5-en-17-one + sulfate
Other name(s): arylsulfatase; steroid sulfatase; sterol sulfatase; dehydroepiandrosterone sulfate sulfatase; arylsulfatase C; steroid 3-sulfatase; steroid sulfate sulfohydrolase; dehydroepiandrosterone sulfatase; pregnenolone sulfatase; phenolic steroid sulfatase; 3-β-hydroxysteroid sulfate sulfatase
Systematic name: steryl-sulfate sulfohydrolase
Comments: Also acts on some related steryl sulfates.
References:
1.  Roy, A.B. The steroid sulphatase of Patella vlugata. Biochim. Biophys. Acta 15 (1954) 300–301. [PMID: 13208702]
2.  Roy, A.B. The synthesis and hydrolysis of sulfate esters. Adv. Enzymol. Relat. Subj. Biochem. 22 (1960) 205–235. [PMID: 13744184]
3.  Stitch, S.R., Halkerston, I.D.K. and Hillman, J. The enzymic hydrolysis of steroid conjugates. 1. Sulphatase and β-glucuronidase activity of molluscan extracts. Biochem. J. 63 (1965) 705–710. [PMID: 13355874]
[EC 3.1.6.2 created 1961]
 
 
EC 3.1.6.3     
Accepted name: glycosulfatase
Reaction: D-glucose 6-sulfate + H2O = D-glucose + sulfate
Other name(s): glucosulfatase
Systematic name: sugar-sulfate sulfohydrolase
Comments: Also acts on other sulfates of monosaccharides and disaccharides and on adenosine 5′-sulfate.
References:
1.  Dodgson, K.S. Glycosulphatase: observations on the activity of partially purified preparations towards the sulphate esters of certain monosaccharides and steroids. Biochem. J. 78 (1961) 324–333. [PMID: 16748876]
2.  Egami, F. and Takahaski, N. Syntheses of adenosinesulfuric acids. Bull. Chem. Soc. Jpn. 28 (1955) 666–668.
3.  Roy, A.B. The synthesis and hydrolysis of sulfate esters. Adv. Enzymol. Relat. Subj. Biochem. 22 (1960) 205–235. [PMID: 13744184]
[EC 3.1.6.3 created 1961]
 
 
EC 3.1.6.4     
Accepted name: N-acetylgalactosamine-6-sulfatase
Reaction: Hydrolysis of the 6-sulfate groups of the N-acetyl-D-galactosamine 6-sulfate units of chondroitin sulfate and of the D-galactose 6-sulfate units of keratan sulfate
Other name(s): chondroitin sulfatase; chondroitinase; galactose-6-sulfate sulfatase; acetylgalactosamine 6-sulfatase; N-acetylgalactosamine-6-sulfate sulfatase; N-acetylgalactosamine 6-sulfatase
Systematic name: N-acetyl-D-galactosamine-6-sulfate 6-sulfohydrolase
References:
1.  Epstein, E.H. and Leventhal, M.E. Steroid sulfatase of human leukocytes and epidermis and the diagnosis of recessive X-linked ichthyosis. J. Clin. Invest. 67 (1981) 1257–1262. [PMID: 6939689]
2.  Glössl, J. and Kresse, H. Impaired degradation of keratan sulphate by Morquio A fibroblasts. Biochem. J. 203 (1982) 335–338. [PMID: 6213226]
3.  Lim, C.T. and Horwitz, A.L. Purification and properties of human N-acetylgalactosamine-6-sulfate sulfatase. Biochim. Biophys. Acta 657 (1981) 344–355. [PMID: 7213753]
4.  Sørensen, S.H., Norén, O., Sjöström, H. and Danielsen, E.M. Amphiphilic pig intestinal microvillus maltase/glucoamylase. Structure and specificity. Eur. J. Biochem. 126 (1982) 559–568. [PMID: 6814909]
5.  Yutaka, T., Okada, S., Kato, T., Inui, K. and Yabuchi, H. Galactose 6-sulfate sulfatase activity in Morquio syndrome. Clin. Chim. Acta 122 (1982) 169–180. [PMID: 6809361]
[EC 3.1.6.4 created 1961]
 
 
EC 3.1.6.5      
Deleted entry:  sinigrin sulfohydrolase; myrosulfatase
[EC 3.1.6.5 created 1961, deleted 1964]
 
 
EC 3.1.6.6     
Accepted name: choline-sulfatase
Reaction: choline sulfate + H2O = choline + sulfate
Systematic name: choline-sulfate sulfohydrolase
References:
1.  Takebe, I. Isolation and characterization of a new enzyme choline sulfatase. J. Biochem. (Tokyo) 50 (1961) 245–255. [PMID: 13919191]
[EC 3.1.6.6 created 1965]
 
 
EC 3.1.6.7     
Accepted name: cellulose-polysulfatase
Reaction: Hydrolysis of the 2- and 3-sulfate groups of the polysulfates of cellulose and charonin
Systematic name: cellulose-sulfate sulfohydrolase
References:
1.  Takahashi, N. and Egami, F. Hydrolysis of polysaccharide sulphate esters by a sulphatase preparation from Charonia lampas. Biochem. J. 80 (1961) 384–386. [PMID: 13774882]
[EC 3.1.6.7 created 1965]
 
 
EC 3.1.6.8     
Accepted name: cerebroside-sulfatase
Reaction: a cerebroside 3-sulfate + H2O = a cerebroside + sulfate
Other name(s): arylsulfatase A; cerebroside sulfate sulfatase
Systematic name: cerebroside-3-sulfate 3-sulfohydrolase
Comments: Hydrolyses galactose-3-sulfate residues in a number of lipids. Also hydrolyses ascorbate 2-sulfate and many phenol sulfates.
References:
1.  Mehl, E. and Jatzkewitz, H. A cerebrosidesulfatase from swine kidney. Hoppe-Seyler's Z. Physiol. Chem. 339 (1964) 260–276. [PMID: 5829234]
2.  Roy, A.B. Sulphatases, lysosomes and disease. Aust. J. Exp. Biol. Med. Sci. 54 (1976) 111–135. [PMID: 13772]
[EC 3.1.6.8 created 1972]
 
 
EC 3.1.6.9     
Accepted name: chondro-4-sulfatase
Reaction: 4-deoxy-β-D-gluc-4-enuronosyl-(1→3)-N-acetyl-D-galactosamine 4-sulfate + H2O = 4-deoxy-β-D-gluc-4-enuronosyl-(1→3)-N-acetyl-D-galactosamine + sulfate
Other name(s): chondroitin-4-sulfatase; 4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine-4-sulfate 4-sulfohydrolase
Systematic name: 4-deoxy-β-D-gluc-4-enuronosyl-(1→3)-N-acetyl-D-galactosamine-4-sulfate 4-sulfohydrolase
Comments: Also acts on the saturated analogue but not on higher oligosaccharides, nor any 6-sulfates.
References:
1.  Held, V.E. and Buddecke, E. Nachweis, Reinigung und Eigenschaften einer Chondroitin-4-Sulfatase aus der Aorta des Rindes. Hoppe-Seyler's Z. Physiol. Chem. 348 (1967) 1047–1060. [PMID: 5595107]
2.  Roy, A.B. Sulphatases, lysosomes and disease. Aust. J. Exp. Biol. Med. Sci. 54 (1976) 111–135. [PMID: 13772]
3.  Yamagata, T., Saito, H., Habuchi, O. and Suzuki, S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243 (1968) 1523–1535. [PMID: 5647268]
[EC 3.1.6.9 created 1972]
 
 
EC 3.1.6.10     
Accepted name: chondro-6-sulfatase
Reaction: 4-deoxy-β-D-gluc-4-enuronosyl-(1→3)-N-acetyl-D-galactosamine 6-sulfate + H2O = 4-deoxy-β-D-gluc-4-enuronosyl-(1→3)-N-acetyl-D-galactosamine + sulfate
Other name(s): 4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine-6-sulfate 6-sulfohydrolase
Systematic name: 4-deoxy-β-D-gluc-4-enuronosyl-(1→3)-N-acetyl-D-galactosamine-6-sulfate 6-sulfohydrolase
Comments: Also acts on the saturated analogue and N-acetyl-D-galactosamine 4,6-disulfate, but not higher oligosaccharides, nor any 4-sulfate
References:
1.  Yamagata, T., Saito, H., Habuchi, O. and Suzuki, S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243 (1968) 1523–1535. [PMID: 5647268]
[EC 3.1.6.10 created 1972]
 
 
EC 3.1.6.11     
Accepted name: disulfoglucosamine-6-sulfatase
Reaction: 2-N,6-O-disulfo-D-glucosamine + H2O = 2-N-sulfo-D-glucosamine + sulfate
Other name(s): N-sulfoglucosamine-6-sulfatase; 6,N-disulfoglucosamine 6-O-sulfohydrolase; N,6-O-disulfo-D-glucosamine 6-sulfohydrolase
Systematic name: 2-N,6-O-disulfo-D-glucosamine 6-sulfohydrolase
Comments: May be identical with EC 3.1.6.14 N-acetylglucosamine-6-sulfatase.
References:
1.  Dietrich, C.P. Enzymic degradation of heparin. A sulphamidase and a sulphoesterase from Flavobacterium heparinum. Biochem. J. 111 (1969) 91–95. [PMID: 5775690]
[EC 3.1.6.11 created 1972, modified 1989]
 
 
EC 3.1.6.12     
Accepted name: N-acetylgalactosamine-4-sulfatase
Reaction: Hydrolysis of the 4-sulfate groups of the N-acetyl-D-galactosamine 4-sulfate units of chondroitin sulfate and dermatan sulfate
Other name(s): chondroitinsulfatase; chondroitinase; arylsulfatase B; acetylgalactosamine 4-sulfatase; N-acetylgalactosamine 4-sulfate sulfohydrolase
Systematic name: N-acetyl-D-galactosamine-4-sulfate 4-sulfohydrolase
Comments: Acts also on N-acetylglucosamine 4-sulfate.
References:
1.  Farooqui, A.A. The desulphation of hexosamine sulphates by arylsulphatase B. Experientia 32 (1976) 1242–1244. [PMID: 976430]
2.  Gorham, S.D. and Cantz, M. Arylsulphatase B, an exo-sulphatase for chondroitin 4-sulphate tetrasaccharide. Hoppe-Seyler's Z. Physiol. Chem. 359 (1978) 1811–1814. [PMID: 738706]
3.  Tsuji, M., Nakanishi, Y., Habuchi, H., Ishihara, K. and Suzuki, S. The common identity of UDP-N-acetylgalactosamine 4-sulfatase, nitrocatechol sulfatase (arylsulfatase), and chondroitin 4-sulfatase. Biochim. Biophys. Acta 612 (1980) 373–383. [PMID: 7370276]
[EC 3.1.6.12 created 1984]
 
 
EC 3.1.6.13     
Accepted name: iduronate-2-sulfatase
Reaction: Hydrolysis of the 2-sulfate groups of the L-iduronate 2-sulfate units of dermatan sulfate, heparan sulfate and heparin
Other name(s): chondroitinsulfatase; idurono-2-sulfatase; iduronide-2-sulfate sulfatase; L-iduronosulfatase; L-idurono sulfate sulfatase; iduronate sulfatase; sulfo-L-iduronate sulfatase; L-iduronate 2-sulfate sulfatase; sulfoiduronate sulfohydrolase; 2-sulfo-L-iduronate 2-sulfatase; iduronate-2-sulfate sulfatase; iduronate sulfate sulfatase
Systematic name: L-iduronate-2-sulfate 2-sulfohydrolase
References:
1.  Archer, I.M., Harper, P.S. and Wusteman, F.S. Multiple forms of iduronate 2-sulphate sulphatase in human tissues and body fluids. Biochim. Biophys. Acta 708 (1982) 134–140. [PMID: 6816283]
2.  Bach, J., Eisenberg, F., Cantz, M. and Neufeld, E.C. The defect in the Hunter syndrome: deficiency of sulfoiduronate sulfatase. Proc. Natl. Acad. Sci. USA 70 (1973) 2134–2138. [PMID: 4269173]
3.  DiNatale, P. and Ronsivalle, L. Identification and partial characterization of two enzyme forms of iduronate sulfatase from human placenta. Biochim. Biophys. Acta 661 (1981) 106–111. [PMID: 6945876]
4.  Yutaka, T., Fluharty, A.L., Stevens, R.L. and Kihara, H. Purification and some properties of human liver iduronate sulfatase. J. Biochem. (Tokyo) 91 (1982) 433–441. [PMID: 6950934]
[EC 3.1.6.13 created 1984]
 
 
EC 3.1.6.14     
Accepted name: N-acetylglucosamine-6-sulfatase
Reaction: Hydrolysis of the 6-sulfate groups of the N-acetyl-D-glucosamine 6-sulfate units of heparan sulfate and keratan sulfate
Other name(s): chondroitinsulfatase; O,N-disulfate O-sulfohydrolase; acetylglucosamine 6-sulfatase; N-acetylglucosamine 6-sulfate sulfatase; acetylglucosamine 6-sulfatase; 2-acetamido-2-deoxy-D-glucose 6-sulfate sulfatase
Systematic name: N-acetyl-D-glucosamine-6-sulfate 6-sulfohydrolase
Comments: May be identical with EC 3.1.6.11 disulfoglucosamine-6-sulfatase.
References:
1.  Basner, R., Kresse, H. and von Figura, K. N-Acetylglucosamine-6-sulfate sulfatase from human urine. J. Biol. Chem. 254 (1979) 1151–1158. [PMID: 762121]
2.  Kresse, H., Fuchs, W., Glössl, J., Holtfrerich, D. and Gilberg, W. Liberation of N-acetylglucosamine-6-sulfate by human β-N-acetylhexosaminidase A. J. Biol. Chem. 256 (1981) 12926–12932. [PMID: 6458607]
3.  Weissmann, B., Chao, H. and Chow, P. A glucosamine O,N-disulfate O-sulfohydrolase with a probable role in mammalian catabolism of heparan sulfate. Biochem. Biophys. Res. Commun. 97 (1980) 827–833. [PMID: 6451222]
[EC 3.1.6.14 created 1984]
 
 
EC 3.1.6.15     
Accepted name: N-sulfoglucosamine-3-sulfatase
Reaction: Hydrolysis of the 3-sulfate groups of the N-sulfo-D-glucosamine 3-O-sulfate units of heparin
Other name(s): chondroitinsulfatase
Systematic name: N-sulfo-3-sulfoglucosamine 3-sulfohydrolase
Comments: The enzyme from Flavobacterium heparinum also hydrolyses N-acetyl-D-glucosamine 3-O-sulfate; the mammalian enzyme acts only on the disulfated residue.
References:
1.  Bruce, J.S., McLean, M.W., Long, W.F. and Williamson, F.B. Flavobacterium heparinum 3-O-sulphatase for N-substituted glucosamine 3-O-sulphate. Eur. J. Biochem. 148 (1985) 359–365. [PMID: 3987694]
2.  Leder, I.G. A novel 3-O sulfatase from human urine acting on methyl-2-deoxy-2-sulfamino-α-D-glucopyranoside 3-sulfate. Biochem. Biophys. Res. Commun. 94 (1980) 1183–1189. [PMID: 7396957]
[EC 3.1.6.15 created 1984, modified 1989]
 
 
EC 3.1.6.16     
Accepted name: monomethyl-sulfatase
Reaction: monomethyl sulfate + H2O = methanol + sulfate
Systematic name: monomethyl-sulfate sulfohydrolase
Comments: Highly specific; does not act on monoethyl sulfate, monoisopropyl sulfate or monododecyl sulfate.
References:
1.  Ghisalba, O. and Küenzi, M. Biodegradation and utilization of monomethyl sulfate by specialized methylotrophs. Experientia 39 (1983) 1257–1263. [PMID: 6641899]
[EC 3.1.6.16 created 1989]
 
 
EC 3.1.6.17     
Accepted name: D-lactate-2-sulfatase
Reaction: (R)-2-O-sulfolactate + H2O = (R)-lactate + sulfate
Other name(s): (S)-2-O-sulfolactate 2-sulfohydrolase (incorrect stereochemistry)
Systematic name: (R)-2-O-sulfolactate 2-sulfohydrolase
Comments: Highly specific.
References:
1.  Crescenzi, A.M.V., Dodgson, K.S. and White, G.F. Purification and some properties of the D-lactate-2-sulphatase of Pseudomonas syringae GG. Biochem. J. 223 (1984) 487–494. [PMID: 6497859]
[EC 3.1.6.17 created 1989]
 
 
EC 3.1.6.18     
Accepted name: glucuronate-2-sulfatase
Reaction: Hydrolysis of the 2-sulfate groups of the 2-O-sulfo-D-glucuronate residues of chondroitin sulfate, heparin and heparitin sulfate
Other name(s): glucurono-2-sulfatase
Systematic name: polysaccharide-2-O-sulfo-D-glucuronate 2-sulfohydrolase
Comments: Does not act on iduronate 2-sulfate residues (cf. EC 3.1.6.13 iduronate-2-sulfatase)
References:
1.  Shaklee, P.N., Glaser, J.H. and Conrad, H.E. A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. J. Biol. Chem. 260 (1985) 9146–9149. [PMID: 4019466]
[EC 3.1.6.18 created 1989]
 
 
EC 3.1.6.19     
Accepted name: (R)-specific secondary-alkylsulfatase (type III)
Reaction: an (R)-secondary-alkyl sulfate + H2O = an (S)-secondary-alcohol + sulfate
Other name(s): S3 secondary alkylsulphohydrolase; Pisa1; secondary alkylsulphohydrolase; (R)-specific sec-alkylsulfatase; sec-alkylsulfatase; (R)-specific secondary-alkylsulfatase; type III (R)-specific secondary-alkylsulfatase
Systematic name: (R)-secondary-alkyl sulfate sulfohydrolase [(S)-secondary-alcohol-forming]
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. This enzyme belongs to the type III sulfatase family. The enzyme from the bacterium Rhodococcus ruber prefers linear secondary-alkyl sulfate esters, particularly octan-2-yl, octan-3-yl, and octan-4-yl sulfates [1]. The enzyme from the bacterium Pseudomonas sp. DSM6611 utilizes a range of secondary-alkyl sulfate esters bearing aromatic, olefinic and acetylenic moieties. Hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom, resulting in perfect enantioselectivity. cf. EC 3.1.6.1, arylsulfatase (type I), and EC 1.14.11.77, alkyl sulfatase (type II).
References:
1.  Pogorevc, M. and Faber, K. Purification and characterization of an inverting stereo- and enantioselective sec-alkylsulfatase from the gram-positive bacterium Rhodococcus ruber DSM 44541. Appl. Environ. Microbiol. 69 (2003) 2810–2815. [PMID: 12732552]
2.  Wallner, S.R., Nestl, B.M. and Faber, K. Highly enantioselective sec-alkyl sulfatase activity of Sulfolobus acidocaldarius DSM 639. Org. Lett. 6 (2004) 5009–5010. [PMID: 15606122]
3.  Knaus, T., Schober, M., Kepplinger, B., Faccinelli, M., Pitzer, J., Faber, K., Macheroux, P. and Wagner, U. Structure and mechanism of an inverting alkylsulfatase from Pseudomonas sp. DSM6611 specific for secondary alkyl sulfates. FEBS J. 279 (2012) 4374–4384. [PMID: 23061549]
4.  Schober, M., Knaus, T., Toesch, M., Macheroux, P., Wagner, U. and Faber, K. The substrate spectrum of the inverting sec-alkylsulfatase Pisa1. Adv. Synth. Catal. 354 (2012) 1737–1742.
[EC 3.1.6.19 created 2013, modified 2021]
 
 
EC 3.1.6.20     
Accepted name: S-sulfosulfanyl-L-cysteine sulfohydrolase
Reaction: (1) [SoxY protein]-S-sulfosulfanyl-L-cysteine + H2O = [SoxY protein]-S-sulfanyl-L-cysteine + sulfate
(2) [SoxY protein]-S-(2-sulfodisulfanyl)-L-cysteine + H2O = [SoxY protein]-S-disulfanyl-L-cysteine + sulfate
Other name(s): SoxB
Systematic name: [SoxY protein]-S-sulfosulfanyl-L-cysteine sulfohydrolase
Comments: Contains Mn2+. The enzyme is part of the Sox enzyme system, which participates in a bacterial thiosulfate oxidation pathway that produces sulfate. It catalyses two reactions in the pathway. In both cases the enzyme hydrolyses a sulfonate moiety that is bound (either directly or via a sulfane) to a cysteine residue of a SoxY protein, releasing sulfate. The enzyme from Paracoccus pantotrophus contains a pyroglutamate (cycloglutamate) at its N-terminus.
References:
1.  Quentmeier, A. and Friedrich, C.G. The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett. 503 (2001) 168–172. [PMID: 11513876]
2.  Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier, A. and Fischer, J. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism. Appl. Environ. Microbiol. 67 (2001) 2873–2882. [PMID: 11425697]
3.  Quentmeier, A., Hellwig, P., Bardischewsky, F., Grelle, G., Kraft, R. and Friedrich, C.G. Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem. Biophys. Res. Commun. 312 (2003) 1011–1018. [PMID: 14651972]
4.  Epel, B., Schafer, K.O., Quentmeier, A., Friedrich, C. and Lubitz, W. Multifrequency EPR analysis of the dimanganese cluster of the putative sulfate thiohydrolase SoxB of Paracoccus pantotrophus. J. Biol. Inorg. Chem. 10 (2005) 636–642. [PMID: 16133204]
5.  Hensen, D., Sperling, D., Truper, H.G., Brune, D.C. and Dahl, C. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol. Microbiol. 62 (2006) 794–810. [PMID: 16995898]
6.  Grabarczyk, D.B. and Berks, B.C. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ. PLoS One 12:e0173395 (2017). [PMID: 28257465]
[EC 3.1.6.20 created 2018]
 
 
EC 3.1.6.21     
Accepted name: linear primary-alkylsulfatase
Reaction: a primary alkyl sulfate ester + H2O = an alcohol + sulfate
Other name(s): sdsA1 (gene name); yjcS (gene name); type III linear primary-alkylsulfatase
Systematic name: primary alkyl sulfate ester sulfohydrolase
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. This enzyme belongs to the type III sulfatase family. The enzyme is active against linear primary-alkyl sulfate esters, such as dodecyl sulfate, decyl sulfate, octyl sulfate, and hexyl sulfate. It The enzyme from Pseudomonas aeruginosa is secreted out of the cell. The catalytic mechanism begins with activation of a water molecule by the binuclear Zn2+ cluster, resulting in a nucleophilic attack on the carbon atom. cf. EC 3.1.6.22, branched primary-alkylsulfatase, and EC 3.1.6.19, (R)-specific secondary-alkylsulfatase.
References:
1.  Hagelueken, G., Adams, T.M., Wiehlmann, L., Widow, U., Kolmar, H., Tummler, B., Heinz, D.W. and Schubert, W.D. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc. Natl. Acad. Sci. USA 103 (2006) 7631–7636. [PMID: 16684886]
2.  Long, M., Ruan, L., Li, F., Yu, Z. and Xu, X. Heterologous expression and characterization of a recombinant thermostable alkylsulfatase (sdsAP). Extremophiles 15 (2011) 293–301. [PMID: 21318560]
3.  Liang, Y., Gao, Z., Dong, Y. and Liu, Q. Structural and functional analysis show that the Escherichia coli uncharacterized protein YjcS is likely an alkylsulfatase. Protein Sci. 23 (2014) 1442–1450. [PMID: 25066955]
4.  Sun, L., Chen, P., Su, Y., Cai, Z., Ruan, L., Xu, X. and Wu, Y. Crystal structure of thermostable alkylsulfatase SdsAP from Pseudomonas sp. S9. Biosci Rep 37 (2017) . [PMID: 28442601]
[EC 3.1.6.21 created 2021]
 
 
EC 3.1.6.22     
Accepted name: branched primary-alkylsulfatase
Reaction: 2-butyloctyl sulfate + H2O = 2-butyloctan-1-ol + sulfate
Other name(s): DP1 (gene name); type III branched primary-alkylsulfatase
Systematic name: branched primary-alkyl sulfate ester sulfohydrolase
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. This enzyme belongs to the type III family. The enzyme, characterized from a Pseudomonas strain, is specific for branched primary-alkyl sulfate esters and does not act on linear substrates such as dodecyl sulfate. cf. EC 3.1.6.1, arylsulfatase (type I), EC 1.14.11.77, alkyl sulfatase, EC 3.1.6.19, (R)-specific secondary-alkylsulfatase (type III) and EC 3.1.6.21, linear primary-alkylsulfatase.
References:
1.  Ellis, A.J., Hales, S.G., Ur-Rehman, N.G. and White, G.F. Novel alkylsulfatases required for biodegradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate. Appl. Environ. Microbiol. 68 (2002) 31–36. [PMID: 11772605]
2.  Toesch, M., Schober, M. and Faber, K. Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Appl. Microbiol. Biotechnol. 98 (2014) 1485–1496. [PMID: 24352732]
[EC 3.1.6.22 created 2021]
 
 
EC 3.1.7.1     
Accepted name: prenyl-diphosphatase
Reaction: prenyl diphosphate + H2O = prenol + diphosphate
Other name(s): prenyl-pyrophosphatase; prenol pyrophosphatase; prenylphosphatase
Systematic name: prenyl-diphosphate diphosphohydrolase
Comments: Farnesyl diphosphate is the best substrate tested to date.
References:
1.  Tsai, S.-C. and Gaylor, J.L. Testicular sterols. V. Preparation and partial purification of a microsomal prenol pyrophosphate pyrophosphohydrolase. J. Biol. Chem. 241 (1966) 4043–4050. [PMID: 4288361]
[EC 3.1.7.1 created 1972]
 
 
EC 3.1.7.2     
Accepted name: guanosine-3′,5′-bis(diphosphate) 3′-diphosphatase
Reaction: guanosine 3′,5′-bis(diphosphate) + H2O = GDP + diphosphate
Glossary: GDP = guanosine 5′-diphosphate
Other name(s): guanosine-3′,5′-bis(diphosphate) 3′-pyrophosphatase; PpGpp-3′-pyrophosphohydrolase; PpGpp phosphohydrolase
Systematic name: guanosine-3′,5′-bis(diphosphate) 3′-diphosphohydrolase
References:
1.  Heinemeyer, E.-A. and Richter, D. Characterization of the guanosine 5′-triphosphate 3′-diphosphate and guanosine 5′-diphosphate 3′-diphosphate degradation reaction catalyzed by a specific pyrophosphorylase from Escherichia coli. Biochemistry 17 (1978) 5368–5372. [PMID: 365225]
2.  Richter, D., Fehr, S. and Harder, R. The guanosine 3′,5′-bis(diphosphate) (ppGpp) cycle. Comparison of synthesis and degradation of guanosine 3′,5′-bis(diphosphate) in various bacterial systems. Eur. J. Biochem. 99 (1979) 57–64. [PMID: 114395]
[EC 3.1.7.2 created 1980]
 
 
EC 3.1.7.3     
Accepted name: monoterpenyl-diphosphatase
Reaction: a monoterpenyl diphosphate + H2O = a monoterpenol + diphosphate
Other name(s): bornyl pyrophosphate hydrolase; monoterpenyl-pyrophosphatase
Systematic name: monoterpenyl-diphosphate diphosphohydrolase
Comments: A group of enzymes with varying specificity for the monoterpenol moiety. One has the highest activity on sterically hindered compounds such as (+)-bornyl diphosphate; another has highest activity on the diphosphates of primary allylic alcohols such as geraniol.
References:
1.  Croteau, R. and Karp, F. Biosynthesis of monoterpenes: hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Arch. Biochem. Biophys. 198 (1979) 523–532. [PMID: 42357]
[EC 3.1.7.3 created 1984]
 
 
EC 3.1.7.4      
Deleted entry: Now recognized as two enzymes EC 4.2.1.133, copal-8-ol diphosphate synthase and EC 4.2.3.141 sclareol synthase
[EC 3.1.7.4 created 2008, deleted 2013]
 
 
EC 3.1.7.5     
Accepted name: geranylgeranyl diphosphate diphosphatase
Reaction: geranylgeranyl diphosphate + H2O = geranylgeraniol + diphosphate
Glossary: plaunotol = 18-hydroxygeranylgeraniol
Other name(s): geranylgeranyl diphosphate phosphatase
Systematic name: geranyl-diphosphate diphosphohydrolase
Comments: Involved in the biosynthesis of plaunotol. There are two isoenzymes with different ion requirements. Neither require Mg2+ but in addition PII is inhibited by Zn2+, Mn2+ and Co2+. It is not known which isoenzyme is involved in plaunotol biosynthesis.
References:
1.  Nualkaew, N., De-Eknamkul, W., Kutchan, T.M. and Zenk, M.H. Membrane-bound geranylgeranyl diphosphate phosphatases: purification and characterization from Croton stellatopilosus leaves. Phytochemistry 67 (2006) 1613–1620. [PMID: 16445953]
[EC 3.1.7.5 created 2009]
 
 
EC 3.1.7.6     
Accepted name: farnesyl diphosphatase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (2E,6E)-farnesol + diphosphate
Other name(s): FPP phosphatase
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphohydrolase
Comments: The enzyme is involved in the biosynthesis of acyclic sesquiterpenoids [1].
References:
1.  Song, L. A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol. Appl. Biochem. Biotechnol. 128 (2006) 149–158. [PMID: 16484724]
2.  Tsai, S.-C. and Gaylor, J.L. Testicular sterols. V. Preparation and partial purification of a microsomal prenol pyrophosphate pyrophosphohydrolase. J. Biol. Chem. 241 (1966) 4043–4050. [PMID: 4288361]
[EC 3.1.7.6 created 2010]
 
 
EC 3.1.7.7      
Transferred entry: (–)-drimenol synthase. Now EC 4.2.3.194, (–)-drimenol synthase
[EC 3.1.7.7 created 2011, deleted 2017]
 
 
EC 3.1.7.8      
Transferred entry: tuberculosinol synthase. Now known to be partial activity of EC 2.5.1.153, adenosine tuberculosinyltransferase.
[EC 3.1.7.8 created 2011, deleted 2020]
 
 
EC 3.1.7.9      
Transferred entry: isotuberculosinol synthase. Now known to be partial activity of EC 2.5.1.153, adenosine tuberculosinyltransferase.
[EC 3.1.7.9 created 2011, deleted 2020]
 
 
EC 3.1.7.10     
Accepted name: (13E)-labda-7,13-dien-15-ol synthase
Reaction: geranylgeranyl diphosphate + H2O = (13E)-labda-7,13-dien-15-ol + diphosphate
Other name(s): labda-7,13E-dien-15-ol synthase
Systematic name: geranylgeranyl-diphosphate diphosphohydrolase [(13E)-labda-7,13-dien-15-ol-forming]
Comments: The enzyme from the lycophyte Selaginella moellendorffii is bifunctional, initially forming (13E)-labda-7,13-dien-15-yl diphosphate, which is hydrolysed to the alcohol.
References:
1.  Mafu, S., Hillwig, M.L. and Peters, R.J. A novel labda-7,13E-dien-15-ol-producing bifunctional diterpene synthase from Selaginella moellendorffii. ChemBioChem 12 (2011) 1984–1987. [PMID: 21751328]
[EC 3.1.7.10 created 2012]
 
 
EC 3.1.7.11     
Accepted name: geranyl diphosphate diphosphatase
Reaction: geranyl diphosphate + H2O = geraniol + diphosphate
Other name(s): geraniol synthase; geranyl pyrophosphate pyrophosphatase; GES; CtGES
Systematic name: geranyl-diphosphate diphosphohydrolase
Comments: Isolated from Ocimum basilicum (basil) and Cinnamomum tenuipile (camphor tree). Requires Mg2+ or Mn2+. Geraniol is labelled when formed in the presence of [18O]H2O. Thus mechanism involves a geranyl cation [1]. Neryl diphosphate is hydrolysed more slowly. May be the same as EC 3.1.7.3 monoterpenyl-diphosphatase.
References:
1.  Iijima, Y., Gang, D.R., Fridman, E., Lewinsohn, E. and Pichersky, E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 134 (2004) 370–379. [PMID: 14657409]
2.  Yang, T., Li, J., Wang, H.X. and Zeng, Y. A geraniol-synthase gene from Cinnamomum tenuipilum. Phytochemistry 66 (2005) 285–293. [PMID: 15680985]
[EC 3.1.7.11 created 2012]
 
 
EC 3.1.7.12     
Accepted name: (+)-kolavelool synthase
Reaction: (+)-kolavenyl diphosphate + H2O = (+)-kolavelool + diphosphate
Glossary: (+)-kolavelool = (2ξ)-3-methyl-5-[(1R,2S,4aS,8aS)-1,2,4a,5-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl]pent-1-en-3-ol
Other name(s): Haur_2146
Systematic name: kolavenyl-diphosphate diphosphohydrolase
Comments: Isolated from the bacterium Herpetosiphon aurantiacus.
References:
1.  Nakano, C., Oshima, M., Kurashima, N. and Hoshino, T. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus. ChemBioChem 16 (2015) 772–781. [PMID: 25694050]
[EC 3.1.7.12 created 2017]
 
 
EC 3.1.8.1     
Accepted name: aryldialkylphosphatase
Reaction: an aryl dialkyl phosphate + H2O = dialkyl phosphate + an aryl alcohol
Other name(s): organophosphate hydrolase; paraoxonase; A-esterase; aryltriphosphatase; organophosphate esterase; esterase B1; esterase E4; paraoxon esterase; pirimiphos-methyloxon esterase; OPA anhydrase (ambiguous); organophosphorus hydrolase; phosphotriesterase; paraoxon hydrolase; OPH; organophosphorus acid anhydrase
Systematic name: aryltriphosphate dialkylphosphohydrolase
Comments: Acts on organophosphorus compounds (such as paraoxon) including esters of phosphonic and phosphinic acids. Inhibited by chelating agents; requires divalent cations for activity. Previously regarded as identical with EC 3.1.1.2 arylesterase.
References:
1.  Aldridge, W.N. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate and a method for their determination. Biochem. J. 53 (1953) 110–117. [PMID: 13032041]
2.  Bosmann, H.B. Membrane marker enzymes. Characterization of an arylesterase of guinea pig cerebral cortex utilizing p-nitrophenyl acetate as substrate. Biochim. Biophys. Acta 276 (1972) 180–191. [PMID: 5047702]
3.  Mackness, M.I., Thompson, H.M., Hardy, A.R. and Walker, C.H. Distinction between 'A′-esterases and arylesterases. Implications for esterase classification. Biochem. J. 245 (1987) 293–296. [PMID: 2822017]
4.  Main, A.R. The differentiation of the A-type esterases in sheep serum. Biochem. J. 75 (1960) 188–195. [PMID: 14420012]
5.  Reiner, E., Aldridge, W.N. and Hoskin, C.G. (Ed.), Enzymes Hydrolysing Organophosphorus Compounds, Ellis Horwood, Chichester, UK, 1989.
[EC 3.1.8.1 created 1989]
 
 
EC 3.1.8.2     
Accepted name: diisopropyl-fluorophosphatase
Reaction: diisopropyl fluorophosphate + H2O = diisopropyl phosphate + fluoride
Other name(s): DFPase; tabunase; somanase; organophosphorus acid anhydrolase; organophosphate acid anhydrase; OPA anhydrase (ambiguous); diisopropylphosphofluoridase; dialkylfluorophosphatase; diisopropyl phosphorofluoridate hydrolase; isopropylphosphorofluoridase; diisopropylfluorophosphonate dehalogenase
Systematic name: diisopropyl-fluorophosphate fluorohydrolase
Comments: Acts on phosphorus anhydride bonds (such as phosphorus-halide and phosphorus-cyanide) in organophosphorus compounds (including ’nerve gases’). Inhibited by chelating agents; requires divalent cations. Related to EC 3.1.8.1 aryldialkylphosphatase.
References:
1.  Augustinsson, K.-B. and Heimburger, G. Enzymatic hydrolysis of organophosphorus compounds. I. Occurrence of enzymes hydrolysing dimethyl-amido-ethoxy-phosphoryl cyanide (Tabun). Acta Chem. Scand. 8 (1954) 753–761.
2.  Augustinsson, K.-B. and Heimburger, G. Enzymatic hydrolysis of organophosphorus compounds. II. Analysis of reaction products in experiments with Tabun and some properties of blood plasma tabunase. Acta Chem. Scand. 8 (1954) 762–767.
3.  Augustinsson, K.-B. and Heimburger, G. Enzymatic hydrolysis of organophosphorus compounds. IV. Specificity studies. Acta Chem. Scand. 8 (1954) 1533–1541.
4.  Cohen, J.A. and Warringa, M.G.P.J. Purification and properties of dialkylfluorophosphatase. Biochim. Biophys. Acta 26 (1957) 29–39. [PMID: 13479457]
5.  Mounter, L.A. Enzymic hydrolysis of organophosphorus compounds. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 4, Academic Press, New York, 1960, pp. 541–550.
6.  Reiner, E., Aldridge, W.N. and Hoskin, C.G. (Ed.), Enzymes Hydrolysing Organophosphorus Compounds, Ellis Horwood, Chichester, UK, 1989.
[EC 3.1.8.2 created 1961 as EC 3.8.2.1, transferred 1992 to EC 3.1.8.2]
 
 
EC 3.1.11.1     
Accepted name: exodeoxyribonuclease I
Reaction: Exonucleolytic cleavage in the 3′- to 5′-direction to yield nucleoside 5′-phosphates
Other name(s): Escherichia coli exonuclease I; E. coli exonuclease I; exonuclease I
Comments: Preference for single-stranded DNA. The Escherichia coli enzyme hydrolyses glucosylated DNA.
References:
1.  Blakesley, R.W., Dodgson, J.B., Nes, I.F. and Wells, R.D. Duplex regions in single-stranded phiX174 DNA are cleaved by a restriction endonuclease from Haemophilus aegyptius. J. Biol. Chem. 252 (1977) 7300–7306. [PMID: 71298]
2.  Kelley, R.B., Atkinson, M.R., Huberman, J.A. and Kornberg, A. Excision of thymine dimers and other mismatched sequences by DNA polymerases of Escherichia coli. Nature 224 (1969) 495–501.
3.  Lehman, I.R. and Nussbaum, A.L. The deoxyribonucleases of Escherichia coli. V. On the specificity of exonuclease I (phosphodiesterase). J. Biol. Chem. 239 (1964) 2628–2636. [PMID: 14235546]
[EC 3.1.11.1 created 1972 as EC 3.1.4.25, transferred 1978 to EC 3.1.11.1]
 
 
EC 3.1.11.2     
Accepted name: exodeoxyribonuclease III
Reaction: Exonucleolytic cleavage in the 3′- to 5′-direction to yield nucleoside 5′-phosphates
Other name(s): Escherichia coli exonuclease III; E. coli exonuclease III; endoribonuclease III
Comments: Preference for double-stranded DNA. Has endonucleolytic activity near apurinic sites on DNA.
References:
1.  Lindahl, T., Gally, J.A. and Edelman, G.M. Properties of deoxyribonuclease 3 from mammalian tissues. J. Biol. Chem. 244 (1969) 5014–5019. [PMID: 5824576]
2.  Richardson, C.C. and Kornberg, A. A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli. I. Purification of the enzyme and characterization of the phosphatase activity. J. Biol. Chem. 239 (1964) 242–250. [PMID: 14114850]
3.  Richardson, C.C., Lehman, I.R. and Kornberg, A. A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli. II. Characterization of the exonuclease activity. J. Biol. Chem. 239 (1964) 251–258. [PMID: 14114851]
[EC 3.1.11.2 created 1972 as EC 3.1.4.27, transferred 1978 to EC 3.1.11.2]
 
 
EC 3.1.11.3     
Accepted name: exodeoxyribonuclease (lambda-induced)
Reaction: Exonucleolytic cleavage in the 5′- to 3′-direction to yield nucleoside 5′-phosphates
Other name(s): lambda exonuclease; phage lambda-induced exonuclease; Escherichia coli exonuclease IV; E. coli exonuclease IV; exodeoxyribonuclease IV; exonuclease IV
Comments: Preference for double-stranded DNA. Does not attack single-strand breaks.
References:
1.  Lindahl, T., Gally, J.A. and Edelman, G.M. Deoxyribonuclease IV: a new exonuclease from mammalian tissues. Proc. Natl. Acad. Sci. USA 62 (1969) 597–603. [PMID: 5256235]
2.  Little, J.W. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J. Biol. Chem. 242 (1967) 679–686. [PMID: 6017737]
[EC 3.1.11.3 created 1972 as EC 3.1.4.28, transferred 1978 to EC 3.1.11.3]
 
 
EC 3.1.11.4     
Accepted name: exodeoxyribonuclease (phage SP3-induced)
Reaction: Exonucleolytic cleavage in the 5′- to 3′-direction to yield nucleoside 5′-phosphates
Other name(s): phage SP3 DNase; DNA 5′-dinucleotidohydrolase; deoxyribonucleate 5′-dinucleotidase; deoxyribonucleic 5′-dinucleotidohydrolase; bacteriophage SP3 deoxyribonuclease; deoxyribonucleate 5′-dinucleotidase
Comments: Preference for single-stranded DNA.
References:
1.  Trilling, D.M. and Aposhian, H.V. Sequential cleavage of dinucleotides from DNA by phage Sp3 DNAse. Proc. Natl. Acad. Sci. USA 60 (1968) 214–221. [PMID: 4968633]
[EC 3.1.11.4 created 1972 as EC 3.1.4.31, transferred 1978 to EC 3.1.11.4]
 
 
EC 3.1.11.5     
Accepted name: exodeoxyribonuclease V
Reaction: Exonucleolytic cleavage (in the presence of ATP) in either 5′- to 3′- or 3′- to 5′-direction to yield 5′-phosphooligonucleotides
Other name(s): Escherichia coli exonuclease V; E. coli exonuclease V; gene recBC endoenzyme; RecBC deoxyribonuclease; gene recBC DNase; exonuclease V; gene recBCD enzymes
Comments: Preference for double-stranded DNA. Possesses DNA-dependent ATPase activity. Acts endonucleolytically on single-stranded circular DNA.
References:
1.  Eichler, D.C. and Lehman, I.R. On the role of ATP in phosphodiester bond hydrolysis catalyzed by the recBC deoxyribonuclease of Escherichia coli. J. Biol. Chem. 252 (1977) 499–503. [PMID: 319095]
2.  Goldmark, P.J. and Liun, S. Purification and properties of the recBC DNase of Escherichia coli K-12. J. Biol. Chem. 247 (1972) 1849–1860. [PMID: 4552016]
3.  Oishi, M. An ATP-dependent deoxyribonuclease from Escherichia coli with a possible role in genetic recombination. Proc. Natl. Acad. Sci. USA 64 (1969) 1292–1299. [PMID: 4916924]
4.  Wright, M., Buttin, G. and Hurwitz, J. The isolation and characterization from Escherichia coli of an adenosine triphosphate-dependent deoxyribonuclease directed by rec B, C genes. J. Biol. Chem. 246 (1971) 6543–6555. [PMID: 4332130]
[EC 3.1.11.5 created 1978]
 
 
EC 3.1.11.6     
Accepted name: exodeoxyribonuclease VII
Reaction: Exonucleolytic cleavage in either 5′- to 3′- or 3′- to 5′-direction to yield nucleoside 5′-phosphates
Other name(s): Escherichia coli exonuclease VII; E. coli exonuclease VII; endodeoxyribonuclease VII; exonuclease VII
Comments: Preference for single-stranded DNA.
References:
1.  Chase, J.W. and Richardson, C.C. Ribonuclease VII of Escherichia coli. J. Biol. Chem. 249 (1974) 4545–4552. [PMID: 4602029]
2.  Chase, J.W. and Richardson, C.C. Exonuclease VII of Escherichia coli. J. Biol. Chem. 249 (1974) 4553–4561. [PMID: 4602030]
[EC 3.1.11.6 created 1978]
 
 
EC 3.1.11.7      
Transferred entry: adenosine-5′-diphospho-5′-[DNA] diphosphatase. Now EC 3.6.1.71, adenosine-5′-diphospho-5′-[DNA] diphosphatase
[EC 3.1.11.7 created 2017, deleted 2019]
 
 
EC 3.1.11.8      
Transferred entry: guanosine-5′-diphospho-5′-[DNA] diphosphatase. Now EC 3.6.1.70, guanosine-5′-diphospho-5′-[DNA] diphosphatase
[EC 3.1.11.8 created 2017, deleted 2019]
 
 
EC 3.1.12.1     
Accepted name: 5′ to 3′ exodeoxyribonuclease (nucleoside 3′-phosphate-forming)
Reaction: exonucleolytic cleavage in the 5′- to 3′-direction to yield nucleoside 3′-phosphates
Other name(s): Cas4; 5′ to 3′ single stranded DNA exonuclease
Comments: Preference for single-stranded DNA. The enzyme from the archaeon Sulfolobus solfataricus contains a [4Fe-4S] cluster and requires a divalent metal cation, such as Mg2+ or Mn2+, for activity.
References:
1.  Zhang, J., Kasciukovic, T. and White, M.F. The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLoS One 7:e47232 (2012). [PMID: 23056615]
2.  Lemak, S., Beloglazova, N., Nocek, B., Skarina, T., Flick, R., Brown, G., Popovic, A., Joachimiak, A., Savchenko, A. and Yakunin, A.F. Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S] cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus. J. Am. Chem. Soc. 135 (2013) 17476–17487. [PMID: 24171432]
[EC 3.1.12.1 created 2014]
 
 
EC 3.1.12.2      
Transferred entry: DNA-3-diphospho-5-guanosine diphosphatase. Now EC 3.6.1.72, DNA-3-diphospho-5-guanosine diphosphatase
[EC 3.1.12.2 created 2017, deleted 2019]
 
 
EC 3.1.13.1     
Accepted name: exoribonuclease II
Reaction: Exonucleolytic cleavage in the 3′- to 5′-direction to yield nucleoside 5′-phosphates
Other name(s): ribonuclease II; ribonuclease Q; BN ribonuclease; Escherichia coli exo-RNase II; RNase II; exoribonuclease (misleading); 5′-exoribonuclease (misleading)
Comments: Preference for single-stranded RNA. The enzyme processes 3′-terminal extra-nucleotides of monomeric tRNA precursors, following the action of EC 3.1.26.5 ribonuclease P.
References:
1.  Nossal, N.G. and Singer, M. The processive degradation of individual polyribonucleotide chains. I. Escherichia coli ribonuclease II. J. Biol. Chem. 243 (1968) 913–922. [PMID: 4867942]
2.  Schmidt, F.J. and McClain, W.H. An Escherichia coli ribonuclease which removes an extra nucleotide from a biosynthetic intermediate of bacteriophage T4 proline transfer RNA. Nucleic Acids Res. 5 (1978) 4129–4139. [PMID: 364422]
3.  Shimura, Y., Sakano, H. and Nagawa, F. Specific ribonucleases involved in processing of tRNA precursors of Escherichia coli. Partial purification and some properties. Eur. J. Biochem. 86 (1978) 267–281. [PMID: 350582]
4.  Sporn, M.B., Lazarus, H.M. Smith, J.M. and Henderson, W.R. Studies on nuclear exoribonucleases. 3. Isolation and properties of the enzyme from normal and malignant tissues of the mouse. Biochemistry 8 (1969) 1698–1706. [PMID: 5805304]
[EC 3.1.13.1 created 1972 as EC 3.1.4.20, transferred 1978 to EC 3.1.13.1]
 
 
EC 3.1.13.2     
Accepted name: exoribonuclease H
Reaction: 3′-end directed exonucleolytic cleavage of viral RNA-DNA hybrid
Comments: This is a secondary reaction to the RNA 5′-end directed cleavage 13-19 nucleotides from the RNA end performed by EC 3.1.26.13 (retroviral ribonuclease H).
References:
1.  Schatz, O., Mous, J. and Le Grice, S.F. HIV-1 RT-associated ribonuclease H displays both endonuclease and 3′—5′ exonuclease activity. EMBO J. 9 (1990) 1171–1176. [PMID: 1691093]
[EC 3.1.13.2 created 1978, modified 2010]
 
 
EC 3.1.13.3     
Accepted name: oligonucleotidase
Reaction: Exonucleolytic cleavage of oligonucleotides to yield nucleoside 5′-phosphates
Other name(s): oligoribonuclease
Comments: Also hydrolyses NAD+ to NMN and AMP.
References:
1.  Futai, M. and Mizuno, D. A new phosphodiesterase forming nucleoside 5′-monophosphate from rat liver. Its partial purification and substrate specificity for nicotinamide adenine dinucleotide and oligonucleotides. J. Biol. Chem. 242 (1967) 5301–5307. [PMID: 4294333]
[EC 3.1.13.3 created 1972 as EC 3.1.4.19, transferred 1978 to EC 3.1.13.3]
 
 
EC 3.1.13.4     
Accepted name: poly(A)-specific ribonuclease
Reaction: Exonucleolytic cleavage of poly(A) to 5′-AMP
Other name(s): 3′-exoribonuclease; 2′,3′-exoribonuclease
Comments: Cleaves poly(A) in either the single- or double-stranded form.
References:
1.  Schröder, H.C., Zahn, R.K., Dose, K. and Müller, E.G. Purification and characterization of a poly(A)-specific exoribonuclease from calf thymus. J. Biol. Chem. 255 (1980) 4535–4538. [PMID: 6246077]
[EC 3.1.13.4 created 1984]
 
 
EC 3.1.13.5     
Accepted name: ribonuclease D
Reaction: Exonucleolytic cleavage that removes extra residues from the 3′-terminus of tRNA to produce 5′-mononucleotides
Other name(s): RNase D
Comments: Requires divalent cations for activity (Mg2+, Mn2+ or Co2+). Alteration of the 3′-terminal base has no effect on the rate of hydrolysis whereas modification of the 3′-terminal sugar has a major effect. tRNA terminating with a 3′-phosphate is completely inactive [3]. This enzyme can convert a tRNA precursor into a mature tRNA [2].
References:
1.  Ghosh, R.K. and Deutscher, M.P. Identification of an Escherichia coli nuclease acting on structurally altered transfer RNA molecules. J. Biol. Chem. 253 (1978) 997–1000. [PMID: 342522]
2.  Cudny, H., Zaniewski, R. and Deutscher, M.P. Escherichia coli RNase D. Purification and structural characterization of a putative processing nuclease. J. Biol. Chem. 256 (1981) 5627–5632. [PMID: 6263885]
3.  Cudny, H., Zaniewski, R. and Deutscher, M.P. Escherichia coli RNase D. Catalytic properties and substrate specificity. J. Biol. Chem. 256 (1981) 5633–5637. [PMID: 6263886]
4.  Zhang, J.R. and Deutscher, M.P. Cloning, characterization, and effects of overexpression of the Escherichia coli rnd gene encoding RNase D. J. Bacteriol. 170 (1988) 522–527. [PMID: 2828310]
[EC 3.1.13.5 created 2006]
 
 
EC 3.1.14.1     
Accepted name: yeast ribonuclease
Reaction: Exonucleolytic cleavage to nucleoside 3′-phosphates
Comments: Similar enzyme: RNase U4.
References:
1.  Otaka, Y., Uchida, T. and Sakai, T. Purification and properties of ribonuclease from yeast. J. Biochem (Tokyo) 54 (1963) 322–327.
[EC 3.1.14.1 created 1978]
 
 
EC 3.1.15.1     
Accepted name: venom exonuclease
Reaction: Exonucleolytic cleavage in the 3′- to 5′- direction to yield nucleoside 5′-phosphates
Other name(s): venom phosphodiesterase
Comments: Preference for single-stranded substrate.
References:
1.  Laskowski, M. , Sr. Pancreatic deoxyribonuclease I. In: Cantoni, G.L. and Davies, D.R. (Ed.), Procedures in Nucleic Acid Research, Procedures in Nucleic Acid Research, New York, 1966, pp. 85–101.
[EC 3.1.15.1 created 1978]
 
 
EC 3.1.16.1     
Accepted name: spleen exonuclease
Reaction: Exonucleolytic cleavage in the 5′- to 3′-direction to yield nucleoside 3′-phosphates
Other name(s): 3′-exonuclease; spleen phosphodiesterase; 3′-nucleotide phosphodiesterase; phosphodiesterase II
Comments: Preference for single-stranded substrate.
References:
1.  Bernardi, A. and Bernardi, G. Spleen acid nuclease. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 4, Academic Press, New York, 1971, pp. 329–336.
[EC 3.1.16.1 created 1972 as EC 3.1.4.18, transferred 1978 to EC 3.1.16.1]
 
 
EC 3.1.21.1     
Accepted name: deoxyribonuclease I
Reaction: Endonucleolytic cleavage to 5′-phosphodinucleotide and 5′-phosphooligonucleotide end-products
Other name(s): pancreatic DNase; DNase; thymonuclease, dornase; dornava; dornavac; pancreatic deoxyribonuclease; pancreatic dornase; deoxyribonuclease (pancreatic); pancreatic DNase; DNAase; deoxyribonucleic phosphatase; DNase I; alkaline deoxyribonuclease; alkaline DNase; endodeoxyribonuclease I; DNA depolymerase; Escherichia coli endonuclease I; deoxyribonuclease A; DNA endonuclease; DNA nuclease
Comments: Preference for double-stranded DNA.
References:
1.  Privat de Garilhe, M. and Laskowski, M. Study of the enzymatic degradation of deoxyribonucleic acid by two different deoxyribonucleodepolymerases. J. Biol. Chem. 215 (1955) 269–276. [PMID: 14392161]
2.  Kunitz, M. Isolation of crystalline deoxyribonuclease from beef pancreas. Science 108 (1948) 19–20. [PMID: 17809290]
3.  Laskowski, M. , Sr. Venom exonuclease. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 4, Academic Press, New York, 1971, pp. 313–328.
[EC 3.1.21.1 created 1961 as EC 3.1.4.5, transferred 1978 to EC 3.1.21.1, modified 1981]
 
 
EC 3.1.21.2     
Accepted name: deoxyribonuclease IV
Reaction: Endonucleolytic cleavage of ssDNA at apurinic/apyrimidinic sites to 5′-phosphooligonucleotide end-products
Other name(s): deoxyribonuclease IV (phage-T4-induced) (misleading); endodeoxyribonuclease IV (phage T4-induced) (misleading); E. coli endonuclease IV; endodeoxyribonuclease (misleading); redoxyendonuclease; deoxriboendonuclease (misleading); endonuclease II; endonuclease IV; DNA-adenine-transferase; nfo (gene name)
Comments: The enzyme is an apurinic/apyrimidinic (AP) site endonuclease that primes DNA repair synthesis at AP sites. It specifically cleaves the DNA backbone at AP sites and also removes 3′ DNA-blocking groups such as 3′ phosphates, 3′ phosphoglycolates, and 3′ α,β-unsaturated aldehydes that arise from oxidative base damage and the activity of combined glycosylase/lyase enzymes. It is also the only known repair enzyme that is able to cleave the DNA backbone 5′ of the oxidative lesion α-deoxyadenosine. The enzyme has a strong preference for single-stranded DNA.
References:
1.  Friedberg, E.C. and Goldthwait, D.A. Endonuclease II of E. coli. I. Isolation and purification. Proc. Natl. Acad. Sci. USA 62 (1969) 934–940. [PMID: 4895219]
2.  Friedberg, E.C., Hadi, S.-M. and Goldthwait, D.A. Endonuclease II of Escherichia coli. II. Enzyme properties and studies on the degradation of alkylated and native deoxyribonucleic acid. J. Biol. Chem. 244 (1969) 5879–5889. [PMID: 4981786]
3.  Hadi, S.M. and Goldthwait, D.A. Endonuclease II of Escherichia coli. Degradation of partially depurinated deoxyribonucleic acid. Biochemistry 10 (1971) 4986–4993. [PMID: 4944066]
4.  Cunningham, R.P., Saporito, S.M., Spitzer, S.G. and Weiss, B. Endonuclease IV (nfo) mutant of Escherichia coli. J. Bacteriol. 168 (1986) 1120–1127. [PMID: 2430946]
5.  Ide, H., Tedzuka, K., Shimzu, H., Kimura, Y., Purmal, A.A., Wallace, S.S. and Kow, Y.W. Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV. Biochemistry 33 (1994) 7842–7847. [PMID: 7516707]
6.  Hosfield, D.J., Guan, Y., Haas, B.J., Cunningham, R.P. and Tainer, J.A. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98 (1999) 397–408. [PMID: 10458614]
[EC 3.1.21.2 created 1972 as EC 3.1.4.30, transferred 1978 to EC 3.1.21.2, modified 2014]
 
 
EC 3.1.21.3     
Accepted name: type I site-specific deoxyribonuclease
Reaction: Endonucleolytic cleavage of DNA to give random double-stranded fragments with terminal 5′-phosphates; ATP is simultaneously hydrolysed
Other name(s): type I restriction enzyme; deoxyribonuclease (ATP- and S-adenosyl-L-methionine-dependent); restriction-modification system; deoxyribonuclease (adenosine triphosphate-hydrolyzing); adenosine triphosphate-dependent deoxyribonuclease; ATP-dependent DNase; type 1 site-specific deoxyribonuclease
Comments: This is a large group of enzymes which, together with those now listed as EC 3.1.21.4 (type II site-specific deoxyribonuclease) and EC 3.1.21.5 (type III site-specific deoxyribonuclease), were previously listed separately in sub-subclasses EC 3.1.23 and EC 3.1.24. They have an absolute requirement for ATP (or dATP) and S-adenosyl-L-methionine. They recognize specific short DNA sequences and cleave at sites remote from the recognition sequence. They are multifunctional proteins that also catalyse the reactions of EC 2.1.1.72 [site-specific DNA-methyltransferase (adenine-specific)] and EC 2.1.1.37
References:
1.  Roberts, R.J. Restriction enzymes and their isoschizomers. Nucleic Acids Res. 18 (1990) 2331–2365. [PMID: 2159140]
[EC 3.1.21.3 created 1984 from EC 3.1.23 and EC 3.1.24]
 
 
EC 3.1.21.4     
Accepted name: type II site-specific deoxyribonuclease
Reaction: Endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5′-phosphates
Other name(s): type II restriction enzyme
Comments: This is a large group of enzymes which, together with those now listed as EC 3.1.21.3 (type 1 site-specific deoxyribonuclease) and EC 3.1.21.5.
References:
1.  Roberts, R.J. Restriction enzymes and their isoschizomers. Nucleic Acids Res. 18 (1990) 2331–2365. [PMID: 2159140]
[EC 3.1.21.4 created 1984 from EC 3.1.23 and EC 3.1.24]
 
 
EC 3.1.21.5     
Accepted name: type III site-specific deoxyribonuclease
Reaction: Endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5′-phosphates
Other name(s): type III restriction enzyme; restriction-modification system
Comments: This is a large group of enzymes which, together with those now listed as EC 3.1.21.3 (type 1 site-specific deoxyribonuclease) and EC 3.1.21.4 (type II site-specific deoxyribonuclease), were previously listed separately in sub-subclasses EC 3.1.23 and EC 3.1.24. They have an absolute requirement for ATP but do not hydrolyse it; S-adenosy-L-methionine stimulates the reaction, but is not absolutely required. They recognize specific, short DNA sequences and cleave a short distance away from the recognition sequence. These enzymes exist as complexes with enzymes of similar specificity listed under EC 2.1.1.72 [site-specific DNA-methyltransferase (adenine-specific)] or EC 2.1.1.73
References:
1.  Roberts, R.J. Restriction enzymes and their isoschizomers. Nucleic Acids Res. 18 (1990) 2331–2365. [PMID: 2159140]
[EC 3.1.21.5 created 1984 from EC 3.1.23 and EC 3.1.24]
 
 
EC 3.1.21.6     
Accepted name: CC-preferring endodeoxyribonuclease
Reaction: endonucleolytic cleavage to give 5′-phosphooligonucleotide end-products, with a preference for cleavage within the sequence CC
Other name(s): Streptomyces glaucescens exocytoplasmic dodeoxyribonuclease
Comments: Prefers CC sites in double-stranded circular and linear DNA. Greater affinity for double-stranded than single-stranded DNA. Produces nicks, generating double-stranded fragments with 5′- and/or 3′-protruding single-stranded tails. Requires magnesium ions for activity. The endonuclease from Chlorella-like green algae infected with NYs-1 virus 4[1] may be the same enzyme.
References:
1.  Xia, Y.N., Morgan, R., Schildkraut, I., Van Etten, J.L. A site-specific single-strand endonuclease activity induced by NYs-1 virus-infection of a Chlorella-like green-alga. Nucleic Acids Res. 16 (1988) 9477–9487. [PMID: 3186439]
2.  Aparicio, J.F., Lopez-Otin, C., Cal, S., Sanchez, J. A Streptomyces glaucescens endodeoxyribonuclease which shows a strong preference for CC dinucleotide. Eur. J. Biochem. 205 (1992) 695–699. [PMID: 1533367]
[EC 3.1.21.6 created 1999]
 
 
EC 3.1.21.7     
Accepted name: deoxyribonuclease V
Reaction: Endonucleolytic cleavage at apurinic or apyrimidinic sites to products with a 5′-phosphate
Other name(s): endodeoxyribonuclease V; DNase V; Escherichia coli endodeoxyribonuclease V
Comments: Previously classified erroneously as EC 3.1.22.3.
References:
1.  Gates, F.T. and Linn, S. Endonuclease V of Escherichia coli. J. Biol. Chem. 252 (1977) 1647–1653. [PMID: 14159]
[EC 3.1.21.7 created 1978 as EC 3.1.22.3, transferred 2001 to EC 3.1.21.7]
 
 
EC 3.1.21.8     
Accepted name: T4 deoxyribonuclease II
Reaction: Endonucleolytic nicking and cleavage of cytosine-containing double-stranded DNA.
Other name(s): T4 endonuclease II; EndoII (ambiguous); denA (gene name)
Comments: Requires Mg2+. This phage T4 enzyme is involved in degradation of host DNA. The enzyme primarily catalyses nicking of the bottom strand of double stranded DNA between the first and second base pair to the right of a top-strand CCGC motif. Double-stranded breaks are produced 5- to 10-fold less frequently [3]. It does not cleave the T4 native DNA, which contains 5-hydroxymethylcytosine instead of cytosine.
References:
1.  Carlson, K., Krabbe, M., Nystrom, A.C. and Kosturko, L.D. DNA determinants of restriction. Bacteriophage T4 endonuclease II-dependent cleavage of plasmid DNA in vivo. J. Biol. Chem. 268 (1993) 8908–8918. [PMID: 8386173]
2.  Carlson, K. and Kosturko, L.D. Endonuclease II of coliphage T4: a recombinase disguised as a restriction endonuclease. Mol. Microbiol. 27 (1998) 671–676. [PMID: 9515694]
3.  Carlson, K., Kosturko, L.D. and Nystrom, A.C. Sequence-specific cleavage by bacteriophage T4 endonuclease II in vitro. Mol. Microbiol. 31 (1999) 1395–1405. [PMID: 10200960]
4.  Andersson, C.E., Lagerback, P. and Carlson, K. Structure of bacteriophage T4 endonuclease II mutant E118A, a tetrameric GIY-YIG enzyme. J. Mol. Biol. 397 (2010) 1003–1016. [PMID: 20156453]
[EC 3.1.21.8 created 2014]
 
 
EC 3.1.21.9     
Accepted name: T4 deoxyribonuclease IV
Reaction: Endonucleolytic cleavage of the 5′ phosphodiester bond of deoxycytidine in single-stranded DNA.
Other name(s): T4 endonuclease IV; EndoIV (ambiguous); denB (gene name)
Comments: This phage T4 enzyme is involved in degradation of host DNA. The enzyme does not cleave double-stranded DNA or native T4 DNA, which contains 5-hydroxymethylcytosine instead of cytosine.
References:
1.  Sadowski, P.D. and Hurwitz, J. Enzymatic breakage of deoxyribonucleic acid. II. Purification and properties of endonuclease IV from T4 phage-infected Escherichia coli. J. Biol. Chem. 244 (1969) 6192–6198. [PMID: 4900512]
2.  Ling, V. Partial digestion of 32P-fd DNA with T4 endonuclease IV. FEBS Lett. 19 (1971) 50–54. [PMID: 11946172]
3.  Sadowski, P.D. and Bakyta, I. T4 endonuclease IV. Improved purification procedure and resolution from T4 endonuclease 3. J. Biol. Chem. 247 (1972) 405–412. [PMID: 4550601]
4.  Bernardi, A., Maat, J., de Waard, A. and Bernardi, G. Preparation and specificity of endonuclease IV induced by bacteriophage T4. Eur. J. Biochem. 66 (1976) 175–179. [PMID: 782881]
5.  Hirano, N., Ohshima, H. and Takahashi, H. Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis. Nucleic Acids Res. 34 (2006) 4743–4751. [PMID: 16971463]
6.  Ohshima, H., Hirano, N. and Takahashi, H. A hexanucleotide sequence (dC1-dC6 tract) restricts the dC-specific cleavage of single-stranded DNA by endonuclease IV of bacteriophage T4. Nucleic Acids Res. 35 (2007) 6681–6689. [PMID: 17940096]
[EC 3.1.21.9 created 2014]
 
 
EC 3.1.21.10     
Accepted name: crossover junction endodeoxyribonuclease
Reaction: Endonucleolytic cleavage at a junction such as a reciprocal single-stranded crossover between two homologous DNA duplexes (Holliday junction)
Other name(s): Hje endonuclease; Holliday junction endonuclease CCE1; Holliday junction resolvase; Holliday junction-cleaving endonuclease; Holliday junction-resolving endoribonuclease; RusA Holliday junction resolvase; RusA endonuclease; RuvC endonuclease; SpCCe1 Holliday junction resolvase; crossover junction endoribonuclease; cruciform-cutting endonuclease; endo X3; endonuclease RuvC; endonuclease VII; endonuclease X3; resolving enzyme CCE1
Comments: The enzyme from Saccharomyces cerevisiae has no endonuclease or exonuclease activity on single-stranded or double-stranded DNA molecules that do not contain Holliday junctions.
References:
1.  Symington, L.S. and Kolodner, R. Partial purification of an enzyme from Saccharomyces cerevisiae that cleaves Holliday junctions. Proc. Natl. Acad. Sci. USA 82 (1985) 7247–7251. [PMID: 3903750]
2.  Shida, T., Iwasaki, H., Saito, A., Kyogoku, Y. and Shinagawa, H. Analysis of substrate specificity of the RuvC holliday junction resolvase with synthetic Holliday junctions. J. Biol. Chem. 271 (1996) 26105–26109. [PMID: 8824253]
3.  Shah, R., Cosstick, R. and West, S.C. The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts. EMBO J. 16 (1997) 1464–1472. [PMID: 9135161]
4.  Fogg, J.M., Schofield, M.J., White, M.F. and Lilley, D.M. Sequence and functional-group specificity for cleavage of DNA junctions by RuvC of Escherichia coli. Biochemistry 38 (1999) 11349–11358. [PMID: 10471285]
5.  Lilley, D.M. and White, M.F. The junction-resolving enzymes. Nat. Rev. Mol. Cell. Biol. 2 (2001) 433–443. [PMID: 11389467]
6.  Middleton, C.L., Parker, J.L., Richard, D.J., White, M.F. and Bond, C.S. Crystallization and preliminary X-ray diffraction studies of Hje, a Holliday junction resolving enzyme from Sulfolobus solfataricus. Acta Crystallogr. D Biol. Crystallogr. 59 (2003) 171–173. [PMID: 12499561]
[EC 3.1.21.10 created 1989 as EC 3.1.22.4, modified 2003, transferred 2021 to EC 3.1.21.10]
 
 
EC 3.1.22.1     
Accepted name: deoxyribonuclease II
Reaction: Endonucleolytic cleavage to nucleoside 3′-phosphates and 3′-phosphooligonucleotide end-products
Other name(s): DNase II; pancreatic DNase II; deoxyribonucleate 3′-nucleotidohydrolase; DNase II; pancreatic DNase II; acid deoxyribonuclease; acid DNase
Comments: Preference for double-stranded DNA.
References:
1.  Bernardi, G. Spleen acid deoxyribonuclease. In: Cantoni, G.L. and Davies, D.R. (Ed.), Procedures in Nucleic Acid Research, Procedures in Nucleic Acid Research, New York, 1966, pp. 102–121.
[EC 3.1.22.1 created 1961 as EC 3.1.4.6, transferred 1978 to EC 3.1.22.1, modified 1981]
 
 
EC 3.1.22.2     
Accepted name: Aspergillus deoxyribonuclease K1
Reaction: Endonucleolytic cleavage to nucleoside 3′-phosphates and 3′-phosphooligonucleotide end-products
Other name(s): Aspergillus DNase K1
Comments: Preference for single-stranded DNA.
References:
1.  Kato, M. and Ikeda, Y. On the deoxyribonucleases, K 1 and K2, isolated from mycelia of Aspergillus oryzae. I. Isolation and purification of DNases K1 and K2. J. Biochem. (Tokyo) 64 (1968) 321–328. [PMID: 4303413]
2.  Shishido, K., Kato, M. and Ikeda, Y. Isolation of thymidylic acid-rich fragments from double-stranded deoxyribonucleic acids. J. Biochem. (Tokyo) 65 (1968) 479–481.
[EC 3.1.22.2 created 1978, modified 1981]
 
 
EC 3.1.22.3      
Transferred entry: deoxyribonuclease V. Now EC 3.1.21.7, deoxyribonuclease V
[EC 3.1.22.3 created 1978, deleted 2001]
 
 
EC 3.1.22.4      
Transferred entry: crossover junction endodeoxyribonuclease. Now EC 3.1.21.10, crossover junction endodeoxyribonuclease
[EC 3.1.22.4 created 1989, modified 2003, deleted 2021]
 
 
EC 3.1.22.5     
Accepted name: deoxyribonuclease X
Reaction: Endonucleolytic cleavage of supercoiled plasma DNA to linear DNA duplexes
Other name(s): Escherichia coli endodeoxyribonuclease; Escherichia coli endodeoxyribonuclease X
Comments: Preference for supercoiled DNA; little activity on linear double-stranded DNA. Inhibited by single-stranded DNA, ATP and AMP.
References:
1.  Ghosh, S. and DasGupta, U. Studies with endonuclease X: a new deoxyendonuclease of E. coli that preferentially cleaves supercoiled plasmid DNA. Curr. Trends Life Sci. 12 (1984) 79–88.
[EC 3.1.22.5 created 1992]
 
 
EC 3.1.23.1      
Transferred entry: endodeoxyribonuclease AluI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.1 created 1978, deleted 1984]
 
 
EC 3.1.23.2      
Transferred entry: endodeoxyribonuclease AsuI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.2 created 1978, deleted 1984]
 
 
EC 3.1.23.3      
Transferred entry: endodeoxyribonuclease AvaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.3 created 1978, deleted 1984]
 
 
EC 3.1.23.4      
Transferred entry: endodeoxyribonuclease AvaII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.4 created 1978, deleted 1984]
 
 
EC 3.1.23.5      
Transferred entry: endodeoxyribonuclease BalI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.5 created 1978, deleted 1984]
 
 
EC 3.1.23.6      
Transferred entry: endodeoxyribonuclease BamHI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.6 created 1978, deleted 1984]
 
 
EC 3.1.23.7      
Transferred entry: endodeoxyribonuclease BbvI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.7 created 1978, deleted 1984]
 
 
EC 3.1.23.8      
Transferred entry: endodeoxyribonuclease BclI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.8 created 1978, deleted 1984]
 
 
EC 3.1.23.9      
Transferred entry: endodeoxyribonuclease BglI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.9 created 1978, deleted 1984]
 
 
EC 3.1.23.10      
Transferred entry: endodeoxyribonuclease BglII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.10 created 1978, deleted 1984]
 
 
EC 3.1.23.11      
Transferred entry: endodeoxyribonuclease BpuI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.11 created 1978, deleted 1984]
 
 
EC 3.1.23.12      
Transferred entry: endodeoxyribonuclease DpnI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.12 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.23.13      
Transferred entry: endodeoxyribonuclease EcoRI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.13 created 1978, deleted 1984]
 
 
EC 3.1.23.14      
Transferred entry: endodeoxyribonuclease EcoRII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.14 created 1978, deleted 1984]
 
 
EC 3.1.23.15      
Transferred entry: endodeoxyribonuclease HaeI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.15 created 1978, deleted 1984]
 
 
EC 3.1.23.16      
Transferred entry: endodeoxyribonuclease HaeII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.16 created 1978, deleted 1984]
 
 
EC 3.1.23.17      
Transferred entry: endodeoxyribonuclease HaeIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.17 created 1978, deleted 1984]
 
 
EC 3.1.23.18      
Transferred entry: endodeoxyribonuclease HgaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.18 created 1978, deleted 1984]
 
 
EC 3.1.23.19      
Transferred entry: endodeoxyribonuclease HhaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.19 created 1978, deleted 1984]
 
 
EC 3.1.23.20      
Transferred entry: endodeoxyribonuclease HindII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.20 created 1978, deleted 1984]
 
 
EC 3.1.23.21      
Transferred entry: endodeoxyribonuclease HindIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.21 created 1978, deleted 1984]
 
 
EC 3.1.23.22      
Transferred entry: endodeoxyribonuclease HinfI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.22 created 1978, deleted 1984]
 
 
EC 3.1.23.23      
Transferred entry: endodeoxyribonuclease HpaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.23 created 1978, deleted 1984]
 
 
EC 3.1.23.24      
Transferred entry: endodeoxyribonuclease HpaII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.24 created 1978, deleted 1984]
 
 
EC 3.1.23.25      
Transferred entry: endodeoxyribonuclease HphI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.25 created 1978, deleted 1984]
 
 
EC 3.1.23.26      
Transferred entry: endodeoxyribonuclease KpnI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.26 created 1978, deleted 1984]
 
 
EC 3.1.23.27      
Transferred entry: endodeoxyribonuclease MboI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.27 created 1978, deleted 1984]
 
 
EC 3.1.23.28      
Transferred entry: endodeoxyribonuclease MboII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.28 created 1978, deleted 1984]
 
 
EC 3.1.23.29      
Transferred entry: endodeoxyribonuclease MnlI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.29 created 1978, deleted 1984]
 
 
EC 3.1.23.30      
Transferred entry: endodeoxyribonuclease PfaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.30 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.23.31      
Transferred entry: endodeoxyribonuclease PstI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.31 created 1978, deleted 1984]
 
 
EC 3.1.23.32      
Transferred entry: endodeoxyribonuclease PvuI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.32 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.23.33      
Transferred entry: endodeoxyribonuclease PvuII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.33 created 1978, deleted 1984]
 
 
EC 3.1.23.34      
Transferred entry: endodeoxyribonuclease SacI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.34 created 1978, deleted 1984]
 
 
EC 3.1.23.35      
Transferred entry: endodeoxyribonuclease SacII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.35 created 1978, deleted 1984]
 
 
EC 3.1.23.36      
Transferred entry: endodeoxyribonuclease SacIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.36 created 1978, deleted 1984]
 
 
EC 3.1.23.37      
Transferred entry: endodeoxyribonuclease SalI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.37 created 1978, deleted 1984]
 
 
EC 3.1.23.38      
Transferred entry: endodeoxyribonuclease SgrI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.38 created 1978, deleted 1984]
 
 
EC 3.1.23.39      
Transferred entry: endodeoxyribonuclease TaqI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.39 created 1978, deleted 1984]
 
 
EC 3.1.23.40      
Transferred entry: endodeoxyribonuclease TaqII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.40 created 1978, deleted 1984]
 
 
EC 3.1.23.41      
Transferred entry: endodeoxyribonuclease XbaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.41 created 1978, deleted 1984]
 
 
EC 3.1.23.42      
Transferred entry: endodeoxyribonuclease XhoI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.42 created 1978, deleted 1984]
 
 
EC 3.1.23.43      
Transferred entry: endodeoxyribonuclease XhoII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.43 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.23.44      
Transferred entry: endodeoxyribonuclease XmaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.44 created 1978, deleted 1984]
 
 
EC 3.1.23.45      
Transferred entry: endodeoxyribonuclease XniI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.45 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.23.46      
Transferred entry: endodeoxyribonuclease AimI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.46 created 1982, deleted 1984]
 
 
EC 3.1.23.47      
Transferred entry: endodeoxyribonuclease AccI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.47 created 1982, deleted 1984]
 
 
EC 3.1.23.48      
Transferred entry: endodeoxyribonuclease AccII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.48 created 1982, deleted 1984]
 
 
EC 3.1.23.49      
Transferred entry: endodeoxyribonuclease AtuAI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.49 created 1982, deleted 1984]
 
 
EC 3.1.23.50      
Transferred entry: endodeoxyribonuclease AtuBVI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.50 created 1982, deleted 1984]
 
 
EC 3.1.23.51      
Transferred entry: endodeoxyribonuclease AcaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.51 created 1982, deleted 1984]
 
 
EC 3.1.23.52      
Transferred entry: endodeoxyribonuclease AcyI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.52 created 1982, deleted 1984]
 
 
EC 3.1.23.53      
Transferred entry: endodeoxyribonuclease AosI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.53 created 1982, deleted 1984]
 
 
EC 3.1.23.54      
Transferred entry: endodeoxyribonuclease AsuII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.54 created 1982, deleted 1984]
 
 
EC 3.1.23.55      
Transferred entry: endodeoxyribonuclease AvaIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.55 created 1982, deleted 1984]
 
 
EC 3.1.23.56      
Transferred entry: endodeoxyribonuclease AvrII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.56 created 1982, deleted 1984]
 
 
EC 3.1.23.57      
Transferred entry: endodeoxyribonuclease BceI4579. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bce4579I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.57 created 1982, deleted 1984]
 
 
EC 3.1.23.58      
Transferred entry: endodeoxyribonuclease Bce1229. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bce1229I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.58 created 1982, deleted 1984]
 
 
EC 3.1.23.59      
Transferred entry: endodeoxyribonuclease Bme899. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bme899I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.59 created 1982, deleted 1984]
 
 
EC 3.1.23.60      
Transferred entry: endodeoxyribonuclease Bme205. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bme205I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.60 created 1982, deleted 1984]
 
 
EC 3.1.23.61      
Transferred entry: endodeoxyribonuclease BmeI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.61 created 1982, deleted 1984]
 
 
EC 3.1.23.62      
Transferred entry: endodeoxyribonuclease Bsp1286. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bsp1286I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.62 created 1982, deleted 1984]
 
 
EC 3.1.23.63      
Transferred entry: endodeoxyribonuclease BstAI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.63 created 1982, deleted 1984]
 
 
EC 3.1.23.64      
Transferred entry: endodeoxyribonuclease BstEI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.64 created 1982, deleted 1984]
 
 
EC 3.1.23.65      
Transferred entry: endodeoxyribonuclease BstEIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.65 created 1982, deleted 1984]
 
 
EC 3.1.23.66      
Transferred entry: endodeoxyribonuclease BstPI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.66 created 1982, deleted 1984]
 
 
EC 3.1.23.67      
Transferred entry: endodeoxyribonuclease BsuM. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease BsuMI (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.67 created 1982, deleted 1984]
 
 
EC 3.1.23.68      
Transferred entry: endodeoxyribonuclease Bsu6633. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. The name was misprinted in supplement 3 of the 1978 edition. Assumed to be the same as endodeoxyribonuclease Bsu6633I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.68 created 1982, deleted 1984]
 
 
EC 3.1.23.69      
Transferred entry: endodeoxyribonuclease Bsu1145. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bsu1145I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.69 created 1982, deleted 1984]
 
 
EC 3.1.23.70      
Transferred entry: endodeoxyribonuclease Bsu1192. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bsu1192I or see Bsu1192II (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.70 created 1982, deleted 1984]
 
 
EC 3.1.23.71      
Transferred entry: endodeoxyribonuclease Bsu1193. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bsu1193I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.71 created 1982, deleted 1984]
 
 
EC 3.1.23.72      
Transferred entry: endodeoxyribonuclease Bsu1231. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Not found in http://rebase.neb.com/rebase/rebase.html
[EC 3.1.23.72 created 1982, deleted 1984]
 
 
EC 3.1.23.73      
Transferred entry: endodeoxyribonuclease Bsu1259. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Bsu1259I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.73 created 1982, deleted 1984]
 
 
EC 3.1.23.74      
Transferred entry: endodeoxyribonuclease ClaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.74 created 1982, deleted 1984]
 
 
EC 3.1.23.75      
Transferred entry: endodeoxyribonuclease CauII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.75 created 1982, deleted 1984]
 
 
EC 3.1.23.76      
Transferred entry: endodeoxyribonuclease CviI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.76 created 1982, deleted 1984]
 
 
EC 3.1.23.77      
Transferred entry: endodeoxyribonuclease DdeI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.77 created 1982, deleted 1984]
 
 
EC 3.1.23.78      
Transferred entry: endodeoxyribonuclease EclI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.78 created 1982, deleted 1984]
 
 
EC 3.1.23.79      
Transferred entry: endodeoxyribonuclease EcaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.79 created 1982, deleted 1984]
 
 
EC 3.1.23.80      
Transferred entry: endodeoxyribonuclease EcoRI′. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease EcoRI′ (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.80 created 1982, deleted 1984]
 
 
EC 3.1.23.81      
Transferred entry: endodeoxyribonuclease Fnu48I. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.81 created 1982, deleted 1984]
 
 
EC 3.1.23.82      
Transferred entry: endodeoxyribonuclease Fnu4H. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease Fnu4HI (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.82 created 1982, deleted 1984]
 
 
EC 3.1.23.83      
Transferred entry: endodeoxyribonuclease HapI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.83 created 1982, deleted 1984]
 
 
EC 3.1.23.84      
Transferred entry: endodeoxyribonuclease Hin1056II. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.84 created 1982, deleted 1984]
 
 
EC 3.1.23.85      
Transferred entry: endodeoxyribonuclease HinfIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.85 created 1982, deleted 1984]
 
 
EC 3.1.23.86      
Transferred entry: endodeoxyribonuclease HgiAI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.86 created 1982, deleted 1984]
 
 
EC 3.1.23.87      
Transferred entry: endodeoxyribonuclease HgiCI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.87 created 1982, deleted 1984]
 
 
EC 3.1.23.88      
Transferred entry: endodeoxyribonuclease HgiDI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.88 created 1982, deleted 1984]
 
 
EC 3.1.23.89      
Transferred entry: endodeoxyribonuclease HgiEII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.89 created 1982, deleted 1984]
 
 
EC 3.1.23.90      
Transferred entry: endodeoxyribonuclease MstI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.90 created 1982, deleted 1984]
 
 
EC 3.1.23.91      
Transferred entry: endodeoxyribonuclease MstII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.91 created 1982, deleted 1984]
 
 
EC 3.1.23.92      
Transferred entry: endodeoxyribonuclease MglI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.92 created 1982, deleted 1984]
 
 
EC 3.1.23.93      
Transferred entry: endodeoxyribonuclease MglII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.93 created 1982, deleted 1984]
 
 
EC 3.1.23.94      
Transferred entry: endodeoxyribonuclease MnoII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.94 created 1982, deleted 1984]
 
 
EC 3.1.23.95      
Transferred entry: endodeoxyribonuclease MnnIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.95 created 1982, deleted 1984]
 
 
EC 3.1.23.96      
Transferred entry: endodeoxyribonuclease MviI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.96 created 1982, deleted 1984]
 
 
EC 3.1.23.97      
Transferred entry: endodeoxyribonuclease MviII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.97 created 1982, deleted 1984]
 
 
EC 3.1.23.98      
Transferred entry: endodeoxyribonuclease OxaII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.98 created 1982, deleted 1984]
 
 
EC 3.1.23.99      
Transferred entry: endodeoxyribonuclease PaeR7. Now EC 3.1.21.4, type II site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease PaeR7I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.23.99 created 1982, deleted 1984]
 
 
EC 3.1.23.100      
Transferred entry: endodeoxyribonuclease RspI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.100 created 1982, deleted 1984]
 
 
EC 3.1.23.101      
Transferred entry: endodeoxyribonuclease RsaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.101 created 1982, deleted 1984]
 
 
EC 3.1.23.102      
Transferred entry: endodeoxyribonuclease SmaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.102 created 1982, deleted 1984]
 
 
EC 3.1.23.103      
Transferred entry: endodeoxyribonuclease SspI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.103 created 1982, deleted 1984]
 
 
EC 3.1.23.104      
Transferred entry: endodeoxyribonuclease SnaI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.104 created 1982, deleted 1984]
 
 
EC 3.1.23.105      
Transferred entry: endodeoxyribonuclease SfaNI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.105 created 1982, deleted 1984]
 
 
EC 3.1.23.106      
Transferred entry: endodeoxyribonuclease SalII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.106 created 1982, deleted 1984]
 
 
EC 3.1.23.107      
Transferred entry: endodeoxyribonuclease SauI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.107 created 1982, deleted 1984]
 
 
EC 3.1.23.108      
Transferred entry: endodeoxyribonuclease SphI. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.108 created 1982, deleted 1984]
 
 
EC 3.1.23.109      
Transferred entry: endodeoxyribonuclease XmaIII. Now EC 3.1.21.4, type II site-specific deoxyribonuclease
[EC 3.1.23.109 created 1982, deleted 1984]
 
 
EC 3.1.24.1      
Transferred entry: endodeoxyribonuclease EcoB. Now EC 3.1.21.3, type I site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease EcoBI (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.24.1 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.24.2      
Transferred entry: endodeoxyribonuclease EcoK. Now EC 3.1.21.3, type I site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease EcoKI (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.24.2 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.24.3      
Transferred entry: endodeoxyribonuclease EcoPI. Now EC 3.1.21.5, type III site-specific deoxyribonuclease. The name is misprinted in supplement 3 of the 1978 edition
[EC 3.1.24.3 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.24.4      
Transferred entry: endodeoxyribonuclease EcoP15. Now EC 3.1.21.5, type III site-specific deoxyribonuclease. Assumed to be the same as endodeoxyribonuclease EcoP15I (see http://rebase.neb.com/rebase/rebase.html)
[EC 3.1.24.4 created 1978, modified 1982, deleted 1984]
 
 
EC 3.1.25.1     
Accepted name: deoxyribonuclease (pyrimidine dimer)
Reaction: Endonucleolytic cleavage near pyrimidine dimers to products with 5′-phosphate
Other name(s): endodeoxyribonuclease (pyrimidine dimer); endodeoxyribonuclease (pyrimidine dimer); bacteriophage T4 endodeoxyribonuclease V; T4 endonuclease V
Comments: Acts on a damaged strand, 5′ from the damaged site.
References:
1.  Braun, A.G., Radman, M. and Grossman, L. Enzymic repair of DNA: sites of hydrolysis by the Escherichia coli endonuclease specific for pyrimidine dimers (corendonuclease II). Biochemistry 15 (1976) 4116–4120. [PMID: 786366]
2.  Riazuddin, S. and Grossman, L. Micrococcus luteus correndonucleases. II. Mechanism of action of two endonucleases specific for DNA containing pyrimidine dimers. J. Biol. Chem. 252 (1977) 6287–6293. [PMID: 330526]
[EC 3.1.25.1 created 1978]
 
 
EC 3.1.25.2      
Transferred entry: endodeoxyribonuclease (apurinic or apyrimidinic). Now EC 4.2.99.18, DNA-(apurinic or apyrimidinic site) lyase
[EC 3.1.25.2 created 1978, deleted 1992]
 
 
EC 3.1.26.1     
Accepted name: Physarum polycephalum ribonuclease
Reaction: Endonucleolytic cleavage to 5′-phosphomonoester
References:
1.  Hiramaru, M., Uchida, T. and Egami, F. Studies on two nucleases and a ribonuclease from Physarum polycephalum. Purification and mode of action. J. Biochem. (Tokyo) 65 (1969) 701–708. [PMID: 5817397]
[EC 3.1.26.1 created 1978]
 
 
EC 3.1.26.2     
Accepted name: ribonuclease α
Reaction: Endonucleolytic cleavage to 5′-phosphomonoester
Other name(s): 2′-O-methyl RNase
Comments: Specific for O-methylated RNA.
References:
1.  Norton, J. and Roth, J.S. A ribonuclease specific for 2′-O-methylated ribonucleic acid. J. Biol. Chem. 242 (1967) 2029–2034. [PMID: 6022850]
[EC 3.1.26.2 created 1978]
 
 
EC 3.1.26.3     
Accepted name: ribonuclease III
Reaction: Endonucleolytic cleavage to a 5′-phosphomonoester
Other name(s): RNase III; ribonuclease 3
Comments: This is an endoribonuclease that cleaves double-stranded RNA molecules [4]. The cleavage can be either a single-stranded nick or double-stranded break in the RNA, depending in part upon the degree of base-pairing in the region of the cleavage site [5]. Specificity is conferred by negative determinants, i.e., the presence of certain Watson-Crick base-pairs at specific positions that strongly inhibit cleavage [6]. RNase III is involved in both rRNA processing and mRNA processing and decay.
References:
1.  Crouch, R.J. Ribonuclease 3 does not degrade deoxyribonucleic acid-ribonucleic acid hybrids. J. Biol. Chem. 249 (1974) 1314–1316. [PMID: 4592261]
2.  Rech, J., Cathala, G. and Jeanteur, P. Isolation and characterization of a ribonuclease activity specific for double-stranded RNA (RNase D) from Krebs II ascites cells. J. Biol. Chem. 255 (1980) 6700–6706. [PMID: 6248530]
3.  Robertson, H.D., Webster, R.E. and Zinder, N.D. Purification and properties of ribonuclease III from Escherichia coli. J. Biol. Chem. 243 (1968) 82–91. [PMID: 4865702]
4.  Grunberg-Manago, M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu. Rev. Genet. 33 (1999) 193–227. [PMID: 10690408]
5.  Court, D. RNA processing and degradation by RNase III in control of mRNA stability. In: Belasco, J.G. and Brawerman, G. (Ed.), Control of Messenger RNA Stability, Academic Press, New York, 1993, pp. 71–116.
6.  Zhang, K. and Nicholson, A.W. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl. Acad. Sci. USA 94 (1997) 13437–13441. [PMID: 9391043]
[EC 3.1.26.3 created 1978, modified 2006]
 
 
EC 3.1.26.4     
Accepted name: ribonuclease H
Reaction: Endonucleolytic cleavage to 5′-phosphomonoester
Other name(s): endoribonuclease H (calf thymus); RNase H; RNA*DNA hybrid ribonucleotidohydrolase; hybrid ribonuclease; hybridase; hybridase (ribonuclease H); ribonuclease H; hybrid nuclease; calf thymus ribonuclease H
Comments: Acts on RNA-DNA hybrids.
References:
1.  Haberkern, R.C. and Cantoni, G.L. Studies on a calf thymus ribonuclease specific for ribonucleic acid-deoxyribonucleic acid hybrids. Biochemistry 12 (1973) 2389–2395. [PMID: 4709937]
2.  Stavrianopoulos, J.G. and Chargaff, E. Purification and properties of ribonuclease H of calf thymus. Proc. Natl. Acad. Sci. USA 70 (1973) 1959–1963. [PMID: 4516197]
[EC 3.1.26.4 created 1978, modified 2010]
 
 
EC 3.1.26.5     
Accepted name: ribonuclease P
Reaction: Endonucleolytic cleavage of RNA, removing 5′-extranucleotides from tRNA precursor
Other name(s): RNase P
Comments: An RNA-containing enzyme, essential for tRNA processing; generates 5′-termini or mature tRNA molecules.
References:
1.  Bikoff, E.K. and Gefter, M.L. In vitro synthesis of transfer RNA. I. Purification of required components. J. Biol. Chem. 250 (1975) 6240–6247. [PMID: 1099089]
2.  Bikoff, E.K., La Rue, B.F. and Gefter, M.L. In vitro synthesis of transfer RNA. II. Identification of required enzymatic activities. J. Biol. Chem. 250 (1975) 6248–6255. [PMID: 1099090]
3.  Robertson, H.D., Altman, S. and Smith, J.D. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J. Biol. Chem. 247 (1972) 5243–5251. [PMID: 4560501]
[EC 3.1.26.5 created 1978, modified 1982]
 
 
EC 3.1.26.6     
Accepted name: ribonuclease IV
Reaction: Endonucleolytic cleavage of poly(A) to fragments terminated by 3′-hydroxy and 5′-phosphate groups
Other name(s): endoribonuclease IV; poly(A)-specific ribonuclease
Comments: Forms oligonucleotides with an average chain length of 10.
References:
1.  Müller, E.G. Endoribonuclease IV. A poly(A)-specific ribonuclease from chick oviduct. 1. Purification of the enzyme. Eur. J. Biochem. 70 (1976) 241–248. [PMID: 1009928]
2.  Müller, E.G., Seibert, G., Steffen, R. and Zahn, R.K. Endoribonuclease IV. 2. Further investigation on the specificity. Eur. J. Biochem. 70 (1976) 249–258. [PMID: 1009929]
[EC 3.1.26.6 created 1984]
 
 
EC 3.1.26.7     
Accepted name: ribonuclease P4
Reaction: Endonucleolytic cleavage of RNA, removing 3′-extranucleotides from tRNA precursor
References:
1.  Sekiya, T., Contreras, R., Takeya, T. and Khorana, H.G. Total synthesis of a tyrosine suppressor transfer RNA gene. XVII. Transcription, in vitro, of the synthetic gene and processing of the primary transcript to transfer RNA. J. Biol. Chem. 254 (1979) 5802–5816. [PMID: 109442]
[EC 3.1.26.7 created 1984]
 
 
EC 3.1.26.8     
Accepted name: ribonuclease M5
Reaction: Endonucleolytic cleavage of RNA, removing 21 and 42 nucleotides, respectively, from the 5′- and 3′-termini of a 5S-rRNA precursor
Other name(s): RNase M5; 5S ribosomal maturation nuclease; 5S ribosomal RNA maturation endonuclease
Comments: Converts the 5S-rRNA precursor from Bacillus subtilis into 5S-rRNA, with 5′-phosphate and 3′-hydroxy groups.
References:
1.  Sogin, M.L., Pace, B. and Pace, N.R. Partial purification and properties of a ribosomal RNA maturation endonuclease from Bacillus subtilis. J. Biol. Chem. 252 (1977) 1350–1357. [PMID: 402365]
[EC 3.1.26.8 created 1986]
 
 
EC 3.1.26.9     
Accepted name: ribonuclease [poly-(U)-specific]
Reaction: Endonucleolytic cleavage of poly(U) to fragments terminated by 3′-hydroxy and 5′-phosphate groups
Other name(s): ribonuclease (uracil-specific); uracil-specific endoribonuclease; uracil-specific RNase
Comments: Forms oligonucleotides with chain lengths of 6 to 12.
References:
1.  Bachmann, M., Trautmann, F., Messer, R., Zahn, R.K., Meyer zum Büschenfelde, K.H. and Müller, W.E.G. Association of a polyuridylate-specific endoribonuclease with small nuclear ribonucleo-proteins which had been isolated by affinity chromatography using antibodies from a patient with systemic lupus erythematosus. Eur. J. Biochem. 136 (1983) 447–451. [PMID: 6227485]
[EC 3.1.26.9 created 1986]
 
 
EC 3.1.26.10     
Accepted name: ribonuclease IX
Reaction: Endonucleolytic cleavage of poly(U) or poly(C) to fragments terminated by 3′-hydroxy and 5′-phosphate groups
Other name(s): poly(U)- and poly(C)-specific endoribonuclease
Comments: Acts on poly(U) and poly(C), with a higher affinity for poly(C), but does not act on poly(A) or poly(G).
References:
1.  Sideris, D.C. and Fragoulis, E.G. Purification and characterization of a ribonuclease specific for poly(U) and poly(C) from the larvae of Ceratitis capitata. Eur. J. Biochem. 164 (1987) 309–315. [PMID: 3569265]
[EC 3.1.26.10 created 1992]
 
 
EC 3.1.26.11     
Accepted name: tRNase Z
Reaction: endonucleolytic cleavage of RNA, removing extra 3′ nucleotides from tRNA precursor, generating 3′ termini of tRNAs. A 3′-hydroxy group is left at the tRNA terminus and a 5′-phosphoryl group is left at the trailer molecule
Other name(s): 3 tRNase; tRNA 3 endonuclease; RNase Z; 3′ tRNase
Comments: No cofactor requirements. An homologous enzyme to that found in Arabidopsis thaliana has been found in Methanococcus janaschii.
References:
1.  Schiffer, S., Rösch, S. and Marchfelder, A. Assigning a function to a conserved group of proteins: the tRNA 3′-processing enzymes. EMBO J. 21 (2002) 2769–2777. [PMID: 12032089]
2.  Mayer, M., Schiffer, S. and Marchfelder, A. tRNA 3′ processing in plants: nuclear and mitochondrial activities differ. Biochemistry 39 (2000) 2096–2105. [PMID: 10684660]
3.  Schiffer, S., Helm, M., Theobald-Dietrich, A., Giege, R. and Marchfelder, A. The plant tRNA 3′ processing enzyme has a broad substrate spectrum. Biochemistry 40 (2001) 8264–8272. [PMID: 11444972]
4.  Kunzmann, A., Brennicke, A. and Marchfelder, A. 5′ end maturation and RNA editing have to precede tRNA 3′ processing in plant mitochondria. Proc. Natl. Acad. Sci. USA 95 (1998) 108–113. [PMID: 9419337]
5.  Mörl, M. and Marchfelder, A. The final cut. The importance of tRNA 3′-processing. EMBO Rep. 2 (2001) 17–20. [PMID: 11252717]
6.  Minagawa, A., Takaku, H., Takagi, M. and Nashimoto, M. A novel endonucleolytic mechanism to generate the CCA 3′ termini of tRNA molecules in Thermotoga maritima. J. Biol. Chem. 279 (2004) 15688–15697. [PMID: 14749326]
7.  Takaku, H., Minagawa, A., Takagi, M. and Nashimoto, M. A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res. 31 (2003) 2272–2278. [PMID: 12711671]
[EC 3.1.26.11 created 2002]
 
 
EC 3.1.26.12     
Accepted name: ribonuclease E
Reaction: Endonucleolytic cleavage of single-stranded RNA in A- and U-rich regions
Other name(s): endoribonuclease E; RNase E; Rne protein
Comments: RNase E is a bacterial ribonuclease that plays a role in the processing of ribosomal RNA (9S to 5S rRNA), the chemical degradation of bulk cellular RNA, the decay of specific regulatory, messenger and structural RNAs and the control of plasmid DNA replication [1]. The enzyme binds to monophosphorylated 5′ ends of substrates but exhibits sequential cleavages in the 3′ to 5′ direction [1]. 2′-O-Methyl nucleotide substitutions at RNase E binding sites do not prevent binding but do prevent cleavage of non-modified target sequences 5′ to that locus [1]. In Escherichia coli, the enzyme is found in the RNA degradosome. The C-terminal half of the protein contains binding sites for the three other major degradosomal components, the DEAD-box RNA helicase Rh1B, enolase (EC 4.1.1.11) and polynucleotide phosphorylase (EC 2.7.7.8).
References:
1.  Feng, Y., Vickers, T.A. and Cohen, S.N. The catalytic domain of RNase E shows inherent 3′ to 5′ directionality in cleavage site selection. Proc. Natl. Acad. Sci. USA 99 (2002) 14746–14751. [PMID: 12417756]
2.  Ehretsmann, C.P., Carpousis, A.J. and Krisch, H.M. Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev. 6 (1992) 149–159. [PMID: 1730408]
3.  Cormack, R.S., Genereaux, J.L. and Mackie, G.A. RNase E activity is conferred by a single polypeptide: overexpression, purification, and properties of the ams/rne/hmp1 gene product. Proc. Natl. Acad. Sci. USA 90 (1993) 9006–9010. [PMID: 8415644]
4.  Vanzo, N.F., Li, Y.S., Py, B., Blum, E., Higgins, C.F., Raynal, L.C., Krisch, H.M. and Carpousis, A.J. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev. 12 (1998) 2770–2781. [PMID: 9732274]
5.  Steege, D.A. Emerging features of mRNA decay in bacteria. RNA 6 (2000) 1079–1090. [PMID: 10943888]
6.  Callaghan, A.J., Grossmann, J.G., Redko, Y.U., Ilag, L.L., Moncrieffe, M.C., Symmons, M.F., Robinson, C.V., McDowall, K.J. and Luisi, B.F. Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain. Biochemistry 42 (2003) 13848–13855. [PMID: 14636052]
[EC 3.1.26.12 created 2008]
 
 
EC 3.1.26.13     
Accepted name: retroviral ribonuclease H
Reaction: Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA [1-4]. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction [5]. 2. RNA 5′-end directed cleavage 13-19 nucleotides from the RNA end [6,7]. 3. DNA 3′-end directed cleavage 15-20 nucleotides away from the primer terminus [8-10].
Other name(s): RT/RNase H; retroviral reverse transcriptase RNaseH; HIV RNase H
Comments: Comments: Retroviral reverse transcriptase is a multifunctional enzyme responsible for viral replication. To perform this task the enzyme combines two distinct activities. The polymerase domain (EC 2.7.7.49, RNA-directed DNA polymerase) occupies the N-terminal two-thirds of the reverse transcriptase whereas the ribonuclease H domain comprises the C-terminal remaining one-third [13,14]. The RNase H domain of Moloney murine leukemia virus and Human immunodeficiency virus display two metal binding sites [15-17]
References:
1.  Schultz, S.J., Zhang, M. and Champoux, J.J. Recognition of internal cleavage sites by retroviral RNases H. J. Mol. Biol. 344 (2004) 635–652. [PMID: 15533434]
2.  Sarafianos, S.G., Das, K., Tantillo, C., Clark, A.D., Jr., Ding, J., Whitcomb, J.M., Boyer, P.L., Hughes, S.H. and Arnold, E. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J. 20 (2001) 1449–1461. [PMID: 11250910]
3.  Rausch, J.W., Lener, D., Miller, J.T., Julias, J.G., Hughes, S.H. and Le Grice, S.F. Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity. Biochemistry 41 (2002) 4856–4865. [PMID: 11939780]
4.  Brehm, J.H., Mellors, J.W. and Sluis-Cremer, N. Mechanism by which a glutamine to leucine substitution at residue 509 in the ribonuclease H domain of HIV-1 reverse transcriptase confers zidovudine resistance. Biochemistry 47 (2008) 14020–14027. [PMID: 19067547]
5.  Schultz, S.J., Zhang, M., Kelleher, C.D. and Champoux, J.J. Analysis of plus-strand primer selection, removal, and reutilization by retroviral reverse transcriptases. J. Biol. Chem. 275 (2000) 32299–32309. [PMID: 10913435]
6.  DeStefano, J.J., Mallaber, L.M., Fay, P.J. and Bambara, R.A. Determinants of the RNase H cleavage specificity of human immunodeficiency virus reverse transcriptase. Nucleic Acids Res. 21 (1993) 4330–4338. [PMID: 7692401]
7.  Kati, W.M., Johnson, K.A., Jerva, L.F. and Anderson, K.S. Mechanism and fidelity of HIV reverse transcriptase. J. Biol. Chem. 267 (1992) 25988–25997. [PMID: 1281479]
8.  Palaniappan, C., Fuentes, G.M., Rodriguez-Rodriguez, L., Fay, P.J. and Bambara, R.A. Helix structure and ends of RNA/DNA hybrids direct the cleavage specificity of HIV-1 reverse transcriptase RNase H. J. Biol. Chem. 271 (1996) 2063–2070. [PMID: 8567660]
9.  Fu, T.B. and Taylor, J. When retroviral reverse transcriptases reach the end of their RNA templates. J. Virol. 66 (1992) 4271–4278. [PMID: 1376369]
10.  Beilhartz, G.L., Wendeler, M., Baichoo, N., Rausch, J., Le Grice, S. and Gotte, M. HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. J. Mol. Biol. 388 (2009) 462–474. [PMID: 19289131]
11.  Huang, H., Chopra, R., Verdine, G.L. and Harrison, S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282 (1998) 1669–1675. [PMID: 9831551]
12.  Krug, M.S. and Berger, S.L. Ribonuclease H activities associated with viral reverse transcriptases are endonucleases. Proc. Natl. Acad. Sci. USA 86 (1989) 3539–3543. [PMID: 2471188]
13.  Champoux, J.J. and Schultz, S.J. Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription. FEBS J. 276 (2009) 1506–1516. [PMID: 19228195]
14.  Schultz, S.J. and Champoux, J.J. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res. 134 (2008) 86–103. [PMID: 18261820]
15.  Goedken, E.R. and Marqusee, S. Metal binding and activation of the ribonuclease H domain from moloney murine leukemia virus. Protein Eng. 12 (1999) 975–980. [PMID: 10585503]
16.  Davies, J.F., 2nd, Hostomska, Z., Hostomsky, Z., Jordan, S.R. and Matthews, D.A. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252 (1991) 88–95. [PMID: 1707186]
17.  Pari, K., Mueller, G.A., DeRose, E.F., Kirby, T.W. and London, R.E. Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium. Biochemistry 42 (2003) 639–650. [PMID: 12534276]
[EC 3.1.26.13 created 2009]
 
 
EC 3.1.27.1      
Transferred entry: ribonuclease T2. Now EC 4.6.1.19, ribonuclease T2, since the primary reaction is that of a lyase
[EC 3.1.27.1 created 1972 as EC 3.1.4.23, transferred 1978 to EC 3.1.27.1, modified 1981, deleted 2018]
 
 
EC 3.1.27.2      
Transferred entry: Bacillus subtilis ribonuclease. Now EC 4.6.1.22, Bacillus subtilis ribonuclease, since the reaction catalysed is that of a lyase
[EC 3.1.27.2 created 1978, deleted 2018]
 
 
EC 3.1.27.3      
Transferred entry: ribonuclease T1. Now EC 4.6.1.24, ribonuclease T1, since the primary reaction is that of a lyase
[EC 3.1.27.3 created 1961 as EC 3.1.4.8, transferred 1965 to EC 2.7.7.26, reinstated 1972 as EC 3.1.4.8, transferred 1978 to EC 3.1.27.3, deleted 2020]
 
 
EC 3.1.27.4      
Transferred entry: ribonuclease U2. Now EC 4.6.1.20, ribonuclease U2, since the primary reaction is that of a lyase
[EC 3.1.27.4 created 1978, modified 1981, deleted 2018]
 
 
EC 3.1.27.5      
Transferred entry: pancreatic ribonuclease. Now EC 4.6.1.18, pancreatic ribonuclease. This reaction is now known to involve an internal-transfer (lyase) process to produce the cyclic derivative, followed by a reversal of that step with water in the "hydrolytic step"
[EC 3.1.27.5 created 1972 as EC 3.1.4.22, transferred 1978 to EC 3.1.27.5, modified 1981, deleted 2018]
 
 
EC 3.1.27.6      
Transferred entry: Enterobacter ribonuclease. Now EC 4.6.1.21, Enterobacter ribonuclease, since the primary reaction is that of a lyase
[EC 3.1.27.6 created 1978, modified 1981, deleted 2018]
 
 
EC 3.1.27.7     
Accepted name: ribonuclease F
Reaction: Endonucleolytic cleavage of RNA precursor into two, leaving 5′-hydroxy and 3′-phosphate groups
Other name(s): ribonuclease F (E. coli)
References:
1.  Gurevitz, M., Watson, N. and Apirion, D. A cleavage site of ribonuclease F. A putative processing endoribonuclease from Escherichia coli. Eur. J. Biochem. 124 (1982) 553–559. [PMID: 6179777]
2.  Watson, N. and Apirion, D. Ribonuclease F, a putative processing endoribonuclease from Escherichia coli. Biochem. Biophys. Res. Commun. 103 (1981) 543–551. [PMID: 6277308]
[EC 3.1.27.7 created 1984]
 
 
EC 3.1.27.8     
Accepted name: ribonuclease V
Reaction: Hydrolysis of poly(A), forming oligoribonucleotides and ultimately 3′-AMP
Other name(s): endoribonuclease V
Comments: Also hydrolyses poly(U).
References:
1.  Schröder, H.C., Dose, K., Zahn, R.K. and Müller, E.G. Isolation and characterization of the novel polyadenylate- and polyuridylate-degrading acid endoribonuclease V from calf thymus. J. Biol. Chem. 255 (1980) 5108–5112. [PMID: 6246098]
[EC 3.1.27.8 created 1984]
 
 
EC 3.1.27.9      
Transferred entry: tRNA-intron endonuclease. Now EC 4.6.1.16, tRNA-intron lyase
[EC 3.1.27.9 created 1992, deleted 2014]
 
 
EC 3.1.27.10      
Transferred entry: rRNA endonuclease. Now EC 4.6.1.23, ribotoxin, since the primary reaction is that of a lyase.
[EC 3.1.27.10 created 1992, deleted 2019]
 
 
EC 3.1.30.1     
Accepted name: Aspergillus nuclease S1
Reaction: Endonucleolytic cleavage to 5′-phosphomononucleotide and 5′-phosphooligonucleotide end-products
Other name(s): endonuclease S1 (Aspergillus); single-stranded-nucleate endonuclease; deoxyribonuclease S1; deoxyribonuclease S1; nuclease S1; Neurospora crassa single-strand specific endonuclease; S1 nuclease; single-strand endodeoxyribonuclease; single-stranded DNA specific endonuclease; single-strand-specific endodeoxyribonuclease; single strand-specific DNase; Aspergillus oryzae S1 nuclease
References:
1.  Ando, T. A nuclease specific for heat-denatured DNA isolated from a product of Aspergillus oryzae. Biochim. Biophys. Acta 114 (1966) 158–168. [PMID: 4287053]
2.  Sutton, W.D. A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim. Biophys. Acta 240 (1971) 522–531. [PMID: 5123563]
3.  Vogt, V.M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur. J. Biochem. 33 (1973) 192–200. [PMID: 4691350]
[EC 3.1.30.1 created 1972 as EC 3.1.4.21, transferred 1978 to EC 3.1.30.1, modified 1981]