The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.1.1.307     
Accepted name: D-xylose reductase [NAD(P)H]
Reaction: xylitol + NAD(P)+ = D-xylose + NAD(P)H + H+
Other name(s): XylR; msXR; dsXR; dual specific xylose reductase; NAD(P)H-dependent xylose reductase; xylose reductase (ambiguous); D-xylose reductase (ambiguous)
Systematic name: xylitol:NAD(P)+ oxidoreductase
Comments: Xylose reductases catalyse the reduction of xylose to xylitol, the initial reaction in the fungal D-xylose degradation pathway. Most of the enzymes exhibit a strict requirement for NADPH [cf. EC 1.1.1.431, D-xylose reductase (NADPH)]. However, a few D-xylose reductases, such as those from Neurospora crassa [5], Yamadazyma tenuis [2,3], Scheffersomyces stipitis [1], and the thermophilic fungus Chaetomium thermophilum [4,7], have dual coenzyme specificity, though they still prefer NADPH to NADH. Very rarely the enzyme prefers NADH [cf. EC 1.1.1.430, D-xylose reductase (NADH)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J.P. and Scheffers, W.A. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 226 (1985) 669–677. [DOI] [PMID: 3921014]
2.  Neuhauser, W., Haltrich, D., Kulbe, K.D. and Nidetzky, B. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Biochem. J. 326 (1997) 683–692. [DOI] [PMID: 9307017]
3.  Hacker, B., Habenicht, A., Kiess, M. and Mattes, R. Xylose utilisation: cloning and characterisation of the xylose reductase from Candida tenuis. Biol. Chem. 380 (1999) 1395–1403. [DOI] [PMID: 10661866]
4.  Hakulinen, N., Turunen, O., Janis, J., Leisola, M. and Rouvinen, J. Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem. 270 (2003) 1399–1412. [DOI] [PMID: 12653995]
5.  Woodyer, R., Simurdiak, M., van der Donk, W.A. and Zhao, H. Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl. Environ. Microbiol. 71 (2005) 1642–1647. [DOI] [PMID: 15746370]
6.  Fernandes, S., Tuohy, M.G. and Murray, P.G. Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (TexrK271R + N273D) with altered coenzyme specificity. J. Biosci. 34 (2009) 881–890. [DOI] [PMID: 20093741]
7.  Quehenberger, J., Reichenbach, T., Baumann, N., Rettenbacher, L., Divne, C. and Spadiut, O. Kinetics and predicted structure of a novel xylose reductase from Chaetomium thermophilum. Int. J. Mol. Sci. 20 (2019) . [DOI] [PMID: 30621365]
[EC 1.1.1.307 created 2010, modified 2022]
 
 


Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald