The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version

Accepted name: arylformamidase
Reaction: N-formyl-L-kynurenine + H2O = formate + L-kynurenine
For diagram of tryptophan catabolism, click here
Other name(s): kynurenine formamidase; formylase; formylkynureninase; formylkynurenine formamidase; formamidase I; formamidase II
Systematic name: aryl-formylamine amidohydrolase
Comments: Also acts on other aromatic formylamines.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 156229-75-3
1.  Hayaishi, O. and Stanier, R.Y. The bacterial oxidation of tryptophan. III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J. Bacteriol. 62 (1951) 691–709. [PMID: 14907621]
2.  Jakoby, W.B. Kynurenine formamidase from Neurospora. J. Biol. Chem. 207 (1954) 657–663. [PMID: 13163050]
3.  Mehler, A.H. and Knox, W.E. The conversion of tryptophan to kynurenine in liver. II. The enzymatic hydrolysis of formylkynurenine. J. Biol. Chem. 187 (1950) 431–438. [PMID: 14794728]
[EC created 1961]
Accepted name: adenosylcobinamide hydrolase
Reaction: adenosylcobinamide + H2O = adenosylcobyric acid + (R)-1-aminopropan-2-ol
For diagram of cobinamide salvage pathways, click here
Other name(s): CbiZ; AdoCbi amidohydrolase
Systematic name: adenosylcobinamide amidohydrolase
Comments: Involved in the salvage pathway of cobinamide in archaea. Archaea convert adenosylcobinamide (AdoCbi) into adenosylcobinamide phosphate (AdoCbi-P) in two steps. First, the amidohydrolase activity of CbiZ cleaves off the aminopropanol moiety of AdoCbi yielding adenosylcobyric acid (AdoCby); second, AdoCby is converted into AdoCbi-P by the action of EC, adenosylcobinamide-phosphate synthase (CbiB).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 905988-16-1
1.  Woodson, J.D. and Escalante-Semerena, J.C. CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea. Proc. Natl. Acad. Sci. USA 101 (2004) 3591–3596. [DOI] [PMID: 14990804]
[EC created 2004]
Accepted name: N-substituted formamide deformylase
Reaction: N-benzylformamide + H2O = formate + benzylamine
For diagram of reaction, click here
Other name(s): NfdA
Systematic name: N-benzylformamide amidohydrolase
Comments: Zinc is a cofactor. While N-benzylformamide is the best substrate, the enzyme from Arthrobacter pascens can also act on the N-substituted formamides N-butylformamide, N-allylformamide, N-[2-(cyclohex-1-enyl)ethyl]formamide and N-(1-phenylethyl)formamide, but much more slowly. Amides of other acids do not act as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 115299-95-1
1.  Fukatsu, H., Hashimoto, Y., Goda, M., Higashibata, H. and Kobayashi, M. Amine-synthesizing enzyme N-substituted formamide deformylase: screening, purification, characterization, and gene cloning. Proc. Natl. Acad. Sci. USA 101 (2004) 13726–13731. [DOI] [PMID: 15358859]
[EC created 2005]
Accepted name: pantetheine hydrolase
Reaction: (R)-pantetheine + H2O = (R)-pantothenate + 2-aminoethanethiol
Other name(s): pantetheinase; vanin; vanin-1
Systematic name: (R)-pantetheine amidohydrolase
Comments: The enzyme hydrolyses only one of the amide bonds of pantetheine. The substrate analogues phosphopantetheine and CoA are not substrates. The enzyme recycles pantothenate (vitamin B5) and produces 2-aminoethanethiol (cysteamine), a potent anti-oxidant [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56093-18-6
1.  Duprè, S. and Cavallini, D. Purification and properties of pantetheinase from horse kidney. Methods Enzymol. 62 (1979) 262–267. [PMID: 440106]
2.  Duprè, S., Chiaraluce, R., Nardini, M., Cannella, C., Ricci, G. and Cavallini, D. Continuous spectrophotometric assay of pantetheinase activity. Anal. Biochem. 142 (1984) 175–181. [DOI] [PMID: 6549111]
3.  Maras, B., Barra, D., Duprè, S. and Pitari, G. Is pantetheinase the actual identity of mouse and human vanin-1 proteins? FEBS Lett. 461 (1999) 149–152. [DOI] [PMID: 10567687]
4.  Aurrand-Lions, M., Galland, F., Bazin, H., Zakharyev, V.M., Imhof, B.A. and Naquet, P. Vanin-1, a novel GPI-linked perivascular molecule involved in thymus homing. Immunity 5 (1996) 391–405. [DOI] [PMID: 8934567]
5.  Pitari, G., Malergue, F., Martin, F., Philippe, J.M., Massucci, M.T., Chabret, C., Maras, B., Duprè, S., Naquet, P. and Galland, F. Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett. 483 (2000) 149–154. [DOI] [PMID: 11042271]
6.  Martin, F., Malergue, F., Pitari, G., Philippe, J.M., Philips, S., Chabret, C., Granjeaud, S., Mattei, M.G., Mungall, A.J., Naquet, P. and Galland, F. Vanin genes are clustered (human 6q22-24 and mouse 10A2B1) and encode isoforms of pantetheinase ectoenzymes. Immunogenetics 53 (2001) 296–306. [PMID: 11491533]
7.  Pace, H.C. and Brenner, C. The nitrilase superfamily: classification, structure and function. Genome Biol. 2 (2001) 0001.. [PMID: 11380987]
[EC created 2006]
Accepted name: glutaryl-7-aminocephalosporanic-acid acylase
Reaction: (7R)-7-(4-carboxybutanamido)cephalosporanate + H2O = (7R)-7-aminocephalosporanate + glutarate
For diagram of cephalosporin biosynthesis, click here
Other name(s): 7β-(4-carboxybutanamido)cephalosporanic acid acylase; cephalosporin C acylase; glutaryl-7-ACA acylase; CA; GCA; GA; cephalosporin acylase; glutaryl-7-aminocephalosporanic acid acylase; GL-7-ACA acylase
Systematic name: (7R)-7-(4-carboxybutanamido)cephalosporanate amidohydrolase
Comments: Forms 7-aminocephalosporanic acid, a key intermediate in the synthesis of cephem antibiotics. It reacts only weakly with cephalosporin C.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 56645-46-6
1.  Ishii, Y., Saito, Y., Fujimura, T., Sasaki, H., Noguchi, Y., Yamada, H., Niwa, M. and Shimomura, K. High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176. Eur. J. Biochem. 230 (1995) 773–778. [DOI] [PMID: 7607251]
2.  Kinoshita, T., Tada, T., Saito, Y., Ishii, Y., Sato, A. and Murata, M. Crystallization and preliminary X-ray analysis of cephalosporin C acylase from Pseudomonas sp. strain N176. Acta Crystallogr. D Biol. Crystallogr. 56 (2000) 458–459. [PMID: 10739919]
3.  Monti, D., Carrea, G., Riva, S., Baldaro, E. and Frare, G. Characterization of an industrial biocatalyst: immobilized glutaryl-7-ACA acylase. Biotechnol. Bioeng. 70 (2000) 239–244. [PMID: 10972935]
4.  Kwon, T.H., Rhee, S., Lee, Y.S., Park, S.S. and Kim, K.H. Crystallization and preliminary X-Ray diffraction analysis of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas sp. GK16. J. Struct. Biol. 131 (2000) 79–81. [DOI] [PMID: 10945972]
5.  Kim, Y., Yoon, K.-H., Khang, Y., Turley, S. and Hol, W.G.J. The 2.0 Å crystal structure of cephalosporin acylase. Structure 8 (2000) 1059–1068. [DOI] [PMID: 11080627]
6.  Huang, X., Zeng, R., Ding, X., Mao, X., Ding, Y., Rao, Z., Xie, Y., Jiang, W. and Zhao, G. Affinity alkylation of the Trp-B4 residue of the β-subunit of the glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130. J. Biol. Chem. 277 (2002) 10256–10264. [DOI] [PMID: 11782466]
7.  Kim, J.K., Yang, I.S., Rhee, S., Dauter, Z., Lee, Y.S., Park, S.S. and Kim, K.H. Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 42 (2003) 4084–4093. [DOI] [PMID: 12680762]
[EC created 2005]
Accepted name: γ-glutamyl-γ-aminobutyrate hydrolase
Reaction: 4-(γ-L-glutamylamino)butanoate + H2O = 4-aminobutanoate + L-glutamate
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Other name(s): γ-glutamyl-GABA hydrolase; PuuD; YcjL; 4-(γ-glutamylamino)butanoate amidohydrolase; 4-(L-γ-glutamylamino)butanoate amidohydrolase
Systematic name: 4-(γ-L-glutamylamino)butanoate amidohydrolase
Comments: Forms part of a putrescine-utilizing pathway in Escherichia coli, in which it has been hypothesized that putrescine is first glutamylated to form γ-glutamylputrescine, which is oxidized to 4-(γ-glutamylamino)butanal and then to 4-(γ-glutamylamino)butanoate. The enzyme can also catalyse the reactions of EC (D-glutaminase) and EC (theanine hydrolase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Kurihara, S., Oda, S., Kato, K., Kim, H.G., Koyanagi, T., Kumagai, H. and Suzuki, H. A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280 (2005) 4602–4608. [DOI] [PMID: 15590624]
[EC created 2006, modified 2011]
Accepted name: N-malonylurea hydrolase
Reaction: 3-oxo-3-ureidopropanoate + H2O = malonate + urea
For pyrimidine catabolism, click here
Other name(s): ureidomalonase
Systematic name: 3-oxo-3-ureidopropanoate amidohydrolase (urea- and malonate-forming)
Comments: Forms part of the oxidative pyrimidine-degrading pathway in some microorganisms, along with EC (uracil/thymine dehydrogenase) and EC (barbiturase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 368888-22-6
1.  Soong, C.L., Ogawa, J. and Shimizu, S. Novel amidohydrolytic reactions in oxidative pyrimidine metabolism: analysis of the barbiturase reaction and discovery of a novel enzyme, ureidomalonase. Biochem. Biophys. Res. Commun. 286 (2001) 222–226. [DOI] [PMID: 11485332]
2.  Soong, C.L., Ogawa, J., Sakuradani, E. and Shimizu, S. Barbiturase, a novel zinc-containing amidohydrolase involved in oxidative pyrimidine metabolism. J. Biol. Chem. 277 (2002) 7051–7058. [DOI] [PMID: 11748240]
[EC created 2006]
Accepted name: succinylglutamate desuccinylase
Reaction: N-succinyl-L-glutamate + H2O = succinate + L-glutamate
For diagram of arginine catabolism, click here
Other name(s): N2-succinylglutamate desuccinylase; SGDS; AstE
Systematic name: N-succinyl-L-glutamate amidohydrolase
Comments: Requires Co2+ for maximal activity [1]. N2-Acetylglutamate is not a substrate. This is the final enzyme in the arginine succinyltransferase (AST) pathway for the catabolism of arginine [1]. This pathway converts the carbon skeleton of arginine into glutamate, with the concomitant production of ammonia and conversion of succinyl-CoA into succinate and CoA. The five enzymes involved in this pathway are EC (arginine N-succinyltransferase), EC (N-succinylarginine dihydrolase), EC (acetylornithine transaminase), EC (succinylglutamate-semialdehyde dehydrogenase) and EC (succinylglutamate desuccinylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 99676-40-1
1.  Vander Wauven, C. and Stalon, V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J. Bacteriol. 164 (1985) 882–886. [PMID: 2865249]
2.  Cunin, R., Glansdorff, N., Pierard, A. and Stalon, V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50 (1986) 314–352. [PMID: 3534538]
3.  Cunin, R., Glansdorff, N., Pierard, A. and Stalon, V. Erratum report: Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 51 (1987) 178. [PMID: 16350242]
4.  Itoh, Y. Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J. Bacteriol. 179 (1997) 7280–7290. [DOI] [PMID: 9393691]
5.  Schneider, B.L., Kiupakis, A.K. and Reitzer, L.J. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J. Bacteriol. 180 (1998) 4278–4286. [PMID: 9696779]
[EC created 2006]
Accepted name: acyl-homoserine-lactone acylase
Reaction: an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
Other name(s): acyl-homoserine lactone acylase; AHL-acylase; AiiD; N-acyl-homoserine lactone acylase; PA2385 protein; quorum-quenching AHL acylase; quorum-quenching enzyme; QuiP
Systematic name: N-acyl-L-homoserine-lactone amidohydrolase
Comments: Acyl-homoserine lactones (AHLs) are produced by a number of bacterial species and are used by them to regulate the expression of virulence genes in a process known as quorum-sensing. Each bacterial cell has a basal level of AHL and, once the population density reaches a critical level, it triggers AHL-signalling which, in turn, initiates the expression of particular virulence genes. Plants or animals capable of degrading AHLs would have a therapeutic advantage in avoiding bacterial infection as they could prevent AHL-signalling and the expression of virulence genes in quorum-sensing bacteria. This quorum-quenching enzyme removes the fatty-acid side chain from the homoserine lactone ring of AHL-dependent quorum-sensing signal molecules. It has broad specificity for AHLs with side changes ranging in length from 11 to 14 carbons. Substituents at the 3′-position, as found in N-(3-oxododecanoyl)-L-homoserine lactone, do not affect this activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R. and Zhang, L.H. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47 (2003) 849–860. [DOI] [PMID: 12535081]
2.  Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Cámara, M., Williams, P. and Quax, W.J. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun. 74 (2006) 1673–1682. [DOI] [PMID: 16495538]
[EC created 2007]
Accepted name: histone deacetylase
Reaction: Hydrolysis of an N6-acetyl-lysine residue of a histone to yield a deacetylated histone
Other name(s): HDAC
Systematic name: histone amidohydrolase
Comments: A class of enzymes that remove acetyl groups from N6-acetyl-lysine residues on a histone. The reaction of this enzyme is opposite to that of EC, histone acetyltransferase. Histone deacetylases (HDACs) can be organized into three classes, HDAC1, HDAC2 and HDAC3, depending on sequence similarity and domain organization. Histone acetylation plays an important role in regulation of gene expression. In eukaryotes, HDACs play a key role in the regulation of transcription and cell proliferation [4]. May be identical to EC, acyl-lysine deacylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
1.  Krieger, D.E., Levine, R., Merrifield, R.B., Vidali, G. and Allfrey, V.G. Chemical studies of histone acetylation. Substrate specificity of a histone deacetylase from calf thymus nuclei. J. Biol. Chem. 249 (1974) 332–334. [PMID: 4855628]
2.  Sanchez del Pino, M.M., Lopez-Rodas, G., Sendra, R. and Tordera, V. Properties of the yeast nuclear histone deacetylase. Biochem. J. 303 (1994) 723–729. [PMID: 7980438]
3.  Ouaissi, M. and Ouaissi, A. Histone deacetylase enzymes as potential drug targets in cancer and parasitic diseases. J. Biomed. Biotechnol. 2006 (2006) 13474. [DOI] [PMID: 16883049]
4.  Song, Y.M., Kim, Y.S., Kim, D., Lee, D.S. and Kwon, H.J. Cloning, expression, and biochemical characterization of a new histone deacetylase-like protein from Thermus caldophilus GK24. Biochem. Biophys. Res. Commun. 361 (2007) 55–61. [DOI] [PMID: 17632079]
5.  Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., Breslow, R. and Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401 (1999) 188–193. [DOI] [PMID: 10490031]
6.  Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A. and Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276 (2001) 36734–36741. [DOI] [PMID: 11473107]
7.  de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S. and van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370 (2003) 737–749. [DOI] [PMID: 12429021]
[EC created 2008]
Accepted name: fatty acid amide hydrolase
Reaction: (1) anandamide + H2O = arachidonic acid + ethanolamine
(2) oleamide + H2O = oleic acid + NH3
Glossary: anandamide = (5Z,8Z,11Z,14Z)-N-(2-hydroxyethyl)icosa-5,8,11,14-tetraenamide
Other name(s): FAAH; oleamide hydrolase; anandamide amidohydrolase
Systematic name: fatty acylamide amidohydrolase
Comments: Integral membrane protein, the enzyme is responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide and oleamide, occurs in mammalia.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Boger, D.L., Fecik, R.A., Patterson, J.E., Miyauchi, H., Patricelli, M.P. and Cravatt, B.F. Fatty acid amide hydrolase substrate specificity. Bioorg. Med. Chem. Lett. 10 (2000) 2613–2616. [DOI] [PMID: 11128635]
2.  Patricelli, M.P., Lashuel, H.A., Giang, D.K., Kelly, J.W. and Cravatt, B.F. Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: identification of the transmembrane domain as a site for oligomerization. Biochemistry 37 (1998) 15177–15187. [DOI] [PMID: 9790682]
3.  Patricelli, M.P. and Cravatt, B.F. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase. Biochemistry 40 (2001) 6107–6115. [DOI] [PMID: 11352748]
[EC created 2009]

Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald