The Enzyme Database

Displaying entries 101-150 of 1114.

<< Previous | Next >>    printer_iconPrintable version

EC 1.2.1.82     Relevance: 100%
Accepted name: β-apo-4′-carotenal dehydrogenase
Reaction: 4′-apo-β,ψ-caroten-4′-al + NAD+ + H2O = neurosporaxanthin + NADH + 2 H+
For diagram of reaction, click here
Glossary: neurosporaxanthin = 4′-apo-β,ψ-caroten-4′-oic acid
Other name(s): β-apo-4′-carotenal oxygenase; YLO-1; carD (gene name)
Systematic name: 4′-apo-β,ψ-carotenal:NAD+ oxidoreductase
Comments: Neurosporaxanthin is responsible for the orange color of of Neurospora.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Estrada, A.F., Youssar, L., Scherzinger, D., Al-Babili, S. and Avalos, J. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol. Microbiol. 69 (2008) 1207–1220. [DOI] [PMID: 18627463]
2.  Diaz-Sanchez, V., Estrada, A.F., Trautmann, D., Al-Babili, S. and Avalos, J. The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J. 278 (2011) 3164–3176. [DOI] [PMID: 21749649]
[EC 1.2.1.82 created 2011, modified 2023]
 
 
EC 2.4.1.244     Relevance: 100%
Accepted name: N-acetyl-β-glucosaminyl-glycoprotein 4-β-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-β-D-glucosaminyl group = UDP + N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl group
Glossary: N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosamine = N,N′-diacetyllactosediamine
Other name(s): β1,4-N-acetylgalactosaminyltransferase III; β4GalNAc-T3; β1,4-N-acetylgalactosaminyltransferase IV; β4GalNAc-T4; UDP-N-acetyl-D-galactosamine:N-acetyl-D-glucosaminyl-group β-1,4-N-acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:N-acetyl-β-D-glucosaminyl-group 4-β-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-β-D-glucosaminyl-group 4-β-N-acetylgalactosaminyltransferase
Comments: The enzyme from human can transfer N-acetyl-D-galactosamine (GalNAc) to N-glycan and O-glycan substrates that have N-acetyl-D-glucosamine (GlcNAc) but not D-glucuronic acid (GlcUA) at their non-reducing end. The N-acetyl-β-D-glucosaminyl group is normally on a core oligosaccharide although benzyl glycosides have been used in enzyme-characterization experiments. Some glycohormones, e.g. lutropin and thyrotropin contain the N-glycan structure containing the N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sato, T., Gotoh, M., Kiyohara, K., Kameyama, A., Kubota, T., Kikuchi, N., Ishizuka, Y., Iwasaki, H., Togayachi, A., Kudo, T., Ohkura, T., Nakanishi, H. and Narimatsu, H. Molecular cloning and characterization of a novel human β1,4-N-acetylgalactosaminyltransferase, β4GalNAc-T3, responsible for the synthesis of N,N'-diacetyllactosediamine, GalNAc β1-4GlcNAc. J. Biol. Chem. 278 (2003) 47534–47544. [DOI] [PMID: 12966086]
2.  Gotoh, M., Sato, T., Kiyohara, K., Kameyama, A., Kikuchi, N., Kwon, Y.D., Ishizuka, Y., Iwai, T., Nakanishi, H. and Narimatsu, H. Molecular cloning and characterization of β1,4-N-acetylgalactosaminyltransferases IV synthesizing N,N'-diacetyllactosediamine. FEBS Lett. 562 (2004) 134–140. [DOI] [PMID: 15044014]
[EC 2.4.1.244 created 2006]
 
 
EC 3.2.1.88     Relevance: 100%
Accepted name: non-reducing end β-L-arabinopyranosidase
Reaction: Removal of a terminal β-L-arabinopyranose residue from the non-reducing end of its substrate.
Other name(s): vicianosidase; β-L-arabinosidase (ambiguous); β-L-arabinoside arabinohydrolase (ambiguous)
Systematic name: β-L-arabinopyranoside non-reducing end β-L-arabinopyranosidase
Comments: The enzyme, which was characterized from dormant seeds of the plant Cajanus cajan (pigeon pea), has been shown to remove the terminal non-reducing β-L-arabinopyranoside residue from the artificial substrate p-nitrophenyl-β-L-arabinopyranose [1]. In the presence of methanol the enzyme demonstrates transglycosylase activity, transferring the arabinose moiety to methanol while retaining the anomeric configuration, generating 1-O-methyl-β-L-arabinopyranose [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 39361-63-2
References:
1.  Dey, P.M. β-L-Arabinosidase from Cajanus indicus: a new enzyme. Biochim. Biophys. Acta 302 (1973) 393–398. [DOI] [PMID: 4699248]
2.  Dey, P. M. Further characterization of β-L-arabinosidase from Cajanus indicus. Biochim.Biophys. Acta 746 (1983) 8–13.
[EC 3.2.1.88 created 1976, modified 2013]
 
 
EC 3.2.1.175     Relevance: 99.7%
Accepted name: β-D-glucopyranosyl abscisate β-glucosidase
Reaction: D-glucopyranosyl abscisate + H2O = D-glucose + abscisate
For diagram of abscisic-acid biosynthesis, click here
Other name(s): AtBG1; ABA-β-D-glucosidase; ABA-specific β-glucosidase; ABA-GE hydrolase; β-D-glucopyranosyl abscisate hydrolase
Systematic name: β-D-glucopyranosyl abscisate glucohydrolase
Comments: The enzyme hydrolzes the biologically inactive β-D-glucopyranosyl ester of abscisic acid to produce active abscisate. Abscisate is a phytohormone critical for plant growth, development and adaption to various stress conditions. The enzyme does not hydrolyse β-D-glucopyranosyl zeatin [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, K.H., Piao, H.L., Kim, H.Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I.J. and Hwang, I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126 (2006) 1109–1120. [DOI] [PMID: 16990135]
2.  Kato-Noguchi, H. and Tanaka, Y. Effect of ABA-β-D-glucopyranosyl ester and activity of ABA-β-D-glucosidase in Arabidopsis thaliana. J. Plant Physiol. 165 (2008) 788–790. [DOI] [PMID: 17923167]
3.  Dietz, K.J., Sauter, A., Wichert, K., Messdaghi, D. and Hartung, W. Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J. Exp. Bot. 51 (2000) 937–944. [DOI] [PMID: 10948220]
[EC 3.2.1.175 created 2011]
 
 
EC 5.4.99.39     Relevance: 99.5%
Accepted name: β-amyrin synthase
Reaction: (3S)-2,3-epoxy-2,3-dihydrosqualene = β-amyrin
For diagram of beta-amyrin and soysapogenol biosynthesis, click here
Other name(s): 2,3-oxidosqualene β-amyrin cyclase; AsbAS1; BPY; EtAS; GgbAS1; LjAMY1; MtAMY1; PNY; BgbAS
Systematic name: (3S)-2,3-epoxy-2,3-dihydrosqualene mutase (cyclizing, β-amyrin-forming)
Comments: Some organism possess a monofunctional β-amyrin synthase [3,4,6-11], other have a multifunctional enzyme that also catalyses the synthesis of α-amyrin (EC 5.4.99.40) [5] or lupeol (EC 5.4.99.41) [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Abe, I, Ebizuka, Y., Seo, S. and Sankawa, U. Purification of squalene-2,3-epoxide cyclases from cell suspension cultures of Rabdosia japonica Hara. FEBS Lett. 249 (1989) 100–104.
2.  Abe, I., Sankawa, U. and Ebizuka, Y. Purification of 2,3-oxdosqualene:β-amyrin cyclase from pea seedlings. Chem. Pharm. Bull. 37 (1989) 536.
3.  Kushiro, T., Shibuya, M. and Ebizuka, Y. β-Amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256 (1998) 238–244. [DOI] [PMID: 9746369]
4.  Hayashi, H., Huang, P., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y., Kushiro, T., Shibuya, M. and Ebizuka, Y. Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biol. Pharm. Bull. 24 (2001) 912–916. [PMID: 11510484]
5.  Husselstein-Muller, T., Schaller, H. and Benveniste, P. Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol. Biol. 45 (2001) 75–92. [PMID: 11247608]
6.  Iturbe-Ormaetxe, I., Haralampidis, K., Papadopoulou, K. and Osbourn, A.E. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51 (2003) 731–743. [PMID: 12683345]
7.  Zhang, H., Shibuya, M., Yokota, S. and Ebizuka, Y. Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol. Pharm. Bull. 26 (2003) 642–650. [PMID: 12736505]
8.  Hayashi, H., Huang, P., Takada, S., Obinata, M., Inoue, K., Shibuya, M. and Ebizuka, Y. Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. Biol. Pharm. Bull. 27 (2004) 1086–1092. [PMID: 15256745]
9.  Kajikawa, M., Yamato, K.T., Fukuzawa, H., Sakai, Y., Uchida, H. and Ohyama, K. Cloning and characterization of a cDNA encoding β-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry 66 (2005) 1759–1766. [DOI] [PMID: 16005035]
10.  Basyuni, M., Oku, H., Tsujimoto, E., Kinjo, K., Baba, S. and Takara, K. Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae. FEBS J. 274 (2007) 5028–5042. [DOI] [PMID: 17803686]
11.  Liu, Y., Cai, Y., Zhao, Z., Wang, J., Li, J., Xin, W., Xia, G. and Xiang, F. Cloning and functional analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea MAXIM. Biol. Pharm. Bull. 32 (2009) 818–824. [PMID: 19420748]
[EC 5.4.99.39 created 2011]
 
 
EC 1.14.13.129      
Transferred entry: β-carotene 3-hydroxylase. Now EC 1.14.15.24, β-carotene 3-hydroxylase.
[EC 1.14.13.129 created 2011, deleted 2017]
 
 
EC 2.4.1.34     Relevance: 99.4%
Accepted name: 1,3-β-glucan synthase
Reaction: UDP-glucose + [(1→3)-β-D-glucosyl]n = UDP + [(1→3)-β-D-glucosyl]n+1
Other name(s): 1,3-β-D-glucan—UDP glucosyltransferase; UDP-glucose—1,3-β-D-glucan glucosyltransferase; callose synthetase; 1,3-β-D-glucan-UDP glucosyltransferase; UDP-glucose-1,3-β-D-glucan glucosyltransferase; paramylon synthetase; UDP-glucose-β-glucan glucosyltransferase; GS-II; (1,3)-β-glucan (callose) synthase; β-1,3-glucan synthase; β-1,3-glucan synthetase; 1,3-β-D-glucan synthetase; 1,3-β-D-glucan synthase; 1,3-β-glucan-uridine diphosphoglucosyltransferase; callose synthase; UDP-glucose-1,3-β-glucan glucosyltransferase; UDP-glucose:(1,3)β-glucan synthase; uridine diphosphoglucose-1,3-β-glucan glucosyltransferase; UDP-glucose:1,3-β-D-glucan 3-β-D-glucosyltransferase
Systematic name: UDP-glucose:(1→3)-β-D-glucan 3-β-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9037-30-3
References:
1.  Maréchal, L.R. and Goldemberg, S.H. Uridine diphosphate glucose-β-1,3-glucan β-3-glucosyltransferase from Euglena gracilis. J. Biol. Chem. 239 (1964) 3163–3167. [PMID: 14245356]
[EC 2.4.1.34 created 1972]
 
 
EC 1.13.11.71     Relevance: 99.3%
Accepted name: carotenoid-9′,10′-cleaving dioxygenase
Reaction: all-trans-β-carotene + O2 = all-trans-10′-apo-β-carotenal + β-ionone
For diagram of 10′-apo-β-carotenal biosynthesis, click here
Other name(s): BCO2 (gene name); β-carotene 9′,10′-monooxygenase (misleading); all-trans-β-carotene:O2 oxidoreductase (9′,10′-cleaving)
Systematic name: all-trans-β-carotene:oxygen oxidoreductase (9′,10′-cleaving)
Comments: Requires Fe2+. The enzyme catalyses the asymmetric oxidative cleavage of carotenoids. The mammalian enzyme can also cleave all-trans-lycopene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kiefer, C., Hessel, S., Lampert, J.M., Vogt, K., Lederer, M.O., Breithaupt, D.E. and von Lintig, J. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J. Biol. Chem. 276 (2001) 14110–14116. [DOI] [PMID: 11278918]
2.  Lindqvist, A., He, Y.G. and Andersson, S. Cell type-specific expression of β-carotene 9′,10′-monooxygenase in human tissues. J. Histochem. Cytochem. 53 (2005) 1403–1412. [DOI] [PMID: 15983114]
[EC 1.13.11.71 created 2012]
 
 
EC 2.4.1.97     Relevance: 99.2%
Accepted name: 1,3-β-D-glucan phosphorylase
Reaction: [(1→3)-β-D-glucosyl]n + phosphate = [(1→3)-β-D-glucosyl]n-1 + α-D-glucose 1-phosphate
Other name(s): laminarin phosphoryltransferase; 1,3-β-D-glucan:orthophosphate glucosyltransferase; 1,3-β-D-glucan:phosphate α-D-glucosyltransferase
Systematic name: (1→3)-β-D-glucan:phosphate α-D-glucosyltransferase
Comments: Acts on a range of β-1,3-oligoglucans, and on glucans of laminarin type. Different from EC 2.4.1.30 (1,3-β-oligoglucan phosphorylase) and EC 2.4.1.31 (laminaribiose phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37340-31-1
References:
1.  Albrecht, G.J. and Kauss, H. Purification, crystallization and properties of a β-(1→3)-glucan phosphorylase from Ochromonas malhamensis. Phytochemistry 10 (1971) 1293–1298.
[EC 2.4.1.97 created 1978]
 
 
EC 3.2.1.65     Relevance: 99.1%
Accepted name: levanase
Reaction: Random hydrolysis of (2→6)-β-D-fructofuranosidic linkages in (2→6)-β-D-fructans (levans) containing more than 3 fructose units
Other name(s): levan hydrolase; 2,6-β-D-fructan fructanohydrolase
Systematic name: (2→6)-β-D-fructan fructanohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9041-11-6
References:
1.  Avigad, G. and Bauer, S. Fructan hydrolases. Methods Enzymol. 8 (1966) 621–628.
[EC 3.2.1.65 created 1972]
 
 
EC 1.13.11.82     Relevance: 99.1%
Accepted name: 8′-apo-carotenoid 13,14-cleaving dioxygenase
Reaction: 8′-apo-β-carotenal + O2 = 13-apo-β-carotenone + 2,6-dimethyldeca-2,4,6,8-tetraenedial
For diagram of 8′-apo-β-carotenal metabolites, click here
Other name(s): NACOX1 (gene name)
Systematic name: 8′-apo-β-carotenal:oxygen 13,14-dioxygenase (bond-cleaving)
Comments: Isolated from the bacterium Novosphingobium aromaticivorans. It is less active with 4′-apo-β-carotenal and γ-carotene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kim, Y.S., Seo, E.S. and Oh, D.K. Characterization of an apo-carotenoid 13,14-dioxygenase from Novosphingobium aromaticivorans that converts β-apo-8′-carotenal to β-apo-13-carotenone. Biotechnol. Lett. 34 (2012) 1851–1856. [DOI] [PMID: 22711425]
[EC 1.13.11.82 created 2015]
 
 
EC 2.4.2.24     Relevance: 99%
Accepted name: 1,4-β-D-xylan synthase
Reaction: UDP-D-xylose + [(1→4)-β-D-xylan]n = UDP + [(1→4)-β-D-xylan]n+1
Other name(s): uridine diphosphoxylose-1,4-β-xylan xylosyltransferase; 1,4-β-xylan synthase; xylan synthase; xylan synthetase; UDP-D-xylose:1,4-β-D-xylan 4-β-D-xylosyltransferase
Systematic name: UDP-D-xylose:(1→4)-β-D-xylan 4-β-D-xylosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-73-9
References:
1.  Bailey, R.W. and Hassid, W.Z. Xylan synthesis from uridine-diphosphate-D-xylose by particulate preparations from immature corncobs. Proc. Natl. Acad. Sci. USA 56 (1966) 1586–1593. [DOI] [PMID: 16591393]
[EC 2.4.2.24 created 1972 as EC 2.4.1.72, transferred 1976 to EC 2.4.2.24]
 
 
EC 3.2.1.222     Relevance: 99%
Accepted name: funoran endo-β-hydrolase
Reaction: Endohydrolysis of β-(1→4)-linkages between β-D-galactopyranose-6-sulfate and 3,6-anhydro-α-L-galactopyranose units in funoran
Glossary: funoran = [-3)-β-D-galactopyranose-6-sulfate-(1-4)-3,6-anhydro-α-L-galactopyranose-(1-]
Other name(s): β-funoranase
Systematic name: funoran endo β-(1,4)-glycanohydrolase
Comments: The enzyme is an endo hydrolase that hydrolyses the β(1,4) bond in funoran, a polysaccharide produced by red algae of the genus Gloiopeltis. The enzyme from the marine bacterium Wenyingzhuangia aestuarii OF219 acts on agarose with a higher efficiency (cf. EC 3.2.1.81, β-agarase), but binds funoran preferentially.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zhang, Y., Chen, G., Shen, J., Mei, X., Liu, G., Chang, Y., Dong, S., Feng, Y., Wang, Y. and Xue, C. The characteristic structure of funoran could be hydrolyzed by a GH86 family enzyme (Aga86A_Wa): Discovery of the funoran hydrolase. Carbohyd Polym 318 (2023) 121117. [DOI]
[EC 3.2.1.222 created 2023]
 
 
EC 2.4.1.295     Relevance: 98.5%
Accepted name: anthocyanin 3-O-sambubioside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-β-D-sambubioside = UDP + an anthocyanidin 5-O-β-D-glucoside 3-O-β-D-sambubioside
For diagram of anthocyanidin sambubioside biosynthesis, click here
Glossary: anthocyanidin 3-O-β-D-sambubioside = anthocyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-glucoside)
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-β-D-sambubioside 5-O-glucosyltransferase
Comments: Isolated from the plant Matthiola incana (stock). No activity with anthocyanidin 3-O-glucosides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Teusch, M., Forkmann, G. and Seyffert, W. Genetic control of UDP-glucose: anthocyanin 5-O-glucosyltransferase from flowers of Matthiola incana R.Br. Planta 168 (1986) 586–591. [PMID: 24232337]
[EC 2.4.1.295 created 2013]
 
 
EC 3.5.1.26     Relevance: 98.5%
Accepted name: N4-(β-N-acetylglucosaminyl)-L-asparaginase
Reaction: N4-(β-N-acetyl-D-glucosaminyl)-L-asparagine + H2O = N-acetyl-β-D-glucosaminylamine + L-aspartate
Other name(s): aspartylglucosylamine deaspartylase; aspartylglucosylaminase; aspartylglucosaminidase; aspartylglycosylamine amidohydrolase; N-aspartyl-β-glucosaminidase; glucosylamidase; β-aspartylglucosylamine amidohydrolase; 4-N-(β-N-acetyl-D-glucosaminyl)-L-asparagine amidohydrolase
Systematic name: N4-(β-N-acetyl-D-glucosaminyl)-L-asparagine amidohydrolase
Comments: Acts only on asparagine-oligosaccharides containing one amino acid, i.e., the asparagine has free α-amino and α-carboxyl groups [cf. EC 3.5.1.52, peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase]
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-24-5
References:
1.  Kohno, M. and Yamashina, I. Purification and properties of 4-L-aspartylglycosylamine amidohydrolase from hog kidney. Biochim. Biophys. Acta 258 (1972) 600–617. [DOI] [PMID: 5010303]
2.  Mahadevan, S. and Tappel, A.L. β-Aspartylglucosylamine amido hydrolase of rat liver and kidney. J. Biol. Chem. 242 (1967) 4568–4576. [PMID: 6061403]
3.  Tarentino, A.L. and Maley, F. The purification and properties of a β-aspartyl N-acetylglucosylamine amidohydrolase from hen oviduct. Arch. Biochem. Biophys. 130 (1969) 295–303. [PMID: 5778645]
[EC 3.5.1.26 created 1972 (EC 3.5.1.37 created 1972, incorporated 1976)]
 
 
EC 2.4.1.184     Relevance: 98.4%
Accepted name: galactolipid galactosyltransferase
Reaction: 2 a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol = a 1,2-diacyl-3-O-[β-D-galactosyl-(1→6)-β-D-galactosyl]-sn-glycerol + a 1,2-diacyl-sn-glycerol
For diagram of galactosyl diacylglycerol, click here
Glossary: a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol = monogalactosyldiacylglycerol
Other name(s): galactolipid-galactolipid galactosyltransferase; galactolipid:galactolipid galactosyltransferase; interlipid galactosyltransferase; GGGT; DGDG synthase (ambiguous); digalactosyldiacylglycerol synthase (ambiguous); 3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol:mono-3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol β-D-galactosyltransferase; 3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol:3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol β-D-galactosyltransferase; SFR2 (gene name)
Systematic name: 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol:1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol β-D-galactosyltransferase
Comments: The enzyme converts monogalactosyldiacylglycerol to digalactosyldiacylglycerol, trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol. All residues are connected by β linkages. The activity is localized to chloroplast envelope membranes, but it does not contribute to net galactolipid synthesis in plants, which is performed by EC 2.4.1.46, monogalactosyldiacylglycerol synthase, and EC 2.4.1.241, digalactosyldiacylglycerol synthase. Note that the β,β-digalactosyldiacylglycerol formed by this enzyme is different from the more common α,β-digalactosyldiacylglycerol formed by EC 2.4.1.241. The enzyme provides an important mechanism for the stabilization of the chloroplast membranes during freezing and drought stress.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 66676-74-2
References:
1.  Dorne, A.-J., Block, M.A., Joyard, J. and Douce, R. The galactolipid-galactolipid galactosyltransferase is located on the outer surface of the outer-membrane of the chloroplast envelope. FEBS Lett. 145 (1982) 30–34.
2.  Heemskerk, J.W.M., Wintermans, J.F.G.M., Joyard, J., Block, M.A., Dorne, A.-J. and Douce, R. Localization of galactolipid:galactolipid galactosyltransferase and acyltransferase in outer envelope membrane of spinach chloroplasts. Biochim. Biophys. Acta 877 (1986) 281–289.
3.  Heemskerk, J.W.M., Jacobs, F.H.H. and Wintermans, J.F.G.M. UDPgalactose-independent synthesis of monogalactosyldiacylglycerol. An enzymatic activity of the spinach chloroplast envelope. Biochim. Biophys. Acta 961 (1988) 38–47. [DOI]
4.  Kelly, A.A., Froehlich, J.E. and Dörmann, P. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15 (2003) 2694–2706. [DOI] [PMID: 14600212]
5.  Benning, C. and Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280 (2005) 2397–2400. [DOI] [PMID: 15590685]
6.  Fourrier, N., Bedard, J., Lopez-Juez, E., Barbrook, A., Bowyer, J., Jarvis, P., Warren, G. and Thorlby, G. A role for SENSITIVE TO FREEZING2 in protecting chloroplasts against freeze-induced damage in Arabidopsis. Plant J. 55 (2008) 734–745. [DOI] [PMID: 18466306]
7.  Moellering, E.R., Muthan, B. and Benning, C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330 (2010) 226–228. [DOI] [PMID: 20798281]
[EC 2.4.1.184 created 1990, modified 2005, modified 2015]
 
 
EC 2.4.1.361     Relevance: 98.1%
Accepted name: GDP-mannose:di-myo-inositol-1,3′-phosphate β-1,2-mannosyltransferase
Reaction: 2 GDP-α-D-mannose + bis(myo-inositol) 1,3′-phosphate = 2 GDP + 2-O-(β-D-mannosyl-(1→2)-β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate (overall reaction)
(1a) GDP-α-D-mannose + bis(myo-inositol) 1,3′-phosphate = GDP + 2-O-(β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate
(1b) GDP-α-D-mannose + 2-O-(β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate = GDP + 2-O-(β-D-mannosyl-(1→2)-β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate
Other name(s): MDIP synthase
Systematic name: GDP-α-D-mannose:bis(myo-inositol)-1,3′-phosphate 2-β-D-mannosyltransferase
Comments: The enzyme from the hyperthermophilic bacterium Thermotoga maritima is involved in the synthesis of the solutes 2-O-(β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate and 2-O-(β-D-mannosyl-(1→2)-β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rodrigues, M.V., Borges, N., Almeida, C.P., Lamosa, P. and Santos, H. A unique β-1,2-mannosyltransferase of Thermotoga maritima that uses di-myo-inositol phosphate as the mannosyl acceptor. J. Bacteriol. 191 (2009) 6105–6115. [PMID: 19648237]
[EC 2.4.1.361 created 2019]
 
 
EC 5.1.3.34     Relevance: 98%
Accepted name: monoglucosyldiacylglycerol epimerase
Reaction: a 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol = a 1,2-diacyl-3-O-(β-D-galactopyranosyl)-sn-glycerol
Glossary: a 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol = β-monoglucosyldiacylglycerol = GlcDG
a 1,2-diacyl-3-O-(β-D-galactopyranosyl)-sn-glycerol = β-monogalactosyldiacylglycerol = MGDG
Other name(s): glucolipid epimerase; mgdE (gene name)
Systematic name: 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol 4-epimerase
Comments: The enzyme, characterized from cyanobacteria, is involves in the biosynthesis of galactolipids found in their photosynthetic membranes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sato, N. and Murata, N. Lipid biosynthesis in the blue-green alga, Anabaena variabilis II. Fatty acids and lipid molecular species. Biochim. Biophys. Acta 710 (1982) 279–289.
2.  Awai, K., Ohta, H. and Sato, N. Oxygenic photosynthesis without galactolipids. Proc. Natl. Acad. Sci. USA 111 (2014) 13571–13575. [DOI] [PMID: 25197079]
[EC 5.1.3.34 created 2015]
 
 
EC 2.4.1.397     Relevance: 98%
Accepted name: cyclic β-1,2-glucan glucanotransferase
Reaction: Cyclizes part of a (1→2)-β-D-glucan chain by formation of a (1→2)-β-D-glucosidic bond
Systematic name: (1→2)-β-D-glucan:(1→2)-β-D-glucan 2-β-D-[(1→2)-β-D-glucano]-transferase (cyclizing and configuration-retaining)
Comments: This enzyme is the cyclization domain of cyclic β-1,2-glucan synthase. Enzymes from Brucella abortus and Thermoanaerobacter italicus were characterized. The cyclization domain of cyclic β-1,2-glucan synthase is flanked by an N-terminal β-1,2-glucosyltransferase domain (a UDP-α-D-glucose-dependent synthase, not EC 2.4.1.391) and a C-terminal β-1,2-glucoside phosphorylase domain (cf. EC 2.4.1.333), with the former responsible for elongation and the latter for chain length control. The cyclization domain of Thermoanaerobacter italicus cyclizes linear oligosaccharides with a degree of polymerization (DP) of 21 or higher to produce cyclic glucans with DP 17 or higher. The cyclization domain also disproportionates linear β-1,2-glucooligosaccharides without cycling. The entire cyclic β-1,2-glucan synthase from Brucella abortus synthesizes cyclic β-1,2-glucans with DP 17-22.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Inon de Iannino, N., Briones, G., Tolmasky, M. and Ugalde, R.A. Molecular cloning and characterization of cgs, the Brucella abortus cyclic β(1-2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J. Bacteriol. 180 (1998) 4392–4400. [DOI] [PMID: 9721274]
2.  Guidolin, L.S., Ciocchini, A.E., Inon de Iannino, N. and Ugalde, R.A. Functional mapping of Brucella abortus cyclic β-1,2-glucan synthase: identification of the protein domain required for cyclization. J. Bacteriol. 191 (2009) 1230–1238. [DOI] [PMID: 19074375]
3.  Guidolin, L.S., Morrone Seijo, S.M., Guaimas, F.F., Comerci, D.J. and Ciocchini, A.E. Interaction network and localization of Brucella abortus membrane proteins involved in the synthesis, transport, and succinylation of cyclic β-1,2-glucans. J. Bacteriol. 197 (2015) 1640–1648. [DOI] [PMID: 25733613]
4.  Tanaka, N., Saito, R., Kobayashi, K., Nakai, H., Kamo, S., Kuramochi, K., Taguchi, H., Nakajima, M. and Masaike, T. Functional and structural analysis of a cyclization domain in a cyclic β-1,2-glucan synthase. Appl. Microbiol. Biotechnol. 108:187 (2024). [DOI] [PMID: 38300345]
[EC 2.4.1.397 created 2024]
 
 
EC 1.1.1.339     Relevance: 98%
Accepted name: dTDP-6-deoxy-L-talose 4-dehydrogenase (NAD+)
Reaction: dTDP-6-deoxy-β-L-talose + NAD+ = dTDP-4-dehydro-β-L-rhamnose + NADH + H+
Glossary: dTDP-4-dehydro-β-L-rhamnose = dTDP-4-dehydro-6-deoxy-β-L-mannose
dTDP-6-deoxy-β-L-talose = dTDP-β-L-pneumose
Other name(s): tll (gene name)
Systematic name: dTDP-6-deoxy-β-L-talose:NAD+ 4-oxidoreductase
Comments: The enzyme has been characterized from the bacterium Aggregatibacter actinomycetemcomitans, in which it participates in the biosynthesis of the serotype c-specific polysaccharide antigen. Shows no activity with NADP+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nakano, Y., Suzuki, N., Yoshida, Y., Nezu, T., Yamashita, Y. and Koga, T. Thymidine diphosphate-6-deoxy-L-lyxo-4-hexulose reductase synthesizing dTDP-6-deoxy-L-talose from Actinobacillus actinomycetemcomitans. J. Biol. Chem. 275 (2000) 6806–6812. [DOI] [PMID: 10702238]
[EC 1.1.1.339 created 2012]
 
 
EC 2.4.1.340     Relevance: 98%
Accepted name: 1,2-β-oligomannan phosphorylase
Reaction: [(1→2)-β-D-mannosyl]n + phosphate = [(1→2)-β-D-mannosyl]n-1 + α-D-mannose 1-phosphate
Systematic name: (1→2)-β-D-mannan:phosphate β-D-mannosyl transferase (configuration-inverting)
Comments: The enzyme, originally characterized from the thermophilic anaerobic bacterium Thermoanaerobacter sp. X514, catalyses a reversible reaction. In the synthetic direction it produces oligosaccharides with a degree of polymerization (DP) of 3, 4 and 5. The phosphorolysis reaction proceeds to completion, although activity is highest when the substrate has at least three residues. cf. EC 2.4.1.339, β-1,2-mannobiose phosphorylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chiku, K., Nihira, T., Suzuki, E., Nishimoto, M., Kitaoka, M., Ohtsubo, K. and Nakai, H. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. PLoS One 9:e114882 (2014). [DOI] [PMID: 25500577]
[EC 2.4.1.340 created 2016]
 
 
EC 1.6.3.5     Relevance: 97.7%
Accepted name: renalase
Reaction: (1) 1,2-dihydro-β-NAD(P) + H+ + O2 = β-NAD(P)+ + H2O2
(2) 1,6-dihydro-β-NAD(P) + H+ + O2 = β-NAD(P)+ + H2O2
Other name(s): αNAD(P)H oxidase/anomerase (incorrect); NAD(P)H:oxygen oxidoreductase (H2O2-forming, epimerising) (incorrect)
Systematic name: dihydro-NAD(P):oxygen oxidoreductase (H2O2-forming)
Comments: Requires FAD. Renalase, previously thought to be a hormone, is a flavoprotein secreted into the blood by the kidney that oxidizes the 1,2-dihydro- and 1,6-dihydro- isomeric forms of β-NAD(P)H back to β-NAD(P)+. These isomeric forms, generated by nonspecific reduction of β-NAD(P)+ or by tautomerization of β-NAD(P)H, are potent inhibitors of primary metabolism dehydrogenases and pose a threat to normal respiration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Xu, J., Li, G., Wang, P., Velazquez, H., Yao, X., Li, Y., Wu, Y., Peixoto, A., Crowley, S. and Desir, G.V. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest. 115 (2005) 1275–1280. [DOI] [PMID: 15841207]
2.  Beaupre, B.A., Hoag, M.R., Roman, J., Forsterling, F.H. and Moran, G.R. Metabolic function for human renalase: oxidation of isomeric forms of β-NAD(P)H that are inhibitory to primary metabolism. Biochemistry 54 (2015) 795–806. [DOI] [PMID: 25531177]
[EC 1.6.3.5 created 2014, modified 2015]
 
 
EC 3.2.1.156     Relevance: 97.7%
Accepted name: oligosaccharide reducing-end xylanase
Reaction: Hydrolysis of (1→4)-β-D-xylose residues from the reducing end of oligosaccharides
Other name(s): Rex; reducing end xylose-releasing exo-oligoxylanase
Systematic name: β-D-xylopyranosyl-(1→4)-β-D-xylopyranose reducing-end xylanase
Comments: The enzyme, originally isolated from the bacterium Bacillus halodurans C-125, releases the xylose unit at the reducing end of oligosaccharides ending with the structure β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose, leaving the new reducing end in the α configuration. It is specific for the β anomers of xylooligosaccharides whose degree of polymerization is equal to or greater than 3. The penultimate residue must be β-D-xylopyranose, but replacing either of the flanking residues with glucose merely slows the rate greatly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 879497-03-7
References:
1.  Honda, Y. and Kitaoka, M. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J. Biol. Chem. 279 (2004) 55097–55103. [DOI] [PMID: 15491996]
2.  Fushinobu, S., Hidaka, M., Honda, Y., Wakagi, T., Shoun, H. and Kitaoka, M. Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125. J. Biol. Chem. 280 (2005) 17180–17186. [DOI] [PMID: 15718242]
[EC 3.2.1.156 created 2005]
 
 
EC 2.4.1.214     Relevance: 97.6%
Accepted name: glycoprotein 3-α-L-fucosyltransferase
Reaction: GDP-β-L-fucose + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] = GDP + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-[α-L-Fuc-(1→3)]-β-D-GlcNAc}-L-asparaginyl-[protein]
For diagram of mannosyl-glycoprotein fucosyl and xylosyl transferases, click here
Other name(s): GDP-L-Fuc:N-acetyl-β-D-glucosaminide α1,3-fucosyltransferase; GDP-L-Fuc:Asn-linked GlcNAc α1,3-fucosyltransferase; GDP-fucose:β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase; GDP-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of 4-N-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase; GDP-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase; GDP-β-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase
Systematic name: GDP-β-L-fucose:N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] 3-α-L-fucosyltransferase (configuration-retaining)
Comments: Requires Mn2+. The enzyme transfers to N-linked oligosaccharide structures (N-glycans), generally with a specificity for N-glycans with one unsubstituted non-reducing terminal GlcNAc residue. This enzyme catalyses a reaction similar to that of EC 2.4.1.68, glycoprotein 6-α-L-fucosyltransferase, but transferring the L-fucosyl group from GDP-β-L-fucose to form an α1,3-linkage rather than an α1,6-linkage. The N-glycan products of this enzyme are present in plants, insects and some other invertebrates (e.g., Schistosoma, Haemonchus, Lymnaea).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 68247-53-0
References:
1.  Wilson, I.B.H., Rendic, D., Freilinger, A., Dumic, J., Altmann, F., Mucha, J., Müller, S. and Hauser, M.-T. Cloning and expression of α1,3-fucosyltransferase homologues from Arabidopsis thaliana. Biochim. Biophys. Acta 1527 (2001) 88–96. [DOI] [PMID: 11420147]
2.  Fabini, G., Freilinger, A., Altmann, F. and Wilson, I.B.H. Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseradish peroxidase epitope. J. Biol. Chem. 276 (2001) 28058–28067. [DOI] [PMID: 11382750]
3.  Leiter, H., Mucha, J., Staudacher, E., Grimm, R., Glössl, J. and Altmann, F. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc α1,3-fucosyltransferase from mung beans. J. Biol. Chem. 274 (1999) 21830–21839. [DOI] [PMID: 10419500]
4.  van Tetering, A., Schiphorst, W.E.C.M., van den Eijnden, D.H. and van Die, I. Characterization of core α1→3-fucosyltransferase from the snail Lymnaea stagnalis that is involved in the synthesis of complex type N-glycans. FEBS Lett. 461 (1999) 311–314. [DOI] [PMID: 10567717]
5.  Staudacher, E., Altmann, F., Glössl, J., März, L., Schachter, H., Kamerling, J.P., Haard, K. and Vliegenthart, J.F.G. GDP-fucose:β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands. The difucosylation of asparagine-bound N-acetylglucosamine. Eur. J. Biochem. 199 (1991) 745–751. [DOI] [PMID: 1868856]
[EC 2.4.1.214 created 2001]
 
 
EC 2.4.1.133     Relevance: 97.6%
Accepted name: xylosylprotein 4-β-galactosyltransferase
Reaction: UDP-α-D-galactose + [protein]-3-O-(β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
For diagram of heparan and chondroitin biosynthesis (early stages), click here
Other name(s): UDP-D-galactose:D-xylose galactosyltransferase; UDP-D-galactose:xylose galactosyltransferase; galactosyltransferase I; uridine diphosphogalactose-xylose galactosyltransferase; UDP-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosyl-[protein] 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[protein]-3-O-(β-D-xylosyl)-L-serine 4-β-D-galactosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52227-72-2
References:
1.  Schwartz, N.B. and Roden, L. Biosynthesis of chondroitin sulfate. Solubilization of chondroitin sulfate glycosyltransferases and partial purification of uridine diphosphate-D-galactose:D-xylose galactosyltransferase. J. Biol. Chem. 250 (1975) 5200–5207. [PMID: 1150655]
2.  Okajima, T., Yoshida, K., Kondo, T. and Furukawa, K. Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 274 (1999) 22915–22918. [DOI] [PMID: 10438455]
[EC 2.4.1.133 created 1984, modified 2002]
 
 
EC 3.2.1.188     Relevance: 97.4%
Accepted name: avenacosidase
Reaction: avenacoside B + H2O = 26-desgluco-avenacoside B + D-glucose
Glossary: avenacoside B = (22S,25S)-3β-{β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyloxy}-26-(β-D-glucopyranosyloxy)-22,25-epoxyfurost-5-ene
26-desgluco-avenacoside B = (22S,25S)-3β-{β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyloxy}-22,25-epoxyfurost-5-en-26-ol
Other name(s): As-P60
Systematic name: avenacoside B 26-β-D-glucohydrolase
Comments: Isolated from oat (Avena sativa) seedlings. The product acts as a defense system against fungal infection. Also acts on avenacoside A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H.A. and Rudiger, W. Avenacosidase from oat: purification, sequence analysis and biochemical characterization of a new member of the BGA family of β-glucosidases. Plant Mol. Biol. 26 (1994) 909–921. [PMID: 8000004]
2.  Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H.A., Lottspeich, F., Eckerskorn, C., Grimm, R. and Rudiger, W. The amino acid sequence previously attributed to a protein kinase or a TCP1-related molecular chaperone and co-purified with phytochrome is a β-glucosidase. FEBS Lett. 347 (1994) 51–54. [DOI] [PMID: 8013661]
[EC 3.2.1.188 created 2013]
 
 
EC 3.5.1.6     Relevance: 97.3%
Accepted name: β-ureidopropionase
Reaction: 3-ureidopropanoate + H2O = β-alanine + CO2 + NH3
For diagram of pyrimidine catabolism, click here
Glossary: 3-ureidopropanoate = N-carbamoyl-β-alanine
Other name(s): N-carbamoyl-β-alanine amidohydrolase
Systematic name: 3-ureidopropanoate amidohydrolase
Comments: The animal enzyme also acts on β-ureidoisobutyrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-27-4
References:
1.  Campbell, L.L. Reductive degradation of pyrimidines. 5. Enzymatic conversion of N-carbamyl-β-alanine to β-alanine, carbon dioxide, and ammonia. J. Biol. Chem. 235 (1960) 2375–2378. [PMID: 13849303]
2.  Caravaca, J. and Grisolia, S. Enzymatic decarbamylation of carbamyl β-alanine and carbamyl β-aminoisobutyric acid. J. Biol. Chem. 231 (1958) 357–365. [PMID: 13538975]
3.  Traut, T.W. and Loechel, S. Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay. Biochemistry 23 (1984) 2533–2539. [PMID: 6433973]
[EC 3.5.1.6 created 1961]
 
 
EC 2.4.1.319     Relevance: 97.2%
Accepted name: β-1,4-mannooligosaccharide phosphorylase
Reaction: [(1→4)-β-D-mannosyl]n + phosphate = [(1→4)-β-D-mannosyl]n-1 + α-D-mannose 1-phosphate
Other name(s): RaMP2
Systematic name: 1,4-β-D-mannooligosaccharide:phosphate α-D-mannosyltransferase
Comments: The enzyme, isolated from the ruminal bacterium Ruminococcus albus, catalyses the reversible phosphorolysis of β-1,4-mannooligosaccharide with a minimum size of three monomers.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kawahara, R., Saburi, W., Odaka, R., Taguchi, H., Ito, S., Mori, H. and Matsui, H. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. J. Biol. Chem. 287 (2012) 42389–42399. [DOI] [PMID: 23093406]
[EC 2.4.1.319 created 2014]
 
 
EC 3.6.3.42      
Transferred entry: β-glucan-transporting ATPase. Now EC 7.5.2.3, β-glucan-transporting ATPase
[EC 3.6.3.42 created 2000, deleted 2018]
 
 
EC 2.4.1.374     Relevance: 96.9%
Accepted name: β-1,2-mannooligosaccharide synthase
Reaction: GDP-α-D-mannose + [(1→2)-β-D-mannosyl]n = GDP + [(1→2)-β-D-mannosyl]n+1
Other name(s): MTP1 (gene name); MTP2 (gene name)
Systematic name: GDP-α-D-mannose:(1→2)-β-D-mannan mannosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from Leishmania parasites, is involved in synthesis of mannogen, a β-(1→2)-mannan oligosaccharide used by the organisms as a carbohydrate reserve.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sernee, M.F., Ralton, J.E., Nero, T.L., Sobala, L.F., Kloehn, J., Vieira-Lara, M.A., Cobbold, S.A., Stanton, L., Pires, D.EV., Hanssen, E., Males, A., Ward, T., Bastidas, L.M., van der Peet, P.L., Parker, M.W., Ascher, D.B., Williams, S.J., Davies, G.J. and McConville, M.J. A family of dual-activity glycosyltransferase-phosphorylases mediates mannogen turnover and virulence in Leishmania parasites. Cell Host Microbe 26 (2019) 385–399.e9. [PMID: 31513773]
[EC 2.4.1.374 created 2019]
 
 
EC 1.13.11.68     Relevance: 96.8%
Accepted name: 9-cis-β-carotene 9′,10′-cleaving dioxygenase
Reaction: 9-cis-β-carotene + O2 = 9-cis-10′-apo-β-carotenal + β-ionone
For diagram of strigol biosynthesis, click here
Glossary: β-ionone = (3E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-one
Other name(s): CCD7 (gene name); MAX3 (gene name); NCED7 (gene name)
Systematic name: 9-cis-β-carotene:oxygen oxidoreductase (9′,10′-cleaving)
Comments: Requires Fe2+. The enzyme participates in a pathway leading to biosynthesis of strigolactones, plant hormones involved in promotion of symbiotic associations known as arbuscular mycorrhiza.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H. and Leyser, O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14 (2004) 1232–1238. [DOI] [PMID: 15268852]
2.  Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P. and Al-Babili, S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335 (2012) 1348–1351. [DOI] [PMID: 22422982]
[EC 1.13.11.68 created 2012]
 
 
EC 3.2.1.151     Relevance: 96.7%
Accepted name: xyloglucan-specific endo-β-1,4-glucanase
Reaction: xyloglucan + H2O = xyloglucan oligosaccharides
Other name(s): XEG; xyloglucan endo-β-1,4-glucanase; xyloglucanase; xyloglucanendohydrolase; XH; 1,4-β-D-glucan glucanohydrolase
Systematic name: [(1→6)-α-D-xylo]-(1→4)-β-D-glucan glucanohydrolase
Comments: The enzyme from Aspergillus aculeatus is specific for xyloglucan and does not hydrolyse other cell-wall components. The reaction involves endohydrolysis of 1,4-β-D-glucosidic linkages in xyloglucan with retention of the β-configuration of the glycosyl residues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 76901-10-5
References:
1.  Pauly, M., Andersen, L.N., Kaupinnen, S., Kofod, L.V., York, W.S., Albersheim, P. and Darvill, A. A xyloglucan specific endo-β-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9 (1999) 93–100. [DOI] [PMID: 9884411]
2.  Grishutin, S.G., Gusakov, A.V., Markov, A.V., Ustinov, B.B., Semenova, M.V. and Sinitsyn, A.P. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim. Biophys. Acta 1674 (2004) 268–281. [DOI] [PMID: 15541296]
[EC 3.2.1.151 created 2003]
 
 
EC 1.1.1.35     Relevance: 96.7%
Accepted name: 3-hydroxyacyl-CoA dehydrogenase
Reaction: (S)-3-hydroxyacyl-CoA + NAD+ = 3-oxoacyl-CoA + NADH + H+
Other name(s): β-hydroxyacyl dehydrogenase; β-keto-reductase; 3-keto reductase; 3-hydroxyacyl coenzyme A dehydrogenase; β-hydroxyacyl-coenzyme A synthetase; β-hydroxyacylcoenzyme A dehydrogenase; β-hydroxybutyrylcoenzyme A dehydrogenase; 3-hydroxyacetyl-coenzyme A dehydrogenase; L-3-hydroxyacyl coenzyme A dehydrogenase; L-3-hydroxyacyl CoA dehydrogenase; β-hydroxyacyl CoA dehydrogenase; 3β-hydroxyacyl coenzyme A dehydrogenase; 3-hydroxybutyryl-CoA dehydrogenase; β-ketoacyl-CoA reductase; β-hydroxy acid dehydrogenase; 3-L-hydroxyacyl-CoA dehydrogenase; 3-hydroxyisobutyryl-CoA dehydrogenase; 1-specific DPN-linked β-hydroxybutyric dehydrogenase
Systematic name: (S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase
Comments: Also oxidizes S-3-hydroxyacyl-N-acylthioethanolamine and S-3-hydroxyacyl-hydrolipoate. Some enzymes act, more slowly, with NADP+. Broad specificity to acyl chain-length (cf. EC 1.1.1.211 [long-chain-3-hydroxyacyl-CoA dehydrogenase]).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-40-4
References:
1.  Hillmer, P. and Gottschalk, G. Solubilization and partial characterisation of particulate dehydrogenases from Clostridium kluyveri. Biochim. Biophys. Acta 334 (1974) 12–23.
2.  Lehninger, A.L. and Greville, G.D. The enzymatic oxidation of d- and l-β-hydroxybutyrate. Biochim. Biophys. Acta 12 (1953) 188–202. [DOI] [PMID: 13115428]
3.  Stern, J.R. Crystalline β-hydroxybutyrate dehydrogenase from pig heart. Biochim. Biophys. Acta 26 (1957) 448–449. [DOI] [PMID: 13499396]
4.  Wakil, S.J., Green, D.E., Mii, S. and Mahler, H.R. Studies on the fatty acid oxidizing system of animal tissues. VI. β-Hydroxyacyl coenzyme A dehydrogenase. J. Biol. Chem. 207 (1954) 631–638. [PMID: 13163047]
[EC 1.1.1.35 created 1961]
 
 
EC 1.21.99.1     Relevance: 96.5%
Accepted name: β-cyclopiazonate dehydrogenase
Reaction: β-cyclopiazonate + acceptor = α-cyclopiazonate + reduced acceptor
For diagram of reaction, click here
Other name(s): β-cyclopiazonate oxidocyclase; β-cyclopiazonic oxidocyclase; β-cyclopiazonate:(acceptor) oxidoreductase (cyclizing)
Systematic name: β-cyclopiazonate:acceptor oxidoreductase (cyclizing)
Comments: A flavoprotein (FAD). Cytochrome c and various dyes can act as acceptor. Cyclopiazonate is a microbial toxin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9059-00-1
References:
1.  Edmondson, D.E., Kenney, W.C. and Singer, T.P. Structural elucidation and properties of 8α-(N1-histidyl)riboflavin: the flavin component of thiamine dehydrogenase and β-cyclopiazonate oxidocyclase. Biochemistry 15 (1976) 2937–2945. [PMID: 8076]
2.  Schabort, J.C. and Potgieter, D.J.J. β-Cyclopiazonate oxidocyclase from Penicillium cyclopium. II. Studies on electron acceptors, inhibitors, enzyme kinetics, amino acid composition, flavin prosthetic group and other properties. Biochim. Biophys. Acta 250 (1971) 329–345. [PMID: 5143340]
[EC 1.21.99.1 created 1976 as EC 1.3.99.9, transferred 2002 to EC 1.21.99.1]
 
 
EC 5.4.2.6     Relevance: 96.5%
Accepted name: β-phosphoglucomutase
Reaction: β-D-glucose 1-phosphate = β-D-glucose 6-phosphate
For diagram of reaction, click here
Other name(s): β-pgm (gene name)
Systematic name: β-D-glucose 1,6-phosphomutase
Comments: The enzyme requires Mg2+ and phosphorylation of an aspartate residue at the active site. The enzyme is able to autophosphorylate itself with its substrate β-D-glucose 1-phosphate. Although this is a slow reaction, only a single turnover is required for activation. Once the phosphorylated enzyme is formed, it generates the reaction intermediate β-D-glucose 1,6-bisphosphate, which can be used to phosphorylate the enzyme in subsequent cycles [4]. cf. EC 5.4.2.2, phosphoglucomutase (α-D-glucose-1,6-bisphosphate-dependent).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 68651-99-0
References:
1.  Ben-Zvi, R. and Schramm, M. A phosphoglucomutase specific for β-glucose 1-phosphate. J. Biol. Chem. 236 (1961) 2186–2189.
2.  Ray, W.J., Jr. and Peck, E.J., Jr. Phosphomutases. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 6, 1972, pp. 407–477.
3.  Lahiri, S.D., Zhang, G., Dunaway-Mariano, D. and Allen, K.N. The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction. Science 299 (2003) 2067–2071. [DOI] [PMID: 12637673]
4.  Dai, J., Wang, L., Allen, K.N., Radstrom, P. and Dunaway-Mariano, D. Conformational cycling in β-phosphoglucomutase catalysis: reorientation of the β-D-glucose 1,6-(Bis)phosphate intermediate. Biochemistry 45 (2006) 7818–7824. [DOI] [PMID: 16784233]
[EC 5.4.2.6 created 1984]
 
 
EC 2.3.1.172     Relevance: 96.4%
Accepted name: anthocyanin 5-O-glucoside 6′′′-O-malonyltransferase
Reaction: malonyl-CoA + pelargonidin 3-O-(6-caffeoyl-β-D-glucoside) 5-O-β-D-glucoside = CoA + 4′′′-demalonylsalvianin
For diagram of salvianin biosynthesis, click here
Glossary: salvianin = pelargonidin 3-O-(6-caffeoyl-β-D-glucoside) 5-O-(4,6-di-O-malonyl-β-D-glucoside)
4′′′-demalonylsalvianin = pelargonidin 3-O-(6-caffeoyl-β-D-glucoside) 5-O-(6-O-malonyl-β-D-glucoside)
pelargonidin = 3,4′,5,7-tetrahydroxyflavylium
Systematic name: malonyl-CoA:pelargonidin-3-O-(6-caffeoyl-β-D-glucoside)-5-O-β-D-glucoside 6′′′-O-malonyltransferase
Comments: Specific for the penultimate step in salvianin biosynthesis. The enzyme also catalyses the malonylation of shisonin to malonylshisonin [cyanidin 3-O-(6′′-O-p-coumaryl-β-D-glucoside)-5-(6′′′-O-malonyl-β-D-glucoside)]. The compounds 4′′′-demalonylsalvianin, salvianin, pelargonidin 3,5-diglucoside and delphinidin 3,5-diglucoside cannot act as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 380229-66-3
References:
1.  Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Nakao, M., Tanaka, Y., Yamaguchi, M.A., Kusumi, T. and Nishino, T. Malonyl-CoA:anthocyanin 5-O-glucoside-6′′′-O-malonyltransferase from scarlet sage (Salvia splendens) flowers. J. Biol. Chem. 276 (2001) 49013–49019. [DOI] [PMID: 11598135]
[EC 2.3.1.172 created 2004]
 
 
EC 2.4.1.87     Relevance: 96.3%
Accepted name: N-acetyllactosaminide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R = UDP + α-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-N-acetylglucosaminyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): α-galactosyltransferase; UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α-1,3-D-galactosyltransferase; UDP-Gal:Galβ1→4GlcNAc-R α1→3-galactosyltransferase; UDP-galactose-acetyllactosamine α-D-galactosyltransferase; UDPgalactose:β-D-galactosyl-β-1,4-N-acetyl-D-glucosaminyl-glycopeptide α-1,3-D-galactosyltransferase; glucosaminylglycopeptide α-1,3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine α1→3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine galactosyltransferase; uridine diphosphogalactose-galactosylacetylglucosaminylgalactosylglucosylceramide galactosyltransferase; β-D-galactosyl-N-acetylglucosaminylglycopeptide α-1,3-galactosyltransferase; UDP-galactose:N-acetyllactosaminide 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-1,4-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Comments: Acts on β-galactosyl-1,4-N-acetylglucosaminyl termini on asialo-α1-acid glycoprotein and N-acetyllactosamine (β-D-galactosyl-1,4-N-acetyl-β-D-glucosamine), but not on 2′-fucosylated-N-acetyllactosamine. The non-reducing terminal N-acetyllactosamine residues of glycoproteins can also act as acceptor. Now includes EC 2.4.1.124 and EC 2.4.1.151.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 128449-51-4
References:
1.  Basu, M. and Basu, S. Enzymatic synthesis of a blood group B-related pentaglycosylceramide by an α-galactosyltransferase from rabbit bone marrow. J. Biol. Chem. 248 (1973) 1700–1706. [PMID: 4632915]
2.  Blanken, W.M. and van den Eijnden, D.H. Biosynthesis of terminal Gal α 1→3Gal β 1→4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide α 1→3-galactosyltransferase from calf thymus. J. Biol. Chem. 260 (1985) 12927–12934. [PMID: 3932335]
3.  Blake, D.A. and Goldstein, I.J. An α-D-galactosyltransferase activity in Ehrlich ascites tumor cells. Biosynthesis and characterization of a trisaccharide (α-D-galactose-(1→3)-N-acetyllactosamine). J. Biol. Chem. 256 (1981) 5387–5393. [PMID: 6787040]
[EC 2.4.1.87 created 1976, modified 1989, modified 2002 (EC 2.4.1.124 created 1984, incorporated 2002, EC 2.4.1.151 created 1984, incorporated 2002)]
 
 
EC 2.4.1.254     Relevance: 96.2%
Accepted name: cyanidin-3-O-glucoside 2′′-O-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + cyanidin 3-O-β-D-glucoside = UDP + cyanidin 3-O-(2-O-β-D-glucuronosyl)-β-D-glucoside
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): BpUGT94B1; UDP-glucuronic acid:anthocyanin glucuronosyltransferase; UDP-glucuronic acid:anthocyanidin 3-glucoside 2′-O-β-glucuronosyltransferase; BpUGAT; UDP-D-glucuronate:cyanidin-3-O-β-glucoside 2-O-β-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:cyanidin-3-O-β-D-glucoside 2-O-β-D-glucuronosyltransferase
Comments: The enzyme is highly specific for cyanidin 3-O-glucosides and UDP-α-D-glucuronate. Involved in the production of glucuronosylated anthocyanins that are the origin of the red coloration of flowers of Bellis perennis [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sawada, S., Suzuki, H., Ichimaida, F., Yamaguchi, M.A., Iwashita, T., Fukui, Y., Hemmi, H., Nishino, T. and Nakayama, T. UDP-glucuronic acid:anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J. Biol. Chem. 280 (2005) 899–906. [DOI] [PMID: 15509561]
2.  Osmani, S.A., Bak, S., Imberty, A., Olsen, C.E. and Møller, B.L. Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol. 148 (2008) 1295–1308. [DOI] [PMID: 18829982]
[EC 2.4.1.254 created 2011]
 
 
EC 2.4.1.314     Relevance: 96.2%
Accepted name: ginsenoside Rd glucosyltransferase
Reaction: UDP-α-D-glucose + ginsenoside Rd = UDP + ginsenoside Rb1
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rd = 20-(β-D-glucopyranosyl)oxy-3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
Other name(s): UDPG:ginsenoside Rd glucosyltransferase; UDP-glucose:ginsenoside Rd glucosyltransferase; UGRdGT
Systematic name: UDP-glucose:ginsenoside-Rd β-1,6-glucosyltransferase
Comments: The glucosyl group forms a 1→6 bond to the glucosyloxy moiety at C-20 of ginsenoside Rd. Isolated from sanchi ginseng (Panax notoginseng).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yue, C.-J. and Zhong J.-J. Purification and characterization of UDPG:ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem. 40 (2005) 3742–3748.
[EC 2.4.1.314 created 2013]
 
 
EC 3.2.1.192     Relevance: 96.2%
Accepted name: ginsenoside Rb1 β-glucosidase
Reaction: ginsenoside Rb1 + 2 H2O = ginsenoside Rg3 + 2 D-glucopyranose (overall reaction)
(1a) ginsenoside Rb1 + H2O = ginsenoside Rd + D-glucopyranose
(1b) ginsenoside Rd + H2O = ginsenoside Rg3 + D-glucopyranose
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
Systematic name: ginsenoside Rb1 glucohydrolase
Comments: Ginsenosidases catalyse the hydrolysis of glycosyl moieties attached to the C-3, C-6 or C-20 position of ginsenosides. They are specific with respect to the nature of the glycosidic linkage, the position and the order in which the linkages are cleaved. Ginsenoside Rb1 β-glucosidase specifically and sequentially hydrolyses the 20-[β-D-glucopyranosyl-(1→6)-β-D glucopyranosyloxy] residues attached to position 20 by first hydrolysing the (1→6)-glucosidic bond to generate ginsenoside Rd as an intermediate, followed by hydrolysis of the remaining 20-O-β-D-glucosidic bond.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yan, Q., Zhou, W., Li, X., Feng, M. and Zhou, P. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing β-glucosidase from Paecilomyces Bainier sp. 229. Biosci. Biotechnol. Biochem. 72 (2008) 352–359. [DOI] [PMID: 18256474]
[EC 3.2.1.192 created 2014]
 
 
EC 2.3.1.143     Relevance: 96.1%
Accepted name: β-glucogallin—tetrakisgalloylglucose O-galloyltransferase
Reaction: 1-O-galloyl-β-D-glucose + 1,2,3,6-tetrakis-O-galloyl-β-D-glucose = D-glucose + 1,2,3,4,6-pentakis-O-galloyl-β-D-glucose
Other name(s): β-glucogallin-tetragalloylglucose 4-galloyltransferase; β-glucogallin:1,2,3,6-tetra-O-galloylglucose 4-O-galloyltransferase; β-glucogallin:1,2,3,6-tetra-O-galloyl-β-D-glucose 4-O-galloyltransferase
Systematic name: 1-O-galloyl-β-D-glucose:1,2,3,6-tetrakis-O-galloyl-β-D-glucose 4-O-galloyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 122653-70-7
References:
1.  Cammann, J., Denzel, K., Schilling, G. and Gross, G.G. Biosynthesis of gallotannins: β-glucogallin-dependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,6-tetragalloylglucose. Arch. Biochem. Biophys. 273 (1989) 58–63. [DOI] [PMID: 2757399]
[EC 2.3.1.143 created 1992]
 
 
EC 2.7.1.85     Relevance: 95.9%
Accepted name: β-glucoside kinase
Reaction: ATP + cellobiose = ADP + 6-phospho-β-D-glucosyl-(1→4)-D-glucose
Other name(s): β-D-glucoside kinase (phosphorylating)
Systematic name: ATP:cellobiose 6-phosphotransferase
Comments: Phosphorylates a number of β-D-glucosides; GTP, CTP, ITP and UTP can also act as donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-53-1
References:
1.  Palmer, R.E. and Anderson, R.L. Cellobiose metabolism in Aerobacter aerogenes. II. Phosphorylation of cellobiose with adenosine 5′-triphosphate by a β-glucoside kinase. J. Biol. Chem. 247 (1972) 3415–3419. [PMID: 5030625]
[EC 2.7.1.85 created 1976]
 
 
EC 2.4.99.6      
Transferred entry: N-acetyllactosaminide α-2,3-sialyltransferase. Now EC 2.4.3.6, N-acetyllactosaminide α-2,3-sialyltransferase
[EC 2.4.99.6 created 1984, modified 1986 (EC 2.4.99.10 created 1986, incorporated 2017), deleted 2022]
 
 
EC 2.4.3.6     Relevance: 95.9%
Accepted name: N-acetyllactosaminide α-2,3-sialyltransferase
Reaction: CMP-N-acetyl-β-neuraminate + β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R = CMP + N-acetyl-α-neuraminyl-(2→3)-β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R
Other name(s): cytidine monophosphoacetylneuraminate-β-galactosyl(1→4)acetylglucosaminide α2→3-sialyltransferase; α2→3 sialyltransferase (ambiguous); SiaT (ambiguous); CMP-N-acetylneuraminate:β-D-galactosyl-1,4-N-acetyl-D-glucosaminyl-glycoprotein α-2,3-N-acetylneuraminyltransferase; neolactotetraosylceramide α-2,3-sialyltransferase; CMP-N-acetylneuraminate:β-D-galactosyl-(1→4)-N-acetyl-D-glucosaminyl-glycoprotein α-(2→3)-N-acetylneuraminyltransferase
Systematic name: CMP-N-acetyl-β-neuraminate:β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R (2→3)-N-acetyl-α-neuraminyltransferase (configuration-inverting)
Comments: The enzyme recognizes the sequence β-D-galactosyl-(1→4)-N-acetyl-D-glucosaminyl (known as type 2 histo-blood group precursor disaccharide) in non-reducing termini of glycan moieties in glycoproteins and glycolipids. The enzyme from chicken brain was shown to act on neolactotetraosylceramide, producing ganglioside LM1 [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77537-85-0
References:
1.  Van den Eijnden, D.H. and Schiphorst, W.E.C.M. Detection of β-galactosyl(1→4)N-acetylglucosaminide α(2→3)-sialyltransferase activity in fetal calf liver and other tissues. J. Biol. Chem. 256 (1981) 3159–3162. [PMID: 7204397]
2.  Basu, M., Basu, S., Stoffyn, A. and Stoffyn, P. Biosynthesis in vitro of sialyl(α2-3)neolactotetraosylceramide by a sialyltransferase from embryonic chicken brain. J. Biol. Chem. 257 (1982) 12765–12769. [PMID: 7130178]
[EC 2.4.3.6 created 1984 as EC 2.4.99.6, modified 1986 (EC 2.4.99.10 created 1986, incorporated 2017), transferred 2022 to EC 2.4.3.6]
 
 
EC 2.4.1.267     Relevance: 95.7%
Accepted name: dolichyl-P-Glc:Man9GlcNAc2-PP-dolichol α-1,3-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG6; Dol-P-Glc:Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,3-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 3-α-D-glucosyltransferase (configuration-inverting)
Comments: The successive addition of three glucose residues by EC 2.4.1.267, EC 2.4.1.265 (Dol-P-Glc:Glc1Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase) and EC 2.4.1.256 (Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyltransferase) represents the final stage of the lipid-linked oligosaccharide assembly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Reiss, G., te Heesen, S., Zimmerman, J., Robbins, P.W. and Aebi, M. Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway. Glycobiology 6 (1996) 493–498. [DOI] [PMID: 8877369]
2.  Runge, K.W., Huffaker, T.C. and Robbins, P.W. Two yeast mutations in glucosylation steps of the asparagine glycosylation pathway. J. Biol. Chem. 259 (1984) 412–417. [PMID: 6423630]
3.  Westphal, V., Xiao, M., Kwok, P.Y. and Freeze, H.H. Identification of a frequent variant in ALG6, the cause of congenital disorder of glycosylation-Ic. Hum. Mutat. 22 (2003) 420–421. [DOI] [PMID: 14517965]
[EC 2.4.1.267 created 2011, modified 2012]
 
 
EC 2.3.1.90     Relevance: 95.7%
Accepted name: β-glucogallin O-galloyltransferase
Reaction: 2 1-O-galloyl-β-D-glucose = D-glucose + 1-O,6-O-digalloyl-β-D-glucose
Systematic name: 1-O-galloyl-β-D-glucose:1-O-galloyl-β-D-glucose O-galloyltransferase
Comments: β-Glucogallin can act as donor and as acceptor. Digalloylglucose can also act as acceptor, with the formation of 1-O,2-O,6-O-trigalloylglucose
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 87502-55-4
References:
1.  Denzel, K., Schilling, G. and Gross, G.G. Biosynthesis of gallotannins - enzymatic conversion of 1,6-digalloylglucose to 1,2,6-trigalloylglucose. Planta 176 (1988) 135–137. [PMID: 24220744]
2.  Gross, G.G. Synthesis of mono-galloyl-β-D-glucose di-galloyl-β-D-glucose and trigalloyl-β-D-glucose by β-glucogallin-dependent galloyltransferases from oak leaves. Z. Natursforsch. C: Biosci. 38 (1983) 519–523.
[EC 2.3.1.90 created 1986]
 
 
EC 3.2.1.224     Relevance: 95.7%
Accepted name: D-arabinan exo β-(1,2)-arabinofuranosidase (non-reducing end)
Reaction: Hydrolysis of terminal non-reducing β-D-arabinofuranoside residues in D-arabinans
Other name(s): exo-β-D-arabinofuranosidase; ExoMA2
Systematic name: β-D-arabinofuranoside non-reducing end β-D-arabinofuranosidase (configuration-retaining)
Comments: The enzyme, characterized from the bacterium Microbacterium arabinogalactanolyticum, hydrolyses β-D-arabinofuranosides from the non-reducing terminal of D-arabinan core structure of lipoarabinomannan and arabinogalactan of mycobacterial cell wall. cf. EC 3.2.1.55, non-reducing end α-L-arabinofuranosidase; EC 3.2.1.185, non-reducing end β-L-arabinofuranosidase; EC 3.2.1.225, D-arabinan exo α-(1,3)/(1,5)-arabinofuranosidase (non-reducing end); and EC 3.2.1.226, D-arabinan endo α-(1,5)-arabinofuranosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shimokawa, M., Ishiwata, A., Kashima, T., Nakashima, C., Li, J., Fukushima, R., Sawai, N., Nakamori, M., Tanaka, Y., Kudo, A., Morikami, S., Iwanaga, N., Akai, G., Shimizu, N., Arakawa, T., Yamada, C., Kitahara, K., Tanaka, K., Ito, Y., Fushinobu, S. and Fujita, K. Identification and characterization of endo-α-, exo-α-, and exo-β-D-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria. Nat. Commun. 14:5803 (2023). [DOI] [PMID: 37726269]
[EC 3.2.1.224 created 2024]
 
 
EC 2.4.1.30     Relevance: 95.5%
Accepted name: 1,3-β-oligoglucan phosphorylase
Reaction: [(1→3)-β-D-glucosyl]n + phosphate = [(1→3)-β-D-glucosyl]n-1 + α-D-glucose 1-phosphate
Other name(s): β-1,3-oligoglucan:orthophosphate glucosyltransferase II; β-1,3-oligoglucan phosphorylase; 1,3-β-D-oligoglucan:phosphate α-D-glucosyltransferase
Systematic name: (1→3)-β-D-glucan:phosphate α-D-glucosyltransferase
Comments: Does not act on laminarin. Differs in specificity from EC 2.4.1.31 (laminaribiose phosphorylase) and EC 2.4.1.97 (1,3-β-D-glucan phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37257-28-6
References:
1.  Maréchal, L.R. β-1,3-Oligoglucan:orthophosphate glucosyltransferases from Euglena gracilis. I. Isolation and some properties of a β-1,3-oligoglucan phosphorylase. Biochim. Biophys. Acta 146 (1967) 417–430. [DOI] [PMID: 6066291]
2.  Maréchal, L.R. β-1,3-Oligoglucan: orthophosphate glucosyltransferases from Euglena gracilis. II. Comparative studies between laminaribiose- and β-1,3-oligoglucan phosphorylase. Biochim. Biophys. Acta 146 (1967) 431–442. [DOI] [PMID: 6066292]
[EC 2.4.1.30 created 1972]
 
 
EC 3.2.1.195     Relevance: 95.5%
Accepted name: 20-O-multi-glycoside ginsenosidase
Reaction: a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside Rg3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Other name(s): ginsenosidase type II (erroneous)
Systematic name: protopanaxadiol-type ginsenoside 20-β-D-glucohydrolase
Comments: The 20-O-multi-glycoside ginsenosidase catalyses the hydrolysis of the 20-O-α-(1→6)-glycosidic bond and the 20-O-β-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. The enzyme usually leaves a single glucosyl residue attached at position 20, although it can cleave the remaining glucosyl residue with a lower efficiency. Starting with a ginsenoside that is glycosylated at positions 3 and 20, such as ginsenosides Rb1, Rb2, Rb3 and Rc, the most common product is ginsenoside Rd, with a low amount of ginsenoside Rg3 also formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, H., Liu, Q., Zhang, C., Lu, M., Fu, Y., Im, W.-T., Lee, S.-T. and Jin, F. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44 (2009) 772–775.
[EC 3.2.1.195 created 2014]
 
 
EC 4.2.2.25     Relevance: 95.4%
Accepted name: gellan lyase
Reaction: Eliminative cleavage of β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyluronate bonds of gellan backbone releasing tetrasaccharides containing a 4-deoxy-4,5-unsaturated D-glucopyranosyluronic acid at the non-reducing end. The tetrasaccharide produced from deacetylated gellan is β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-β-D-Glcp.
Systematic name: gellan β-D-glucopyranosyl-(1→4)-D-glucopyranosyluronate lyase
Comments: The enzyme is highly specific to gellan, especially deacetylated gellan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hashimoto, W., Maesaka, K., Sato, N., Kimura, S., Yamamoto, K., Kumagai, H. and Murata, K. Microbial system for polysaccharide depolymerization: enzymatic route for gellan depolymerization by Bacillus sp. GL1. Arch. Biochem. Biophys. 339 (1997) 17–23. [DOI] [PMID: 9056228]
2.  Hashimoto, W., Sato, N., Kimura, S. and Murata, K. Polysaccharide lyase: molecular cloning of gellan lyase gene and formation of the lyase from a huge precursor protein in Bacillus sp. GL1. Arch. Biochem. Biophys. 354 (1998) 31–39. [DOI] [PMID: 9633595]
3.  Miyake, O., Kobayashi, E., Nankai, H., Hashimoto, W., Mikami, B. and Murata, K. Posttranslational processing of polysaccharide lyase: maturation route for gellan lyase in Bacillus sp. GL1. Arch. Biochem. Biophys. 422 (2004) 211–220. [DOI] [PMID: 14759609]
[EC 4.2.2.25 created 2011]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald