The Enzyme Database

Displaying entries 401-450 of 2562.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.401     
Accepted name: 2-dehydro-3-deoxy-L-rhamnonate dehydrogenase (NAD+)
Reaction: 2-dehydro-3-deoxy-L-rhamnonate + NAD+ = 2,4-didehydro-3-deoxy-L-rhamnonate + NADH + H+
For diagram of L-rhamnose metabolism, click here
Other name(s): 2-keto-3-deoxy-L-rhamnonate dehydrogenase
Systematic name: 2-dehydro-3-deoxy-L-rhamnonate:NAD+ 4-oxidoreductase
Comments: The enzyme, characterized from the bacteria Sphingomonas sp. SKA58 and Sulfobacillus thermosulfidooxidans, is involved in the non-phosphorylative degradation pathway for L-rhamnose. It does not show any detectable activity with NADP+ or with other aldoses.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Watanabe, S. and Makino, K. Novel modified version of nonphosphorylated sugar metabolism - an alternative L-rhamnose pathway of Sphingomonas sp. FEBS J. 276 (2009) 1554–1567. [DOI] [PMID: 19187228]
2.  Bae, J., Kim, S.M. and Lee, S.B. Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to L-rhamnose metabolism in archaea. Extremophiles 19 (2015) 469–478. [DOI] [PMID: 25617114]
[EC 1.1.1.401 created 2016]
 
 
EC 1.1.1.402     
Accepted name: D-erythritol 1-phosphate dehydrogenase
Reaction: D-erythritol 1-phosphate + NADP+ = D-erythrulose 1-phosphate + NADPH + H+
Other name(s): eryB (gene name)
Systematic name: D-erythritol-1-phosphate 2-oxidoreductase
Comments: The enzyme, characterized from the pathogenic bacterium Brucella abortus, which causes brucellosis in livestock, participates in erythritol catabolism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sperry, J.F. and Robertson, D.C. Erythritol catabolism by Brucella abortus. J. Bacteriol. 121 (1975) 619–630. [PMID: 163226]
2.  Sangari, F.J., Aguero, J. and Garcia-Lobo, J.M. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology 146 (2000) 487–495. [DOI] [PMID: 10708387]
3.  Barbier, T., Collard, F., Zuniga-Ripa, A., Moriyon, I., Godard, T., Becker, J., Wittmann, C., Van Schaftingen, E. and Letesson, J.J. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella. Proc. Natl. Acad. Sci. USA 111 (2014) 17815–17820. [DOI] [PMID: 25453104]
[EC 1.1.1.402 created 2016]
 
 
EC 1.1.1.403     
Accepted name: D-threitol dehydrogenase (NAD+)
Reaction: D-threitol + NAD+ = D-erythrulose + NADH + H+
Other name(s): dthD (gene name)
Systematic name: D-threitol:NAD+ oxidoreductase
Comments: The enzyme, characterized from the bacterium Mycobacterium smegmatis, participates in the degradation of D-threitol.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Huang, H., Carter, M.S., Vetting, M.W., Al-Obaidi, N., Patskovsky, Y., Almo, S.C. and Gerlt, J.A. A general strategy for the discovery of metabolic pathways: D-threitol, L-threitol, and erythritol utilization in Mycobacterium smegmatis. J. Am. Chem. Soc. 137 (2015) 14570–14573. [DOI] [PMID: 26560079]
[EC 1.1.1.403 created 2016]
 
 
EC 1.1.1.404     
Accepted name: tetrachlorobenzoquinone reductase
Reaction: 2,3,5,6-tetrachlorohydroquinone + NAD+ = 2,3,5,6-tetrachloro-1,4-benzoquinone + NADH + H+
Other name(s): pcpD (gene name); TCBQ reductase
Systematic name: 2,3,5,6-tetrachlorohydroquinone:NAD+ oxidoreductase
Comments: Contains FMN. The enzyme, characterized from the bacterium Sphingobium chlorophenolicum, participates in the degradation of pentachlorophenol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chen, L. and Yang, J. Biochemical characterization of the tetrachlorobenzoquinone reductase involved in the biodegradation of pentachlorophenol. Int. J. Mol. Sci. 9 (2008) 198–212. [PMID: 19325743]
2.  Yadid, I., Rudolph, J., Hlouchova, K. and Copley, S.D. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol. Proc. Natl. Acad. Sci. USA 110 (2013) E2182–E2190. [DOI] [PMID: 23676275]
[EC 1.1.1.404 created 2017]
 
 
EC 1.1.1.405     
Accepted name: ribitol-5-phosphate 2-dehydrogenase (NADP+)
Reaction: D-ribitol 5-phosphate + NADP+ = D-ribulose 5-phosphate + NADPH + H+
Other name(s): acs1 (gene name); bcs1 (gene name); tarJ (gene name); ribulose-5-phosphate reductase; ribulose-5-P reductase; D-ribulose 5-phosphate reductase
Systematic name: D-ribitol-5-phosphate:NADP+ 2-oxidoreductase
Comments: Requires Zn2+. The enzyme, characterized in bacteria, is specific for NADP. It is part of the synthesis pathway of CDP-ribitol. In Haemophilus influenzae it is part of a multifunctional enzyme also catalysing EC 2.7.7.40, D-ribitol-5-phosphate cytidylyltransferase. cf. EC 1.1.1.137, ribitol-5-phosphate 2-dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zolli, M., Kobric, D.J. and Brown, E.D. Reduction precedes cytidylyl transfer without substrate channeling in distinct active sites of the bifunctional CDP-ribitol synthase from Haemophilus influenzae. Biochemistry 40 (2001) 5041–5048. [DOI] [PMID: 11305920]
2.  Pereira, M.P. and Brown, E.D. Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry 43 (2004) 11802–11812. [DOI] [PMID: 15362865]
3.  Pereira, M.P., D'Elia, M.A., Troczynska, J. and Brown, E.D. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J. Bacteriol. 190 (2008) 5642–5649. [DOI] [PMID: 18556787]
4.  Baur, S., Marles-Wright, J., Buckenmaier, S., Lewis, R.J. and Vollmer, W. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae. J. Bacteriol. 191 (2009) 1200–1210. [DOI] [PMID: 19074383]
[EC 1.1.1.405 created 2017]
 
 
EC 1.1.1.406     
Accepted name: galactitol 2-dehydrogenase (L-tagatose-forming)
Reaction: galactitol + NAD+ = L-tagatose + NADH + H+
Other name(s): GatDH
Systematic name: galactitol:NAD+ 2-oxidoreductase (L-tagatose-forming)
Comments: The enzyme, characterized in the bacterium Rhodobacter sphaeroides, has a wide subtrate specificity. In addition to galactitol, it primarily oxidizes D-threitol and xylitol, and in addition to L-tagatose, it primarily reduces L-erythrulose, D-ribulose and L-glyceraldehyde. It is specific for NAD+. The enzyme also shows activity with D-tagatose (cf. EC 1.1.1.16, galactitol 2-dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schneider, K.H., Jakel, G., Hoffmann, R. and Giffhorn, F. Enzyme evolution in Rhodobacter sphaeroides: selection of a mutant expressing a new galactitol dehydrogenase and biochemical characterization of the enzyme. Microbiology 141 (1995) 1865–1873. [DOI] [PMID: 7551050]
2.  Carius, Y., Christian, H., Faust, A., Zander, U., Klink, B.U., Kornberger, P., Kohring, G.W., Giffhorn, F. and Scheidig, A.J. Structural insight into substrate differentiation of the sugar-metabolizing enzyme galactitol dehydrogenase from Rhodobacter sphaeroides D. J. Biol. Chem. 285 (2010) 20006–20014. [DOI] [PMID: 20410293]
[EC 1.1.1.406 created 2017]
 
 
EC 1.1.1.407     
Accepted name: D-altritol 5-dehydrogenase
Reaction: D-altritol + NAD+ = D-tagatose + NADH + H+
For diagram of tagatose metabolism, click here
Systematic name: D-altritol:NAD+ 5-oxidoreductase
Comments: The enzyme, characterized in Agrobacterium fabrum C58, also has low activity with D-mannitol and D-arabinitol. It is part of a D-altritol degradation pathway.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Wichelecki, D.J., Vetting, M.W., Chou, L., Al-Obaidi, N., Bouvier, J.T., Almo, S.C. and Gerlt, J.A. ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel D-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58. J. Biol. Chem. 290 (2015) 28963–28976. [DOI] [PMID: 26472925]
[EC 1.1.1.407 created 2017]
 
 
EC 1.1.1.408     
Accepted name: 4-phospho-D-threonate 3-dehydrogenase
Reaction: 4-phospho-D-threonate + NAD+ = glycerone phosphate + CO2 + NADH + H+ (overall reaction)
(1a) 4-phospho-D-threonate + NAD+ = 3-dehydro-4-phospho-D-erythronate + NADH + H+
(1b) 3-dehydro-4-phospho-D-erythronate = glycerone phosphate + CO2 (spontaneous)
For diagram of erythronate and threonate catabolism, click here
Glossary: D-threonate = (2S,3R)-2,3,4-trihydroxybutanoate
glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): pdxA2 (gene name) (ambiguous)
Systematic name: 4-phospho-D-threonate:NAD+ 3-oxidoreductase
Comments: The enzyme, characterized from bacteria, is involved in a pathway for D-threonate catabolism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [DOI] [PMID: 27402745]
[EC 1.1.1.408 created 2017]
 
 
EC 1.1.1.409     
Accepted name: 4-phospho-D-erythronate 3-dehydrogenase
Reaction: 4-phospho-D-erythronate + NAD+ = glycerone phosphate + CO2 + NADH + H+ (overall reaction)
(1a) 4-phospho-D-erythronate + NAD+ = 3-dehydro-4-phospho-L-threonate + NADH + H+
(1b) 3-dehydro-4-phospho-L-threonate = glycerone phosphate + CO2 (spontaneous)
For diagram of erythronate and threonate catabolism, click here
Glossary: D-erythronate = (2R,3R)-2,3,4-trihydroxybutanoate
Other name(s): pdxA2 (gene name) (ambiguous)
Systematic name: 4-phospho-D-erythronate:NAD+ 3-oxidoreductase
Comments: The enzyme, characterized from bacteria, is involved in a pathway for D-erythronate catabolism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [DOI] [PMID: 27402745]
[EC 1.1.1.409 created 2017]
 
 
EC 1.1.1.410     
Accepted name: D-erythronate 2-dehydrogenase
Reaction: D-erythronate + NAD+ = 2-dehydro-D-erythronate + NADH + H+
For diagram of erythronate and threonate catabolism, click here
Glossary: D-erythronate = (2R,3R)-2,3,4-trihydroxybutanoate
2-dehydro-D-erythronate = (3R)-3,4-dihydroxy-2-oxobutanoate
Other name(s): denD (gene name)
Systematic name: D-erythronate:NAD+ 2-oxidoreductase
Comments: The enzyme, characterized from bacteria, is involved in D-erythronate catabolism.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [DOI] [PMID: 27402745]
[EC 1.1.1.410 created 2017]
 
 
EC 1.1.1.411     
Accepted name: L-threonate 2-dehydrogenase
Reaction: L-threonate + NAD+ = 2-dehydro-L-erythronate + NADH + H+
For diagram of erythronate and threonate catabolism, click here
Glossary: L-threonate = (2R,3S)-2,3,4-trihydroxybutanoate
2-dehydro-L-erythronate = (3R)-3,4-dihydroxy-2-oxobutanoate
Other name(s): ltnD (gene name)
Systematic name: L-threonate:NAD+ 2-oxidoreductase
Comments: The enzyme, characterized from bacteria, is involved in L-threonate catabolism.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [DOI] [PMID: 27402745]
[EC 1.1.1.411 created 2017]
 
 
EC 1.1.1.412     
Accepted name: 2-alkyl-3-oxoalkanoate reductase
Reaction: a (2R,3S)-2-alkyl-3-hydroxyalkanoate + NADP+ = an (R)-2-alkyl-3-oxoalkanoate + NADPH + H+
Other name(s): oleD (gene name)
Systematic name: (2R,3S)-2-alkyl-3-hydroxyalkanoate:NADP+ oxidoreductase
Comments: The enzyme, found in certain bacterial species, is part of a pathway for the production of olefins.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Bonnett, S.A., Papireddy, K., Higgins, S., del Cardayre, S. and Reynolds, K.A. Functional characterization of an NADPH dependent 2-alkyl-3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotrophomonas maltophilia. Biochemistry 50 (2011) 9633–9640. [DOI] [PMID: 21958090]
[EC 1.1.1.412 created 2017]
 
 
EC 1.1.1.413     
Accepted name: A-factor type γ-butyrolactone 1′-reductase (1S-forming)
Reaction: a (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one + NADP+ = a (3R,4R)-3-alkanoyl-4-(hydroxymethyl)oxolan-2-one + NADPH + H+
Glossary: a (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one = a VB type γ-butyrolactone
a (3R,4R)-3-alkanoyl-4-(hydroxymethyl)oxolan-2-one = an A-factor type γ-butyrolactone
Other name(s): barS1 (gene name)
Systematic name: (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one:NADP+ 1′-oxidoreductase
Comments: The enzyme, which is found in bacteria that produce virginiae-butanolide (VB) type γ-butyrolactone autoregulators, reduces its substrate stereospecifically, forming a hydroxyl group in the (S) configuration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shikura, N., Yamamura, J. and Nihira, T. barS1, a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species. J. Bacteriol. 184 (2002) 5151–5157. [DOI] [PMID: 12193632]
[EC 1.1.1.413 created 2017]
 
 
EC 1.1.1.414     
Accepted name: L-galactonate 5-dehydrogenase
Reaction: L-galactonate + NAD+ = D-tagaturonate + NADH + H+
Other name(s): lgoD (gene name); lgaC (gene name)
Systematic name: L-galactonate:NAD+ 5-oxidoreductase
Comments: The enzyme, reported from the human gut bacteria Escherichia coli and Bacteroides vulgatus, participates in an L-galactonate degradation pathway.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Cooper, R.A. The pathway for L-galactonate catabolism in Escherichia coli K-12. FEBS Lett. 103 (1979) 216–220. [PMID: 381020]
2.  Kuivanen, J. and Richard, P. The yjjN of E. coli codes for an L-galactonate dehydrogenase and can be used for quantification of L-galactonate and L-gulonate. Appl. Biochem. Biotechnol. 173 (2014) 1829–1835. [PMID: 24861318]
3.  Hobbs, M.E., Williams, H.J., Hillerich, B., Almo, S.C. and Raushel, F.M. L-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota. Biochemistry 53 (2014) 4661–4670. [DOI] [PMID: 24963813]
[EC 1.1.1.414 created 2018]
 
 
EC 1.1.1.415     
Accepted name: noscapine synthase
Reaction: narcotine hemiacetal + NAD+ = noscapine + NADH + H+
For diagram of noscapine biosynthesis, click here
Glossary: noscapine = (3S)-6,7-dimethoxy-3-[(5R)-4-methoxy-6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinolin-5-yl]isobenzofuran-1(3H)-one
narcotine hemiacetal = (3S)-6,7-dimethoxy-3-[(5R)-4-methoxy-6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinolin-5-yl]-1,3-dihydroisobenzofuran-1-ol
Other name(s): NOS (gene name)
Systematic name: narcotine hemiacetal:NAD+ 1-oxidoreductase
Comments: The enzyme, characterized from the plant Papaver somniferum (opium poppy), catalyses the last step in the biosynthesis of the isoquinoline alkaloid noscapine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chen, X. and Facchini, P.J. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. Plant J. 77 (2014) 173–184. [PMID: 24708518]
2.  Li, Y., Li, S., Thodey, K., Trenchard, I., Cravens, A. and Smolke, C.D. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl. Acad. Sci. USA 115 (2018) E3922–E3931. [DOI] [PMID: 29610307]
[EC 1.1.1.415 created 2018]
 
 
EC 1.1.1.416     
Accepted name: isopyridoxal dehydrogenase (5-pyridoxolactone-forming)
Reaction: isopyridoxal + NAD+ = 5-pyridoxolactone + NADH + H+
Glossary: isopyridoxal = 5-hydroxy-4-(hydroxymethyl)-6-methylpyridine-3-carbaldehyde
5-pyridoxolactone = 7-hydroxy-6-methylfuro[3,4-c]pyridin-3(1H)-one
Systematic name: isopyridoxal:NAD+ oxidoreductase (5-pyridoxolactone-forming)
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. Cr-7, participates in the degradation of pyridoxine. The enzyme also catalyses the activity of EC 1.2.1.102, isopyridoxal dehydrogenase (5-pyridoxate-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, Y.C., Nelson, M.J. and Snell, E.E. Enzymes of vitamin B6 degradation. Purification and properties of isopyridoxal dehydrogenase and 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylic-acid dehydrogenase. J. Biol. Chem. 261 (1986) 15106–15111. [PMID: 3533936]
[EC 1.1.1.416 created 2018]
 
 
EC 1.1.1.417     
Accepted name: 3β-hydroxysteroid-4β-carboxylate 3-dehydrogenase (decarboxylating)
Reaction: a 3β-hydroxy-4α-methylsteroid-4β-carboxylate + NAD(P)+ = a 4α-methyl-3-oxosteroid + NAD(P)H + CO2 + H+
Other name(s): sdmB (gene name)
Systematic name: 3β-hydroxysteroid-4β-carboxylate:NAD(P)+ 3-oxidoreductase (decarboxylating)
Comments: This bacterial enzyme participates in the biosynthesis of bacterial sterols. Together with EC 1.14.13.246, 4β-methylsterol monooxygenase (SdmA) it forms an enzyme system that removes one methyl group from the C-4 position of 4,4-dimethylated steroid molecules. SdmA catalyses three successive oxidations of the C-4β methyl group, turning it into a carboxylate group; SdmB is a bifunctional enzyme that catalyses two different activities. As EC 1.1.1.417 it catalyses an oxidative decarboxylation that results in reduction of the 3β-hydroxy group at the C-3 carbon to an oxo group. As EC 1.1.1.270, 3β-hydroxysteroid 3-dehydrogenase, it reduces the 3-oxo group back to a 3β-hydroxyl. Since the remaining methyl group at C-4 is in an α orientation, it cannot serve as a substrate for a second round of demethylation by this system.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, A.K., Banta, A.B., Wei, J.H., Kiemle, D.J., Feng, J., Giner, J.L. and Welander, P.V. C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proc. Natl. Acad. Sci. USA 115 (2018) 5884–5889. [PMID: 29784781]
[EC 1.1.1.417 created 2019]
 
 
EC 1.1.1.418     
Accepted name: plant 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating)
Reaction: a 3β-hydroxysteroid-4α-carboxylate + NAD+ = a 3-oxosteroid + CO2 + NADH
For diagram of sterol ring A modification, click here
Other name(s): 3β-HSD/D1 (gene name); 3β-HSD/D2 (gene name); 3β-hydroxysteroid dehydrogenases/C-4 decarboxylase (ambiguous)
Systematic name: 3β-hydroxysteroid-4α-carboxylate:NAD+ 3-oxidoreductase (decarboxylating)
Comments: The enzyme, found in plants, catalyses multiple reactions during plant sterol biosynthesis. Unlike the fungal/animal enzyme EC 1.1.1.170, 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating), the plant enzyme is specific for NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71822-23-6
References:
1.  Rondet, S., Taton, M. and Rahier, A. Identification, characterization, and partial purification of 4 α-carboxysterol-C3-dehydrogenase/ C4-decarboxylase from Zea mays. Arch. Biochem. Biophys. 366 (1999) 249–260. [PMID: 10356290]
2.  Rahier, A., Darnet, S., Bouvier, F., Camara, B. and Bard, M. Molecular and enzymatic characterizations of novel bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana. J. Biol. Chem. 281 (2006) 27264–27277. [PMID: 16835224]
3.  Rahier, A., Bergdoll, M., Genot, G., Bouvier, F. and Camara, B. Homology modeling and site-directed mutagenesis reveal catalytic key amino acids of 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase from Arabidopsis. Plant Physiol. 149 (2009) 1872–1886. [PMID: 19218365]
[EC 1.1.1.418 created 2019]
 
 
EC 1.1.1.419     
Accepted name: nepetalactol dehydrogenase
Reaction: (1) (+)-cis,cis-nepetalactol + NAD+ = (+)-cis,cis-nepetalactone + NADH + H+
(2) (+)-cis,trans-nepetalactol + NAD+ = (+)-cis,trans-nepetalactone + NADH + H+
For diagram of secologanin biosynthesis, click here
Glossary: (+)-cis,cis-nepetalactol = (4aR,7S,7aS)-4,7-dimethyl-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-1-ol
(+)-cis,trans-nepetalactol = (+)-iridodial lactol = (4aS,7S,7aR)-4,7-dimethyl-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-1-ol
Other name(s): NEPS1 (gene name)
Systematic name: nepetalactol:NAD+ 1-oxidoreductase
Comments: The enzyme, characterized from the plant Nepeta mussinii, binds an NAD+ cofactor. It also catalyses the activity of EC 5.5.1.34, (+)-cis,trans-nepetalactol synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lichman, B.R., Kamileen, M.O., Titchiner, G.R., Saalbach, G., Stevenson, C.EM., Lawson, D.M. and O'Connor, S.E. Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat. Chem. Biol. 15 (2019) 71–79. [PMID: 30531909]
2.  Lichman, B.R., O'Connor, S.E. and Kries, H. Biocatalytic strategies towards [4+2] cycloadditions. Chemistry 25 (2019) 6864–6877. [PMID: 30664302]
[EC 1.1.1.419 created 2019]
 
 
EC 1.1.1.420     
Accepted name: D-apiose dehydrogenase
Reaction: D-apiofuranose + NAD+ = D-apionolactone + NADH + H+
For diagram of erythronate and threonate catabolism, click here
Other name(s): apsD (gene name)
Systematic name: D-apiofuranose:NAD+ 1-oxidoreductase
Comments: The enzyme, characterized from several bacterial species, is involved in a catabolic pathway for D-apiose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Carter, M.S., Zhang, X., Huang, H., Bouvier, J.T., Francisco, B.S., Vetting, M.W., Al-Obaidi, N., Bonanno, J.B., Ghosh, A., Zallot, R.G., Andersen, H.M., Almo, S.C. and Gerlt, J.A. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14 (2018) 696–705. [DOI] [PMID: 29867142]
[EC 1.1.1.420 created 2019]
 
 
EC 1.1.1.421     
Accepted name: D-apionate oxidoisomerase
Reaction: D-apionate + NAD+ = 3-oxoisoapionate + NADH + H+
Glossary: 3-oxoisoapionate = 2,4-dihydroxy-2-(hydroxymethyl)-3-oxobutanoate
Other name(s): apnO (gene name)
Systematic name: D-apionate:NAD+ oxidoreductase (isomerizing)
Comments: The enzyme, characterized from several bacterial species, participates in the degradation of D-apionate. The reaction involves migration of a hydroxymethyl group from position 3 to position 2 and oxidation of the 3-hydroxyl group. Stereospecificity of the product, 3-oxoisoapionate, has not been determined.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
References:
1.  Carter, M.S., Zhang, X., Huang, H., Bouvier, J.T., Francisco, B.S., Vetting, M.W., Al-Obaidi, N., Bonanno, J.B., Ghosh, A., Zallot, R.G., Andersen, H.M., Almo, S.C. and Gerlt, J.A. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14 (2018) 696–705. [DOI] [PMID: 29867142]
[EC 1.1.1.421 created 2019]
 
 
EC 1.1.1.422     
Accepted name: pseudoephedrine dehydrogenase
Reaction: (+)-(1S,2S)-pseudoephedrine + NAD+ = (S)-2-(methylamino)-1-phenylpropan-1-one + NADH + H+
Glossary: (+)-(1S,2S)-pseudoephedrine = (1S,2S)-2-(methylamino)-1-phenylpropan-1-ol
(S)-2-(methylamino)-1-phenylpropan-1-one = (S)-methcathinone
Other name(s): PseDH
Systematic name: (+)-(1S,2S)-pseudoephedrine:NAD+ 1-oxidoreductase
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. TS-15, acts on a broad range of different aryl-alkyl ketones, such as haloketones, ketoamines, diketones, and ketoesters. It accepts various types of aryl groups including phenyl-, pyridyl-, thienyl-, and furyl-rings, but the presence of an aromatic ring is essential for the activity. In addition, the presence of a functional group on the alkyl chain, such as an amine, a halogen, or a ketone, is also crucial. The enzyme exhibits a strict anti-Prelog enantioselectivity. When acting on diketones, it catalyses the reduction of only the keto group closest to the ring, with no further reduction to the diol. cf. EC 1.1.1.423, ephedrine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shanati, T., Lockie, C., Beloti, L., Grogan, G. and Ansorge-Schumacher, M.B. Two enantiocomplementary ephedrine dehydrogenases from Arthrobacter sp. TS-15 with broad substrate specificity. ACS Catal. 9 (2019) 6202–6211.
2.  Shanati, T., Ansorge-Schumacher, M. Enzymes and methods for the stereoselective reduction of carbonyl compounds, oxidation and stereoselective reductive amination - for the enantioselective preparation of alcohol amine compounds. (2019) Patent WO2019002459.
3.  Shanati, T. and Ansorge-Schumacher, M.B. Biodegradation of ephedrine isomers by Arthrobacter sp. strain TS-15: discovery of novel ephedrine and pseudoephedrine dehydrogenases. Appl. Environ. Microbiol. 86(6):e02487-19 (2020). [DOI] [PMID: 31900306]
[EC 1.1.1.422 created 2020]
 
 
EC 1.1.1.423     
Accepted name: (1R,2S)-ephedrine 1-dehydrogenase
Reaction: (–)-(1R,2S)-ephedrine + NAD+ = (S)-2-(methylamino)-1-phenylpropan-1-one + NADH + H+
Glossary: (–)-(1R,2S)-ephedrine = (1R,2S)-2-(methylamino)-1-phenylpropan-1-ol
(S)-2-(methylamino)-1-phenylpropan-1-one = (S)-methcathinone
Other name(s): EDH; ephedrine dehydrogenase
Systematic name: (–)-(1R,2S)-ephedrine:NAD+ 1-oxidoreductase
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. TS-15, acts on a broad range of different aryl-alkyl ketones, such as haloketones, ketoamines, diketones, and ketoesters. It exhibits a strict enantioselectivity and accepts various types of aryl groups including phenyl-, pyridyl-, thienyl-, and furyl-rings, but the presence of an aromatic ring is essential for the activity. In addition, the presence of a functional group on the alkyl chain, such as an amine, a halogen, or a ketone, is also crucial. When acting on diketones, it catalyses the reduction of only the keto group closest to the ring, with no further reduction to the diol. cf. EC 1.1.1.422, pseudoephedrine dehydrogenase and EC 1.5.1.18, ephedrine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shanati, T., Lockie, C., Beloti, L., Grogan, G. and Ansorge-Schumacher, M.B. Two enantiocomplementary ephedrine dehydrogenases from Arthrobacter sp. TS-15 with broad substrate specificity. ACS Catal. 9 (2019) 6202–6211.
2.  Shanati, T., Ansorge-Schumacher, M. Enzymes and methods for the stereoselective reduction of carbonyl compounds, oxidation and stereoselective reductive amination - for the enantioselective preparation of alcohol amine compounds. (2019) Patent WO2019002459.
[EC 1.1.1.423 created 2020, modified 2020]
 
 
EC 1.1.1.424     
Accepted name: D-xylose 1-dehydrogenase (NADP+, D-xylono-1,4-lactone-forming)
Reaction: D-xylose + NADP+ = D-xylono-1,4-lactone + NADPH + H+
Other name(s): xacA (gene name); xdh (gene name)
Systematic name: D-xylose:NADP+ 1-oxidoreductase (D-xylono-1,4-lactone-forming)
Comments: The enzyme, which participates in the degradation of D-xylose, has been characterized from several halophilic archaeal species. cf. EC 1.1.1.179, D-xylose 1-dehydrogenase (NADP+, D-xylono-1,5-lactone-forming).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
References:
1.  Johnsen, U. and Schonheit, P. Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J. Bacteriol. 186 (2004) 6198–6207. [PMID: 15342590]
2.  Johnsen, U., Dambeck, M., Zaiss, H., Fuhrer, T., Soppa, J., Sauer, U. and Schonheit, P. D-Xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 284 (2009) 27290–27303. [DOI] [PMID: 19584053]
3.  Sutter, J.M., Johnsen, U. and Schonheit, P. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. FEMS Microbiol. Lett. 364 (2017) . [PMID: 28854683]
[EC 1.1.1.424 created 2020]
 
 
EC 1.1.1.425     
Accepted name: levoglucosan dehydrogenase
Reaction: levoglucosan + NAD+ = 3-dehydrolevoglucosan + NADH + H+
Glossary: levoglucosan = 1,6-anhydro-β-D-glucopyranose
Other name(s): 1,6-anhydro-β-D-glucose dehydrogenase
Systematic name: 1,6-anhydro-β-D-glucopyranose:NAD+ 3-oxidoreductase
Comments: Levoglucosan is formed from the pyrolysis of carbohydrates such as starch and cellulose and is an important molecular marker for pollution from biomass burning. This enzyme is present only in bacteria, and has been characterized from Arthrobacter sp. I-552 and Pseudarthrobacter phenanthrenivorans. cf. EC 2.7.1.232, levoglucosan kinase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
References:
1.  Nakahara, K., Kitamura, Y., Yamagishi, Y., Shoun, H. and Yasui, T. Levoglucosan dehydrogenase involved in the assimilation of levoglucosan in Arthrobacter sp. I-552. Biosci. Biotechnol. Biochem. 58 (1994) 2193–2196. [DOI] [PMID: 7765713]
2.  Sugiura, M., Nakahara, M., Yamada, C., Arakawa, T., Kitaoka, M. and Fushinobu, S. Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase. J. Biol. Chem. 293 (2018) 17375–17386. [DOI] [PMID: 30224354]
[EC 1.1.1.425 created 2021]
 
 
EC 1.1.1.426     
Accepted name: UDP-N-acetyl-α-D-quinovosamine dehydrogenase
Reaction: UDP-N-acetyl-α-D-quinovosamine + NAD(P)+ = UDP-2-acetamido-2,6-dideoxy-α-D-xylohex-4-ulose + NAD(P)H + H+
Glossary: UDP-N-acetyl-α-D-quinovosamine = UDP-N-acetyl-6-deoxy-α-D-glucosamine
Other name(s): wbpV (gene name); wreQ (gene name)
Systematic name: UDP-N-acetyl-α-D-quinovosamine:NAD(P)+ 4-dehydrogenase
Comments: The enzyme participates in the biosynthesis of N-acetyl-α-D-quinovosamine, a 6-deoxy sugar that is present in the O antigens of many Gram-negative bacteria, including Pseudomonas aeruginosa serotypes O6 and O10, Rhizobium etli, and Brucella abortus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Belanger, M., Burrows, L.L. and Lam, J.S. Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology (Reading) 145 (1999) 3505–3521. [DOI] [PMID: 10627048]
2.  Forsberg, L.S., Noel, K.D., Box, J. and Carlson, R.W. Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. J. Biol. Chem. 278 (2003) 51347–51359. [DOI] [PMID: 14551189]
3.  Li, T., Simonds, L., Kovrigin, E.L. and Noel, K.D. In vitro biosynthesis and chemical identification of UDP-N-acetyl-D-quinovosamine (UDP-D-QuiNAc). J. Biol. Chem. 289 (2014) 18110–18120. [DOI] [PMID: 24817117]
[EC 1.1.1.426 created 2021]
 
 
EC 1.1.1.427     
Accepted name: D-arabinose 1-dehydrogenase (NADP+)
Reaction: D-arabinofuranose + NADP+ = D-arabinono-1,4-lactone + NADPH + H+
Other name(s): AraDH; adh-4 (gene name)
Systematic name: D-arabinose:NADP+ 1-oxidoreductase
Comments: The enzyme from the archaeon Saccharolobus solfataricus is tetrameric and contains zinc. L-fucose also is a substrate. In contrast to EC 1.1.1.116 (D-arabinose 1-dehydrogenase (NAD+)) and EC 1.1.1.117 (D-arabinose 1-dehydrogenase [NAD(P)+]), this enzyme is specific for NADP+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Brouns, S.J., Walther, J., Snijders, A.P., van de Werken, H.J., Willemen, H.L., Worm, P., de Vos, M.G., Andersson, A., Lundgren, M., Mazon, H.F., van den Heuvel, R.H., Nilsson, P., Salmon, L., de Vos, W.M., Wright, P.C., Bernander, R. and van der Oost, J. Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment. J. Biol. Chem. 281 (2006) 27378–27388. [DOI] [PMID: 16849334]
2.  Brouns, S.J., Turnbull, A.P., Willemen, H.L., Akerboom, J. and van der Oost, J. Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus. J. Mol. Biol. 371 (2007) 1249–1260. [DOI] [PMID: 17610898]
[EC 1.1.1.427 created 2022]
 
 
EC 1.1.1.428     
Accepted name: 4-methylthio 2-oxobutanoate reductase (NADH)
Reaction: (2R)-2-hydroxy-4-(methylsulfanyl)butanoate + NAD+ = 4-(methylsulfanyl)-2-oxobutanoate + NADH + H+
Other name(s): CTBP1 (gene name); C-terminal-binding protein 1; MTOB reductase; 4-methylthio 2-oxobutyrate reductase; 4-methylthio 2-oxobutyric acid reductase
Systematic name: (2R)-2-hydroxy-4-(methylsulfanyl)butanoate:NAD+ 2-oxidoreductase
Comments: The substrate of this enzyme is formed as an intermediate during L-methionine salvage from S-methyl-5′-thioadenosine, which is formed during the biosynthesis of polyamines. The human enzyme also functions as a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes, thus providing a link between gene repression and the methionine salvage pathway. A similar, but NADP-specific, enzyme is involved in dimethylsulfoniopropanoate biosynthesis in algae and phytoplankton.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kumar, V., Carlson, J.E., Ohgi, K.A., Edwards, T.A., Rose, D.W., Escalante, C.R., Rosenfeld, M.G. and Aggarwal, A.K. Transcription corepressor CtBP is an NAD+-regulated dehydrogenase. Mol. Cell 10 (2002) 857–869. [DOI] [PMID: 12419229]
2.  Achouri, Y., Noel, G. and Van Schaftingen, E. 2-Keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1. Biochem. Biophys. Res. Commun. 352 (2007) 903–906. [DOI] [PMID: 17157814]
3.  Hilbert, B.J., Grossman, S.R., Schiffer, C.A. and Royer, W.E., Jr. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design. FEBS Lett. 588 (2014) 1743–1748. [DOI] [PMID: 24657618]
4.  Korwar, S., Morris, B.L., Parikh, H.I., Coover, R.A., Doughty, T.W., Love, I.M., Hilbert, B.J., Royer, W.E., Jr., Kellogg, G.E., Grossman, S.R. and Ellis, K.C. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorg. Med. Chem. 24 (2016) 2707–2715. [DOI] [PMID: 27156192]
[EC 1.1.1.428 created 2022]
 
 
EC 1.1.1.429     
Accepted name: (2S)-[(R)-hydroxy(phenyl)methyl]succinyl-CoA dehydrogenase
Reaction: (2S)-[(R)-hydroxy(phenyl)methyl]succinyl-CoA + NAD+ = (S)-2-benzoylsuccinyl-CoA + NADH + H+
Other name(s): bbsCD (gene name)
Systematic name: (2S)-[(R)-hydroxy(phenyl)methyl]succinyl-CoA:NAD+ oxidoreductase
Comments: The enzyme, purified from the bacterium Thauera aromatica, is involved in an anaerobic toluene degradation pathway. It is specific for NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  von Horsten, S., Lippert, M.L., Geisselbrecht, Y., Schuhle, K., Schall, I., Essen, L.O. and Heider, J. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. FEBS J. (2021) . [DOI] [PMID: 34601806]
[EC 1.1.1.429 created 2022]
 
 
EC 1.1.1.430     
Accepted name: D-xylose reductase (NADH)
Reaction: xylitol + NAD+ = D-xylose + NADH + H+
Other name(s): XYL1 (gene name) (ambiguous)
Systematic name: xylitol:NAD+ oxidoreductase
Comments: Xylose reductases catalyse the reduction of xylose to xylitol, the initial reaction in the fungal D-xylose degradation pathway. Most of the enzymes exhibit a strict requirement for NADPH (cf. EC 1.1.1.431, D-xylose reductase (NADPH)). Some D-xylose reductases have dual cosubstrate specificity, though they still prefer NADPH to NADH (cf. EC 1.1.1.307, D-xylose reductase [NAD(P)H]). The enzyme from Candida parapsilosis is a rare example of a xylose reductase that significantly prefers NADH, with Km and Vmax values for NADH being 10-fold lower and 10-fold higher, respectively, than for NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, J.K., Koo, B.S. and Kim, S.Y. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl. Environ. Microbiol. 69 (2003) 6179–6188. [DOI] [PMID: 14532079]
[EC 1.1.1.430 created 2022]
 
 
EC 1.1.1.431     
Accepted name: D-xylose reductase (NADPH)
Reaction: xylitol + NADP+ = D-xylose + NADPH + H+
Other name(s): XYL1 (gene name, ambiguous); xyl1 (gene name, ambiguous); xyrA (gene name); xyrB (gene name)
Systematic name: xylitol:NADP+ oxidoreductase
Comments: Xylose reductases catalyse the reduction of xylose to xylitol, the initial reaction in the fungal D-xylose degradation pathway. Most of the enzymes exhibit a strict requirement for NADPH (e.g. the enzymes from Saccharomyces cerevisiae, Aspergillus niger, Trichoderma reesei, Candida tropicalis, Saitozyma flava, and Candida intermedia). Some D-xylose reductases have dual cosubstrate specificity, though they still prefer NADPH to NADH (cf. EC 1.1.1.307, D-xylose reductase [NAD(P)H]). Very rarely the enzyme prefers NADH (cf. EC 1.1.1.430, D-xylose reductase (NADH)).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bolen, P.L. and Detroy, R.W. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose. Biotechnol. Bioeng. 27 (1985) 302–307. [DOI] [PMID: 18553673]
2.  Suzuki, T., Yokoyama, S., Kinoshita, Y., Yamada, H., Hatsu, M., Takamizawa, K. and Kawai, K. Expression of xyrA gene encoding for D-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J. Biosci. Bioeng. 87 (1999) 280–284. [DOI] [PMID: 16232468]
3.  Nidetzky, B., Mayr, P., Hadwiger, P. and Stutz, A.E. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Biochem. J. 344 Pt 1 (1999) 101–107. [PMID: 10548539]
4.  Mayr, P., Bruggler, K., Kulbe, K.D. and Nidetzky, B. D-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J. Chromatogr. B Biomed. Sci. Appl. 737 (2000) 195–202. [DOI] [PMID: 10681056]
5.  Sene, L., Felipe, M.G., Silva, S.S. and Vitolo, M. Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Appl. Biochem. Biotechnol. 91-93 (2001) 671–680. [DOI] [PMID: 11963895]
6.  Jeong, E.Y., Sopher, C., Kim, I.S. and Lee, H. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18 (2001) 1081–1089. [DOI] [PMID: 11481678]
7.  Chroumpi, T., Peng, M., Aguilar-Pontes, M.V., Muller, A., Wang, M., Yan, J., Lipzen, A., Ng, V., Grigoriev, I.V., Makela, M.R. and de Vries, R.P. Revisiting a ‘simple’ fungal metabolic pathway reveals redundancy, complexity and diversity. Microb. Biotechnol. 14 (2021) 2525–2537. [DOI] [PMID: 33666344]
8.  Terebieniec, A., Chroumpi, T., Dilokpimol, A., Aguilar-Pontes, M.V., Makela, M.R. and de Vries, R.P. Characterization of D-xylose reductase, XyrB, from Aspergillus niger. Biotechnol Rep (Amst) 30:e00610 (2021). [DOI] [PMID: 33842213]
[EC 1.1.1.431 created 2022]
 
 
EC 1.1.1.432     
Accepted name: 6-dehydroglucose reductase
Reaction: D-glucose + NADP+ = 6-dehydro-D-glucose + NADPH + H+
Glossary: quinovose = 6-deoxy-D-glucopyranose
Other name(s): D-glucose 6-dehydrogenase; smoB (gene name); squF (gene name)
Systematic name: D-glucose:NADP+ 6-oxidoreductase
Comments: The enzyme, characterized from alphaproteobacteria, is involved in a D-sulfoquinovose degradation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sharma, M., Lingford, J.P., Petricevic, M., Snow, A.J.D., Zhang, Y., Jarva, M.A., Mui, J.W., Scott, N.E., Saunders, E.C., Mao, R., Epa, R., da Silva, B.M., Pires, D.E.V., Ascher, D.B., McConville, M.J., Davies, G.J., Williams, S.J. and Goddard-Borger, E.D. Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc. Natl. Acad. Sci. USA 119 (2022) e2116022119. [DOI] [PMID: 35074914]
2.  Liu, J., Wei, Y., Ma, K., An, J., Liu, X., Liu, Y., Ang, E.L., Zhao, H. and Zhang, Y. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal. 11 (2021) 14740–14750. [DOI]
[EC 1.1.1.432 created 2022]
 
 
EC 1.1.1.433     
Accepted name: sulfoacetaldehyde reductase (NADH)
Reaction: isethionate + NAD+ = 2-sulfoacetaldehyde + NADH + H+
Glossary: isethionate = 2-hydroxyethanesulfonate
2-sulfoacetaldehyde = 2-oxoethanesulfonate
Other name(s): sarD (gene name); tauF (gene name); sqwF (gene name); BkTauF
Systematic name: isethionate:NAD+ oxidoreductase
Comments: The enzymes from the bacteria Bilophila wadsworthia and Clostridium sp. MSTE9 catalyse the reaction only in the reduction direction. In the bacterium Bifidobacterium kashiwanohense the optimal reaction pH for sulfoacetaldehyde reduction is 7.5, while that for isethionate oxidation is 10.0. cf. EC 1.1.1.313, sulfoacetaldehyde reductase (NADPH).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Peck, S.C., Denger, K., Burrichter, A., Irwin, S.M., Balskus, E.P. and Schleheck, D. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc. Natl. Acad. Sci. USA 116 (2019) 3171–3176. [DOI] [PMID: 30718429]
2.  Xing, M., Wei, Y., Zhou, Y., Zhang, J., Lin, L., Hu, Y., Hua, G.,, N. Nanjaraj Urs, A., Liu, D., Wang, F., Guo, C., Tong, Y., Li, M., Liu, Y., Ang, E.L., Zhao, H., Yuchi, Z. and Zhang, Y. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat. Commun. 10:1609 (2019). [DOI] [PMID: 30962433]
3.  Zhou, Y., Wei, Y., Nanjaraj Urs, A.N., Lin, L., Xu, T., Hu, Y., Ang, E.L., Zhao, H., Yuchi, Z. and Zhang, Y. Identification and characterization of a new sulfoacetaldehyde reductase from the human gut bacterium Bifidobacterium kashiwanohense. Biosci. Rep. 39 (2019) . [DOI] [PMID: 31123167]
4.  Liu, J., Wei, Y., Ma, K., An, J., Liu, X., Liu, Y., Ang, E.L., Zhao, H. and Zhang, Y. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal. 11 (2021) 14740–14750. [DOI]
[EC 1.1.1.433 created 2022]
 
 
EC 1.1.1.434     
Accepted name: 2-dehydro-3-deoxy-L-fuconate 4-dehydrogenase
Reaction: 2-dehydro-3-deoxy-L-fuconate + NAD+ = 2,4-didehydro-3-deoxy-L-fuconate + NADH + H+
For diagram of L-fucose catabolism, click here
Glossary: 2-dehydro-3-deoxy-L-fuconate = (4S,5S)-4,5-dihydroxy-2-oxohexanoate
2,4-didehydro-3-deoxy-L-fuconate = (5S)-5-hydroxy-2,4-dioxohexanoate
Systematic name: 2-dehydro-3-deoxy-L-fuconate:NAD+ 4-oxidoreductase
Comments: The enzyme, originally described from the bacterium Xanthomonas campestris pv. campestris, participates in an L-fucose degradation pathway. It can also act on 2-dehydro-3-deoxy-L-galactonate and 2-dehydro-3-deoxy-D-pentonate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yew, W.S., Fedorov, A.A., Fedorov, E.V., Rakus, J.F., Pierce, R.W., Almo, S.C. and Gerlt, J.A. Evolution of enzymatic activities in the enolase superfamily: L-fuconate dehydratase from Xanthomonas campestris. Biochemistry 45 (2006) 14582–14597. [DOI] [PMID: 17144652]
2.  Watanabe, S., Fukumori, F., Nishiwaki, H., Sakurai, Y., Tajima, K. and Watanabe, Y. Novel non-phosphorylative pathway of pentose metabolism from bacteria. Sci. Rep. 9:155 (2019). [DOI] [PMID: 30655589]
[EC 1.1.1.434 created 2022]
 
 
EC 1.1.1.435     
Accepted name: L-fucose dehydrogenase
Reaction: β-L-fucopyranose + NADP+ = L-fucono-1,5-lactone + NADPH + H+
For diagram of L-fucose catabolism, click here
Systematic name: β-L-fucopyranose:NADP+ 1-oxidoreductase
Comments: The enzyme, characterized from the bacterium Burkholderia multivorans, participates in an L-fucose degradation pathway. The enzyme catalyses the oxidation of β-L-fucopyranose to L-fucono-1,5-lactone, which is unstable and is rapidly converted to L-fucono-1,4-lactone. The α anomer is not recognized. The enzyme can also act on β-L-galactopyranose and D-arabinose with lower activity. NADP+ is a better cosubstrate than NAD+.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
References:
1.  Hobbs, M.E., Vetting, M., Williams, H.J., Narindoshvili, T., Kebodeaux, D.M., Hillerich, B., Seidel, R.D., Almo, S.C. and Raushel, F.M. Discovery of an L-fucono-1,5-lactonase from cog3618 of the amidohydrolase superfamily. Biochemistry 52 (2013) 239–253. [DOI] [PMID: 23214453]
[EC 1.1.1.435 created 2022]
 
 
EC 1.1.1.436     
Accepted name: lactate dehydrogenase (NAD+,ferredoxin)
Reaction: lactate + 2 NAD+ + 2 reduced ferredoxin [iron-sulfur] cluster = pyruvate + 2 NADH + 2 oxidized ferredoxin [iron-sulfur] cluster
Other name(s): electron bifurcating LDH/Etf complex
Systematic name: lactate:NAD+,ferredoxin oxidoreductase
Comments: The enzyme, isolated from the bacterium Acetobacterium woodii, uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD+ as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin to NAD+.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
References:
1.  Weghoff, M.C., Bertsch, J. and Muller, V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ. Microbiol. 17 (2015) 670–677. [DOI] [PMID: 24762045]
[EC 1.1.1.436 created 2015 as EC 1.3.1.110, transferred 2022 to EC 1.1.1.436]
 
 
EC 1.1.1.437     
Accepted name: 5-dehydrofumagillol 5-reductase
Reaction: fumagillol + NADP+ = 5-dehydrofumagillol + NADPH + H+
For diagram of reaction, click here
Glossary: fumagillol = (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-en-1-yl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-ol
Other name(s): af490 (gene name); Fma-KR
Systematic name: fumagillol:NADP+ 5-oxidoreductase
Comments: The enzyme, characterized from the mold Aspergillus fumigatus, participates in the biosynthesis of the meroterpenoid fumagillin. It is a partial polyketide synthase (PKS) consisting of only a dehydratase (DH) and a ketoreductase (KR) domain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lin, H.C., Tsunematsu, Y., Dhingra, S., Xu, W., Fukutomi, M., Chooi, Y.H., Cane, D.E., Calvo, A.M., Watanabe, K. and Tang, Y. Generation of complexity in fungal terpene biosynthesis: discovery of a multifunctional cytochrome P450 in the fumagillin pathway. J. Am. Chem. Soc. 136 (2014) 4426–4436. [DOI] [PMID: 24568283]
[EC 1.1.1.437 created 2022]
 
 
EC 1.1.1.438     
Accepted name: cis-4-hydroxycyclohexanecarboxylate dehydrogenase
Reaction: cis-4-hydroxycyclohexane-1-carboxylate + NAD+ = 4-oxocyclohexane-1-carboxylate + NADH + H+
Glossary: cis-4-hydroxycyclohexane-1-carboxylate = cis-4-hydroxycyclohexanecarboxylate
4-oxocyclohexane-1-carboxylate = 4-oxocyclohexanecarboxylate
Other name(s): chcB2 (gene name)
Systematic name: cis-4-hydroxycyclohexane-1-carboxylate:NAD+ 4-oxidoreductase
Comments: The enzyme from Corynebacterium cyclohexanicum is highly specific for the cis-4-hydroxy derivative. cf. EC 1.1.1.226, trans-4-hydroxycyclohexanecarboxylate dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yamamoto, T., Hasegawa, Y., Lau, P.CK. and Iwaki, H. Identification and characterization of a chc gene cluster responsible for the aromatization pathway of cyclohexanecarboxylate degradation in Sinomonas cyclohexanicum ATCC 51369. J. Biosci. Bioeng. 132 (2021) 621–629. [DOI] [PMID: 34583900]
[EC 1.1.1.438 created 2024]
 
 
EC 1.1.1.439     
Accepted name: 17-dehydrostemmadenine reductase
Reaction: stemmadenine + NADP+ = 17-dehydrostemmadenine + NADPH + H+
For diagram of biosythesis of stemmadenine and related alkaloids, click here
Other name(s): Redox2
Systematic name: stemmadenine:NADP+ 17-oxidoreductase
Comments: The enzyme, characterized from the plant Catharanthus roseus (Madagascar periwinkle), participates in a biosynthetic pathway that leads to production of the bisindole alkaloid compounds vinblastine and vincristine, which are used as anticancer drugs.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Qu, Y., Easson, M.EA.M., Simionescu, R., Hajicek, J., Thamm, A.MK., Salim, V. and De Luca, V. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc. Natl. Acad. Sci. USA 115 (2018) 3180–3185. [DOI] [PMID: 29511102]
[EC 1.1.1.439 created 2024]
 
 
EC 1.1.1.440     
Accepted name: rhazimal reductase
Reaction: rhazimol + NADP+ = rhazimal + NADPH + H+
For diagram of akuammiline biosynthesis, click here
Other name(s): AsRHR
Systematic name: rhazimol:NADP+ oxidoreductase (rhazimol-forming)
Comments: Isolated from the plant Alstonia scholaris (blackboard tree).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wang, Z., Xiao, Y., Wu, S., Chen, J., Li, A. and Tatsis, E.C. Deciphering and reprogramming the cyclization regioselectivity in bifurcation of indole alkaloid biosynthesis. Chem. Sci. 13 (2022) 12389–12395. [DOI] [PMID: 36349266]
[EC 1.1.1.440 created 2024]
 
 
EC 1.1.1.441     
Accepted name: polyprenol dehydrogenase [NAD(P)H]
Reaction: (1) a ditrans,polycis-polyprenol + NAD(P)+ = a ditrans,polycis-polyprenal + NAD(P)H + H+
(2) a dolichol + NAD(P)+ = a dolichal + NAD(P)H + H+
Other name(s): dolichal reductase; DHRSX (gene name)
Systematic name: ditrans,polycis-polyprenol:NAD(P)+ oxidoreductase
Comments: The enzyme, present in all eukaryotes, catalyses the dehydrogenation of ditrans,polycis-polyprenol and the reduction of dolichal as part of the pathway that converts ditrans,polycis-polyprenol to dolichol (cf. 1.3.1.94, polyprenal reductase). The enzyme works equally well with NAD+ and NADP+, but due to the cellular ratios of NAD+/NADH and NADP+/NADPH, the enzyme catalyses the oxidation of of polyprenol using NAD+ as the electron acceptor, and the reduction of dolichal using NADPH as the electron donor.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc
References:
1.  Wilson, M.P., Kentache, T., Althoff, C.R., Schulz, C., de Bettignies, G., Mateu Cabrera, G., Cimbalistiene, L., Burnyte, B., Yoon, G., Costain, G., Vuillaumier-Barrot, S., Cheillan, D., Rymen, D., Rychtarova, L., Hansikova, H., Bury, M., Dewulf, J.P., Caligiore, F., Jaeken, J., Cantagrel, V., Van Schaftingen, E., Matthijs, G., Foulquier, F. and Bommer, G.T. A pseudoautosomal glycosylation disorder prompts the revision of dolichol biosynthesis. Cell (2024) . [DOI] [PMID: 38821050]
[EC 1.1.1.441 created 2024]
 
 
EC 1.1.1.442     
Accepted name: 20β-hydroxysteroid dehydrogenase
Reaction: 20β-dihydrocortisol + NAD+ = cortisol + NADH + H+
Other name(s): 20β-HSDH; desE (gene name)
Systematic name: 20β-dihydrocortisol:NAD+ 20-oxidoreductase
Comments: The enzyme, characterized from several gut bacteria, is specific for NADH and is much more active in the reductive direction. cf. the eukaryotic enzyme EC 1.1.1.53, 3α(or 20β)-hydroxysteroid dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Devendran, S., Mendez-Garcia, C. and Ridlon, J.M. Identification and characterization of a 20β-HSDH from the anaerobic gut bacterium Butyricicoccus desmolans ATCC 43058. J. Lipid Res. 58 (2017) 916–925. [DOI] [PMID: 28314858]
2.  Doden, H.L., Pollet, R.M., Mythen, S.M., Wawrzak, Z., Devendran, S., Cann, I., Koropatkin, N.M. and Ridlon, J.M. Structural and biochemical characterization of 20β-hydroxysteroid dehydrogenase from Bifidobacterium adolescentis strain L2-32. J. Biol. Chem. 294 (2019) 12040–12053. [DOI] [PMID: 31209107]
[EC 1.1.1.442 created 2025]
 
 
EC 1.1.1.443     
Accepted name: questin reductase
Reaction: questin hydroquinone + NADP+ = questin + NADPH + H+
Glossary: questin = 1,6-dihydroxy-8-methoxy-3-methylanthracene-9,10-dione
Other name(s): gedF (gene name)
Systematic name: questin hydroquinone:NADP+ 10-oxidoreductase
Comments: The enzyme, characterized from the fungus Aspergillus terreus, catalyses a step in the biosynthesis of (+)-geodin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Qi, F., Zhang, W., Xue, Y., Geng, C., Huang, X., Sun, J. and Lu, X. Bienzyme-catalytic and dioxygenation-mediated anthraquinone ring opening. J. Am. Chem. Soc. 143 (2021) 16326–16331. [DOI] [PMID: 34586791]
[EC 1.1.1.443 created 1992 as EC 1.14.13.43, part transferred 2025 to EC 1.1.1.443]
 
 
EC 1.1.1.444     
Accepted name: sulfofucose 1-dehydrogenase
Reaction: sulfofucose + NAD+ = 6-deoxy-6-sulfo-D-galactono-1,5-lactone + NADH + H+
Glossary: sulfofucose = 6-deoxy-6-sulfo-D-galactopyranose
Other name(s): sulfofucose dehydrogenase; SfcH
Systematic name: 6-deoxy-6-sulfo-D-galactopyranose:NAD+ 1-oxidoreductase
Comments: This enzyme, characterized from the bacterium Paracoccus wurundjeri strain Merri, participates in a sulfofucose degradation pathway. Activity with NADP+ is 28% of that with NAD+. cf. EC 1.1.1.390, sulfoquinovose 1-dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Stewart, A.WE., Li, J., Lee, M., Lewis, J.M., Herisse, M., Hofferek, V., McConville, M.J., Pidot, S.J., Scott, N.E. and Williams, S.J. Tandem sulfofucolytic-sulfolactate sulfolyase pathway for catabolism of the rare sulfosugar sulfofucose. mBio 16:e0184025 (2025). [DOI] [PMID: 40823846]
[EC 1.1.1.444 created 2025]
 
 
EC 1.1.2.1      
Transferred entry: glycerolphosphate dehydrogenase. As the acceptor is now known, the enzyme has been transferred to EC 1.1.5.3, glycerol-3-phosphate dehydrogenase.
[EC 1.1.2.1 created 1961, deleted 1965]
 
 
EC 1.1.2.2     
Accepted name: mannitol dehydrogenase (cytochrome)
Reaction: D-mannitol + a ferricytochrome c = D-fructose + a ferrocytochrome c + 2 H+
Other name(s): polyol dehydrogenase
Systematic name: D-mannitol:cytochrome-c 2-oxidoreductase
Comments: The enzyme from the bacterium Gluconobacter oxydans acts on polyols with a D-lyxo configuration, such as D-mannitol and D-sorbitol, with preference towards the former.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, CAS registry number: 37250-78-5
References:
1.  Arcus, A.C. and Edson, N.L. Polyol dehydrogenases. 2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochem. J. 64 (1956) 385–394. [PMID: 13373782]
2.  Cho, N.C., Kim, K. and Jhon, D.Y. Purification and characterization of polyol dehydrogenase from Gluconobacter melanogenus. Han'guk Saenghwa Hakhaochi 23 (1990) 172–178.
[EC 1.1.2.2 created 1961]
 
 
EC 1.1.2.3     
Accepted name: L-lactate dehydrogenase (cytochrome)
Reaction: (S)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H+
Other name(s): lactic acid dehydrogenase; cytochrome b2 (flavin-free derivative of flavocytochrome b2); flavocytochrome b2; L-lactate cytochrome c reductase; L(+)-lactate:cytochrome c oxidoreductase; dehydrogenase, lactate (cytochrome); L-lactate cytochrome c oxidoreductase; lactate dehydrogenase (cytochrome); lactic cytochrome c reductase
Systematic name: (S)-lactate:ferricytochrome-c 2-oxidoreductase
Comments: Identical with cytochrome b2; a flavohemoprotein (FMN).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB, CAS registry number: 9078-32-4
References:
1.  Appleby, C.A. and Morton, R.K. Lactic dehydrogenase and cytochrome b2 of baker's yeast. Purification and crystallization. Biochem. J. 71 (1959) 492–499. [PMID: 13638255]
2.  Appleby, C.A. and Morton, R.K. Lactic dehydrogenase and cytochrome b2 of baker's yeast. Enzymic and chemical properties of the crystalline enzyme. Biochem. J. 73 (1959) 539–550. [PMID: 13793977]
3.  Bach, S.G., Dixon, M. and Zerfas, L.G. Yeast lactic dehydrogenase and cytochrome b2. Biochem. J. 40 (1946) 229–239. [PMID: 16747991]
4.  Nygaard, A.P. Lactate dehydrogenases of yeast. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 557–565.
[EC 1.1.2.3 created 1961]
 
 
EC 1.1.2.4     
Accepted name: D-lactate dehydrogenase (cytochrome)
Reaction: (R)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H+
Other name(s): lactic acid dehydrogenase; D-lactate (cytochrome) dehydrogenase; cytochrome-dependent D-(-)-lactate dehydrogenase; D-lactate-cytochrome c reductase; D-(-)-lactic cytochrome c reductase
Systematic name: (R)-lactate:cytochrome-c 2-oxidoreductase
Comments: A flavoprotein (FAD).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB, CAS registry number: 37250-79-6
References:
1.  Gregolin, C. and Singer, T.P. The lactate dehydrogenase of yeast. III. D-(-)-Lactate cytochrome c reductase, a zinc-flavoprotein from aerobic yeast. Biochim. Biophys. Acta 67 (1963) 201–218. [PMID: 13950255]
2.  Gregolin, C., Singer, T.P., Kearney, E.B. and Boeri, E. The formation and enzymatic properties of the various lactic dehydrogenases of yeast. Ann. N.Y. Acad. Sci. 94 (1961) 780–797. [DOI] [PMID: 13901630]
3.  Nygaard, A.P. D-(-)-Lactate cytochrome c reductase, a flavoprotein from yeast. J. Biol. Chem. 236 (1961) 920–925. [PMID: 13729965]
4.  Nygaard, A.P. Lactate dehydrogenases of yeast. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 557–565.
[EC 1.1.2.4 created 1961]
 
 
EC 1.1.2.5     
Accepted name: D-lactate dehydrogenase (cytochrome c-553)
Reaction: (R)-lactate + 2 ferricytochrome c-553 = pyruvate + 2 ferrocytochrome c-553 + 2 H+
Systematic name: (R)-lactate:cytochrome-c-553 2-oxidoreductase
Comments: The enzyme from the sulfate-reducing bacterium Desulfovibrio vulgaris can also act on (R)-2-hydroxybutanoate.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, CAS registry number: 37250-79-6
References:
1.  Ogata, M., Arihara, K. and Yagi, T. D-Lactate dehydrogenase of Desulfovibrio vulgaris. J. Biochem. (Tokyo) 89 (1981) 1423–1431. [PMID: 7275946]
[EC 1.1.2.5 created 1989]
 
 
EC 1.1.2.6     
Accepted name: polyvinyl alcohol dehydrogenase (cytochrome)
Reaction: polyvinyl alcohol + ferricytochrome c = oxidized polyvinyl alcohol + ferrocytochrome c + H+
Other name(s): PVA dehydrogenase; PVADH
Systematic name: polyvinyl alcohol:ferricytochrome-c oxidoreductase
Comments: A quinoprotein. The enzyme is involved in bacterial polyvinyl alcohol degradation. Some Gram-negative bacteria degrade polyvinyl alcohol by importing it into the periplasmic space, where it is oxidized by polyvinyl alcohol dehydrogenase, an enzyme that is coupled to the respiratory chain via cytochrome c. The enzyme contains a pyrroloquinoline quinone cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shimao, M., Ninomiya, K., Kuno, O., Kato, N. and Sakazawa, C. Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl. Environ. Microbiol. 51 (1986) 268. [PMID: 3513704]
2.  Shimao, M., Onishi, S., Kato, N. and Sakazawa, C. Pyrroloquinoline quinone-dependent cytochrome reduction in polyvinyl alcohol-degrading Pseudomonas sp strain VM15C. Appl. Environ. Microbiol. 55 (1989) 275–278. [PMID: 16347841]
3.  Mamoto, R., Hu, X., Chiue, H., Fujioka, Y. and Kawai, F. Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3. J. Biosci. Bioeng. 105 (2008) 147–151. [DOI] [PMID: 18343342]
4.  Hirota-Mamoto, R., Nagai, R., Tachibana, S., Yasuda, M., Tani, A., Kimbara, K. and Kawai, F. Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152 (2006) 1941–1949. [DOI] [PMID: 16804170]
5.  Hu, X., Mamoto, R., Fujioka, Y., Tani, A., Kimbara, K. and Kawai, F. The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl. Microbiol. Biotechnol. 78 (2008) 685–693. [DOI] [PMID: 18214469]
6.  Kawai, F. and Hu, X. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84 (2009) 227–237. [DOI] [PMID: 19590867]
[EC 1.1.2.6 created 1989 as EC 1.1.99.23, transferred 2010 to EC 1.1.2.6]
 
 


Data © 2001–2026 IUBMB
Web site © 2005–2026 Andrew McDonald