The Enzyme Database

Displaying entries 51-100 of 818.

<< Previous | Next >>    printer_iconPrintable version



EC 4.1.1.51     
Accepted name: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-decarboxylase
Reaction: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate = 3-hydroxy-2-methylpyridine-5-carboxylate + CO2
For diagram of pyridoxal catabolism, click here
Other name(s): 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase
Systematic name: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase (3-hydroxy-2-methylpyridine-5-carboxylate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37289-49-9
References:
1.  Snell, E.E., Smucker, A.A., Ringelmann, E. and Lynen, F. Die bakterielle Oxydation des Vitamin B6. IV. Die enzymatische Decarboxylierung von 2-Methyl-3-hydroxypyridine-4,5-dicarbonsäure. Biochem. Z. 341 (1964) 109–119. [PMID: 14339645]
[EC 4.1.1.51 created 1972]
 
 
EC 4.1.1.52     
Accepted name: 6-methylsalicylate decarboxylase
Reaction: 6-methylsalicylate = 3-methylphenol + CO2
Glossary: 3-methylphenol = 3-cresol = m-cresol
Other name(s): 6-methylsalicylic acid (2,6-cresotic acid) decarboxylase; 6-MSA decarboxylase; 6-methylsalicylate carboxy-lyase
Systematic name: 6-methylsalicylate carboxy-lyase (3-methylphenol-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37289-50-2
References:
1.  Light, R.J. 6-Methylsalicylic acid decarboxylase from Penicillium patulum. Biochim. Biophys. Acta 191 (1969) 430–438. [DOI] [PMID: 5354271]
2.  Vogel, G. and Lynen, F. 6-Methylsalicylsäure-Decarboxylase. Naturwissenschaften 57 (1970) 664.
[EC 4.1.1.52 created 1972, modified 2011]
 
 
EC 4.1.1.53     
Accepted name: phenylalanine decarboxylase
Reaction: L-phenylalanine = phenylethylamine + CO2
Other name(s): L-phenylalanine decarboxylase; aromatic L-amino acid decarboxylase (ambiguous); L-phenylalanine carboxy-lyase
Systematic name: L-phenylalanine carboxy-lyase (phenylethylamine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on tyrosine and other aromatic amino acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-72-3
References:
1.  Lovenberg, W., Weissbach, H. and Udenfriend, S. Aromatic L-amino acid decarboxylase. J. Biol. Chem. 237 (1962) 89–93. [PMID: 14466899]
2.  Schulz, A.R. and Oliner, L. The possible role of thyroid aromatic amino acid decarboxylase in thyroxine biosynthesis. Life Sci. 6 (1967) 873–880. [PMID: 6034195]
[EC 4.1.1.53 created 1972]
 
 
EC 4.1.1.54     
Accepted name: dihydroxyfumarate decarboxylase
Reaction: dihydroxyfumarate = 2-hydroxy-3-oxopropanoate + CO2
Glossary: 2-hydroxy-3-oxopropanoate = tartronate semialdehyde
Other name(s): dihydroxyfumarate carboxy-lyase; dihydroxyfumarate carboxy-lyase (tartronate-semialdehyde-forming)
Systematic name: dihydroxyfumarate carboxy-lyase (2-hydroxy-3-oxopropanoate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37289-51-3
References:
1.  Fukumaga, K. Metabolism of dihydroxyfumarate, hydroxypyruvate, and their related compounds. I. Enzymic formation of xylulose in liver. J. Biochem. (Tokyo) 47 (1960) 741–754.
[EC 4.1.1.54 created 1972]
 
 
EC 4.1.1.55     
Accepted name: 4,5-dihydroxyphthalate decarboxylase
Reaction: 4,5-dihydroxyphthalate = 3,4-dihydroxybenzoate + CO2
Other name(s): 4,5-dihydroxyphthalate carboxy-lyase
Systematic name: 4,5-dihydroxyphthalate carboxy-lyase (3,4-dihydroxybenzoate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37290-48-5
References:
1.  Ribbons, D.W. and Evans, W.C. Oxidative metabolism of phthalic acid by soil pseudomonads. Biochem. J. 76 (1966) 310–318. [PMID: 16748829]
[EC 4.1.1.55 created 1972]
 
 
EC 4.1.1.56     
Accepted name: 3-oxolaurate decarboxylase
Reaction: 3-oxododecanoate = 2-undecanone + CO2
Other name(s): β-ketolaurate decarboxylase; β-ketoacyl decarboxylase; 3-oxododecanoate carboxy-lyase
Systematic name: 3-oxododecanoate carboxy-lyase (2-undecanone-forming)
Comments: Also decarboxylates other C14 to C16 oxo acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37290-49-6
References:
1.  Franke, W., Platzeck, A. and Eichhorn, G. [On the knowledge of fatty acid catabolism by mold fungi. III. On a decarboxylase for average β-ketomonocarbonic acids (β-ketolaurate decarboxylase)] Arch. Mikrobiol. 40 (1961) 73–93. [PMID: 13701396]
[EC 4.1.1.56 created 1972]
 
 
EC 4.1.1.57     
Accepted name: methionine decarboxylase
Reaction: L-methionine = 3-(methylsulfanyl)propanamine + CO2
Other name(s): L-methionine decarboxylase; L-methionine carboxy-lyase; L-methionine carboxy-lyase (3-methylthiopropanamine-forming)
Systematic name: L-methionine carboxy-lyase [3-(methylsulfanyl)propanamine-forming]
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37290-50-9
References:
1.  Hagion, H. and Nakayama, K. Amino acid metabolism in microorganisms. Part IV. L-Methionine decarboxylase produced by Streptomyces strain. Agric. Biol. Chem. 32 (1968) 727–733.
[EC 4.1.1.57 created 1972]
 
 
EC 4.1.1.58     
Accepted name: orsellinate decarboxylase
Reaction: orsellinate = orcinol + CO2
Glossary: orsellinate = 2,4-dihydroxy-6-methylbenzoate
Other name(s): orsellinate carboxy-lyase
Systematic name: 2,4-dihydroxy-6-methylbenzoate carboxy-lyase (orcinol-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-58-8
References:
1.  Pettersson, G. An orsellinic acid decarboxylase isolated from Gliocladium roseum. Acta Chem. Scand. 19 (1965) 2013–2021.
[EC 4.1.1.58 created 1972]
 
 
EC 4.1.1.59     
Accepted name: gallate decarboxylase
Reaction: 3,4,5-trihydroxybenzoate = 1,2,3-trihydroxybenzene + CO2
Glossary: 3,4,5-trihydroxybenzoate = gallate
1,2,3-trihydroxybenzene = pyrogallol
Other name(s): gallic acid decarboxylase; gallate carboxy-lyase; 3,4,5-trihydroxybenzoate carboxy-lyase (pyrogallol-forming)
Systematic name: 3,4,5-trihydroxybenzoate carboxy-lyase (1,2,3-trihydroxybenzene-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37290-51-0
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
2.  Zeida, M., Wieser, M., Yoshida, T., Sugio, T. and Nagasawa, T. Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T7. Appl. Environ. Microbiol. 64 (1998) 4743–4747. [PMID: 9835557]
3.  Jimenez, N., Curiel, J.A., Reveron, I., de Las Rivas, B. and Munoz, R. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation. Appl. Environ. Microbiol. 79 (2013) 4253–4263. [DOI] [PMID: 23645198]
[EC 4.1.1.59 created 1972]
 
 
EC 4.1.1.60     
Accepted name: stipitatonate decarboxylase
Reaction: stipitatonate = stipitatate + CO2
Glossary: stipitatonate = 4,7-dihydroxy-1H-cyclohepta[c]furan-1,3,6-trione
stipitatate = 3,6-dihydroxy-5-oxocyclohepta-1,3,6-triene-1-carboxylate
Other name(s): stipitatonate carboxy-lyase (decyclizing); stipitatonate carboxy-lyase (decyclizing, stipitatate-forming)
Systematic name: stipitatonate carboxy-lyase (ring-opening, stipitatate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37290-52-1
References:
1.  Bentley, R. and Thiessen, C.P. Biosynthesis of tropolones in Penicillium stipitatum. V. Preparation and properties of stipitatonic acid decarboxylase. J. Biol. Chem. 238 (1963) 3811–3816. [PMID: 14109225]
[EC 4.1.1.60 created 1972]
 
 
EC 4.1.1.61     
Accepted name: 4-hydroxybenzoate decarboxylase
Reaction: 4-hydroxybenzoate = phenol + CO2
Other name(s): p-hydroxybenzoate decarboxylase; 4-hydroxybenzoate carboxy-lyase
Systematic name: 4-hydroxybenzoate carboxy-lyase (phenol-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37290-53-2
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
2.  Tschech, A. and Fuchs, G. Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate - in vitro study of isotope exchange between (CO2)-C-14 and 4-hydroxybenzoate. Arch. Microbiol. 152 (1989) 594–599.
[EC 4.1.1.61 created 1972]
 
 
EC 4.1.1.62     
Accepted name: gentisate decarboxylase
Reaction: 2,5-dihydroxybenzoate = hydroquinone + CO2
Glossary: gentisate = 2,5-dihydroxybenzoate
Other name(s): 2,5-dihydroxybenzoate decarboxylase; gentisate carboxy-lyase
Systematic name: 2,5-dihydroxybenzoate carboxy-lyase (hydroquinone-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37290-54-3
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
[EC 4.1.1.62 created 1972]
 
 
EC 4.1.1.63     
Accepted name: protocatechuate decarboxylase
Reaction: 3,4-dihydroxybenzoate = catechol + CO2
Glossary: protocatechuate = 3,4-dihydroxybenzoate
Other name(s): 3,4-dihydrobenzoate decarboxylase; protocatechuate carboxy-lyase
Systematic name: 3,4-dihydroxybenzoate carboxy-lyase (catechol-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37290-55-4
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
[EC 4.1.1.63 created 1972]
 
 
EC 4.1.1.64     
Accepted name: 2,2-dialkylglycine decarboxylase (pyruvate)
Reaction: 2,2-dialkylglycine + pyruvate = dialkyl ketone + CO2 + L-alanine
Other name(s): dialkyl amino acid (pyruvate) decarboxylase; α-dialkyl amino acid transaminase; 2,2-dialkyl-2-amino acid-pyruvate aminotransferase; L-alanine-α-ketobutyrate aminotransferase; dialkylamino-acid decarboxylase (pyruvate); 2,2-dialkylglycine carboxy-lyase (amino-transferring)
Systematic name: 2,2-dialkylglycine carboxy-lyase (amino-transferring; L-alanine-forming)
Comments: A pyridoxal-phosphate protein. Acts on 2-amino-2-methylpropanoate (i.e. 2-methylalanine), 2-amino-2-methylbutanoate and 1-aminocyclopentanecarboxylate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-17-1
References:
1.  Bailey, G.B. and Dempsey, W.B. Purification and properties of an α-dialkyl amino acid transaminase. Biochemistry 6 (1967) 1526–1533.
[EC 4.1.1.64 created 1972]
 
 
EC 4.1.1.65     
Accepted name: phosphatidylserine decarboxylase
Reaction: phosphatidyl-L-serine = phosphatidylethanolamine + CO2
Other name(s): PS decarboxylase; phosphatidyl-L-serine carboxy-lyase
Systematic name: phosphatidyl-L-serine carboxy-lyase (phosphatidylethanolamine-forming)
Comments: A pyridoxal-phosphate protein. In Escherichia coli, the prosthetic group is a pyruvoyl group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9054-78-8
References:
1.  Kanfer, J. and Kennedy, E.P. Metabolism and function of bacterial lipids. II. Biosynthesis of phospholipids in Escherichia coli. J. Biol. Chem. 239 (1964) 1720–1726. [PMID: 14213340]
2.  Satre, M. and Kennedy, E.P. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. J. Biol. Chem. 253 (1978) 479–483. [PMID: 338609]
[EC 4.1.1.65 created 1976]
 
 
EC 4.1.1.66     
Accepted name: uracil-5-carboxylate decarboxylase
Reaction: uracil 5-carboxylate = uracil + CO2
Other name(s): uracil-5-carboxylic acid decarboxylase; uracil-5-carboxylate carboxy-lyase
Systematic name: uracil-5-carboxylate carboxy-lyase (uracil-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 59299-01-3
References:
1.  Palmatier, R.D., McCroskey, R.P. and Abbott, M.T. The enzymatic conversion of uracil 5-carboxylic acid to uracil and carbon dioxide. J. Biol. Chem. 245 (1970) 6706–6710. [PMID: 5482775]
[EC 4.1.1.66 created 1976]
 
 
EC 4.1.1.67     
Accepted name: UDP-galacturonate decarboxylase
Reaction: UDP-D-galacturonate = UDP-L-arabinose + CO2
For diagram of the biosynthesis of UDP-L-arabinose, UDP-galacturonate and UDP-xylose, click here
Other name(s): UDP-galacturonic acid decarboxylase; UDPGalUA carboxy lyase; UDP-D-galacturonate carboxy-lyase
Systematic name: UDP-D-galacturonate carboxy-lyase (UDP-L-arabinose-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9054-79-9
References:
1.  Fan, D.-F. and Feingold, D.S. UDPgalacturonic acid decarboxylase from Ampullariella digitata. Methods Enzymol. 28B (1972) 438–439.
[EC 4.1.1.67 created 1984]
 
 
EC 4.1.1.68     
Accepted name: 5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase
Reaction: (3E,5R)-5-carboxy-2-oxohept-3-enedioate = (4Z)-2-oxohept-4-enedioate + CO2 (overall reaction)
(1a) (3E,5R)-5-carboxy-2-oxohept-3-enedioate = (2Z,4Z)-2-hydroxyhepta-2,4-dienedioate + CO2
(1b) (2Z,4Z)-2-hydroxyhepta-2,4-dienedioate = (4Z)-2-oxohept-4-enedioate
Glossary: 5-carboxy-2-oxohept-3-enedioate = 5-oxopent-3-ene-1,2,5-tricarboxylate
Other name(s): 5-carboxymethyl-2-oxo-hex-3-ene-1,6-dioate decarboxylase; 5-oxopent-3-ene-1,2,5-tricarboxylate carboxy-lyase; 5-oxopent-3-ene-1,2,5-tricarboxylate carboxy-lyase (2-oxohept-3-enedioate-forming)
Systematic name: (3E,5R)-5-carboxy-2-oxohept-3-enedioate carboxy-lyase [(4Z)-2-oxohept-4-enedioate-forming]
Comments: Requires Mg2+ [2,3]. Part of the 4-hydroxyphenylacetate degradation pathway in Escherichia coli.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD
References:
1.  Garrido-Pertierra, A. and Cooper, R.A. Identification and purification of distinct isomerase and decarboxylase enzymes involved in the 4-hydroxyphenylacetate pathway of Escherichia coli. Eur. J. Biochem. 117 (1981) 581–584. [DOI] [PMID: 7026235]
2.  Johnson, W.H., Jr., Hajipour, G. and Whitman, C.P. Characterization of a dienol intermediate in the 5-(carboxymethyl)-2-oxo-3-hexene-1,6-dioate decarboxylase reaction. J. Am. Chem. Soc. 114 (1992) 11001–11003.
3.  Johnson, W.H., Jr., Hajipour, G. and Whitman, C.P. Stereochemical studies of 5-(carboxymethyl)-2-hydroxymuconate isomerase and 5-(carboxymethyl)-2-oxo-3-hexene-1,6-dioate decarboxylase from Escherichia coli C: mechanistic and evolutionary implications. J. Am. Chem. Soc. 117 (1995) 8719–8726.
[EC 4.1.1.68 created 1984]
 
 
EC 4.1.1.69     
Accepted name: 3,4-dihydroxyphthalate decarboxylase
Reaction: 3,4-dihydroxyphthalate = 3,4-dihydroxybenzoate + CO2
Other name(s): 3,4-dihydroxyphthalate carboxy-lyase
Systematic name: 3,4-dihydroxyphthalate carboxy-lyase (3,4-dihydroxybenzoate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 83137-76-2
References:
1.  Eaton, R.W. and Ribbons, D.W. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J. Gen. Microbiol. 151 (1982) 48–57. [PMID: 7085570]
[EC 4.1.1.69 created 1986]
 
 
EC 4.1.1.70      
Transferred entry: glutaconyl-CoA decarboxylase. Now EC 7.2.4.5, glutaconyl-CoA decarboxylase
[EC 4.1.1.70 created 1986, modified 2003, deleted 2019]
 
 
EC 4.1.1.71     
Accepted name: 2-oxoglutarate decarboxylase
Reaction: 2-oxoglutarate = succinate semialdehyde + CO2
For diagram of the citric acid cycle, click here
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): oxoglutarate decarboxylase; α-ketoglutarate decarboxylase; α-ketoglutaric decarboxylase; pre-2-oxoglutarate decarboxylase; 2-oxoglutarate carboxy-lyase
Systematic name: 2-oxoglutarate carboxy-lyase (succinate-semialdehyde-forming)
Comments: Requires thiamine diphosphate. Highly specific.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37205-42-8
References:
1.  Shigeoka, S., Onishi, T., Maeda, K., Nakano, Y. and Kitaoka, S. Occurrence of thiamin pyrophosphate-dependent 2-oxoglutarate decarboxylase in mitochondria of Euglena gracilis. FEBS Lett. 195 (1986) 43–47.
[EC 4.1.1.71 created 1989]
 
 
EC 4.1.1.72     
Accepted name: branched-chain-2-oxoacid decarboxylase
Reaction: (3S)-3-methyl-2-oxopentanoate = 2-methylbutanal + CO2
Other name(s): branched-chain oxo acid decarboxylase; branched-chain α-keto acid decarboxylase; branched-chain keto acid decarboxylase; BCKA; (3S)-3-methyl-2-oxopentanoate carboxy-lyase
Systematic name: (3S)-3-methyl-2-oxopentanoate carboxy-lyase (2-methylbutanal-forming)
Comments: Acts on a number of 2-oxo acids, with a high affinity towards branched-chain substrates. The aldehyde formed may be enzyme-bound, and may be an intermediate in the bacterial system for the biosynthesis of branched-chain fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 63653-19-0
References:
1.  Oku, H. and Kaneda, T. Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. J. Biol. Chem. 263 (1988) 18386–18396. [PMID: 3142877]
2.  de la Plaza, M., Fernandez de Palencia, P., Pelaez, C. and Requena, T. Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol. Lett. 238 (2004) 367–374. [PMID: 15358422]
3.  Smit, B.A., van Hylckama Vlieg, J.E., Engels, W.J., Meijer, L., Wouters, J.T. and Smit, G. Identification, cloning, and characterization of a Lactococcus lactis branched-chain α-keto acid decarboxylase involved in flavor formation. Appl. Environ. Microbiol. 71 (2005) 303–311. [PMID: 15640202]
[EC 4.1.1.72 created 1990]
 
 
EC 4.1.1.73     
Accepted name: tartrate decarboxylase
Reaction: (R,R)-tartrate = D-glycerate + CO2
Other name(s): (R,R)-tartrate carboxy-lyase
Systematic name: (R,R)-tartrate carboxy-lyase (D-glycerate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 124248-30-2
References:
1.  Furuyoshi, S., Kawabata, N., Tanaka, H. and Soda, K. Enzymatic production of D-glycerate from L-tartrate. Agric. Biol. Chem. 53 (1989) 2101–2105.
[EC 4.1.1.73 created 1992]
 
 
EC 4.1.1.74     
Accepted name: indolepyruvate decarboxylase
Reaction: 3-(indol-3-yl)pyruvate = 2-(indol-3-yl)acetaldehyde + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): indol-3-yl-pyruvate carboxy-lyase; 3-(indol-3-yl)pyruvate carboxy-lyase
Systematic name: 3-(indol-3-yl)pyruvate carboxy-lyase [(2-indol-3-yl)acetaldehyde-forming]
Comments: Thiamine diphosphate- and Mg2+-dependent. More specific than EC 4.1.1.1 pyruvate decarboxylase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9074-92-4
References:
1.  Koga, J. Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-pyruvic acid biosynthesis. Biochim. Biophys. Acta 1249 (1995) 1–13. [DOI] [PMID: 7766676]
[EC 4.1.1.74 created 1999]
 
 
EC 4.1.1.75     
Accepted name: 5-guanidino-2-oxopentanoate decarboxylase
Reaction: 5-guanidino-2-oxopentanoate = 4-guanidinobutanal + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): α-ketoarginine decarboxylase; 2-oxo-5-guanidinopentanoate carboxy-lyase
Systematic name: 5-guanidino-2-oxopentanoate carboxy-lyase (4-guanidinobutanal-forming)
Comments: Enzyme activity is dependent on the presence of thiamine diphosphate and a divalent cation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56831-67-5
References:
1.  Vanderbilt, A.S., Gaby, N.S., Rodwell, V.W. Intermediates and enzymes between α-ketoarginine and γ-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J. Biol. Chem. 250 (1975) 5322–5329. [PMID: 237915]
[EC 4.1.1.75 created 1999]
 
 
EC 4.1.1.76     
Accepted name: arylmalonate decarboxylase
Reaction: 2-aryl-2-methylmalonate = 2-arylpropanoate + CO2
Other name(s): AMDASE; 2-aryl-2-methylmalonate carboxy-lyase; 2-aryl-2-methylmalonate carboxy-lyase (2-arylpropionate-forming)
Systematic name: 2-aryl-2-methylmalonate carboxy-lyase (2-arylpropanoate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 144713-36-0
References:
1.  Miyamoto, K., Ohta, H. Cloning and heterologous expression of a novel arylmalonate decarboxylase gene from Alcaligenes bronchisepticus KU 1201. Appl. Microbiol. Biotechnol. 38 (1992) 234–238. [PMID: 1369144]
[EC 4.1.1.76 created 1999]
 
 
EC 4.1.1.77     
Accepted name: 2-oxo-3-hexenedioate decarboxylase
Reaction: (3E)-2-oxohex-3-enedioate = 2-oxopent-4-enoate + CO2
For diagram of catechol catabolism (meta ring cleavage), click here
Other name(s): 4-oxalocrotonate carboxy-lyase (misleading); 4-oxalocrotonate decarboxylase (misleading); cnbF (gene name); praD (gene name); amnE (gene name); nbaG (gene name); xylI (gene name)
Systematic name: (3E)-2-oxohex-3-enedioate carboxy-lyase (2-oxopent-4-enoate-forming)
Comments: Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enzyme has been reported to accept multiple tautomeric forms [1-4]. However, careful analysis of the stability of the different tautomers, as well as characterization of the enzyme that produces its substrate, EC 5.3.2.6, 2-hydroxymuconate tautomerase, showed that the actual substrate for the enzyme is (3E)-2-oxohex-3-enedioate [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37325-55-6
References:
1.  Shingler, V., Marklund, U., Powlowski, J. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174 (1992) 711–724. [DOI] [PMID: 1732207]
2.  Takenaka, S., Murakami, S., Shinke, R. and Aoki, K. Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: modified meta-cleavage pathway. Arch. Microbiol. 170 (1998) 132–137. [PMID: 9683650]
3.  Stanley, T.M., Johnson, W.H., Jr., Burks, E.A., Whitman, C.P., Hwang, C.C. and Cook, P.F. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase. Biochemistry 39 (2000) 718–726. [DOI] [PMID: 10651637]
4.  Wang, S.C., Johnson, W.H., Jr., Czerwinski, R.M., Stamps, S.L. and Whitman, C.P. Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions. Biochemistry 46 (2007) 11919–11929. [DOI] [PMID: 17902707]
5.  Kasai, D., Fujinami, T., Abe, T., Mase, K., Katayama, Y., Fukuda, M. and Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 191 (2009) 6758–6768. [DOI] [PMID: 19717587]
[EC 4.1.1.77 created 1999, modified 2011, modified 2012]
 
 
EC 4.1.1.78     
Accepted name: acetylenedicarboxylate decarboxylase
Reaction: acetylenedicarboxylate + H2O = pyruvate + CO2
Other name(s): acetylenedicarboxylate hydratase; acetylenedicarboxylate hydrase; acetylenedicarboxylate carboxy-lyase
Systematic name: acetylenedicarboxylate carboxy-lyase (pyruvate-forming)
Comments: The mechanism appears to involve hydration of the acetylene and decarboxylation of the oxaloacetic acid formed, although free oxaloacetate is not an intermediate. It is thus analogous to EC 4.2.1.27 (acetylenecarboxylate hydratase) in its mechanism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72561-10-5
References:
1.  Yamada, E.W. and Jakoby, W.B. Enzymatic utilization of acetylenic compounds. I. An enzyme converting acetylenedicarboxylic acid to pyruvate. J. Biol. Chem. 233 (1958) 706–711. [PMID: 13575441]
[EC 4.1.1.78 created 1978 as EC 4.2.1.72, transferred 2000 to EC 4.1.1.78]
 
 
EC 4.1.1.79     
Accepted name: sulfopyruvate decarboxylase
Reaction: 3-sulfopyruvate = 2-sulfoacetaldehyde + CO2
For diagram of coenzyme-M biosynthesis, click here
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
2-sulfoacetaldehyde = 2-oxoethanesulfonate
Other name(s): sulfopyruvate carboxy-lyase
Systematic name: 3-sulfopyruvate carboxy-lyase (2-sulfoacetaldehyde-forming)
Comments: Requires thiamine diphosphate. Does not decarboxylate pyruvate or phosphonopyruvate. The enzyme appears to be oxygen-sensitive.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 303155-97-7
References:
1.  Graupner, M., Xu, H. and White, R.H. Identification of the gene encoding sulfopyruvate decarboxylase, an enzyme involved in biosynthesis of coenzyme M. J. Bacteriol. 182 (2000) 4862–4867. [DOI] [PMID: 10940029]
[EC 4.1.1.79 created 2002]
 
 
EC 4.1.1.80     
Accepted name: 4-hydroxyphenylpyruvate decarboxylase
Reaction: 4-hydroxyphenylpyruvate = 4-hydroxyphenylacetaldehyde + CO2
For diagram of dopa biosynthesis, click here
Other name(s): 4-hydroxyphenylpyruvate carboxy-lyase
Systematic name: 4-hydroxyphenylpyruvate carboxy-lyase (4-hydroxyphenylacetaldehyde-forming)
Comments: Reacts with dopamine to give the benzylisoquinoline alkaloid skeleton.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 109300-96-1
References:
1.  Rueffer, M. and Zenk, M.H. Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation. Z. Naturforsch. C: Biosci. 42 (1987) 319–332.
[EC 4.1.1.80 created 2002]
 
 
EC 4.1.1.81     
Accepted name: threonine-phosphate decarboxylase
Reaction: L-threonine O-3-phosphate = (R)-1-aminopropan-2-yl phosphate + CO2
For diagram of corrin biosynthesis (part 6), click here
Other name(s): L-threonine-O-3-phosphate decarboxylase; CobD; L-threonine-O-3-phosphate carboxy-lyase
Systematic name: L-threonine-O-3-phosphate carboxy-lyase [(R)-1-aminopropan-2-yl-phosphate-forming]
Comments: A pyridoxal-phosphate protein. This enzyme is unable to decarboxylate the D-isomer of threonine O-3-phosphate. The product of this reaction, (R)-1-aminopropan-2-yl phosphate, is the substrate of EC 6.3.1.10, adenosylcobinamide-phosphate synthase, which converts adenosylcobyric acid into adenosylcobinamide phosphate in the anaerobic cobalamin biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cheong, C.G., Bauer, C.B., Brushaber, K.R., Escalante-Semerena, J.C. and Rayment, I. Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica. Biochemistry 41 (2002) 4798–4808. [DOI] [PMID: 11939774]
2.  Brushaber, K.R., O'Toole, G.A. and Escalante-Semerena, J.C. CobD, a novel enzyme with L-threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-2-propanol O-2-phosphate, a proposed new intermediate in cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273 (1998) 2684–2691. [DOI] [PMID: 9446573]
3.  Warren, M.J., Raux, E., Schubert, H.L. and Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19 (2002) 390–412. [PMID: 12195810]
[EC 4.1.1.81 created 2004]
 
 
EC 4.1.1.82     
Accepted name: phosphonopyruvate decarboxylase
Reaction: 3-phosphonopyruvate = 2-phosphonoacetaldehyde + CO2
For diagram of phosphonate metabolism, click here
Other name(s): 3-phosphonopyruvate carboxy-lyase
Systematic name: 3-phosphonopyruvate carboxy-lyase (2-phosphonoacetaldehyde-forming)
Comments: The enzyme catalyses a step in the biosynthetic pathway of 2-aminoethylphosphonate, a component of the capsular polysaccharide complex of Bacteroides fragilis. Requires thiamine diphosphate and Mg2+ as cofactors. The enzyme is activated by the divalent cations Mg2+, Ca2+ and Mn2+. Pyruvate and sulfopyruvate can also act as substrates, but more slowly. This enzyme drives the reaction catalysed by EC 5.4.2.9, phosphoenolpyruvate mutase, in the thermodynamically unfavourable direction of 3-phosphonopyruvate formation [2]. It is the initial step in all of the major biosynthetic pathways of phosphonate natural products [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 151662-34-9
References:
1.  Zhang, G., Dai, J., Lu, Z. and Dunaway-Mariano, D. The phosphonopyruvate decarboxylase from Bacteroides fragilis. J. Biol. Chem. 278 (2003) 41302–41308. [DOI] [PMID: 12904299]
2.  Seidel, H.M. and Knowles, J.R. Interaction of inhibitors with phosphoenolpyruvate mutase: implications for the reaction mechanism and the nature of the active site. Biochemistry 33 (1994) 5641–5646. [PMID: 8180189]
3.  Nakashita, H., Watanabe, K., Hara, O., Hidaka, T. and Seto, H. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate. J. Antibiot. (Tokyo) 50 (1997) 212–219. [PMID: 9127192]
[EC 4.1.1.82 created 2005]
 
 
EC 4.1.1.83     
Accepted name: 4-hydroxyphenylacetate decarboxylase
Reaction: (4-hydroxyphenyl)acetate + H+ = 4-methylphenol + CO2
Other name(s): p-hydroxyphenylacetate decarboxylase; p-Hpd; 4-Hpd; 4-hydroxyphenylacetate carboxy-lyase
Systematic name: (4-hydroxyphenyl)acetate carboxy-lyase (4-methylphenol-forming)
Comments: The enzyme, from the strict anaerobe Clostridium difficile, can also use (3,4-dihydroxyphenyl)acetate as a substrate, yielding 4-methylcatechol as a product. The enzyme is a glycyl radical enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 340137-18-0
References:
1.  D'Ari, L. and Barker, H.A. p-Cresol formation by cell-free extracts of Clostridium difficile. Arch. Microbiol. 143 (1985) 311–312. [PMID: 3938267]
2.  Selmer, T. and Andrei, P.I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268 (2001) 1363–1372. [DOI] [PMID: 11231288]
3.  Andrei, P.I., Pierik, A.J., Zauner, S., Andrei-Selmer, L.C. and Selmer, T. Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity. Eur. J. Biochem. 271 (2004) 2225–2230. [DOI] [PMID: 15153112]
[EC 4.1.1.83 created 2005]
 
 
EC 4.1.1.84     
Accepted name: D-dopachrome decarboxylase
Reaction: D-dopachrome = 5,6-dihydroxyindole + CO2
Glossary: D-dopachrome = (2R)-5,6-dioxo-2,3,5,6-tetrahydro-1H-indole-2-carboxylate
Other name(s): phenylpyruvate tautomerase II; D-tautomerase; D-dopachrome tautomerase; D-dopachrome carboxy-lyase
Systematic name: D-dopachrome carboxy-lyase (5,6-dihydroxyindole-forming)
Comments: This enzyme is specific for D-dopachrome as substrate and belongs to the MIF (macrophage migration inhibitory factor) family of proteins. L-Dopachrome, L- or D-α-methyldopachrome and dopaminochrome do not act as substrates (see also EC 5.3.3.12, L-dopachrome isomerase)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 184111-06-6
References:
1.  Odh, G., Hindemith, A., Rosengren, A.M., Rosengren, E. and Rorsman, H. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. Biochem. Biophys. Res. Commun. 197 (1993) 619–624. [DOI] [PMID: 8267597]
2.  Yoshida, H., Nishihira, J., Suzuki, M. and Hikichi, K. NMR characterization of physicochemical properties of rat D-dopachrome tautomerase. Biochem. Mol. Biol. Int. 42 (1997) 891–899. [PMID: 9285056]
3.  Sugimoto, H., Taniguchi, M., Nakagawa, A., Tanaka, I., Suzuki, M. and Nishihira, J. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 Å resolution. Biochemistry 38 (1999) 3268–3279. [DOI] [PMID: 10079069]
4.  Nishihira, J., Fujinaga, M., Kuriyama, T., Suzuki, M., Sugimoto, H., Nakagawa, A., Tanaka, I. and Sakai, M. Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochem. Biophys. Res. Commun. 243 (1998) 538–544. [DOI] [PMID: 9480844]
[EC 4.1.1.84 created 2005]
 
 
EC 4.1.1.85     
Accepted name: 3-dehydro-L-gulonate-6-phosphate decarboxylase
Reaction: 3-dehydro-L-gulonate 6-phosphate + H+ = L-xylulose 5-phosphate + CO2
For diagram of the bacterial pathway of ascorbic-acid catabolism, click here
Other name(s): 3-keto-L-gulonate 6-phosphate decarboxylase; UlaD; SgaH; SgbH; KGPDC; 3-dehydro-L-gulonate-6-phosphate carboxy-lyase
Systematic name: 3-dehydro-L-gulonate-6-phosphate carboxy-lyase (L-xylulose-5-phosphate-forming)
Comments: Requires Mg2+. Along with EC 5.1.3.22, L-ribulose-5-phosphate 3-epimerase, this enzyme is involved in a pathway for the utilization of L-ascorbate by Escherichia coli.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Yew, W.S. and Gerlt, J.A. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J. Bacteriol. 184 (2002) 302–306. [DOI] [PMID: 11741871]
2.  Wise, E., Yew, W.S., Babbitt, P.C., Gerlt, J.A. and Rayment, I. Homologous 8-barrel enzymes that catalyze unrelated reactions: orotidine 5′-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 41 (2002) 3861–3869. [DOI] [PMID: 11900527]
[EC 4.1.1.85 created 2005]
 
 
EC 4.1.1.86     
Accepted name: diaminobutyrate decarboxylase
Reaction: L-2,4-diaminobutanoate = propane-1,3-diamine + CO2
For diagram of ectoine biosynthesis, click here
Other name(s): DABA DC; L-2,4-diaminobutyrate decarboxylase; L-2,4-diaminobutanoate carboxy-lyase
Systematic name: L-2,4-diaminobutanoate carboxy-lyase (propane-1,3-diamine-forming)
Comments: A pyridoxal-phosphate protein that requires a divalent cation for activity [1]. N4-Acetyl-L-2,4-diaminobutanoate, 2,3-diaminopropanoate, ornithine and lysine are not substrates. Found in the proteobacteria Haemophilus influenzae and Acinetobacter baumannii. In the latter, this enzyme is cotranscribed with the dat gene that encodes EC 2.6.1.76, diaminobutyrate—2-oxoglutarate transaminase, which can supply the substrate for this enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yamamoto, S., Tsuzaki, Y., Tougou, K. and Shinoda, S. Purification and characterization of L-2,4-diaminobutyrate decarboxylase from Acinetobacter calcoaceticus. J. Gen. Microbiol. 138 (1992) 1461–1465. [DOI] [PMID: 1512577]
2.  Ikai, H. and Yamamoto, S. Cloning and expression in Escherichia coli of the gene encoding a novel L-2,4-diaminobutyrate decarboxylase of Acinetobacter baumannii. FEMS Microbiol. Lett. 124 (1994) 225–228. [DOI] [PMID: 7813892]
3.  Ikai, H. and Yamamoto, S. Identification and analysis of a gene encoding L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. J. Bacteriol. 179 (1997) 5118–5125. [DOI] [PMID: 9260954]
[EC 4.1.1.86 created 2006]
 
 
EC 4.1.1.87     
Accepted name: malonyl-S-ACP decarboxylase
Reaction: a malonyl-[acyl-carrier protein] + H+ = an acetyl-[acyl-carrier protein] + CO2
For diagram of malonate decarboxylase, click here
Other name(s): malonyl-S-acyl-carrier protein decarboxylase; MdcD/MdcE; MdcD,E
Systematic name: malonyl-[acyl-carrier-protein] carboxy-lyase
Comments: This enzyme comprises the β and γ subunits of EC 4.1.1.88, biotin-independent malonate decarboxylase but is not present in EC 7.2.4.4, biotin-dependent malonate decarboxylase. It follows on from EC 2.3.1.187, acetyl-S-ACP:malonate ACP transferase, and results in the regeneration of the acetylated form of the acyl-carrier-protein subunit of malonate decarboxylase [5]. The carboxy group is lost with retention of configuration [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schmid, M., Berg, M., Hilbi, H. and Dimroth, P. Malonate decarboxylase of Klebsiella pneumoniae catalyses the turnover of acetyl and malonyl thioester residues on a coenzyme-A-like prosthetic group. Eur. J. Biochem. 237 (1996) 221–228. [DOI] [PMID: 8620876]
2.  Koo, J.H. and Kim, Y.S. Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266 (1999) 683–690. [DOI] [PMID: 10561613]
3.  Handa, S., Koo, J.H., Kim, Y.S. and Floss, H.G. Stereochemical course of biotin-independent malonate decarboxylase catalysis. Arch. Biochem. Biophys. 370 (1999) 93–96. [DOI] [PMID: 10496981]
4.  Chohnan, S., Akagi, K. and Takamura, Y. Functions of malonate decarboxylase subunits from Pseudomonas putida. Biosci. Biotechnol. Biochem. 67 (2003) 214–217. [DOI] [PMID: 12619701]
5.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 4.1.1.87 created 2008]
 
 
EC 4.1.1.88     
Accepted name: biotin-independent malonate decarboxylase
Reaction: malonate + H+ = acetate + CO2
For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, click here
Other name(s): malonate decarboxylase (without biotin); malonate decarboxylase (ambiguous); MDC
Systematic name: malonate carboxy-lyase (biotin-independent)
Comments: Two types of malonate decarboxylase are currently known, both of which form multienzyme complexes. This enzyme is a cytosolic protein that is biotin-independent. The other type is a biotin-dependent, Na+-translocating enzyme that includes both soluble and membrane-bound components (cf. EC 7.2.4.4, biotin-dependent malonate decarboxylase). As free malonate is chemically rather inert, it has to be activated prior to decarboxylation. In both enzymes, this is achieved by exchanging malonate with an acetyl group bound to an acyl-carrier protiein (ACP), to form malonyl-ACP and acetate, with subsequent decarboxylation regenerating the acetyl-ACP. The ACP subunit of both enzymes differs from that found in fatty-acid biosynthesis by having phosphopantethine attached to a serine side-chain as 2-(5-triphosphoribosyl)-3-dephospho-CoA rather than as phosphopantetheine 4′-phosphate. The individual enzymes involved in carrying out the reaction of this enzyme complex are EC 2.3.1.187 (acetyl-S-ACP:malonate ACP transferase), EC 2.3.1.39 ([acyl-carrier-protein] S-malonyltransferase) and EC 4.1.1.87 (malonyl-S-ACP decarboxylase). The carboxy group is lost with retention of configuration [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schmid, M., Berg, M., Hilbi, H. and Dimroth, P. Malonate decarboxylase of Klebsiella pneumoniae catalyses the turnover of acetyl and malonyl thioester residues on a coenzyme-A-like prosthetic group. Eur. J. Biochem. 237 (1996) 221–228. [DOI] [PMID: 8620876]
2.  Byun, H.S. and Kim, Y.S. Subunit organization of bacterial malonate decarboxylases: the smallest δ subunit as an acyl-carrier protein. J. Biochem. Mol. Biol. 30 (1997) 132–137.
3.  Hoenke, S., Schmid, M. and Dimroth, P. Sequence of a gene cluster from Klebsiella pneumoniae encoding malonate decarboxylase and expression of the enzyme in Escherichia coli. Eur. J. Biochem. 246 (1997) 530–538. [DOI] [PMID: 9208947]
4.  Chohnan, S., Fujio, T., Takaki, T., Yonekura, M., Nishihara, H. and Takamura, Y. Malonate decarboxylase of Pseudomonas putida is composed of five subunits. FEMS Microbiol. Lett. 169 (1998) 37–43. [DOI] [PMID: 9851033]
5.  Hoenke, S., Schmid, M. and Dimroth, P. Identification of the active site of phosphoribosyl-dephospho-coenzyme A transferase and relationship of the enzyme to an ancient class of nucleotidyltransferases. Biochemistry 39 (2000) 13233–13240. [DOI] [PMID: 11052676]
6.  Handa, S., Koo, J.H., Kim, Y.S. and Floss, H.G. Stereochemical course of biotin-independent malonate decarboxylase catalysis. Arch. Biochem. Biophys. 370 (1999) 93–96. [DOI] [PMID: 10496981]
7.  Koo, J.H. and Kim, Y.S. Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266 (1999) 683–690. [DOI] [PMID: 10561613]
8.  Kim, Y.S. Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol. 35 (2002) 443–451. [PMID: 12359084]
9.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 4.1.1.88 created 2008, modified 2018]
 
 
EC 4.1.1.89      
Transferred entry: biotin-dependent malonate decarboxylase. Now EC 7.2.4.4, biotin-dependent malonate decarboxylase
[EC 4.1.1.89 created 2008, deleted 2018]
 
 
EC 4.1.1.90     
Accepted name: peptidyl-glutamate 4-carboxylase
Reaction: peptidyl-4-carboxyglutamate + 2,3-epoxyphylloquinone + H2O = peptidyl-glutamate + CO2 + O2 + phylloquinol
For diagram of the vitamin K cycle, click here
Other name(s): vitamin K-dependent carboxylase; γ-glutamyl carboxylase; peptidyl-glutamate 4-carboxylase (2-methyl-3-phytyl-1,4-naphthoquinone-epoxidizing)
Systematic name: peptidyl-glutamate 4-carboxylase (2-methyl-3-phytyl-1,4-naphthoquinol-epoxidizing)
Comments: The enzyme can use various vitamin-K derivatives, including menaquinol, but does not contain iron. The mechanism appears to involve the generation of a strong base by oxygenation of vitamin K. It catalyses the post-translational carboxylation of glutamate residues of several proteins of the blood-clotting system. 9–12 glutamate residues are converted to 4-carboxyglutamate (Gla) in a specific domain of the target protein. The 4-pro-S hydrogen of the glutamate residue is removed [5] and there is an inversion of stereochemistry at this position [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dowd, P., Hershline, R., Ham, S.W. and Naganathan, S. Vitamin K and energy transduction: a base strength amplification mechanism. Science 269 (1995) 1684–1691. [DOI] [PMID: 7569894]
2.  Furie, B., Bouchard, B.A. and Furie, B.C. Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 93 (1999) 1798–1808. [PMID: 10068650]
3.  Rishavy, M.A., Hallgren, K.W., Yakubenko, A.V., Shtofman, R.L., Runge, K.W. and Berkner, K.L. Bronsted analysis reveals Lys218 as the carboxylase active site base that deprotonates vitamin K hydroquinone to initiate vitamin K-dependent protein carboxylation. Biochemistry 45 (2006) 13239–13248. [DOI] [PMID: 17073445]
4.  Silva, P.J. and Ramos, M.J. Reaction mechanism of the vitamin K-dependent glutamate carboxylase: a computational study. J. Phys. Chem. B 111 (2007) 12883–12887. [DOI] [PMID: 17935315]
5.  Decottignies-Le Maréchal, P., Ducrocq, C., Marquet, A. and Azerad, R. The stereochemistry of hydrogen abstraction in vitamin K-dependent carboxylation. J. Biol. Chem. 259 (1984) 15010–15012. [PMID: 6150930]
6.  Dubois, J., Dugave, C., Foures, C., Kaminsky, M., Tabet, J.C., Bory, S., Gaudry, M. and Marquet, A. Vitamin K dependent carboxylation: determination of the stereochemical course using 4-fluoroglutamyl-containing substrate. Biochemistry 30 (1991) 10506–10512. [PMID: 1931973]
7.  Rishavy, M.A. and Berkner, K.L. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 3 (2012) 135–148. [DOI] [PMID: 22516721]
[EC 4.1.1.90 created 2009, modified 2011]
 
 
EC 4.1.1.91     
Accepted name: salicylate decarboxylase
Reaction: salicylate = phenol + CO2
Other name(s): salicylic acid decarboxylase; Scd
Systematic name: salicylate carboxy-lyase
Comments: In the reverse direction the enzyme catalyses the regioselective carboxylation of phenol into stoichiometric amounts of salicylate. The enzyme also catalyses the reversible decarboxylation of 2,4-dihydroxybenzoate, 2,6-dihydroxybenzoate, 2,3-dihydroxybenzoate and 4-aminosalicylate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kirimura, K., Gunji, H., Wakayama, R., Hattori, T. and Ishii, Y. Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase. Biochem. Biophys. Res. Commun. 394 (2010) 279–284. [DOI] [PMID: 20188702]
[EC 4.1.1.91 created 2011]
 
 
EC 4.1.1.92     
Accepted name: indole-3-carboxylate decarboxylase
Reaction: indole-3-carboxylate = indole + CO2
Systematic name: indole-3-carboxylate carboxy-lyase
Comments: Activated by Zn2+, Mn2+ or Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yoshida, T., Fujita, K. and Nagasawa, T. Novel reversible indole-3-carboxylate decarboxylase catalyzing nonoxidative decarboxylation. Biosci. Biotechnol. Biochem. 66 (2002) 2388–2394. [PMID: 12506977]
[EC 4.1.1.92 created 2011]
 
 
EC 4.1.1.93     
Accepted name: pyrrole-2-carboxylate decarboxylase
Reaction: (1) pyrrole-2-carboxylate = pyrrole + CO2
(2) pyrrole-2-carboxylate + H2O = pyrrole + HCO3-
Systematic name: pyrrole-2-carboxylate carboxy-lyase
Comments: The enzyme catalyses both the carboxylation and decarboxylation reactions. However, while bicarbonate is the preferred substrate for the carboxylation reaction, decarboxylation produces carbon dioxide. The enzyme is activated by carboxylic acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
References:
1.  Wieser, M., Fujii, N., Yoshida, T. and Nagasawa, T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. Eur. J. Biochem. 257 (1998) 495–499. [DOI] [PMID: 9826198]
2.  Omura, H., Wieser, M. and Nagasawa, T. Pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910, an organic-acid-requiring enzyme. Eur. J. Biochem. 253 (1998) 480–484. [DOI] [PMID: 9654100]
3.  Wieser, M., Yoshida, T. and Nagasawa, T. Microbial synthesis of pyrrole-2-carboxylate by Bacillus megaterium PYR2910. Tetrahedron Lett. 39 (1998) 4309–4310.
[EC 4.1.1.93 created 2011]
 
 
EC 4.1.1.94     
Accepted name: ethylmalonyl-CoA decarboxylase
Reaction: (S)-ethylmalonyl-CoA = butanoyl-CoA + CO2
Systematic name: (S)-ethylmalonyl-CoA carboxy-lyase (butanoyl-CoA-forming)
Comments: The enzyme, which exists in all vertebrates, decarboxylates ethylmalonyl-CoA, a potentially toxic compound that is formed in low amounts by the activity of EC 6.4.1.2, acetyl-CoA carboxylase and EC 6.4.1.3, propanoyl-CoA carboxylase. It prefers the S isomer, and can decarboxylate (R)-ethylmalonyl-CoA with lower efficiency. cf. EC 7.2.4.1, (S)-methylmalonyl-CoA decarboxylase (sodium-transporting).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Linster, C.L., Noel, G., Stroobant, V., Vertommen, D., Vincent, M.F., Bommer, G.T., Veiga-da-Cunha, M. and Van Schaftingen, E. Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. J. Biol. Chem. 286 (2011) 42992–43003. [DOI] [PMID: 22016388]
[EC 4.1.1.94 created 2012]
 
 
EC 4.1.1.95     
Accepted name: L-glutamyl-[BtrI acyl-carrier protein] decarboxylase
Reaction: L-glutamyl-[BtrI acyl-carrier protein] = 4-amino butanoyl-[BtrI acyl-carrier protein] + CO2
Other name(s): btrK (gene name)
Systematic name: L-glutamyl-[BtrI acyl-carrier protein] carboxy-lyase
Comments: Binds pyridoxal 5′-phosphate. Catalyses a step in the biosynthesis of the side chain of the aminoglycoside antibiotics of the butirosin family. Has very low activity with substrates not bound to an acyl-carrier protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Li, Y., Llewellyn, N.M., Giri, R., Huang, F. and Spencer, J.B. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12 (2005) 665–675. [DOI] [PMID: 15975512]
[EC 4.1.1.95 created 2012]
 
 
EC 4.1.1.96     
Accepted name: carboxynorspermidine decarboxylase
Reaction: (1) carboxynorspermidine = bis(3-aminopropyl)amine + CO2
(2) carboxyspermidine = spermidine + CO2
Glossary: bis(3-aminopropyl)amine = norspermidine
Other name(s): carboxyspermidine decarboxylase; CANSDC; VC1623 (gene name)
Systematic name: carboxynorspermidine carboxy-lyase (bis(3-aminopropyl)amine-forming)
Comments: A pyridoxal 5′-phosphate enzyme. Part of a bacterial polyamine biosynthesis pathway. The enzyme is essential for biofilm formation in the bacterium Vibrio cholerae [1]. The enzyme from Campylobacter jejuni only produces spermidine in vivo even though it shows activity with carboxynorspermidine in vitro [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, J., Sperandio, V., Frantz, D.E., Longgood, J., Camilli, A., Phillips, M.A. and Michael, A.J. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J. Biol. Chem. 284 (2009) 9899–9907. [DOI] [PMID: 19196710]
2.  Deng, X., Lee, J., Michael, A.J., Tomchick, D.R., Goldsmith, E.J. and Phillips, M.A. Evolution of substrate specificity within a diverse family of β/α-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine. J. Biol. Chem. 285 (2010) 25708–25719. [DOI] [PMID: 20534592]
3.  Hanfrey, C.C., Pearson, B.M., Hazeldine, S., Lee, J., Gaskin, D.J., Woster, P.M., Phillips, M.A. and Michael, A.J. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J. Biol. Chem. 286 (2011) 43301–43312. [DOI] [PMID: 22025614]
[EC 4.1.1.96 created 2012]
 
 
EC 4.1.1.97     
Accepted name: 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase
Reaction: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate = (S)-allantoin + CO2
For diagram of AMP catabolism, click here
Glossary: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate = 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline
Other name(s): OHCU decarboxylase; hpxQ (gene name); PRHOXNB (gene name)
Systematic name: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate carboxy-lyase [(S)-allantoin-forming]
Comments: This enzyme is part of the pathway from urate to (S)-allantoin, which is present in bacteria, plants and animals (but not in humans).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ramazzina, I., Folli, C., Secchi, A., Berni, R. and Percudani, R. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat. Chem. Biol. 2 (2006) 144–148. [DOI] [PMID: 16462750]
2.  Cendron, L., Berni, R., Folli, C., Ramazzina, I., Percudani, R. and Zanotti, G. The structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase provides insights into the mechanism of uric acid degradation. J. Biol. Chem. 282 (2007) 18182–18189. [DOI] [PMID: 17428786]
3.  Kim, K., Park, J. and Rhee, S. Structural and functional basis for (S)-allantoin formation in the ureide pathway. J. Biol. Chem. 282 (2007) 23457–23464. [DOI] [PMID: 17567580]
4.  French, J.B. and Ealick, S.E. Structural and mechanistic studies on Klebsiella pneumoniae 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. J. Biol. Chem. 285 (2010) 35446–35454. [DOI] [PMID: 20826786]
[EC 4.1.1.97 created 2014]
 
 
EC 4.1.1.98     
Accepted name: 4-hydroxy-3-polyprenylbenzoate decarboxylase
Reaction: a 4-hydroxy-3-polyprenylbenzoate = a 2-polyprenylphenol + CO2
For diagram of ubiquinol biosynthesis, click here
Other name(s): ubiD (gene name); 4-hydroxy-3-solanesylbenzoate decarboxylase; 3-octaprenyl-4-hydroxybenzoate decarboxylase
Systematic name: 4-hydroxy-3-polyprenylbenzoate carboxy-lyase
Comments: The enzyme catalyses a step in prokaryotic ubiquinone biosynthesis, as well as in plastoquinone biosynthesis in cyanobacteria. The enzyme can accept substrates with different polyprenyl tail lengths in vitro, but uses a specific length in vivo, which is determined by the polyprenyl diphosphate synthase that exists in the specific organism. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Leppik, R.A., Young, I.G. and Gibson, F. Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-Octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim. Biophys. Acta 436 (1976) 800–810. [DOI] [PMID: 782527]
2.  Gulmezian, M., Hyman, K.R., Marbois, B.N., Clarke, C.F. and Javor, G.T. The role of UbiX in Escherichia coli coenzyme Q biosynthesis. Arch. Biochem. Biophys. 467 (2007) 144–153. [DOI] [PMID: 17889824]
3.  Pfaff, C., Glindemann, N., Gruber, J., Frentzen, M. and Sadre, R. Chorismate pyruvate-lyase and 4-hydroxy-3-solanesylbenzoate decarboxylase are required for plastoquinone biosynthesis in the cyanobacterium Synechocystis sp. PCC6803. J. Biol. Chem. 289 (2014) 2675–2686. [DOI] [PMID: 24337576]
4.  Lin, F., Ferguson, K.L., Boyer, D.R., Lin, X.N. and Marsh, E.N. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase. ACS Chem. Biol. 10 (2015) 1137–1144. [DOI] [PMID: 25647642]
5.  Payne, K.A., White, M.D., Fisher, K., Khara, B., Bailey, S.S., Parker, D., Rattray, N.J., Trivedi, D.K., Goodacre, R., Beveridge, R., Barran, P., Rigby, S.E., Scrutton, N.S., Hay, S. and Leys, D. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522 (2015) 497–501. [DOI] [PMID: 26083754]
[EC 4.1.1.98 created 2014, modified 2015]
 
 
EC 4.1.1.99     
Accepted name: phosphomevalonate decarboxylase
Reaction: ATP + (R)-5-phosphomevalonate = ADP + phosphate + isopentenyl phosphate + CO2
For diagram of the archaeal mevalonate pathway, click here
Systematic name: ATP:(R)-5-phosphomevalonate carboxy-lyase (adding ATP; isopentenyl-phosphate-forming)
Comments: The enzyme participates in a mevalonate pathway that occurs in halophilic archaea. The activity is also present in eubacteria of the Chloroflexi phylum. cf. EC 4.1.1.33, diphosphomevalonate decarboxylase, and EC 4.1.1.110, bisphosphomevalonate decarboxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dellas, N., Thomas, S.T., Manning, G. and Noel, J.P. Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2:e00672 (2013). [PMID: 24327557]
2.  Vannice, J.C., Skaff, D.A., Keightley, A., Addo, J.K., Wyckoff, G.J. and Miziorko, H.M. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J. Bacteriol. 196 (2014) 1055–1063. [DOI] [PMID: 24375100]
3.  Thomas, S.T., Louie, G.V., Lubin, J.W., Lundblad, V. and Noel, J.P. Substrate Specificity and Engineering of Mevalonate 5-Phosphate Decarboxylase. ACS Chem. Biol. 14 (2019) 1767–1779. [PMID: 31268677]
[EC 4.1.1.99 created 2014, modified 2018]
 
 
EC 4.1.1.100     
Accepted name: prephenate decarboxylase
Reaction: prephenate = 3-[(4R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate + CO2
For diagram of bacilysin biosynthesis, click here
Glossary: L-anticapsin = 3-[(1R,2S,6R)-5-oxo-7-oxabicyclo[4.1.0]hept-2-yl]-L-alanine
Other name(s): BacA; AerD; SalX; non-aromatizing prephenate decarboxylase
Systematic name: prephenate carboxy-lyase (3-[(4R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate-forming)
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is involved in the biosynthesis of the nonribosomally synthesized dipeptide antibiotic bacilysin, composed of L-alanine and L-anticapsin. The enzyme isomerizes only the pro-R double bond in prephenate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mahlstedt, S.A. and Walsh, C.T. Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis. Biochemistry 49 (2010) 912–923. [DOI] [PMID: 20052993]
2.  Mahlstedt, S., Fielding, E.N., Moore, B.S. and Walsh, C.T. Prephenate decarboxylases: a new prephenate-utilizing enzyme family that performs nonaromatizing decarboxylation en route to diverse secondary metabolites. Biochemistry 49 (2010) 9021–9023. [DOI] [PMID: 20863139]
3.  Parker, J.B. and Walsh, C.T. Olefin isomerization regiochemistries during tandem action of BacA and BacB on prephenate in bacilysin biosynthesis. Biochemistry 51 (2012) 3241–3251. [DOI] [PMID: 22483065]
[EC 4.1.1.100 created 2015]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald