The Enzyme Database

Displaying entries 101-150 of 887.

<< Previous | Next >>    printer_iconPrintable version

EC 4.1.1.101     
Accepted name: malolactic enzyme
Reaction: (S)-malate = (S)-lactate + CO2
Other name(s): mleA (gene name); mleS (gene name)
Systematic name: (S)-malate carboxy-lyase
Comments: The enzyme is involved in the malolactic fermentation of wine, which results in a natural decrease in acidity and favorable changes in wine flavors. It has been purified from several lactic acid bacteria, including Leuconostoc mesenteroides [1], Lactobacillus plantarum [2], and Oenococcus oeni [3,4]. The enzyme contains a tightly bound NAD+ cofactor and requires Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lonvaud-Funel, A. and de Saad, A.M. Purification and properties of a malolactic Enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl. Environ. Microbiol. 43 (1982) 357–361. [PMID: 16345941]
2.  Caspritz, G. and Radler, F. Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J. Biol. Chem. 258 (1983) 4907–4910. [PMID: 6833282]
3.  Naouri, P., Chagnaud, P., Arnaud, A. and Galzy, P. Purification and properties of a malolactic enzyme from Leuconostoc oenos ATCC 23278. J. Basic Microbiol. 30 (1990) 577–585. [DOI] [PMID: 2097345]
4.  Schumann, C., Michlmayr, H., Del Hierro, A.M., Kulbe, K.D., Jiranek, V., Eder, R. and Nguyen, T.H. Malolactic enzyme from Oenococcus oeni: heterologous expression in Escherichia coli and biochemical characterization. Bioengineered 4 (2013) 147–152. [DOI] [PMID: 23196745]
[EC 4.1.1.101 created 2015]
 
 
EC 4.1.1.102     
Accepted name: phenacrylate decarboxylase
Reaction: (1) 4-coumarate = 4-vinylphenol + CO2
(2) trans-cinnamate = styrene + CO2
(3) ferulate = 4-vinylguaiacol + CO2
Glossary: 4-coumarate = 3-(4-hydroxyphenyl)prop-2-enoate
trans-cinnamate = (2E)-3-phenylprop-2-enoate
ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): FDC1 (gene name); ferulic acid decarboxylase
Systematic name: 3-phenylprop-2-enoate carboxy-lyase
Comments: The enzyme, found in fungi, catalyses the decarboxylation of phenacrylic acids present in plant cell walls. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mukai, N., Masaki, K., Fujii, T., Kawamukai, M. and Iefuji, H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioeng. 109 (2010) 564–569. [DOI] [PMID: 20471595]
2.  Bhuiya, M.W., Lee, S.G., Jez, J.M. and Yu, O. Structure and mechanism of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81 (2015) 4216–4223. [DOI] [PMID: 25862228]
3.  Payne, K.A., White, M.D., Fisher, K., Khara, B., Bailey, S.S., Parker, D., Rattray, N.J., Trivedi, D.K., Goodacre, R., Beveridge, R., Barran, P., Rigby, S.E., Scrutton, N.S., Hay, S. and Leys, D. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522 (2015) 497–501. [DOI] [PMID: 26083754]
[EC 4.1.1.102 created 2015]
 
 
EC 4.1.1.103     
Accepted name: γ-resorcylate decarboxylase
Reaction: 2,6-dihydroxybenzoate = 1,3-dihydroxybenzene + CO2
Glossary: 2,6-dihydroxybenzoate = γ-resorcylate
1,3-dihydroxybenzene = resorcinol
Other name(s): graF (gene name); tsdA (gene name)
Systematic name: 2,6-dihydroxybenzoate carboxy-lyase
Comments: The enzyme, characterized from several bacterial strains, is involved in the degradation of γ-resorcylate. It contains a zinc ion and a water molecule at the active site. The reaction is reversible, but equilibrium greatly favors the decarboxylation reaction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Yoshida, M., Fukuhara, N. and Oikawa, T. Thermophilic, reversible γ-resorcylate decarboxylase from Rhizobium sp. strain MTP-10005: purification, molecular characterization, and expression. J. Bacteriol. 186 (2004) 6855–6863. [DOI] [PMID: 15466039]
2.  Ishii, Y., Narimatsu, Y., Iwasaki, Y., Arai, N., Kino, K. and Kirimura, K. Reversible and nonoxidative γ-resorcylic acid decarboxylase: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter. Biochem. Biophys. Res. Commun. 324 (2004) 611–620. [DOI] [PMID: 15474471]
3.  Matsui, T., Yoshida, T., Yoshimura, T. and Nagasawa, T. Regioselective carboxylation of 1,3-dihydroxybenzene by 2,6-dihydroxybenzoate decarboxylase of Pandoraea sp. 12B-2. Appl. Microbiol. Biotechnol. 73 (2006) 95–102. [DOI] [PMID: 16683134]
4.  Goto, M., Hayashi, H., Miyahara, I., Hirotsu, K., Yoshida, M. and Oikawa, T. Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (γ-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005. J. Biol. Chem. 281 (2006) 34365–34373. [DOI] [PMID: 16963440]
5.  Kasai, D., Araki, N., Motoi, K., Yoshikawa, S., Iino, T., Imai, S., Masai, E. and Fukuda, M. γ-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1. Appl. Environ. Microbiol. 81 (2015) 7656–7665. [DOI] [PMID: 26319878]
[EC 4.1.1.103 created 2016]
 
 
EC 4.1.1.104     
Accepted name: 3-dehydro-4-phosphotetronate decarboxylase
Reaction: (1) 3-dehydro-4-phospho-L-erythronate = glycerone phosphate + CO2
(2) 3-dehydro-4-phospho-D-erythronate = glycerone phosphate + CO2
For diagram of erythronate and threonate catabolism, click here
Glossary: L-erythronate = (2S,3S)-2,3,4-trihydroxybutanoate
D-erythronate = (2R,3R)-2,3,4-trihydroxybutanoate
Other name(s): otnC (gene name)
Systematic name: 3-dehydro-4-phosphotetronate carboxy-lyase
Comments: The enzyme, characterized from bacteria, is involved in D-erythronate and L-threonate catabolism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [DOI] [PMID: 27402745]
[EC 4.1.1.104 created 2017]
 
 
EC 4.1.1.105     
Accepted name: L-tryptophan decarboxylase
Reaction: L-tryptophan = tryptamine + CO2
For diagram of psilocybin biosynthesis, click here
Other name(s): psiD (gene name); TDC (gene name)
Systematic name: L-tryptophan carboxy-lyase
Comments: The enzyme has been characterized from bacteria, plants, and fungi. Unlike EC 4.1.1.28, aromatic-L-amino-acid decarboxylase, this enzyme is specific for L-tryptophan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Noe, W., Mollenschott, C. and Berlin, J. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol. Biol. 3 (1984) 281–288. [DOI] [PMID: 24310513]
2.  Buki, K.G., Vinh, D.Q. and Horvath, I. Partial purification and some properties of tryptophan decarboxylase from a Bacillus strain. Acta Microbiol Hung 32 (1985) 65–73. [PMID: 4036551]
3.  Nakazawa, H., Kumagai, H. and Yamada, H. Constitutive aromatic L-amino acid decarboxylase from Micrococcus percitreus. Biochem. Biophys. Res. Commun. 61 (1974) 75–82. [DOI] [PMID: 4441405]
4.  Lopez-Meyer, M. and Nessler, C.L. Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J. 11 (1997) 1167–1175. [DOI] [PMID: 9225462]
5.  Fricke, J., Blei, F. and Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. Engl. 56 (2017) 12352–12355. [DOI] [PMID: 28763571]
[EC 4.1.1.105 created 2017]
 
 
EC 4.1.1.106     
Accepted name: fatty acid photodecarboxylase
Reaction: a long-chain fatty acid + = a long-chain alkane + CO2
Other name(s): FAP (gene name)
Systematic name: fatty acid carboxy-lyase (light-dependent, alkane-forming)
Comments: This algal enzyme, characterized from the green algae Chlorella variabilis and Chlamydomonas reinhardtii, is dependent on blue light, which photooxidizes its FAD cofactor. The enzyme acts on fatty acids in the range of C12 to C22, with a higher efficiency for C16 to C17 chains, and forms an alkane product that is one carbon shorter than the substrate. The enzyme can also act on unsaturated fatty acids, forming the respective alkenes, but does not generate a new double bond.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sorigue, D., Legeret, B., Cuine, S., Blangy, S., Moulin, S., Billon, E., Richaud, P., Brugiere, S., Coute, Y., Nurizzo, D., Muller, P., Brettel, K., Pignol, D., Arnoux, P., Li-Beisson, Y., Peltier, G. and Beisson, F. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357 (2017) 903–907. [DOI] [PMID: 28860382]
[EC 4.1.1.106 created 2017]
 
 
EC 4.1.1.107     
Accepted name: 3,4-dihydroxyphenylacetaldehyde synthase
Reaction: L-dopa + O2 + H2O = 3,4-dihydroxyphenylacetaldehyde + CO2 + NH3 + H2O2
For diagram of phenylacetaldehyde, 4-hydroxyphenylacetaldehyde and 3,4-dihydroxyacetaldehyde biosynthesis, click here
Glossary: L-dopa = 3,4-dihydroxyphenylalanine
Other name(s): DHPAA synthase
Systematic name: L-dopa carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the mosquito Aedes aegypti, catalyses the production of 3,4-dihydroxylphenylacetaldehyde directly from L-dopa. Dopamine is not formed as an intermediate (cf. EC 4.1.1.28, aromatic-L-amino-acid decarboxylase). The enzyme is specific for L-dopa and does not react with other aromatic amino acids with the exception of a low activity with α-methyl-L-dopa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vavricka, C., Han, Q., Huang, Y., Erickson, S.M., Harich, K., Christensen, B.M. and Li, J. From L-dopa to dihydroxyphenylacetaldehyde: a toxic biochemical pathway plays a vital physiological function in insects. PLoS One 6:e16124 (2011). [DOI] [PMID: 21283636]
[EC 4.1.1.107 created 2017]
 
 
EC 4.1.1.108     
Accepted name: 4-hydroxyphenylacetaldehyde synthase
Reaction: L-tyrosine + O2 + H2O = (4-hydroxyphenyl)acetaldehyde + CO2 + NH3 + H2O2
For diagram of phenylacetaldehyde, 4-hydroxyphenylacetaldehyde and 3,4-dihydroxyacetaldehyde biosynthesis, click here
Other name(s): TYRDC-2 (gene name)
Systematic name: L-tyrosine carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the the plant Petroselinum crispum (parsley), catalyses the production of 4-hydroxyphenylacetaldehyde directly from L-tyrosine. Tyramine is not formed as an intermediate. The enzyme has a low activity with L-dopa (cf. EC 4.1.1.107, 3,4-dihydroxyphenylacetaldehyde synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Torrens-Spence, M.P., Gillaspy, G., Zhao, B., Harich, K., White, R.H. and Li, J. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme. Biochem. Biophys. Res. Commun. 418 (2012) 211–216. [DOI] [PMID: 22266321]
2.  Torrens-Spence, M.P., Liu, P., Ding, H., Harich, K., Gillaspy, G. and Li, J. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J. Biol. Chem. 288 (2013) 2376–2387. [DOI] [PMID: 23204519]
[EC 4.1.1.108 created 2017]
 
 
EC 4.1.1.109     
Accepted name: phenylacetaldehyde synthase
Reaction: L-phenylalanine + O2 + H2O = phenylacetaldehyde + CO2 + NH3 + H2O2
For diagram of phenylacetaldehyde, 4-hydroxyphenylacetaldehyde and 3,4-dihydroxyacetaldehyde biosynthesis, click here
Other name(s): PAAS (gene name)
Systematic name: L-phenylalanine carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the the plants Petunia hybrida and a Rosa hybrid, catalyses the production of phenylacetaldehyde directly from L-phenylalanine. The enzyme is specific for L-phenylalanine and does not accept other aromatic amino acids as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kaminaga, Y., Schnepp, J., Peel, G., Kish, C.M., Ben-Nissan, G., Weiss, D., Orlova, I., Lavie, O., Rhodes, D., Wood, K., Porterfield, D.M., Cooper, A.J., Schloss, J.V., Pichersky, E., Vainstein, A. and Dudareva, N. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281 (2006) 23357–23366. [DOI] [PMID: 16766535]
[EC 4.1.1.109 created 2017]
 
 
EC 4.1.1.110     
Accepted name: bisphosphomevalonate decarboxylase
Reaction: (R)-3,5-bisphosphomevalonate = isopentenyl phosphate + CO2 + phosphate
Other name(s): mevalonate 3,5-bisphosphate decarboxylase
Systematic name: (R)-3,5-bisphosphomevalonate carboxy-lyase (isopentenyl-phosphate-forming)
Comments: The enzyme participates in an alternative mevalonate pathway that takes place in extreme acidophiles of the Thermoplasmatales order. cf. EC 4.1.1.99, phosphomevalonate decarboxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vinokur, J.M., Cummins, M.C., Korman, T.P. and Bowie, J.U. An adaptation to life in acid through a novel mevalonate pathway. Sci. Rep. 6 (2016) 39737. [DOI] [PMID: 28004831]
[EC 4.1.1.110 created 2018]
 
 
EC 4.1.1.111     
Accepted name: siroheme decarboxylase
Reaction: siroheme = 12,18-didecarboxysiroheme + 2 CO2
For diagram of siroheme decarboxylase, click here
Other name(s): sirohaem decarboxylase; nirDLHG (gene name); ahbAB (gene name)
Systematic name: siroheme carboxy-lyase
Comments: The enzyme from archaea is involved in an alternative heme biosynthesis pathway. The enzyme from denitrifying bacteria is involved in the heme d1 biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bali, S., Lawrence, A.D., Lobo, S.A., Saraiva, L.M., Golding, B.T., Palmer, D.J., Howard, M.J., Ferguson, S.J. and Warren, M.J. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc. Natl. Acad. Sci. USA 108 (2011) 18260–18265. [DOI] [PMID: 21969545]
2.  Kuhner, M., Haufschildt, K., Neumann, A., Storbeck, S., Streif, J. and Layer, G. The alternative route to heme in the methanogenic archaeon Methanosarcina barkeri. Archaea 2014:327637 (2014). [DOI] [PMID: 24669201]
3.  Palmer, D.J., Schroeder, S., Lawrence, A.D., Deery, E., Lobo, S.A., Saraiva, L.M., McLean, K.J., Munro, A.W., Ferguson, S.J., Pickersgill, R.W., Brown, D.G. and Warren, M.J. The structure, function and properties of sirohaem decarboxylase--an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway. Mol. Microbiol. 93 (2014) 247–261. [DOI] [PMID: 24865947]
4.  Haufschildt, K., Schmelz, S., Kriegler, T.M., Neumann, A., Streif, J., Arai, H., Heinz, D.W. and Layer, G. The crystal structure of siroheme decarboxylase in complex with iron-uroporphyrin III reveals two essential histidine residues. J. Mol. Biol. 426 (2014) 3272–3286. [DOI] [PMID: 25083922]
[EC 4.1.1.111 created 2018]
 
 
EC 4.1.1.112     
Accepted name: oxaloacetate decarboxylase
Reaction: oxaloacetate = pyruvate + CO2
Other name(s): oxaloacetate β-decarboxylase; oxalacetic acid decarboxylase; oxalate β-decarboxylase; oxaloacetate carboxy-lyase
Systematic name: oxaloacetate carboxy-lyase (pyruvate-forming)
Comments: Requires a divalent metal cation. The enzymes from the fish Gadus morhua (Atlantic cod) and the bacterium Micrococcus luteus prefer Mn2+, while those from the bacteria Pseudomonas putida and Pseudomonas aeruginosa prefer Mg2+. Unlike EC 7.2.4.2 [oxaloacetate decarboxylase (Na+ extruding)], there is no evidence of the enzyme’s involvement in Na+ transport.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-98-0
References:
1.  Schmitt, A., Bottke, I. and Siebert, G. Eigenschaften einer Oxaloacetat-Decarboxylase aus Dorschmuskulatur. Hoppe-Seyler's Z. Physiol. Chem. 347 (1966) 18–34. [PMID: 5972993]
2.  Herbert, D. Oxalacetic carboxylase of Micrococcus lysodeikticus. Methods Enzymol. 1 (1955) 753–757.
3.  Horton, A.A. and Kornberg, H.L. Oxaloacetate 4-carboxy-lyase from Pseudomonas ovalis chester. Biochim. Biophys. Acta 89 (1964) 381–383. [PMID: 14205502]
4.  Sender, P.D., Martin, M.G., Peiru, S. and Magni, C. Characterization of an oxaloacetate decarboxylase that belongs to the malic enzyme family. FEBS Lett. 570 (2004) 217–222. [PMID: 15251467]
5.  Narayanan, B.C., Niu, W., Han, Y., Zou, J., Mariano, P.S., Dunaway-Mariano, D. and Herzberg, O. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase superfamily. Biochemistry 47 (2008) 167–182. [PMID: 18081320]
[EC 4.1.1.112 created 1961 as EC 4.1.1.3, modified 1986, modified 2000, part transferred 2018 to EC 4.1.1.112]
 
 
EC 4.1.1.113     
Accepted name: trans-aconitate decarboxylase
Reaction: trans-aconitate = itaconate + CO2
Glossary: trans-aconitate = (E)-prop-1-ene-1,2,3-tricarboxylate
itaconate = 2-methylenesuccinate
Other name(s): TAD1 (gene name)
Systematic name: trans-aconitate carboxy-lyase (itaconate-forming)
Comments: The enzyme, characterized from the smut fungus Ustilago maydis, is involved in an alternative pathway for the biosynthesis of itaconate. cf. EC 4.1.1.6, cis-aconitate decarboxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Geiser, E., Przybilla, S.K., Friedrich, A., Buckel, W., Wierckx, N., Blank, L.M. and Bolker, M. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb. Biotechnol. 9 (2016) 116–126. [PMID: 26639528]
[EC 4.1.1.113 created 2018]
 
 
EC 4.1.1.114     
Accepted name: cis-3-alkyl-4-alkyloxetan-2-one decarboxylase
Reaction: a cis-3-alkyl-4-alkyloxetan-2-one = a cis-alkene + CO2
Other name(s): oleB (gene name)
Systematic name: cis-3-alkyl-4-alkyloxetan-2-one carboxy-lyase (cis-alkene-forming)
Comments: The enzyme, found in certain bacterial species, catalyses the last step in a pathway for the production of olefins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Christenson, J.K., Richman, J.E., Jensen, M.R., Neufeld, J.Y., Wilmot, C.M. and Wackett, L.P. β-Lactone synthetase found in the olefin biosynthesis pathway. Biochemistry 56 (2017) 348–351. [DOI] [PMID: 28029240]
2.  Christenson, J.K., Jensen, M.R., Goblirsch, B.R., Mohamed, F., Zhang, W., Wilmot, C.M. and Wackett, L.P. Active multienzyme assemblies for long-chain olefinic hydrocarbon biosynthesis. J. Bacteriol. 199 (2017) . [PMID: 28223313]
[EC 4.1.1.114 created 2018]
 
 
EC 4.1.1.115     
Accepted name: indoleacetate decarboxylase
Reaction: (1H-indol-3-yl)acetate = skatole + CO2
For diagram of indoleacetic acid biosynthesis, click here
Glossary: (1H-indol-3-yl)acetate = indoleacetate
skatole = 3-methyl-1H-indole
Other name(s): IAD
Systematic name: (1H-indol-3-yl)acetate carboxy-lyase (skatole-forming)
Comments: This glycyl radical enzyme has been isolate from a number of bacterial species. Skatole contributes to the characteristic smell of animal faeces.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Wei, Y., Liu, X., Zhou, Y., Jiang, L., Yin, J., Wang, F., Hu, Y., Nanjaraj Urs, A.N., Liu, Y., Ang, E.L., Zhao, S., Zhao, H. and Zhang, Y. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat. Commun. 9:4224 (2018). [PMID: 30310076]
[EC 4.1.1.115 created 2019]
 
 
EC 4.1.1.116     
Accepted name: D-ornithine/D-lysine decarboxylase
Reaction: (1) D-ornithine = putrescine + CO2
(2) D-lysine = cadaverine + CO2
For diagram of spermine biosynthesis, click here
Glossary: cadaverine = pentane-1,5-diamine
putrescine = butane-1,4-diamine
Other name(s): dokD (gene name); DOKDC
Systematic name: D-ornithine/D-lysine carboxy-lyase
Comments: The enzyme, characterized from the bacterium Salmonella typhimurium LT2, is specific for D-ornithine and D-lysine. Requires pyridoxal 5′-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Phillips, R.S., Poteh, P., Miller, K.A. and Hoover, T.R. STM2360 encodes a D-ornithine/D-lysine decarboxylase in Salmonella enterica serovar typhimurium. Arch. Biochem. Biophys. 634 (2017) 83–87. [PMID: 29024617]
[EC 4.1.1.116 created 2019]
 
 
EC 4.1.1.117     
Accepted name: 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate decarboxylase
Reaction: 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate = 2-[(2-aminoethylcarbamoyl)methyl]-2-hydroxybutanedioate + CO2
Glossary: staphyloferrin B = 5-[(2-{[(3S)-5-{[(2S)-2-amino-2-carboxyethyl]amino}-3-carboxy-3-hydroxy-5-oxopentanoyl]amino}ethyl)amino]-2,5-dioxopentanoate
Other name(s): sbnH (gene name)
Systematic name: 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate carboxy-lyase (2-[(2-aminoethylcarbamoyl)methyl]-2-hydroxybutanedioate-forming)
Comments: The enzyme, characterized from the bacterium Staphylococcus aureus, participates in the biosynthesis of the siderophore staphyloferrin B.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cheung, J., Beasley, F.C., Liu, S., Lajoie, G.A. and Heinrichs, D.E. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol. Microbiol. 74 (2009) 594–608. [PMID: 19775248]
[EC 4.1.1.117 created 2019]
 
 
EC 4.1.1.118     
Accepted name: isophthalyl-CoA decarboxylase
Reaction: isophthalyl-CoA = benzoyl-CoA + CO2
Other name(s): IPCD
Systematic name: isophthalyl-CoA carboxy-lyase
Comments: The enzyme, characterized from the bacterium Syntrophorhabdus aromaticivorans, participates in an anaerobic isophthalate degradation pathway. The enzyme requires a prenylated flavin mononucleotide cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Junghare, M., Spiteller, D. and Schink, B. Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans. ISME J. 13 (2019) 1252–1268. [PMID: 30647456]
[EC 4.1.1.118 created 2019]
 
 
EC 4.1.1.119     
Accepted name: phenylacetate decarboxylase
Reaction: phenylacetate = toluene + CO2
Other name(s): phdB (gene name)
Systematic name: phenylacetate carboxy-lyase
Comments: This bacterial enzyme, isolated from anoxic, toluene-producing microbial communities, is a glycyl radical enzyme. It needs to be activated by a dedicated activating enzyme (PhdA). The activase catalyses the reductive cleavage of AdoMet, producing a 5′-deoxyadenosyl radical that leads to the production of the glycyl radical in PhdB.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zargar, K., Saville, R., Phelan, R.M., Tringe, S.G., Petzold, C.J., Keasling, J.D. and Beller, H.R. In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community. Sci. Rep. 6:31362 (2016). [PMID: 27506494]
2.  Beller, H.R., Rodrigues, A.V., Zargar, K., Wu, Y.W., Saini, A.K., Saville, R.M., Pereira, J.H., Adams, P.D., Tringe, S.G., Petzold, C.J. and Keasling, J.D. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat. Chem. Biol. 14 (2018) 451–457. [PMID: 29556105]
3.  Rodrigues, A.V., Tantillo, D.J., Mukhopadhyay, A., Keasling, J.D. and Beller, H. Insights into the mechanism of phenylacetate decarboxylase (PhdB), a toluene-producing glycyl radical enzyme. ChemBioChem (2019) . [PMID: 31512343]
[EC 4.1.1.119 created 2019]
 
 
EC 4.1.1.120     
Accepted name: 3-oxoisoapionate decarboxylase
Reaction: 3-oxoisoapionate = L-erythrulose + CO2
Glossary: 3-oxoisoapionate = 2,4-dihydroxy-2-(hydroxymethyl)-3-oxobutanoate
Other name(s): oiaC (gene name)
Systematic name: 3-oxoisoapionate carboxy-lyase
Comments: The enzyme, characterized from several bacterial species, is involved in the degradation of D-apionate. Stereospecificity of 3-oxoisoapionate has not been determined.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Carter, M.S., Zhang, X., Huang, H., Bouvier, J.T., Francisco, B.S., Vetting, M.W., Al-Obaidi, N., Bonanno, J.B., Ghosh, A., Zallot, R.G., Andersen, H.M., Almo, S.C. and Gerlt, J.A. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14 (2018) 696–705. [DOI] [PMID: 29867142]
[EC 4.1.1.120 created 2020]
 
 
EC 4.1.1.121     
Accepted name: 3-oxoisoapionate-4-phosphate decarboxylase
Reaction: 3-oxoisoapionate 4-phosphate = L-erythrulose 1-phosphate + CO2
Glossary: 3-oxoisoapionate = 2,4-dihydroxy-2-(hydroxymethyl)-3-oxobutanoate
Other name(s): oiaX (gene name)
Systematic name: 3-oxoisoapionate 4-phosphate carboxy-lyase
Comments: The enzyme, characterized from several bacterial species, participates in the degradation of D-apionate. It belongs to the RuBisCO-like-protein (RLP) superfamily. Stereospecificity of 3-oxoisoapionate 4-phosphate has not been determined.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Carter, M.S., Zhang, X., Huang, H., Bouvier, J.T., Francisco, B.S., Vetting, M.W., Al-Obaidi, N., Bonanno, J.B., Ghosh, A., Zallot, R.G., Andersen, H.M., Almo, S.C. and Gerlt, J.A. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14 (2018) 696–705. [DOI] [PMID: 29867142]
[EC 4.1.1.121 created 2020]
 
 
EC 4.1.1.122     
Accepted name: L-cysteate decarboxylase
Reaction: L-cysteate = taurine + CO2
Other name(s): CAD
Systematic name: L-cysteate carboxy-lyase (taurine-forming)
Comments: Requires pyridoxal 5′-phosphate. The enzyme, characterized from chicken, is specific for L-cysteate and has poor activity with 3-sulfino-L-alanine. cf. EC 4.1.1.29, sulfinoalanine decarboxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Malatesta, M., Mori, G., Acquotti, D., Campanini, B., Peracchi, A., Antin, P.B. and Percudani, R. Birth of a pathway for sulfur metabolism in early amniote evolution. Nat Ecol Evol 4 (2020) 1239–1246. [DOI] [PMID: 32601391]
[EC 4.1.1.122 created 2022]
 
 
EC 4.1.1.123     
Accepted name: phenyl-phosphate phosphatase/carboxylase
Reaction: 4-hydroxybenzoate + phosphate = phenyl phosphate + CO2 + H2O
Other name(s): phenyl phosphate carboxylase
Systematic name: 4-hydroxybenzoate carboxy-lyase (phenyl phosphate-forming)
Comments: The enzyme, characterized from the bacterium Thauera aromatica, participates in an anaerobic phenol degradation pathway. It catalyses the para dephosphorylation and carboxylation of phenylphosphate to 4-hydroxybenzoate. The enzyme from Thauera aromatica consists of four different subunits and requires K+ and a divalent metal cation (Mg2+ or Mn2+) for activity. It is strongly inhibited by oxygen.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schuhle, K. and Fuchs, G. Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J. Bacteriol. 186 (2004) 4556–4567. [DOI] [PMID: 15231788]
[EC 4.1.1.123 created 2022]
 
 
EC 4.1.1.124     
Accepted name: malonyl-[acp] decarboxylase
Reaction: malonyl-[acp] = acetyl-[acp] + CO2
Other name(s): decarboxylative ketosynthase; bryQ (gene name); mupG (gene name); pksF (gene name); curC (gene name); jamG (gene name); pedM (gene name)
Systematic name: malonyl-[acyl-carrier protein] carboxy-lyase
Comments: This family of enzymes participates in a process that introduces a methyl branch into nascent polyketide products. The process begins with EC 4.1.1.124, malonyl-[acp] decarboxylase, which converts the common extender unit malonyl-[acp] to acetyl-[acp]. The enzyme is a mutated form of a ketosynthase enzyme, in which a Cys residue in the active site is modified to a Ser residue, leaving the decarboxylase function intact, but nulifying the ability of the enzyme to form a carbon-carbon bond. Next, EC 2.3.3.22, 3-carboxymethyl-3-hydroxy-acyl-[acp] synthase, utilizes the acetyl group to introduce the branch at the β position of 3-oxoacyl intermediates attached to a polyketide synthase, forming a 3-hydroxy-3-carboxymethyl intermediate. This is followed by dehydration catalysed by EC 4.2.1.181, 3-carboxymethyl-3-hydroxy-acyl-[acp] dehydratase (often referred to as an ECH1 domain), leaving a 3-carboxymethyl group and forming a double bond between the α and β carbons. The process concludes with decarboxylation catalysed by EC 4.1.1.125, 4-carboxy-3-alkylbut-2-enoyl-[acp] decarboxylase (often referred to as an ECH2 domain), leaving a methyl branch at the β carbon. The enzymes are usually encoded by a cluster of genes referred to as an "HMGS cassette", based on the similarity of the key enzyme to EC 2.3.3.10, hydroxymethylglutaryl-CoA synthase. cf. EC 4.1.1.87, malonyl-[malonate decarboxylase] decarboxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Simunovic, V. and Muller, R. 3-hydroxy-3-methylglutaryl-CoA-like synthases direct the formation of methyl and ethyl side groups in the biosynthesis of the antibiotic myxovirescin A. Chembiochem 8 (2007) 497–500. [DOI] [PMID: 17330904]
2.  Wu, J., Hothersall, J., Mazzetti, C., O'Connell, Y., Shields, J.A., Rahman, A.S., Cox, R.J., Crosby, J., Simpson, T.J., Thomas, C.M. and Willis, C.L. In vivo mutational analysis of the mupirocin gene cluster reveals labile points in the biosynthetic pathway: the "leaky hosepipe" mechanism. Chembiochem 9 (2008) 1500–1508. [DOI] [PMID: 18465759]
3.  Buchholz, T.J., Rath, C.M., Lopanik, N.B., Gardner, N.P., Hakansson, K. and Sherman, D.H. Polyketide β-branching in bryostatin biosynthesis: identification of surrogate acetyl-ACP donors for BryR, an HMG-ACP synthase. Chem. Biol. 17 (2010) 1092–1100. [DOI] [PMID: 21035732]
[EC 4.1.1.124 created 2023]
 
 
EC 4.1.1.125     
Accepted name: 4-carboxy-3-alkylbut-2-enoyl-[acp] decarboxylase
Reaction: a 4-carboxy-3-alkylbut-2-enoyl-[acp] = a 3-alkylbut-2-enoyl-[acp] + CO2
Other name(s): aprG (gene name); corG (gene name); pedI (gene name); mupK (gene name); 3-carboxymethyl-alk-2-enyl-[acyl-carrier protein] decarboxylase
Systematic name: 4-carboxy-3-alkylbut-2-enoyl-[acyl-carrier protein] carboxy-lyase
Comments: This family of enzymes participates in a process that introduces a methyl branch into nascent polyketide products. The process begins with EC 4.1.1.124, malonyl-[acp] decarboxylase, which converts the common extender unit malonyl-[acp] to acetyl-[acp]. The enzyme is a mutated form of a ketosynthase enzyme, in which a Cys residue in the active site is modified to a Ser residue, leaving the decarboxylase function intact, but nulifying the ability of the enzyme to form a carbon-carbon bond. Next, EC 2.3.3.22, 3-carboxymethyl-3-hydroxy-acyl-[acp] synthase, utilizes the acetyl group to introduce the branch at the β position of 3-oxoacyl intermediates attached to a polyketide synthase, forming a 3-hydroxy-3-carboxymethyl intermediate. This is followed by dehydration catalysed by EC 4.2.1.181, 3-carboxymethyl-3-hydroxy-acyl-[acp] dehydratase (often referred to as an ECH1 domain), leaving a 3-carboxymethyl group and forming a double bond between the α and β carbons. The process concludes with decarboxylation catalysed by EC 4.1.1.125, 4-carboxy-3-alkylbut-2-enoyl-[acp] decarboxylase (often referred to as an ECH2 domain), leaving a methyl branch at the β carbon. The enzymes are usually encoded by a cluster of genes referred to as an "HMGS cassette", based on the similarity of the key enzyme to EC 2.3.3.10, hydroxymethylglutaryl-CoA synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Geders, T.W., Gu, L., Mowers, J.C., Liu, H., Gerwick, W.H., Hakansson, K., Sherman, D.H. and Smith, J.L. Crystal structure of the ECH2 catalytic domain of CurF from Lyngbya majuscula. Insights into a decarboxylase involved in polyketide chain β-branching. J. Biol. Chem. 282 (2007) 35954–35963. [DOI] [PMID: 17928301]
2.  Erol, O., Schaberle, T.F., Schmitz, A., Rachid, S., Gurgui, C., El Omari, M., Lohr, F., Kehraus, S., Piel, J., Muller, R. and Konig, G.M. Biosynthesis of the myxobacterial antibiotic corallopyronin A. Chembiochem 11 (2010) 1253–1265. [DOI] [PMID: 20503218]
3.  Grindberg, R.V., Ishoey, T., Brinza, D., Esquenazi, E., Coates, R.C., Liu, W.T., Gerwick, L., Dorrestein, P.C., Pevzner, P., Lasken, R. and Gerwick, W.H. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6:e18565 (2011). [DOI] [PMID: 21533272]
[EC 4.1.1.125 created 2023]
 
 
EC 4.1.1.126     
Accepted name: anhydromevalonate phosphate decarboxylase
Reaction: trans-anhydromevalonate 5-phosphate = 3-methylbut-3-en-1-yl phosphate + CO2
Glossary: trans-anhydromevalonate 5-phosphate = (2E)-3-methyl-5-phosphooxypent-2-enoate
3-methylbut-3-en-1-yl phosphate = isopentenyl phosphate
Systematic name: trans-anhydromevalonate 5-phosphate carboxy-lyase
Comments: The enzyme catalyses a step in the archaeal prenyl diphosphate biosynthesis pathway. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yoshida, R., Yoshimura, T. and Hemmi, H. Reconstruction of the "archaeal" mevalonate pathway from the methanogenic archaeon Methanosarcina mazei in Escherichia coli cells. Appl. Environ. Microbiol. 86:e02889-19 (2020). [DOI] [PMID: 31924615]
[EC 4.1.1.126 created 2023]
 
 
EC 4.1.1.127     
Accepted name: carboxyaminopropylagmatine decarboxylase
Reaction: N1-[(S)-3-amino-3-carboxypropyl]agmatine = N1-(3-aminopropyl)agmatine + CO2
Glossary: N1-[(S)-3-amino-3-carboxypropyl]agmatine = carboxyaminopropylagmatine
N1-(3-aminopropyl)agmatine = aminopropylagmatine
Other name(s): sll0873 (locus name)
Systematic name: N1-[(S)-3-amino-3-carboxypropyl]agmatine carboxy-lyase
Comments: A pyridoxal 5′-phosphate protein. The enzyme, characterized from the cyanobacterium Synechocystis sp. PCC 6803, participates in a biosynthetic pathway for spermidine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xi, H., Nie, X., Gao, F., Liang, X., Li, H., Zhou, H., Cai, Y. and Yang, C. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine. Sci Adv 9:eadj9075 (2023). [DOI] [PMID: 37878710]
[EC 4.1.1.127 created 2024]
 
 
EC 4.1.2.1      
Deleted entry:  hydroxyoxobutyrate aldolase. Now included with EC 4.1.3.16 4-hydroxy-2-oxoglutarate aldolase
[EC 4.1.2.1 created 1961, deleted 1972]
 
 
EC 4.1.2.2     
Accepted name: ketotetrose-phosphate aldolase
Reaction: erythrulose 1-phosphate = glycerone phosphate + formaldehyde
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): phosphoketotetrose aldolase; erythrulose-1-phosphate synthetase; erythrose-1-phosphate synthase; erythrulose-1-phosphate formaldehyde-lyase
Systematic name: erythrulose-1-phosphate formaldehyde-lyase (glycerone-phosphate-forming)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9024-45-7
References:
1.  Charalampous, F.C. and Mueller, G.C. Synthesis of erythrulose phosphate by a soluble enzyme from rat tissue. J. Biol. Chem. 201 (1953) 161–173. [PMID: 13044785]
[EC 4.1.2.2 created 1961]
 
 
EC 4.1.2.3      
Deleted entry:  pentosealdolase
[EC 4.1.2.3 created 1961, deleted 1972]
 
 
EC 4.1.2.4     
Accepted name: deoxyribose-phosphate aldolase
Reaction: 2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde
For diagram of reaction, click here
Other name(s): phosphodeoxyriboaldolase; deoxyriboaldolase; deoxyribose-5-phosphate aldolase; 2-deoxyribose-5-phosphate aldolase; 2-deoxy-D-ribose-5-phosphate acetaldehyde-lyase
Systematic name: 2-deoxy-D-ribose-5-phosphate acetaldehyde-lyase (D-glyceraldehyde-3-phosphate-forming)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-97-5
References:
1.  Hoffee, P.A. 2-Deoxyribose-5-phosphate aldolase of Salmonella typhimurium: purification and properties. Arch. Biochem. Biophys. 126 (1968) 795–802. [DOI] [PMID: 4879701]
2.  Jedziniak, J.A. and Lionetti, F.J. Purification and properties of deoxyriboaldolase from human erythrocytes. Biochim. Biophys. Acta 212 (1970) 478–487. [DOI] [PMID: 4989681]
3.  Racker, E. Enzymatic synthesis and breakdown of desoxyribose phosphate. J. Biol. Chem. 196 (1952) 347–365. [PMID: 12980976]
4.  Hoffee, P. Rosen, O.M. and Horecker, B.L. The mechanism of action of aldolases. VI. Crystallization of deoxyribose 5-phosphate aldolase and the number of active sites. J. Biol. Chem. 240 (1965) 1512–1516. [PMID: 14285485]
[EC 4.1.2.4 created 1961]
 
 
EC 4.1.2.5     
Accepted name: L-threonine aldolase
Reaction: L-threonine = glycine + acetaldehyde
Other name(s): L-threonine acetaldehyde-lyase
Systematic name: L-threonine acetaldehyde-lyase (glycine-forming)
Comments: A pyridoxal-phosphate protein. This enzyme is specific for L-threonine and can not utilize L-allo-threonine. Different from EC 4.1.2.49, L-allo-threonine aldolase, and EC 4.1.2.48, low-specificity L-threonine aldolase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 62213-23-4
References:
1.  Dainty, R.H. Purification and properties of threonine aldolase from Clostridium pasteurianum. Biochem. J. 117 (1970) 585–592. [PMID: 5419751]
2.  Karasek, M.A. and Greenberg, D.M. Studies on the properties of threonine aldolases. J. Biol. Chem. 227 (1957) 191–205. [PMID: 13449064]
[EC 4.1.2.5 created 1961, deleted 1972, reinstated 1976, modified 2011]
 
 
EC 4.1.2.6      
Deleted entry:  allothreonine aldolase. Reaction is due to EC 2.1.2.1, glycine hydroxymethyltransferase
[EC 4.1.2.6 created 1961, deleted 1972]
 
 
EC 4.1.2.7      
Deleted entry:  ketose-1-phosphate aldolase. Now included with EC 4.1.2.13 fructose-bisphosphate aldolase
[EC 4.1.2.7 created 1961, deleted 1972]
 
 
EC 4.1.2.8     
Accepted name: indole-3-glycerol-phosphate lyase
Reaction: (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate = indole + D-glyceraldehyde 3-phosphate
For diagram of reaction, click here
Other name(s): tryptophan synthase α; TSA; indoleglycerolphosphate aldolase; indole glycerol phosphate hydrolase; indole synthase; indole-3-glycerolphosphate D-glyceraldehyde-3-phosphate-lyase; indole-3-glycerol phosphate lyase; IGL; BX1; (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate D-glyceraldehyde-3-phosphate-lyase
Systematic name: (1S,2R)-1-C-(indol-3-yl)glycerol-3-phosphate D-glyceraldehyde-3-phosphate-lyase (indole-forming)
Comments: Forms part of the defence mechanism against insects and microbial pathogens in the grass family, Gramineae, where it catalyses the first committed step in the formation of the cyclic hydroxamic acids 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) [1]. This enzyme resembles the α-subunit of EC 4.2.1.20, tryptophan synthase [3], for which, (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate is also a substrate, but, unlike tryptophan synthase, its activity is independent of the β-subunit and free indole is released [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-52-2
References:
1.  Yanofsky, C. The enzymatic conversion of anthranilic acid to indole. J. Biol. Chem. 223 (1956) 171–184. [PMID: 13376586]
2.  Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grün, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R.B., Briggs, S.P., Simcox, K. and Gierl, A. Analysis of a chemical plant defense mechanism in grasses. Science 277 (1997) 696–699. [DOI] [PMID: 9235894]
3.  Frey, M., Stettner, C., Paré, P.W., Schmelz, E.A., Tumlinson, J.H. and Gierl, A. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. USA 97 (2000) 14801–14806. [DOI] [PMID: 11106389]
4.  Melanson, D., Chilton, M.D., Masters-Moore, D. and Chilton, W.S. A deletion in an indole synthase gene is responsible for the DIMBOA-deficient phenotype of bxbx maize. Proc. Natl. Acad. Sci. USA 94 (1997) 13345–13350. [DOI] [PMID: 9371848]
[EC 4.1.2.8 created 1961, deleted 1972, reinstated 2006]
 
 
EC 4.1.2.9     
Accepted name: phosphoketolase
Reaction: D-xylulose 5-phosphate + phosphate = acetyl phosphate + D-glyceraldehyde 3-phosphate + H2O
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): D-xylulose-5-phosphate D-glyceraldehyde-3-phosphate-lyase (phosphate-acetylating)
Systematic name: D-xylulose-5-phosphate D-glyceraldehyde-3-phosphate-lyase (adding phosphate; acetyl-phosphate-forming)
Comments: A thiamine-diphosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9031-75-8
References:
1.  Heath, E.C., Hurwitz, J., Horecker, B.L. and Ginsburg, A. Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J. Biol. Chem. 231 (1958) 1009–1029. [PMID: 13539033]
2.  Schramm, M., Klybas, V. and Racker, E. Phospholytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. Biol. Chem. 233 (1958) 1283–1288. [PMID: 13610828]
[EC 4.1.2.9 created 1961]
 
 
EC 4.1.2.10     
Accepted name: (R)-mandelonitrile lyase
Reaction: (R)-mandelonitrile = cyanide + benzaldehyde
Other name(s): (R)-oxynitrilase; oxynitrilase; D-oxynitrilase; D-α-hydroxynitrile lyase; mandelonitrile benzaldehyde-lyase; PaHNL; AtHNL; PhaMDL; (R)-HNL; (R)-PeHNL; (R)-hydroxynitrile lyase; R-selective hydroxynitrile lyase; R-selective HNL; (R)-(+)-mandelonitrile lyase
Systematic name: (R)-mandelonitrile benzaldehyde-lyase (cyanide-forming)
Comments: A variety of enzymes from different sources and with different properties. Some are flavoproteins, others are not. Active towards a number of aromatic and aliphatic hydroxynitriles (cyanohydrins).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-43-5
References:
1.  Ueatrongchit, T., Kayo, A., Komeda, H., Asano, Y. and H-Kittikun, A. Purification and characterization of a novel (R)-hydroxynitrile lyase from Eriobotrya japonica (Loquat). Biosci. Biotechnol. Biochem. 72 (2008) 1513–1522. [DOI] [PMID: 18540101]
2.  Lin, G., Han, S. and Li, Z. Enzymic synthesis of (R)-cyanohydrins by three (R)-oxynitrilase sources in micro-aqueous organic medium. Tetrahedron 55 (1999) 3531–3540.
3.  de Gonzalo, G., Brieva, R. and Gotor, V. (R)-Oxynitrilase-catalyzed transformation of ω-hydroxyalkanals. J. Mol. Catal. B 19-20 (2002) 223–230.
4.  Ueatrongchit, T., Tamura, K., Ohmiya, T., H-Kittikun, A. and Asano, Y. Hydroxynitrile lyase from Passiflora edulis. Purification, characteristics and application in asymmetric synthesis of (R)-mandelonitrile. Enzyme Microb. Technol. 46 (2010) 456–465. [PMID: 25919621]
5.  Andexer, J., von Langermann, J., Mell, A., Bocola, M., Kragl, U., Eggert, T. and Pohl, M. An R-selective hydroxynitrile lyase from Arabidopsis thaliana with an α/β-hydrolase fold. Angew. Chem. Int. Ed. Engl. 46 (2007) 8679–8681. [DOI] [PMID: 17907254]
6.  Guterl, J.K., Andexer, J.N., Sehl, T., von Langermann, J., Frindi-Wosch, I., Rosenkranz, T., Fitter, J., Gruber, K., Kragl, U., Eggert, T. and Pohl, M. Uneven twins: comparison of two enantiocomplementary hydroxynitrile lyases with α/β-hydrolase fold. J. Biotechnol. 141 (2009) 166–173. [DOI] [PMID: 19433222]
[EC 4.1.2.10 created 1961, modified 1999, modified 2011]
 
 
EC 4.1.2.11     
Accepted name: hydroxymandelonitrile lyase
Reaction: (S)-4-hydroxymandelonitrile = cyanide + 4-hydroxybenzaldehyde
Other name(s): hydroxynitrile lyase; oxynitrilase; Sorghum hydroxynitrile lyase; (S)-4-hydroxymandelonitrile hydroxybenzaldehyde-lyase
Systematic name: (S)-4-hydroxymandelonitrile 4-hydroxybenzaldehyde-lyase (cyanide-forming)
Comments: Does not accept aliphatic hydroxynitriles, unlike EC 4.1.2.10 (mandelonitrile lyase), EC 4.1.2.46 [aliphatic (R)-hydroxynitrile lyase] and EC 4.1.2.47 [(S)-hydroxynitrile ketone-lyase (cyanide forming)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-38-1
References:
1.  Bové, C. and Conn, E.E. Metabolism of aromatic compounds in higher plants. II. Purification and properties of the oxynitrilase of Sorghum vulgare. J. Biol. Chem. 236 (1961) 207–210.
2.  Seely, M.K., Criddle, R.S. and Conn, E.E. The metabolism of aromatic compounds in higher plants. 8. On the requirement of hydroxynitrile lyase for flavin. J. Biol. Chem. 241 (1966) 4457–4462. [PMID: 5922969]
[EC 4.1.2.11 created 1965, modified 1999]
 
 
EC 4.1.2.12     
Accepted name: 2-dehydropantoate aldolase
Reaction: 2-dehydropantoate = 3-methyl-2-oxobutanoate + formaldehyde
Glossary: pantoate = 2,4-dihydroxy-3,3-dimethylbutanoate
Other name(s): ketopantoaldolase; 2-dehydropantoate formaldehyde-lyase
Systematic name: 2-dehydropantoate formaldehyde-lyase (3-methyl-2-oxobutanoate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9024-51-5
References:
1.  McIntosh, E.N., Purko, M. and Wood, W.A. Ketopantoate formation by a hydroxymethylation enzyme from Escherichia coli. J. Biol. Chem. 228 (1957) 499–510. [PMID: 13475336]
[EC 4.1.2.12 created 1965, modified 2002]
 
 
EC 4.1.2.13     
Accepted name: fructose-bisphosphate aldolase
Reaction: D-fructose 1,6-bisphosphate = glycerone phosphate + D-glyceraldehyde 3-phosphate
For diagram of the pentose phosphate pathway (later stages), click here and for mechanism, click here; for diagrams of the Calvin cycle, click here and glycolysis, click here
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): aldolase; fructose-1,6-bisphosphate triosephosphate-lyase; fructose diphosphate aldolase; diphosphofructose aldolase; fructose 1,6-diphosphate aldolase; ketose 1-phosphate aldolase; phosphofructoaldolase; zymohexase; fructoaldolase; fructose 1-phosphate aldolase; fructose 1-monophosphate aldolase; 1,6-diphosphofructose aldolase; SMALDO; D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase
Systematic name: D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase (glycerone-phosphate-forming)
Comments: Also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. The enzymes increase electron-attraction by the carbonyl group, some (Class I) forming a protonated imine with it, others (Class II), mainly of microbial origin, polarizing it with a metal ion, e.g. zinc.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9024-52-6
References:
1.  Horecker, B.L., Tsolas, O. and Lai, C.Y. Aldolases. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 7, Academic Press, New York, 1972, pp. 213–258.
2.  Alefounder, P.R., Baldwin, S.A., Perham, R.N., Short, N.J. Cloning, sequence analysis and over-expression of the gene for the class II fructose 1,6-bisphosphate aldolase of Escherichia coli. Biochem. J. 257 (1989) 529–534. [PMID: 2649077]
[EC 4.1.2.13 created 1965, modified 1999 (EC 4.1.2.7 created 1961, incorporated 1972)]
 
 
EC 4.1.2.14     
Accepted name: 2-dehydro-3-deoxy-phosphogluconate aldolase
Reaction: 2-dehydro-3-deoxy-6-phospho-D-gluconate = pyruvate + D-glyceraldehyde 3-phosphate
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): phospho-2-keto-3-deoxygluconate aldolase; KDPG aldolase; phospho-2-keto-3-deoxygluconic aldolase; 2-keto-3-deoxy-6-phosphogluconic aldolase; 2-keto-3-deoxy-6-phosphogluconate aldolase; 6-phospho-2-keto-3-deoxygluconate aldolase; ODPG aldolase; 2-oxo-3-deoxy-6-phosphogluconate aldolase; 2-keto-3-deoxygluconate-6-P-aldolase; 2-keto-3-deoxygluconate-6-phosphate aldolase; 2-dehydro-3-deoxy-D-gluconate-6-phosphate D-glyceraldehyde-3-phosphate-lyase; 2-dehydro-3-deoxy-D-gluconate-6-phosphate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Systematic name: 2-dehydro-3-deoxy-6-phospho-D-gluconate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Comments: The enzyme shows no activity with 2-dehydro-3-deoxy-6-phosphate-D-galactonate. cf. EC 4.1.2.55, 2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase [2]. Also acts on 2-oxobutanoate [1].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9024-53-7
References:
1.  Meloche, H.P. and Wood, W.A. Crystallization and characteristics of 2-keto-3-deoxy-6-phosphogluconic aldolase. J. Biol. Chem. 239 (1964) 3515–3518. [PMID: 14245411]
2.  Barran, L.R. and Wood, W.A. The mechanism of 2-keto-3-deoxy-6-phosphogluconate aldolase. 3. Nature of the inactivation by fluorodinitrobenzene. J. Biol. Chem. 246 (1971) 4028–4035. [PMID: 5561473]
[EC 4.1.2.14 created 1965, modified 1976, modified 2014]
 
 
EC 4.1.2.15      
Transferred entry: 2-dehydro-3-deoxy-phosphoheptonate aldolase. Now EC 2.5.1.54, 3-deoxy-7-phosphoheptulonate synthase
[EC 4.1.2.15 created 1965, modified 1976, deleted 2002]
 
 
EC 4.1.2.16      
Transferred entry: 2-dehydro-3-deoxy-phosphooctonate aldolase. Now EC 2.5.1.55, 3-deoxy-8-phosphooctulonate synthase
[EC 4.1.2.16 created 1965, deleted 2002]
 
 
EC 4.1.2.17     
Accepted name: L-fuculose-phosphate aldolase
Reaction: L-fuculose 1-phosphate = glycerone phosphate + (S)-lactaldehyde
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): L-fuculose 1-phosphate aldolase; fuculose aldolase; L-fuculose-1-phosphate lactaldehyde-lyase
Systematic name: L-fuculose-1-phosphate (S)-lactaldehyde-lyase (glycerone-phosphate-forming)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9024-54-8
References:
1.  Ghalambor, M.A. and Heath, E.C. The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. IV. Purification and properties of cytidine monophosphate 3-deoxy-D-manno-octulosonate synthetase. J. Biol. Chem. 241 (1966) 3216–3221. [PMID: 5330266]
2.  Dreyer, M.K. and Schulz, G.E. The spatial structure of the class II L-fuculose-1-phosphate aldolase from Escherichia coli. J. Mol. Biol. 231 (1993) 549–553. [DOI] [PMID: 8515438]
3.  Dreyer, M.K. and Schulz, G.E. Catalytic mechanism of the metal-dependent fuculose aldolase from Escherichia coli as derived from the structure. J. Mol. Biol. 259 (1996) 458–466. [DOI] [PMID: 8676381]
[EC 4.1.2.17 created 1965]
 
 
EC 4.1.2.18     
Accepted name: 2-dehydro-3-deoxy-L-pentonate aldolase
Reaction: 2-dehydro-3-deoxy-L-pentonate = pyruvate + glycolaldehyde
For diagram of L-arabinose catabolism, click here
Other name(s): 2-keto-3-deoxy-L-pentonate aldolase; 2-keto-3-deoxy-L-arabonate aldolase; 2-keto-3-deoxy-D-xylonate aldolase; 3-deoxy-D-pentulosonic acid aldolase; 2-dehydro-3-deoxy-L-pentonate glycolaldehyde-lyase
Systematic name: 2-dehydro-3-deoxy-L-pentonate glycolaldehyde-lyase (pyruvate-forming)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9076-49-7
References:
1.  Dahms, A.S. and Anderson, R.L. 2-Keto-3-deoxy-L-arabonate aldolase and its role in a new pathway of L-arabinose degradation. Biochem. Biophys. Res. Commun. 36 (1969) 809–814. [DOI] [PMID: 5808295]
[EC 4.1.2.18 created 1972, modified 1976]
 
 
EC 4.1.2.19     
Accepted name: rhamnulose-1-phosphate aldolase
Reaction: L-rhamnulose 1-phosphate = glycerone phosphate + (S)-lactaldehyde
For diagram of L-Rhamnose metabolism, click here
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): rhamnulose phosphate aldolase; L-rhamnulose 1-phosphate aldolase; L-rhamnulose-phosphate aldolase; L-rhamnulose-1-phosphate lactaldehyde-lyase
Systematic name: L-rhamnulose-1-phosphate (S)-lactaldehyde-lyase (glycerone-phosphate-forming)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9054-58-4
References:
1.  Chiu, T.-H. and Feingold, D.S. L-Rhamnulose 1-phosphate aldolase from Escherichia coli. Crystallization and properties. Biochemistry 8 (1969) 98–108. [PMID: 4975916]
2.  Sawada, H. and Takagi, Y. The metabolism of L-rhamnose in Escherichia coli. 3. L-Rhamulose-phosphate aldolase. Biochim. Biophys. Acta 92 (1964) 26–32. [PMID: 14243785]
[EC 4.1.2.19 created 1972]
 
 
EC 4.1.2.20     
Accepted name: 2-dehydro-3-deoxyglucarate aldolase
Reaction: 2-dehydro-3-deoxy-D-glucarate = pyruvate + 2-hydroxy-3-oxopropanoate
Glossary: 2-hydroxy-3-oxopropanoate = tartronate semialdehyde
Other name(s): 2-keto-3-deoxyglucarate aldolase; α-keto-β-deoxy-D-glucarate aldolase; 2-dehydro-3-deoxy-D-glucarate tartronate-semialdehyde-lyase; 2-dehydro-3-deoxy-D-glucarate tartronate-semialdehyde-lyase (pyruvate-forming)
Systematic name: 2-dehydro-3-deoxy-D-glucarate 2-hydroxy-3-oxopropanoate-lyase (pyruvate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37290-56-5
References:
1.  Fish, D.C. and Blumenthal, H.J. 2-Keto-3-deoxy-D-glucarate aldolase. Methods Enzymol. 9 (1966) 529–534.
[EC 4.1.2.20 created 1961 as EC 4.1.2.8, transferred 1972 to EC 4.1.2.20]
 
 
EC 4.1.2.21     
Accepted name: 2-dehydro-3-deoxy-6-phosphogalactonate aldolase
Reaction: 2-dehydro-3-deoxy-6-phospho-D-galactonate = pyruvate + D-glyceraldehyde 3-phosphate
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): 6-phospho-2-keto-3-deoxygalactonate aldolase; phospho-2-keto-3-deoxygalactonate aldolase; 2-keto-3-deoxy-6-phosphogalactonic aldolase; phospho-2-keto-3-deoxygalactonic aldolase; 2-keto-3-deoxy-6-phosphogalactonic acid aldolase; (KDPGal)aldolase; 2-dehydro-3-deoxy-D-galactonate-6-phosphate D-glyceraldehyde-3-phosphate-lyase; 2-dehydro-3-deoxy-D-galactonate-6-phosphate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Systematic name: 2-dehydro-3-deoxy-6-phospho-D-galactonate D-glyceraldehyde-3-phospho-lyase (pyruvate-forming)
Comments: The enzyme catalyses the last reaction in a D-galactose degradation pathway. cf. EC 4.1.2.55, 2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-99-3
References:
1.  Shuster, C.W. 2-Keto-3-deoxy-6-phosphogalactonic acid aldolase. Methods Enzymol. 9 (1966) 524–528.
[EC 4.1.2.21 created 1972, modified 2014]
 
 
EC 4.1.2.22     
Accepted name: fructose-6-phosphate phosphoketolase
Reaction: D-fructose 6-phosphate + phosphate = acetyl phosphate + D-erythrose 4-phosphate + H2O
Other name(s): D-fructose-6-phosphate D-erythrose-4-phosphate-lyase (phosphate-acetylating)
Systematic name: D-fructose-6-phosphate D-erythrose-4-phosphate-lyase (adding phosphate; acetyl-phosphate-forming)
Comments: Also acts on D-xylulose 5-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37290-57-6
References:
1.  Schramm, M., Klybas, V. and Racker, E. Phospholytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. Biol. Chem. 233 (1958) 1283–1288. [PMID: 13610828]
[EC 4.1.2.22 created 1972]
 
 
EC 4.1.2.23     
Accepted name: 3-deoxy-D-manno-octulosonate aldolase
Reaction: 3-deoxy-D-manno-octulosonate = pyruvate + D-arabinose
Other name(s): 2-keto-3-deoxyoctonate aldolase; KDOaldolase; 3-deoxyoctulosonic aldolase; 2-keto-3-deoxyoctonic aldolase; 3-deoxy-D-manno-octulosonic aldolase; 3-deoxy-D-manno-octulosonate D-arabinose-lyase
Systematic name: 3-deoxy-D-manno-octulosonate D-arabinose-lyase (pyruvate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-95-3
References:
1.  Ghalambor, M.A. and Heath, E.C. The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. V. Purification and properties of 3-deoxy-D-manno-octulosonate aldolase. J. Biol. Chem. 241 (1966) 3222–3227. [PMID: 5912115]
[EC 4.1.2.23 created 1972]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald