The Enzyme Database

Displaying entries 51-100 of 533.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.372     
Accepted name: D/L-glyceraldehyde reductase
Reaction: (1) glycerol + NADP+ = L-glyceraldehyde + NADPH + H+
(2) glycerol + NADP+ = D-glyceraldehyde + NADPH + H+
Other name(s): gld1 (gene name); gaaD (gene name)
Systematic name: glycerol:NADP+ oxidoreductase (D/L-glyceraldehyde-forming)
Comments: The enzyme takes part in a D-galacturonate degradation pathway in the fungi Aspergillus niger and Trichoderma reesei (Hypocrea jecorina). It has equal activity with D- and L-glyceraldehyde, and can also reduce glyoxal and methylglyoxal. The reaction is only observed in the direction of glyceraldehyde reduction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Liepins, J., Kuorelahti, S., Penttila, M. and Richard, P. Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina. FEBS J. 273 (2006) 4229–4235. [DOI] [PMID: 16930134]
2.  Martens-Uzunova, E.S. and Schaap, P.J. An evolutionary conserved D-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genet. Biol. 45 (2008) 1449–1457. [DOI] [PMID: 18768163]
[EC 1.1.1.372 created 2014]
 
 
EC 1.1.1.373     
Accepted name: sulfolactaldehyde 3-reductase
Reaction: (2S)-2,3-dihydroxypropane-1-sulfonate + NAD+ = (2S)-3-sulfolactaldehyde + NADH + H+
For diagram of sulphoglycolysis of sulfoquinovose, click here
Glossary: (2S)-3-sulfolactaldehyde = (2S)-2-hydroxy-3-oxopropane-1-sulfonate
(2S)-2,3-dihydroxypropane-1-sulfonic acid = (2S)-3-sulfopropanediol = (S)-DHPS
Other name(s): yihU (gene name)
Systematic name: (2S)-2,3-dihydroxypropane-1-sulfonate:NAD+ 3-oxidoreductase
Comments: The enzyme, characterized from the bacterium Escherichia coli, is involved in the degradation pathway of sulfoquinovose, the polar headgroup of sulfolipids found in the photosynthetic membranes of all higher plants, mosses, ferns, algae, and most photosynthetic bacteria, as well as the surface layer of some archaea.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Denger, K., Weiss, M., Felux, A.K., Schneider, A., Mayer, C., Spiteller, D., Huhn, T., Cook, A.M. and Schleheck, D. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 507 (2014) 114–117. [DOI] [PMID: 24463506]
2.  Sharma, M., Abayakoon, P., Lingford, J.P., Epa, R., John, A., Jin, Y., Goddard-Borger, E.D., Davies, G.J. and Williams, S.J. Dynamic structural changes accompany the production of dihydroxypropanesulfonate by sulfolactaldehyde reductase. ACS Catalysis 10 (2020) 2826–2836. [DOI]
[EC 1.1.1.373 created 2014]
 
 
EC 1.1.1.387     
Accepted name: L-serine 3-dehydrogenase (NAD+)
Reaction: L-serine + NAD+ = 2-aminoacetaldehyde + CO2 + NADH + H+ (overall reaction)
(1a) L-serine + NAD+ = 2-aminomalonate semialdehyde + NADH + H+
(1b) 2-aminomalonate semialdehyde = 2-aminoacetaldehyde + CO2 (spontaneous)
Other name(s): NAD+-dependent L-serine dehydrogenase
Systematic name: L-serine:NAD+ 3-oxidoreductase
Comments: The enzyme, purified from the bacterium Pseudomonas aeruginosa, also shows activity with L-threonine (cf. EC 1.1.1.103, L-threonine 3-dehydrogenase). The enzyme has only very low activity with NADP+ [cf. EC 1.1.1.276, serine 3-dehydrogenase (NADP+)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Tchigvintsev, A., Singer, A., Brown, G., Flick, R., Evdokimova, E., Tan, K., Gonzalez, C.F., Savchenko, A. and Yakunin, A.F. Biochemical and structural studies of uncharacterized protein PA0743 from Pseudomonas aeruginosa revealed NAD+-dependent L-serine dehydrogenase. J. Biol. Chem. 287 (2012) 1874–1883. [DOI] [PMID: 22128181]
[EC 1.1.1.387 created 2015]
 
 
EC 1.1.1.406     
Accepted name: galactitol 2-dehydrogenase (L-tagatose-forming)
Reaction: galactitol + NAD+ = L-tagatose + NADH + H+
Other name(s): GatDH
Systematic name: galactitol:NAD+ 2-oxidoreductase (L-tagatose-forming)
Comments: The enzyme, characterized in the bacterium Rhodobacter sphaeroides, has a wide subtrate specificity. In addition to galactitol, it primarily oxidizes D-threitol and xylitol, and in addition to L-tagatose, it primarily reduces L-erythrulose, D-ribulose and L-glyceraldehyde. It is specific for NAD+. The enzyme also shows activity with D-tagatose (cf. EC 1.1.1.16, galactitol 2-dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schneider, K.H., Jakel, G., Hoffmann, R. and Giffhorn, F. Enzyme evolution in Rhodobacter sphaeroides: selection of a mutant expressing a new galactitol dehydrogenase and biochemical characterization of the enzyme. Microbiology 141 (1995) 1865–1873. [DOI] [PMID: 7551050]
2.  Carius, Y., Christian, H., Faust, A., Zander, U., Klink, B.U., Kornberger, P., Kohring, G.W., Giffhorn, F. and Scheidig, A.J. Structural insight into substrate differentiation of the sugar-metabolizing enzyme galactitol dehydrogenase from Rhodobacter sphaeroides D. J. Biol. Chem. 285 (2010) 20006–20014. [DOI] [PMID: 20410293]
[EC 1.1.1.406 created 2017]
 
 
EC 1.1.1.416     
Accepted name: isopyridoxal dehydrogenase (5-pyridoxolactone-forming)
Reaction: isopyridoxal + NAD+ = 5-pyridoxolactone + NADH + H+
Glossary: isopyridoxal = 5-hydroxy-4-(hydroxymethyl)-6-methylpyridine-3-carbaldehyde
5-pyridoxolactone = 7-hydroxy-6-methylfuro[3,4-c]pyridin-3(1H)-one
Systematic name: isopyridoxal:NAD+ oxidoreductase (5-pyridoxolactone-forming)
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. Cr-7, participates in the degradation of pyridoxine. The enzyme also catalyses the activity of EC 1.2.1.102, isopyridoxal dehydrogenase (5-pyridoxate-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, Y.C., Nelson, M.J. and Snell, E.E. Enzymes of vitamin B6 degradation. Purification and properties of isopyridoxal dehydrogenase and 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylic-acid dehydrogenase. J. Biol. Chem. 261 (1986) 15106–15111. [PMID: 3533936]
[EC 1.1.1.416 created 2018]
 
 
EC 1.1.1.433     
Accepted name: sulfoacetaldehyde reductase (NADH)
Reaction: isethionate + NAD+ = 2-sulfoacetaldehyde + NADH + H+
Glossary: isethionate = 2-hydroxyethanesulfonate
2-sulfoacetaldehyde = 2-oxoethanesulfonate
Other name(s): sarD (gene name); tauF (gene name); sqwF (gene name); BkTauF
Systematic name: isethionate:NAD+ oxidoreductase
Comments: The enzymes from the bacteria Bilophila wadsworthia and Clostridium sp. MSTE9 catalyse the reaction only in the reduction direction. In the bacterium Bifidobacterium kashiwanohense the optimal reaction pH for sulfoacetaldehyde reduction is 7.5, while that for isethionate oxidation is 10.0. cf. EC 1.1.1.313, sulfoacetaldehyde reductase (NADPH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Peck, S.C., Denger, K., Burrichter, A., Irwin, S.M., Balskus, E.P. and Schleheck, D. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc. Natl. Acad. Sci. USA 116 (2019) 3171–3176. [DOI] [PMID: 30718429]
2.  Xing, M., Wei, Y., Zhou, Y., Zhang, J., Lin, L., Hu, Y., Hua, G.,, N. Nanjaraj Urs, A., Liu, D., Wang, F., Guo, C., Tong, Y., Li, M., Liu, Y., Ang, E.L., Zhao, H., Yuchi, Z. and Zhang, Y. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat. Commun. 10:1609 (2019). [DOI] [PMID: 30962433]
3.  Zhou, Y., Wei, Y., Nanjaraj Urs, A.N., Lin, L., Xu, T., Hu, Y., Ang, E.L., Zhao, H., Yuchi, Z. and Zhang, Y. Identification and characterization of a new sulfoacetaldehyde reductase from the human gut bacterium Bifidobacterium kashiwanohense. Biosci. Rep. 39 (2019) . [DOI] [PMID: 31123167]
4.  Liu, J., Wei, Y., Ma, K., An, J., Liu, X., Liu, Y., Ang, E.L., Zhao, H. and Zhang, Y. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal. 11 (2021) 14740–14750. [DOI]
[EC 1.1.1.433 created 2022]
 
 
EC 1.1.2.7     
Accepted name: methanol dehydrogenase (cytochrome c)
Reaction: a primary alcohol + 2 ferricytochrome cL = an aldehyde + 2 ferrocytochrome cL + 2 H+
Other name(s): methanol dehydrogenase; MDH (ambiguous)
Systematic name: methanol:cytochrome c oxidoreductase
Comments: A periplasmic quinoprotein alcohol dehydrogenase that only occurs in methylotrophic bacteria. It uses the novel specific cytochrome cL as acceptor. Acts on a wide range of primary alcohols, including ethanol, duodecanol, chloroethanol, cinnamyl alcohol, and also formaldehyde. Activity is stimulated by ammonia or methylamine. It is usually assayed with phenazine methosulfate. Like all other quinoprotein alcohol dehydrogenases it has an 8-bladed ’propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ. It differs from EC 1.1.2.8, alcohol dehydrogenase (cytochrome c), in having a high affinity for methanol and in having a second essential small subunit (no known function).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-43-9
References:
1.  Anthony, C. and Zatman, L.J. The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem. J. 92 (1964) 614–621. [PMID: 4378696]
2.  Anthony, C. and Zatman, L.J. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem. J. 104 (1967) 960–969. [PMID: 6049934]
3.  Duine, J.A., Frank, J. and Verweil, P.E.J. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur. J. Biochem. 108 (1980) 187–192. [DOI] [PMID: 6250827]
4.  Salisbury, S.A., Forrest, H.S., Cruse, W.B.T. and Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature (Lond.) 280 (1979) 843–844. [PMID: 471057]
5.  Cox, J.M., Day, D.J. and Anthony, C. The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL in methylotrophic bacteria. Biochim. Biophys. Acta 1119 (1992) 97–106. [DOI] [PMID: 1311606]
6.  Blake, C.C., Ghosh, M., Harlos, K., Avezoux, A. and Anthony, C. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat. Struct. Biol. 1 (1994) 102–105. [PMID: 7656012]
7.  Xia, Z.X., He, Y.N., Dai, W.W., White, S.A., Boyd, G.D. and Mathews, F.S. Detailed active site configuration of a new crystal form of methanol dehydrogenase from Methylophilus W3A1 at 1.9 Å resolution. Biochemistry 38 (1999) 1214–1220. [DOI] [PMID: 9930981]
8.  Afolabi, P.R., Mohammed, F., Amaratunga, K., Majekodunmi, O., Dales, S.L., Gill, R., Thompson, D., Cooper, J.B., Wood, S.P., Goodwin, P.M. and Anthony, C. Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome cL. Biochemistry 40 (2001) 9799–9809. [DOI] [PMID: 11502173]
9.  Anthony, C. and Williams, P. The structure and mechanism of methanol dehydrogenase. Biochim. Biophys. Acta 1647 (2003) 18–23. [DOI] [PMID: 12686102]
10.  Williams, P.A., Coates, L., Mohammed, F., Gill, R., Erskine, P.T., Coker, A., Wood, S.P., Anthony, C. and Cooper, J.B. The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr. D Biol. Crystallogr. 61 (2005) 75–79. [DOI] [PMID: 15608378]
[EC 1.1.2.7 created 1972 as EC 1.1.99.8, modified 1982, part transferred 2010 to EC 1.1.2.7]
 
 
EC 1.1.2.8     
Accepted name: alcohol dehydrogenase (cytochrome c)
Reaction: a primary alcohol + 2 ferricytochrome c = an aldehyde + 2 ferrocytochrome c + 2 H+
Other name(s): type I quinoprotein alcohol dehydrogenase; quinoprotein ethanol dehydrogenase
Systematic name: alcohol:cytochrome c oxidoreductase
Comments: A periplasmic PQQ-containing quinoprotein. Occurs in Pseudomonas and Rhodopseudomonas. The enzyme from Pseudomonas aeruginosa uses a specific inducible cytochrome c550 as electron acceptor. Acts on a wide range of primary and secondary alcohols, but not methanol. It has a homodimeric structure [contrasting with the heterotetrameric structure of EC 1.1.2.7, methanol dehydrogenase (cytochrome c)]. It is routinely assayed with phenazine methosulfate as electron acceptor. Activity is stimulated by ammonia or amines. Like all other quinoprotein alcohol dehydrogenases it has an 8-bladed ’propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rupp, M. and Gorisch, H. Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biol. Chem. Hoppe-Seyler 369 (1988) 431–439. [PMID: 3144289]
2.  Toyama, H., Fujii, A., Matsushita, K., Shinagawa, E., Ameyama, M. and Adachi, O. Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriol. 177 (1995) 2442–2450. [DOI] [PMID: 7730276]
3.  Schobert, M. and Gorisch, H. Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145 (1999) 471–481. [DOI] [PMID: 10075429]
4.  Keitel, T., Diehl, A., Knaute, T., Stezowski, J.J., Hohne, W. and Gorisch, H. X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J. Mol. Biol. 297 (2000) 961–974. [DOI] [PMID: 10736230]
5.  Kay, C.W., Mennenga, B., Gorisch, H. and Bittl, R. Characterisation of the PQQ cofactor radical in quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa by electron paramagnetic resonance spectroscopy. FEBS Lett. 564 (2004) 69–72. [DOI] [PMID: 15094044]
6.  Mennenga, B., Kay, C.W. and Gorisch, H. Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c550. Arch. Microbiol. 191 (2009) 361–367. [DOI] [PMID: 19224199]
[EC 1.1.2.8 created 1972 as EC 1.1.99.8, modified 1982, part transferred 2010 to EC 1.1.2.8]
 
 
EC 1.1.2.10     
Accepted name: lanthanide-dependent methanol dehydrogenase
Reaction: methanol + 2 oxidized cytochrome cL = formaldehyde + 2 reduced cytochrome cL
Other name(s): XoxF; XoxF-MDH; Ce-MDH; La3+-dependent MDH; Ce3+-induced methanol dehydrogenase; cerium dependent MDH
Systematic name: methanol:cytochrome cL oxidoreductase
Comments: Isolated from the bacterium Methylacidiphilum fumariolicum and many Methylobacterium species. Requires La3+, Ce3+, Pr3+ or Nd3+. The higher lanthanides show decreasing activity with Sm3+, Eu3+ and Gd3+. The lanthanide is coordinated by the enzyme and pyrroloquinoline quinone. Shows little activity with Ca2+, the required cofactor of EC 1.1.2.7, methanol dehydrogenase (cytochrome c).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hibi, Y., Asai, K., Arafuka, H., Hamajima, M., Iwama, T. and Kawai, K. Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J. Biosci. Bioeng. 111 (2011) 547–549. [PMID: 21256798]
2.  Nakagawa, T., Mitsui, R., Tani, A., Sasa, K., Tashiro, S., Iwama, T., Hayakawa, T. and Kawai, K. A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS One 7:e50480 (2012). [PMID: 23209751]
3.  Pol, A., Barends, T.R., Dietl, A., Khadem, A.F., Eygensteyn, J., Jetten, M.S. and Op den Camp, H.J. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 16 (2014) 255–264. [PMID: 24034209]
4.  Bogart, J.A., Lewis, A.J. and Schelter, E.J. DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme. Chemistry Eur. J. 21 (2015) 1743–1748. [PMID: 25421364]
5.  Prejano, M., Marino, T. and Russo, N. How can methanol dehydrogenase from Methylacidiphilum fumariolicum work with the alien Ce(III) ion in the active center? A theoretical study. Chemistry 23 (2017) 8652–8657. [PMID: 28488399]
6.  Masuda, S., Suzuki, Y., Fujitani, Y., Mitsui, R., Nakagawa, T., Shintani, M. and Tani, A. Lanthanide-dependent regulation of methylotrophy in Methylobacterium aquaticum strain 22A. mSphere 3 (2018) e00462. [PMID: 29404411]
[EC 1.1.2.10 created 2019]
 
 
EC 1.1.3.7     
Accepted name: aryl-alcohol oxidase
Reaction: an aromatic primary alcohol + O2 = an aromatic aldehyde + H2O2
Other name(s): aryl alcohol oxidase; veratryl alcohol oxidase; arom. alcohol oxidase
Systematic name: aryl-alcohol:oxygen oxidoreductase
Comments: Oxidizes many primary alcohols containing an aromatic ring; best substrates are (2-naphthyl)methanol and 3-methoxybenzyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-77-7
References:
1.  Farmer, V.C., Henderson, M.E.K. and Russell, J.D. Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem. J. 74 (1960) 257–262. [PMID: 13821599]
[EC 1.1.3.7 created 1965]
 
 
EC 1.1.3.13     
Accepted name: alcohol oxidase
Reaction: a primary alcohol + O2 = an aldehyde + H2O2
Other name(s): ethanol oxidase; alcohol:oxygen oxidoreductase
Systematic name: alcohol:oxygen oxidoreductase (H2O2-forming)
Comments: The enzymes from the fungi Candida methanosorbosa and several Basidiomycetes species contain an FAD cofactor [1,3]. The enzyme from the phytopathogenic fungi Colletotrichum graminicola and Colletotrichum gloeosporioides utilize a mononuclear copper-radical mechanism [4]. The enzyme acts on primary alcohols and unsaturated alcohols, and has much lower activity with branched-chain and secondary alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-63-6
References:
1.  Janssen, F.W. and Ruelius, H.W. Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. Biochim. Biophys. Acta 151 (1968) 330–342. [DOI] [PMID: 5636370]
2.  Nishida, A., Ishihara, T. and Hiroi, T. Studies on enzymes related to lignan biodegradation. Baiomasu Henkan Keikaku Kenkyu Hokoku (1987) 38–59. (in Japanese)
3.  Suye, S. Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003. Curr. Microbiol. 34 (1997) 374–377. [PMID: 9142745]
4.  Yin, D.T., Urresti, S., Lafond, M., Johnston, E.M., Derikvand, F., Ciano, L., Berrin, J.G., Henrissat, B., Walton, P.H., Davies, G.J. and Brumer, H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat. Commun. 6:10197 (2015). [DOI] [PMID: 26680532]
[EC 1.1.3.13 created 1972]
 
 
EC 1.1.3.17     
Accepted name: choline oxidase
Reaction: choline + 2 O2 + H2O = betaine + 2 H2O2 (overall reaction)
(1a) choline + O2 = betaine aldehyde + H2O2
(1b) betaine aldehyde + O2 + H2O = betaine + H2O2
Glossary: choline = (2-hydroxyethyl)trimethylammonium
betaine aldehyde = N,N,N-trimethyl-2-oxoethylammonium
betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
Systematic name: choline:oxygen 1-oxidoreductase
Comments: A flavoprotein (FAD). In many bacteria, plants and animals, the osmoprotectant betaine is synthesized using different enzymes to catalyse the conversion of (1) choline into betaine aldehyde and (2) betaine aldehyde into betaine. In plants, the first reaction is catalysed by EC 1.14.15.7, choline monooxygenase, whereas in animals and many bacteria, it is catalysed by either membrane-bound choline dehydrogenase (EC 1.1.99.1) or soluble choline oxidase (EC 1.1.3.17) [6]. The enzyme involved in the second step, EC 1.2.1.8, betaine-aldehyde dehydrogenase, appears to be the same in those plants, animals and bacteria that use two separate enzymes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-67-5
References:
1.  Ikuta, S., Imamura, S., Misaki, H. and Horiuti, Y. Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem. (Tokyo) 82 (1977) 1741–1749. [PMID: 599154]
2.  Rozwadowski, K.L., Khachatourians, G.G. and Selvaraj, G. Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 173 (1991) 472–478. [DOI] [PMID: 1987142]
3.  Rand, T., Halkier, T. and Hansen, O.C. Structural characterization and mapping of the covalently linked FAD cofactor in choline oxidase from Arthrobacter globiformis. Biochemistry 42 (2003) 7188–7194. [DOI] [PMID: 12795615]
4.  Gadda, G., Powell, N.L. and Menon, P. The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase. Arch. Biochem. Biophys. 430 (2004) 264–273. [DOI] [PMID: 15369826]
5.  Fan, F. and Gadda, G. On the catalytic mechanism of choline oxidase. J. Am. Chem. Soc. 127 (2005) 2067–2074. [DOI] [PMID: 15713082]
6.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
7.  Fan, F., Ghanem, M. and Gadda, G. Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Arch. Biochem. Biophys. 421 (2004) 149–158. [DOI] [PMID: 14678796]
8.  Gadda, G. Kinetic mechanism of choline oxidase from Arthrobacter globiformis. Biochim. Biophys. Acta 1646 (2003) 112–118. [DOI] [PMID: 12637017]
[EC 1.1.3.17 created 1978, modified 2005, modified 2007]
 
 
EC 1.1.3.19     
Accepted name: 4-hydroxymandelate oxidase (decarboxylating)
Reaction: (S)-4-hydroxymandelate + O2 = 4-hydroxybenzaldehyde + CO2 + H2O2
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
Other name(s): L-4-hydroxymandelate oxidase (decarboxylating); (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate:oxygen 1-oxidoreductase; (S)-4-hydroxymandelate:oxygen 1-oxidoreductase; 4-hydroxymandelate oxidase
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase (decarboxylating)
Comments: A flavoprotein (FAD), requires Mn2+. The enzyme from the bacterium Pseudomonas putida is involved in the degradation of mandelate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 60976-30-9
References:
1.  Bhat, S.G. and Vaidyanathan, C.S. Purification and properties of L-4-hydroxymandelate oxidase from Pseudomonas convexa. Eur. J. Biochem. 68 (1976) 323–331. [DOI] [PMID: 976259]
[EC 1.1.3.19 created 1984, modified 2014]
 
 
EC 1.1.3.20     
Accepted name: long-chain-alcohol oxidase
Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase
Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129430-50-8
References:
1.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [DOI] [PMID: 36040]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
3.  Cheng, Q., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett. 574 (2004) 62–68. [DOI] [PMID: 15358540]
4.  Zhao, S., Lin, Z., Ma, W., Luo, D. and Cheng, Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Prog. 24 (2008) 773–779. [DOI] [PMID: 18396913]
5.  Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim. Biophys. Acta 1735 (2005) 192–203. [DOI] [PMID: 16046182]
[EC 1.1.3.20 created 1984, modified 2010]
 
 
EC 1.1.3.23     
Accepted name: thiamine oxidase
Reaction: thiamine + 2 O2 + H2O = thiamine acetic acid + 2 H2O2
Other name(s): thiamin dehydrogenase; thiamine dehydrogenase; thiamin:oxygen 5-oxidoreductase
Systematic name: thiamine:oxygen 5-oxidoreductase
Comments: A flavoprotein (FAD). The product differs from thiamine in replacement of -CH2.CH2.OH by -CH2.COOH; the two-step oxidation proceeds without the release of the intermediate aldehyde from the enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 96779-44-1
References:
1.  Edmondson, D.E., Kenney, W.C. and Singer, T.P. Structural elucidation and properties of 8α-(N1-histidyl)riboflavin: the flavin component of thiamine dehydrogenase and β-cyclopiazonate oxidocyclase. Biochemistry 15 (1976) 2937–2945. [PMID: 8076]
2.  Gomez-Moreno, C. and Edmondson, D.E. Evidence for an aldehyde intermediate in the catalytic mechanism of thiamine oxidase. Arch. Biochem. Biophys. 239 (1985) 46–52. [DOI] [PMID: 2988447]
3.  Neal, R.A. Bacterial metabolism of thiamine. 3. Metabolism of thiamine to 3-(2′-methyl-4′-amino-5′-pyrimidylmethyl)-4-methyl-thiazole-5-acetic acid (thiamine acetic acid) by a flavoprotein isolated from a soil microorganism. J. Biol. Chem. 245 (1970) 2599–2604. [PMID: 4987737]
[EC 1.1.3.23 created 1984]
 
 
EC 1.1.3.38     
Accepted name: vanillyl-alcohol oxidase
Reaction: vanillyl alcohol + O2 = vanillin + H2O2
Other name(s): 4-hydroxy-2-methoxybenzyl alcohol oxidase
Systematic name: vanillyl alcohol:oxygen oxidoreductase
Comments: Vanillyl-alcohol oxidase from Penicillium simplicissimum contains covalently bound FAD. It converts a wide range of 4-hydroxybenzyl alcohols and 4-hydroxybenzylamines into the corresponding aldehydes. The allyl group of 4-allylphenols is also converted into the -CH=CH-CH2OH group.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 143929-24-2
References:
1.  de Jong, E., van Berkel, W.J.H., van der Zwan, R.P. and de Bont, J.A.M. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum, a novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208 (1992) 651–657. [DOI] [PMID: 1396672]
2.  Fraaije, M.W., Veeger, C. and van Berkel, W.J.H. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols. Eur. J. Biochem. 234 (1995) 271–277. [DOI] [PMID: 8529652]
[EC 1.1.3.38 created 1999]
 
 
EC 1.1.3.42     
Accepted name: prosolanapyrone-II oxidase
Reaction: prosolanapyrone II + O2 = prosolanapyrone III + H2O2
For diagram of solanapyrone biosynthesis, click here
Glossary: prosolanapyrone II = 3-(hydroxymethyl)-4-methoxy-6-(1E,7E,9E)-undeca-1,7,9-trien-1-yl-2H-pyran-2-one
prosolanapyrone III = 4-methoxy-2-oxo-6-(1E,7E,9E)-undeca-1,7,9-trien-1-yl-2H-pyran-3-carboxaldehyde
Other name(s): Sol5 (ambiguous); SPS (ambiguous); solanapyrone synthase (bifunctional enzyme: prosolanapyrone II oxidase/prosolanapyrone III cycloisomerase); prosolanapyrone II oxidase
Systematic name: prosolanapyrone-II:oxygen 3′-oxidoreductase
Comments: The enzyme is involved in the biosynthesis of the phytotoxin solanapyrone by some fungi. The bifunctional enzyme catalyses the oxidation of prosolanapyrone II and the subsequent Diels Alder cycloisomerization of the product prosolanapyrone III to (-)-solanapyrone A (cf. EC 5.5.1.20, prosolanapyrone III cycloisomerase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kasahara, K., Miyamoto, T., Fujimoto, T., Oguri, H., Tokiwano, T., Oikawa, H., Ebizuka, Y. and Fujii, I. Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. ChemBioChem 11 (2010) 1245–1252. [DOI] [PMID: 20486243]
2.  Katayama, K., Kobayashi, T., Oikawa, H., Honma, M. and Ichihara, A. Enzymatic activity and partial purification of solanapyrone synthase: first enzyme catalyzing Diels-Alder reaction. Biochim. Biophys. Acta 1384 (1998) 387–395. [DOI] [PMID: 9659400]
3.  Katayama, K., Kobayashi, T., Chijimatsu, M., Ichihara, A. and Oikawa, H. Purification and N-terminal amino acid sequence of solanapyrone synthase, a natural Diels-Alderase from Alternaria solani. Biosci. Biotechnol. Biochem. 72 (2008) 604–607. [DOI] [PMID: 18256508]
[EC 1.1.3.42 created 2011]
 
 
EC 1.1.3.47     
Accepted name: 5-(hydroxymethyl)furfural oxidase
Reaction: 5-(hydroxymethyl)furfural + 3 O2 + 2 H2O = furan-2,5-dicarboxylate + 3 H2O2 (overall reaction)
(1a) 5-(hydroxymethyl)furfural + O2 = furan-2,5-dicarbaldehyde + H2O2
(1b) furan-2,5-dicarbaldehyde + H2O = 5-(dihydroxymethyl)furan-2-carbaldehyde (spontaneous)
(1c) 5-(dihydroxymethyl)furan-2-carbaldehyde + O2 = 5-formylfuran-2-carboxylate + H2O2
(1d) 5-formylfuran-2-carboxylate + H2O = 5-(dihydroxymethyl)furan-2-carboxylate (spontaneous)
(1e) 5-(dihydroxymethyl)furan-2-carboxylate + O2 = furan-2,5-dicarboxylate + H2O2
Glossary: 5-(hydroxymethyl)furfural = 5-(hydroxymethyl)furan-2-carbaldehyde
Systematic name: 5-(hydroxymethyl)furfural:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Methylovorus sp. strain MP688, is involved in the degradation and detoxification of 5-(hydroxymethyl)furfural. The enzyme acts only on alcohol groups and requires the spontaneous hydration of aldehyde groups for their oxidation [3]. The enzyme has a broad substrate range that overlaps with EC 1.1.3.7, aryl-alcohol oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Koopman, F., Wierckx, N., de Winde, J.H. and Ruijssenaars, H.J. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc. Natl. Acad. Sci. USA 107 (2010) 4919–4924. [DOI] [PMID: 20194784]
2.  Dijkman, W.P. and Fraaije, M.W. Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl. Environ. Microbiol. 80 (2014) 1082–1090. [DOI] [PMID: 24271187]
3.  Dijkman, W.P., Groothuis, D.E. and Fraaije, M.W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew. Chem. Int. Ed. Engl. 53 (2014) 6515–6518. [DOI] [PMID: 24802551]
[EC 1.1.3.47 created 2014]
 
 
EC 1.1.5.5     
Accepted name: alcohol dehydrogenase (quinone)
Reaction: ethanol + ubiquinone = acetaldehyde + ubiquinol
Other name(s): type III ADH; membrane associated quinohaemoprotein alcohol dehydrogenase
Systematic name: alcohol:quinone oxidoreductase
Comments: Only described in acetic acid bacteria where it is involved in acetic acid production. Associated with membrane. Electron acceptor is membrane ubiquinone. A model structure suggests that, like all other quinoprotein alcohol dehydrogenases, the catalytic subunit has an 8-bladed ‘propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ; the catalytic subunit also has a heme c in the C-terminal domain. The enzyme has two additional subunits, one of which contains three molecules of heme c. It does not require amines for activation. It has a restricted substrate specificity, oxidizing a few primary alcohols (C2 to C6), but not methanol, secondary alcohols and some aldehydes. It is assayed with phenazine methosulfate or with ferricyanide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gomez-Manzo, S., Contreras-Zentella, M., Gonzalez-Valdez, A., Sosa-Torres, M., Arreguin-Espinoza, R. and Escamilla-Marvan, E. The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int. J. Food Microbiol. 125 (2008) 71–78. [DOI] [PMID: 18321602]
2.  Shinagawa, E., Toyama, H., Matsushita, K., Tuitemwong, P., Theeragool, G. and Adachi, O. A novel type of formaldehyde-oxidizing enzyme from the membrane of Acetobacter sp. SKU 14. Biosci. Biotechnol. Biochem. 70 (2006) 850–857. [DOI] [PMID: 16636451]
3.  Chinnawirotpisan, P., Theeragool, G., Limtong, S., Toyama, H., Adachi, O.O. and Matsushita, K. Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J. Biosci. Bioeng. 96 (2003) 564–571. [DOI] [PMID: 16233574]
4.  Frebortova, J., Matsushita, K., Arata, H. and Adachi, O. Intramolecular electron transport in quinoprotein alcohol dehydrogenase of Acetobacter methanolicus: a redox-titration stud. Biochim. Biophys. Acta 1363 (1998) 24–34. [DOI] [PMID: 9526036]
5.  Matsushita, K., Kobayashi, Y., Mizuguchi, M., Toyama, H., Adachi, O., Sakamoto, K. and Miyoshi, H. A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, Gluconobacter suboxydans. Biosci. Biotechnol. Biochem. 72 (2008) 2723–2731. [DOI] [PMID: 18838797]
6.  Matsushita, K., Yakushi, T., Toyama, H., Shinagawa, E. and Adachi, O. Function of multiple heme c moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J. Biol. Chem. 271 (1996) 4850–4857. [DOI] [PMID: 8617755]
7.  Matsushita, K., Takaki, Y., Shinagawa, E., Ameyama, M. and Adachi, O. Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci. Biotechnol. Biochem. 56 (1992) 304–310.
8.  Matsushita, K., Toyama, H. and Adachi, O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microb. Physiol. 36 (1994) 247–301. [PMID: 7942316]
9.  Cozier, G.E., Giles, I.G. and Anthony, C. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem. J. 308 (1995) 375–379. [PMID: 7772016]
[EC 1.1.5.5 created 2009, modified 2010]
 
 
EC 1.1.5.7     
Accepted name: cyclic alcohol dehydrogenase (quinone)
Reaction: a cyclic alcohol + a quinone = a cyclic ketone + a quinol
Other name(s): cyclic alcohol dehydrogenase; MCAD
Systematic name: cyclic alcohol:quinone oxidoreductase
Comments: This enzyme oxidizes a wide variety of cyclic alcohols. Some minor enzyme activity is found with aliphatic secondary alcohols and sugar alcohols, but not primary alcohols. The enzyme is unable to catalyse the reverse reaction of cyclic ketones or aldehydes to cyclic alcohols. This enzyme differs from EC 1.1.5.5, alcohol dehydrogenase (quinone), which shows activity with ethanol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Moonmangmee, D., Fujii, Y., Toyama, H., Theeragool, G., Lotong, N., Matsushita, K. and Adachi, O. Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9. Biosci. Biotechnol. Biochem. 65 (2001) 2763–2772. [PMID: 11826975]
[EC 1.1.5.7 created 2010]
 
 
EC 1.1.9.1     
Accepted name: alcohol dehydrogenase (azurin)
Reaction: a primary alcohol + azurin = an aldehyde + reduced azurin
Other name(s): type II quinoprotein alcohol dehydrogenase; quinohaemoprotein ethanol dehydrogenase; QHEDH; ADHIIB
Systematic name: alcohol:azurin oxidoreductase
Comments: A soluble, periplasmic PQQ-containing quinohemoprotein. Also contains a single heme c. Occurs in Comamonas and Pseudomonas. Does not require an amine activator. Oxidizes a wide range of primary and secondary alcohols, and also aldehydes and large substrates such as sterols; methanol is not a substrate. Usually assayed with phenazine methosulfate or ferricyanide. Like all other quinoprotein alcohol dehydrogenases it has an 8-bladed ‘propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Groen, B.W., van Kleef, M.A. and Duine, J.A. Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochem. J. 234 (1986) 611–615. [PMID: 3521592]
2.  de Jong, G.A., Caldeira, J., Sun, J., Jongejan, J.A., de Vries, S., Loehr, T.M., Moura, I., Moura, J.J. and Duine, J.A. Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni. Biochemistry 34 (1995) 9451–9458. [PMID: 7626615]
3.  Toyama, H., Fujii, A., Matsushita, K., Shinagawa, E., Ameyama, M. and Adachi, O. Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriol. 177 (1995) 2442–2450. [DOI] [PMID: 7730276]
4.  Matsushita, K., Yamashita, T., Aoki, N., Toyama, H. and Adachi, O. Electron transfer from quinohemoprotein alcohol dehydrogenase to blue copper protein azurin in the alcohol oxidase respiratory chain of Pseudomonas putida HK5. Biochemistry 38 (1999) 6111–6118. [DOI] [PMID: 10320337]
5.  Chen, Z.W., Matsushita, K., Yamashita, T., Fujii, T.A., Toyama, H., Adachi, O., Bellamy, H.D. and Mathews, F.S. Structure at 1.9 Å resolution of a quinohemoprotein alcohol dehydrogenase from Pseudomonas putida HK5. Structure 10 (2002) 837–849. [DOI] [PMID: 12057198]
6.  Oubrie, A., Rozeboom, H.J., Kalk, K.H., Huizinga, E.G. and Dijkstra, B.W. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer. J. Biol. Chem. 277 (2002) 3727–3732. [DOI] [PMID: 11714714]
[EC 1.1.9.1 created 2010 as EC 1.1.98.1; transferred 2011 to EC 1.1.9.1]
 
 
EC 1.1.98.1      
Transferred entry: Now EC 1.1.9.1, alcohol dehydrogenase (azurin)
[EC 1.1.98.1 created 2010, deleted 2011]
 
 
EC 1.1.99.1     
Accepted name: choline dehydrogenase
Reaction: choline + acceptor = betaine aldehyde + reduced acceptor
Glossary: betaine aldehyde = N,N,N-trimethyl-2-oxoethylammonium
choline = (2-hydroxyethyl)trimethylammonium
Other name(s): choline oxidase; choline-cytochrome c reductase; choline:(acceptor) oxidoreductase; choline:(acceptor) 1-oxidoreductase
Systematic name: choline:acceptor 1-oxidoreductase
Comments: A quinoprotein. In many bacteria, plants and animals, the osmoprotectant betaine is synthesized using different enzymes to catalyse the conversion of (1) choline into betaine aldehyde and (2) betaine aldehyde into betaine. In plants, the first reaction is catalysed by EC 1.14.15.7, choline monooxygenase, whereas in animals and many bacteria, it is catalysed by either membrane-bound choline dehydrogenase (EC 1.1.99.1) or soluble choline oxidase (EC 1.1.3.17) [4]. The enzyme involved in the second step, EC 1.2.1.8, betaine-aldehyde dehydrogenase, appears to be the same in plants, animals and bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-67-5
References:
1.  Ameyama, M., Shinagawa, E., Matsuchita, K., Takimoto, K., Nakashima, K. and Adachi, O. Mammalian choline dehydrogenase is a quinoprotein. Agric. Biol. Chem. 49 (1985) 3623–3626.
2.  Ebisuzaki, K. and Williams, J.N. Preparation and partial purification of soluble choline dehydrogenase from liver mitochondria. Biochem. J. 60 (1955) 644–646. [PMID: 13249959]
3.  Gadda, G. and McAllister-Wilkins, E.E. Cloning, expression, and purification of choline dehydrogenase from the moderate halophile Halomonas elongata. Appl. Environ. Microbiol. 69 (2003) 2126–2132. [DOI] [PMID: 12676692]
4.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
[EC 1.1.99.1 created 1961, modified 1989, modified 2005]
 
 
EC 1.1.99.8      
Transferred entry: alcohol dehydrogenase (acceptor). Now EC 1.1.2.7, methanol dehydrogenase (cytochrome c) and EC 1.1.2.8, alcohol dehydrogenase (cytochrome c).
[EC 1.1.99.8 created 1972, modified 1982, deleted 2010]
 
 
EC 1.1.99.20     
Accepted name: alkan-1-ol dehydrogenase (acceptor)
Reaction: primary alcohol + acceptor = aldehyde + reduced acceptor
Other name(s): polyethylene glycol dehydrogenase; alkan-1-ol:(acceptor) oxidoreductase
Systematic name: alkan-1-ol:acceptor oxidoreductase
Comments: A quinoprotein. Acts on C3-C16 linear-chain saturated primary alcohols, C4-C7 aldehydes and on non-ionic surfactants containing polyethylene glycol residues, such as Tween 40 and 60, but not on methanol and only very slowly on ethanol. 2,6-Dichloroindophenol can act as acceptor. cf. EC 1.1.99.8 alcohol dehydrogenase (acceptor).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 75496-55-8
References:
1.  Kawai, F., Kimura, T., Tani, Y., Yamada, H., Ueno, T. and Fukami, H. Identification of reaction-products of polyethylene-glycol dehydrogenase. Agric. Biol. Chem. 47 (1983) 1669–1671.
2.  Kawai, F., Yamanaka, H., Ameyama, M., Shinagawa, E., Matsushita, K. and Adachi, O. Identification of the prosthetic group and further characterization of a novel enzyme, polyethylene-glycol dehydrogenase. Agric. Biol. Chem. 49 (1985) 1071–1076.
[EC 1.1.99.20 created 1989]
 
 
EC 1.1.99.36     
Accepted name: alcohol dehydrogenase (nicotinoprotein)
Reaction: ethanol + acceptor = acetaldehyde + reduced acceptor
Other name(s): NDMA-dependent alcohol dehydrogenase; nicotinoprotein alcohol dehydrogenase; np-ADH; ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: ethanol:acceptor oxidoreductase
Comments: Contains Zn2+. Nicotinoprotein alcohol dehydrogenases are unique medium-chain dehydrogenases/reductases (MDR) alcohol dehydrogenases that have a tightly bound NAD+/NADH cofactor that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this function in vitro. The enzyme from the Gram-positive bacterium Amycolatopsis methanolica can accept many primary alcohols as substrates, including benzylalcohol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Ophem, P.W., Van Beeumen, J. and Duine, J.A. Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur. J. Biochem. 212 (1993) 819–826. [DOI] [PMID: 8385013]
2.  Piersma, S.R., Visser, A.J., de Vries, S. and Duine, J.A. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Biochemistry 37 (1998) 3068–3077. [DOI] [PMID: 9485460]
3.  Schenkels, P. and Duine, J.A. Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146 (2000) 775–785. [DOI] [PMID: 10784035]
4.  Piersma, S.R., Norin, A., de Vries, S., Jornvall, H. and Duine, J.A. Inhibition of nicotinoprotein (NAD+-containing) alcohol dehydrogenase by trans-4-(N,N-dimethylamino)-cinnamaldehyde binding to the active site. J. Protein Chem. 22 (2003) 457–461. [PMID: 14690248]
5.  Norin, A., Piersma, S.R., Duine, J.A. and Jornvall, H. Nicotinoprotein (NAD+ -containing) alcohol dehydrogenase: structural relationships and functional interpretations. Cell. Mol. Life Sci. 60 (2003) 999–1006. [DOI] [PMID: 12827287]
[EC 1.1.99.36 created 2010]
 
 
EC 1.1.99.37     
Accepted name: methanol dehydrogenase (nicotinoprotein)
Reaction: methanol + acceptor = formaldehyde + reduced acceptor
Other name(s): NDMA-dependent methanol dehydrogenase; nicotinoprotein methanol dehydrogenase; methanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: methanol:acceptor oxidoreductase
Comments: Contains Zn2+ and Mg2+. Nicotinoprotein methanol dehydrogenases have a tightly bound NADP+/NADPH cofactor that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this function in vitro. The enzyme has been detected in several Gram-positive methylotrophic bacteria, including Amycolatopsis methanolica, Rhodococcus rhodochrous and Rhodococcus erythropolis [1-3]. These enzymes are decameric, and possess a 5-fold symmetry [4]. Some of the enzymes can also dismutate formaldehyde to methanol and formate [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vonck, J., Arfman, N., De Vries, G.E., Van Beeumen, J., Van Bruggen, E.F. and Dijkhuizen, L. Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. J. Biol. Chem. 266 (1991) 3949–3954. [PMID: 1995642]
2.  Van Ophem, P.W., Van Beeumen, J. and Duine, J.A. Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur. J. Biochem. 212 (1993) 819–826. [DOI] [PMID: 8385013]
3.  Bystrykh, L.V., Vonck, J., van Bruggen, E.F., van Beeumen, J., Samyn, B., Govorukhina, N.I., Arfman, N., Duine, J.A. and Dijkhuizen, L. Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J. Bacteriol. 175 (1993) 1814–1822. [DOI] [PMID: 8449887]
4.  Hektor, H.J., Kloosterman, H. and Dijkhuizen, L. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J. Biol. Chem. 277 (2002) 46966–46973. [DOI] [PMID: 12351635]
5.  Park, H., Lee, H., Ro, Y.T. and Kim, Y.M. Identification and functional characterization of a gene for the methanol : N,N′-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803). Microbiology 156 (2010) 463–471. [DOI] [PMID: 19875438]
[EC 1.1.99.37 created 2010]
 
 
EC 1.2.1.1      
Deleted entry:  glutathione-dependent formaldehyde dehydrogenase. This enzyme was classified on the basis of an incorrect reaction. It has been replaced by two enzymes, EC 1.1.1.284, S-(hydroxymethyl)glutathione dehydrogenase and EC 4.4.1.22, S-(hydroxymethyl)glutathione synthase
[EC 1.2.1.1 created 1961, modified 1982, modified 2002, deleted 2005]
 
 
EC 1.2.1.3     
Accepted name: aldehyde dehydrogenase (NAD+)
Reaction: an aldehyde + NAD+ + H2O = a carboxylate + NADH + H+
Other name(s): CoA-independent aldehyde dehydrogenase; m-methylbenzaldehyde dehydrogenase; NAD-aldehyde dehydrogenase; NAD-dependent 4-hydroxynonenal dehydrogenase; NAD-dependent aldehyde dehydrogenase; NAD-linked aldehyde dehydrogenase; propionaldehyde dehydrogenase; aldehyde dehydrogenase (NAD)
Systematic name: aldehyde:NAD+ oxidoreductase
Comments: Wide specificity, including oxidation of D-glucuronolactone to D-glucarate.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-86-8
References:
1.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
2.  Racker, E. Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme. J. Biol. Chem. 177 (1949) 883–892. [PMID: 18110463]
[EC 1.2.1.3 created 1961 (EC 1.1.1.70 created 1965, incorporated 1978)]
 
 
EC 1.2.1.4     
Accepted name: aldehyde dehydrogenase (NADP+)
Reaction: an aldehyde + NADP+ + H2O = a carboxylate + NADPH + H+
Other name(s): NADP-acetaldehyde dehydrogenase; NADP-dependent aldehyde dehydrogenase; aldehyde dehydrogenase (NADP)
Systematic name: aldehyde:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-87-9
References:
1.  Adachi, O., Matsushita, K., Shinagawa, E. and Ameyama, M. Crystallization and properties of NADP-dependent aldehyde dehydrogenase from Gluconobacter melanogenus. Agric. Biol. Chem. 44 (1980) 155–164.
2.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
3.  Nakayama, T. Acetic acid bacteria. II. Intracellular distribution of enzymes related to acetic acid fermentation, and some properties of a highly purified triphosphopyridine nucleotide (TPN)-dependent aldehyde dehydrogenase. J. Biochem. (Tokyo) 48 (1960) 812–830.
4.  Seegmiller, J.E. Triphosphopyridine nucleotide-linked aldehyde dehydrogenase from yeast. J. Biol. Chem. 201 (1953) 629–637. [PMID: 13061400]
[EC 1.2.1.4 created 1961]
 
 
EC 1.2.1.5     
Accepted name: aldehyde dehydrogenase [NAD(P)+]
Reaction: an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + H+
Other name(s): ALDH
Systematic name: aldehyde:NAD(P)+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-88-0
References:
1.  Black, S. Yeast aldehyde dehydrogenase. Arch. Biochem. Biophys. 34 (1951) 86–97. [DOI] [PMID: 14904038]
2.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
3.  King, T.E. and Cheldelin, V.H. Oxidation of acetaldehyde by Aerobacter suboxydans. J. Biol. Chem. 220 (1956) 177–191. [PMID: 13319337]
4.  Steinman, C.R. and Jakoby, W.B. Yeast aldehyde dehydrogenase. I. Purification and crystallization. J. Biol. Chem. 242 (1967) 5019–5023. [PMID: 4293780]
5.  Tanenbaum, S.W. The metabolism of Acetobacter peroxidans. I. Oxidative enzymes. Biochim. Biophys. Acta 21 (1956) 335–342. [DOI] [PMID: 13363916]
[EC 1.2.1.5 created 1961]
 
 
EC 1.2.1.6      
Deleted entry:  benzaldehyde dehydrogenase
[EC 1.2.1.6 created 1961, deleted 1965]
 
 
EC 1.2.1.7     
Accepted name: benzaldehyde dehydrogenase (NADP+)
Reaction: benzaldehyde + NADP+ + H2O = benzoate + NADPH + 2 H+
Other name(s): NADP-linked benzaldehyde dehydrogenase; benzaldehyde dehydrogenase (NADP)
Systematic name: benzaldehyde:NADP+ oxidoreductase
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-89-1
References:
1.  Gunsalus, C.F., Stanier, R.Y. and Gunsalus, I.C. The enzymatic conversion of mandelic acid to benzoic acid. III. Fractionation and properties of the soluble enzymes. J. Bacteriol. 66 (1953) 548–553. [PMID: 13108854]
2.  Stachow, C.S., Stevenson, I.L. and Day, D. Purification and properties of nicotinamide adenine dinucleotide phosphate-specific benzaldehyde dehydrogenase from Pseudomonas. J. Biol. Chem. 242 (1967) 5294–5300. [PMID: 4383635]
[EC 1.2.1.7 created 1961]
 
 
EC 1.2.1.8     
Accepted name: betaine-aldehyde dehydrogenase
Reaction: betaine aldehyde + NAD+ + H2O = betaine + NADH + 2 H+
Glossary: betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
betaine aldehyde = N,N,N-trimethyl-2-oxoethylammonium
Other name(s): betaine aldehyde oxidase; BADH; betaine aldehyde dehydrogenase; BetB
Systematic name: betaine-aldehyde:NAD+ oxidoreductase
Comments: In many bacteria, plants and animals, the osmoprotectant betaine is synthesized in two steps: (1) choline to betaine aldehyde and (2) betaine aldehyde to betaine. This enzyme is involved in the second step and appears to be the same in plants, animals and bacteria. In contrast, different enzymes are involved in the first reaction. In plants, this reaction is catalysed by EC 1.14.15.7 (choline monooxygenase), whereas in animals and many bacteria it is catalysed by either membrane-bound EC 1.1.99.1 (choline dehydrogenase) or soluble EC 1.1.3.17 (choline oxidase) [5]. In some bacteria, betaine is synthesized from glycine through the actions of EC 2.1.1.156 (glycine/sarcosine N-methyltransferase) and EC 2.1.1.157 (sarcosine/dimethylglycine N-methyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-90-4
References:
1.  Rothschild, H.A. and Barron, E.S.G. The oxidation of betaine aldehyde by betaine aldehyde dehydrogenase. J. Biol. Chem. 209 (1954) 511–523. [PMID: 13192104]
2.  Livingstone, J.R., Maruo, T., Yoshida, I., Tarui, Y., Hirooka, K., Yamamoto, Y., Tsutui, N. and Hirasawa, E. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. J. Plant Res. 116 (2003) 133–140. [DOI] [PMID: 12736784]
3.  Muñoz-Clares, R.A., González-Segura, L., Mújica-Jiménez, C. and Contreras-Diaz, L. Ligand-induced conformational changes of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa and Amaranthus hypochondriacus L. leaves affecting the reactivity of the catalytic thiol. Chem. Biol. Interact. (2003) 129–137. [DOI] [PMID: 12604197]
4.  Johansson, K., El-Ahmad, M., Ramaswamy, S., Hjelmqvist, L., Jornvall, H. and Eklund, H. Structure of betaine aldehyde dehydrogenase at 2.1 Å resolution. Protein Sci. 7 (1998) 2106–2117. [DOI] [PMID: 9792097]
5.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
[EC 1.2.1.8 created 1961, modified 2005, modified 2011]
 
 
EC 1.2.1.9     
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (NADP+)
Reaction: D-glyceraldehyde 3-phosphate + NADP+ + H2O = 3-phospho-D-glycerate + NADPH + 2 H+
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): triosephosphate dehydrogenase (ambiguous); glyceraldehyde phosphate dehydrogenase (nicotinamide adenine dinucleotide phosphate); glyceraldehyde phosphate dehydrogenase (NADP+); glyceraldehyde 3-phosphate dehydrogenase (NADP+); NADP+-glyceraldehyde phosphate dehydrogenase; NADP+-glyceraldehyde-3-phosphate dehydrogenase; glyceraldehyde-3-phosphate:NADP+ reductase; nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase
Systematic name: D-glyceraldehyde-3-phosphate:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-92-6
References:
1.  Rosenberg, L.L. and Arnon, D.I. The preparation and properties of a new glyceraldehyde-3-phosphate dehydrogenase from photosynthetic tissues. J. Biol. Chem. 217 (1955) 361–371. [PMID: 13271400]
[EC 1.2.1.9 created 1961]
 
 
EC 1.2.1.10     
Accepted name: acetaldehyde dehydrogenase (acetylating)
Reaction: acetaldehyde + CoA + NAD+ = acetyl-CoA + NADH + H+
For diagram of 3-phenylpropanoate catabolism, click here, for diagram of catechol catabolism (meta ring cleavage), click here and for diagram of cinnamate catabolism, click here
Other name(s): aldehyde dehydrogenase (acylating); ADA; acylating acetaldehyde dehyrogenase; DmpF; BphJ
Systematic name: acetaldehyde:NAD+ oxidoreductase (CoA-acetylating)
Comments: Also acts, more slowly, on glycolaldehyde, propanal and butanal. In several bacterial species this enzyme forms a bifunctional complex with EC 4.1.3.39, 4-hydroxy-2-oxovalerate aldolase. The enzymes from the bacteria Burkholderia xenovorans and Thermus thermophilus also perform the reaction of EC 1.2.1.87, propanal dehydrogenase (propanoylating). Involved in the meta-cleavage pathway for the degradation of phenols, methylphenols and catechols. NADP+ can replace NAD+ but the rate of reaction is much slower [3].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-91-5
References:
1.  Burton, R.M. and Stadtman, E.R. The oxidation of acetaldehyde to acetyl coenzyme A. J. Biol. Chem. 202 (1953) 873–890. [PMID: 13061511]
2.  Smith, L.T. and Kaplan, N.O. Purification, properties, and kinetic mechanism of coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri. Arch. Biochem. Biophys. 203 (1980) 663–675. [DOI] [PMID: 7458347]
3.  Powlowski, J., Sahlman, L. and Shingler, V. Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600. J. Bacteriol. 175 (1993) 377–385. [DOI] [PMID: 8419288]
4.  Baker, P., Pan, D., Carere, J., Rossi, A., Wang, W. and Seah, S.Y.K. Characterization of an aldolase-dehydrogenase complex that exhibits substrate channeling in the polychlorinated biphenyls degradation pathway. Biochemistry 48 (2009) 6551–6558. [DOI] [PMID: 19476337]
5.  Baker, P., Hillis, C., Carere, J. and Seah, S.Y.K. Protein-protein interactions and substrate channeling in orthologous and chimeric aldolase-dehydrogenase complexes. Biochemistry 51 (2012) 1942–1952. [DOI] [PMID: 22316175]
[EC 1.2.1.10 created 1961, modified 2006, modified 2011]
 
 
EC 1.2.1.11     
Accepted name: aspartate-semialdehyde dehydrogenase
Reaction: L-aspartate 4-semialdehyde + phosphate + NADP+ = L-4-aspartyl phosphate + NADPH + H+
Other name(s): aspartate semialdehyde dehydrogenase; aspartic semialdehyde dehydrogenase; L-aspartate-β-semialdehyde:NADP+ oxidoreductase (phosphorylating); aspartic β-semialdehyde dehydrogenase; ASA dehydrogenase
Systematic name: L-aspartate-4-semialdehyde:NADP+ oxidoreductase (phosphorylating)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9000-98-0
References:
1.  Black, S. and Wright, N.G. Aspartic β-semialdehyde dehydrogenase and aspartic β-semialdehyde. J. Biol. Chem. 213 (1955) 39–50. [PMID: 14353904]
2.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
[EC 1.2.1.11 created 1961]
 
 
EC 1.2.1.12     
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)
Reaction: D-glyceraldehyde 3-phosphate + phosphate + NAD+ = 3-phospho-D-glyceroyl phosphate + NADH + H+
For diagram of reaction, click here
Other name(s): triosephosphate dehydrogenase (ambiguous); glyceraldehyde phosphate dehydrogenase; phosphoglyceraldehyde dehydrogenase; 3-phosphoglyceraldehyde dehydrogenase; NAD+-dependent glyceraldehyde phosphate dehydrogenase; glyceraldehyde phosphate dehydrogenase (NAD+); glyceraldehyde-3-phosphate dehydrogenase (NAD+); NADH-glyceraldehyde phosphate dehydrogenase; glyceraldehyde-3-P-dehydrogenase
Systematic name: D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)
Comments: Also acts very slowly on D-glyceraldehyde and some other aldehydes; thiols can replace phosphate.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-50-7
References:
1.  Caputto, R. and Dixon, M. Crystallization and identity of the triose and triosephosphate dehydrogenase of muscle. Nature (Lond.) 156 (1945) 630–631.
2.  Cori, G.T., Slein, M.W. and Cori, C.F. Crystalline D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. J. Biol. Chem. 173 (1948) 605–618. [PMID: 18910716]
3.  Hageman, R.H. and Arnon, D.I. The isolation of triosephosphate dehydrogenase from pea seeds. Arch. Biochem. Biophys. 55 (1955) 162–168. [DOI] [PMID: 14362612]
4.  Velick, S.F. and Furfine, C. Glyceraldehyde 3-phosphate dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 243–273.
5.  Warburg, O. and Christian, W. Isolierung und Krystallisation des Proteins des oxydierenden Gärungsferments. Biochem. Z. 303 (1939) 40–68.
6.  Ryzlak, M.T. and Pietruszko, R. Heterogeneity of glyceraldehyde-3-phosphate dehydrogenase from human brain. Biochim. Biophys. Acta 954 (1988) 309–324. [DOI] [PMID: 3370218]
[EC 1.2.1.12 created 1961]
 
 
EC 1.2.1.13     
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating)
Reaction: D-glyceraldehyde 3-phosphate + phosphate + NADP+ = 3-phospho-D-glyceroyl phosphate + NADPH + H+
For diagram of the carbon-fixation stages of the Calvin cycle, click here and for the Calvin cycle, click here
Other name(s): triosephosphate dehydrogenase (NADP+); dehydrogenase, glyceraldehyde phosphate (nicotinamide adenine dinucleotide phosphate) (phosphorylating); glyceraldehyde phosphate dehydrogenase (nicotinamide adenine dinucleotide phosphate) (phosphorylating); NADP+-glyceraldehyde-3-phosphate dehydrogenase; NADP+-glyceraldehyde phosphate dehydrogenase; NADP+-dependent glyceraldehyde phosphate dehydrogenase; NADP+-triose phosphate dehydrogenase; glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating); GAPDH
Systematic name: D-glyceraldehyde-3-phosphate:NADP+ oxidoreductase (phosphorylating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-87-6
References:
1.  Brenneman, F.N. and Volk, W.A. Glyceraldehyde phosphate dehydrogenase activity with triphosphopyridine nucleotide and with diphosphopyridine nucleotide. J. Biol. Chem. 234 (1959) 2443–2447. [PMID: 13804190]
2.  Gibbs, M. TPN triosephosphate dehydrogenase from plant tissue. Methods Enzymol. 1 (1955) 411–415.
3.  Rosenberg, L.L. and Arnon, D.I. The preparation and properties of a new glyceraldehyde-3-phosphate dehydrogenase from photosynthetic tissues. J. Biol. Chem. 217 (1955) 361–371. [PMID: 13271400]
[EC 1.2.1.13 created 1961]
 
 
EC 1.2.1.15     
Accepted name: malonate-semialdehyde dehydrogenase
Reaction: 3-oxopropanoate + NAD(P)+ + H2O = malonate + NAD(P)H + 2 H+
Systematic name: 3-oxopropanoate:NAD(P)+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-94-8
References:
1.  Nakamura, K. and Bernheim, F. Studies on malonic semialdehyde dehydrogenase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 50 (1961) 147–152. [DOI] [PMID: 13727610]
[EC 1.2.1.15 created 1965]
 
 
EC 1.2.1.16     
Accepted name: succinate-semialdehyde dehydrogenase [NAD(P)+]
Reaction: succinate semialdehyde + NAD(P)+ + H2O = succinate + NAD(P)H + 2 H+
For diagram of the citric acid cycle, click here
Other name(s): succinate semialdehyde dehydrogenase (nicotinamide adenine dinucleotide (phosphate)); succinate-semialdehyde dehydrogenase [NAD(P)]
Systematic name: succinate-semialdehyde:NAD(P)+ oxidoreductase
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-88-7
References:
1.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
2.  Jakoby, W.B. and Scott, E.M. Aldehyde oxidation. III. Succinic semialdehyde dehydrogenase. J. Biol. Chem. 234 (1959) 937–940. [PMID: 13654295]
3.  Nirenberg, M.W. and Jakoby, W.B. Enzymatic utilization of γ-hydroxybutyric acid. J. Biol. Chem. 235 (1960) 954–960. [PMID: 14427301]
[EC 1.2.1.16 created 1965]
 
 
EC 1.2.1.18     
Accepted name: malonate-semialdehyde dehydrogenase (acetylating)
Reaction: 3-oxopropanoate + CoA + NAD(P)+ = acetyl-CoA + CO2 + NAD(P)H
Other name(s): malonic semialdehyde oxidative decarboxylase
Systematic name: 3-oxopropanoate:NAD(P)+ oxidoreductase (decarboxylating, CoA-acetylating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-97-1
References:
1.  Hayaishi, O., Nishizuka, Y., Tatibana, M., Takeshita, M. and Kuno, S. Enzymatic studies on the metabolism of β-alanine. J. Biol. Chem. 236 (1961) 781–790. [PMID: 13712439]
2.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
3.  Yamada, E.W. and Jakoby, W.B. Aldehyde oxidation. V. Direct conversion of malonic semialdehyde to acetyl-coenzyme A. J. Biol. Chem. 235 (1960) 589–594. [PMID: 13846369]
[EC 1.2.1.18 created 1965]
 
 
EC 1.2.1.19     
Accepted name: aminobutyraldehyde dehydrogenase
Reaction: 4-aminobutanal + NAD+ + H2O = 4-aminobutanoate + NADH + 2 H+
For diagram of arginine catabolism, click here
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Other name(s): γ-guanidinobutyraldehyde dehydrogenase (ambiguous); ABAL dehydrogenase; 4-aminobutyraldehyde dehydrogenase; 4-aminobutanal dehydrogenase; γ-aminobutyraldehyde dehydroganase; 1-pyrroline dehydrogenase; ABALDH; YdcW
Systematic name: 4-aminobutanal:NAD+ 1-oxidoreductase
Comments: The enzyme from some species exhibits broad substrate specificity and has a marked preference for straight-chain aldehydes (up to 7 carbon atoms) as substrates [9]. The plant enzyme also acts on 4-guanidinobutanal (cf. EC 1.2.1.54 γ-guanidinobutyraldehyde dehydrogenase). As 1-pyrroline and 4-aminobutanal are in equilibrium and can be interconverted spontaneously, 1-pyrroline may act as the starting substrate. The enzyme forms part of the arginine-catabolism pathway [8] and belongs in the aldehyde dehydrogenase superfamily [9].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-98-2
References:
1.  Callewaert, D.M., Rosemblatt, M.S. and Tchen, T.T. Purification and properties of 4-aminobutanal dehydrogenase from a Pseudomonas species. J. Biol. Chem. 249 (1974) 1737–1741. [PMID: 4817964]
2.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
3.  Jakoby, W.B. and Fredericks, J. Pyrrolidine and putrescine metabolism: γ-aminobutyraldehyde dehydrogenase. J. Biol. Chem. 234 (1959) 2145–2150. [PMID: 13673029]
4.  Matsuda, H. and Suzuki, Y. γ-Guanidinobutyraldehyde dehydrogenase of Vicia faba leaves. Plant Physiol. 76 (1984) 654–657. [PMID: 16663901]
5.  Yorifuji, T., Koike, K., Sakurai, T. and Yokoyama, K. 4-Aminobutyraldehyde and 4-guanidinobutyraldehyde dehydrogenases for arginine degradation in Pseudomonas putida. Agric. Biol. Chem. 50 (1986) 2009–2016.
6.  Prieto-Santos, M.I., Martin-Checa, J., Balaña-Fouce, R. and Garrido-Pertierra, A. A pathway for putrescine catabolism in Escherichia coli. Biochim. Biophys. Acta 880 (1986) 242–244. [DOI] [PMID: 3510672]
7.  Prieto, M.I., Martin, J., Balaña-Fouce, R. and Garrido-Pertierra, A. Properties of γ-aminobutyraldehyde dehydrogenase from Escherichia coli. Biochimie 69 (1987) 1161–1168. [DOI] [PMID: 3129020]
8.  Samsonova, N.N., Smirnov, S.V., Novikova, A.E. and Ptitsyn, L.R. Identification of Escherichia coli K12 YdcW protein as a γ-aminobutyraldehyde dehydrogenase. FEBS Lett. 579 (2005) 4107–4112. [DOI] [PMID: 16023116]
9.  Gruez, A., Roig-Zamboni, V., Grisel, S., Salomoni, A., Valencia, C., Campanacci, V., Tegoni, M. and Cambillau, C. Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. J. Mol. Biol. 343 (2004) 29–41. [DOI] [PMID: 15381418]
[EC 1.2.1.19 created 1965, modified 1989 (EC 1.5.1.35 created 2006, incorporated 2007)]
 
 
EC 1.2.1.20     
Accepted name: glutarate-semialdehyde dehydrogenase
Reaction: 5-oxopentanoate + NADP+ + H2O = glutarate + NADPH + H+
Glossary: 5-oxopentanoate = glutarate semialdehyde
Other name(s): glutarate semialdehyde dehydrogenase; davD (gene name)
Systematic name: glutarate-semialdehyde:NADP+ oxidoreductase
Comments: The enzyme, characterized from multiple Pseudomonas strains, participates in L-lysine degradation. Unlike earlier claims, it prefers NADP+ to NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-99-3
References:
1.  Ichihara, A. and Ichihara, E.A. Metabolism of L-lysine by bacterial enzymes. V. Glutaric semialdehyde dehydrogenase. J. Biochem. (Tokyo) 49 (1961) 154–157. [PMID: 13717359]
2.  Chang, Y. F. and Adams, E. Glutaric semialdehyde dehydrogenase (Pseudomonas putida). Methods Enzymol. 17B (1971) 166–171. [DOI]
3.  Fothergill, J.C. and Guest, J.R. Catabolism of L-lysine by Pseudomonas aeruginosa. J. Gen. Microbiol. 99 (1977) 139–155. [DOI] [PMID: 405455]
4.  Chang, Y.F. and Adams, E. Glutarate semialdehyde dehydrogenase of Pseudomonas. Purification, properties, and relation to L-lysine catabolism. J. Biol. Chem. 252 (1977) 7979–7986. [PMID: 914857]
5.  Yamanishi, Y., Mihara, H., Osaki, M., Muramatsu, H., Esaki, N., Sato, T., Hizukuri, Y., Goto, S. and Kanehisa, M. Prediction of missing enzyme genes in a bacterial metabolic network. Reconstruction of the lysine-degradation pathway of Pseudomonas aeruginosa. FEBS J. 274 (2007) 2262–2273. [DOI] [PMID: 17388807]
[EC 1.2.1.20 created 1965, modified 2021]
 
 
EC 1.2.1.21     
Accepted name: glycolaldehyde dehydrogenase
Reaction: glycolaldehyde + NAD+ + H2O = glycolate + NADH + 2 H+
Other name(s): glycol aldehyde dehydrogenase
Systematic name: glycolaldehyde:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-89-8
References:
1.  Davies, D.D. The purification and properties of glycolaldehyde dehydrogenase. J. Exp. Bot. 11 (1960) 289–295.
[EC 1.2.1.21 created 1972]
 
 
EC 1.2.1.22     
Accepted name: lactaldehyde dehydrogenase
Reaction: (S)-lactaldehyde + NAD+ + H2O = (S)-lactate + NADH + 2 H+
Other name(s): L-lactaldehyde:NAD oxidoreductase; nicotinamide adenine dinucleotide (NAD)-linked dehydrogenase
Systematic name: (S)-lactaldehyde:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-90-1
References:
1.  Rembold, H. and Simmersbach, F. Catabolism of pteridine cofactors. II. A specific pterin deaminase in rat liver. Biochim. Biophys. Acta 184 (1969) 589–596. [DOI] [PMID: 5821022]
2.  Sridhara, S. and Wu, T.T. Purification and properties of lactaldehyde dehydrogenase from Escherichia coli. J. Biol. Chem. 244 (1969) 5233–5238. [PMID: 4310089]
[EC 1.2.1.22 created 1972]
 
 
EC 1.2.1.23     
Accepted name: 2-oxoaldehyde dehydrogenase (NAD+)
Reaction: a 2-oxoaldehyde + NAD+ + H2O = a 2-oxo carboxylate + NADH + H+
Other name(s): α-ketoaldehyde dehydrogenase; methylglyoxal dehydrogenase; NAD+-linked α-ketoaldehyde dehydrogenase; 2-ketoaldehyde dehydrogenase; NAD+-dependent α-ketoaldehyde dehydrogenase
Systematic name: 2-oxoaldehyde:NAD+ 2-oxidoreductase
Comments: Not identical with EC 1.2.1.49 2-oxoaldehyde dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-91-2
References:
1.  Monder, C. α-Keto aldehyde dehydrogenase, an enzyme that catalyzes the enzymic oxidation of methylglyoxal to pyruvate. J. Biol. Chem. 242 (1967) 4603–4609. [PMID: 4383524]
2.  Ray, M. and Ray, S. On the interaction of nucleotides and glycolytic intermediates with NAD-linked α-ketoaldehyde dehydrogenase. J. Biol. Chem. 257 (1982) 10571–10574. [PMID: 7107626]
3.  Ray, S. and Ray, M. Purification and characterization of NAD and NADP-linked α-ketoaldehyde dehydrogenases involved in catalyzing the oxidation of methylglyoxal to pyruvate. J. Biol. Chem. 257 (1982) 10566–10570. [PMID: 7107625]
[EC 1.2.1.23 created 1972, modified 1986]
 
 
EC 1.2.1.24     
Accepted name: succinate-semialdehyde dehydrogenase (NAD+)
Reaction: succinate semialdehyde + NAD+ + H2O = succinate + NADH + 2 H+
For diagram of arginine catabolism, click here and for diagram of the citric acid cycle, click here
Other name(s): succinate semialdehyde dehydrogenase (NAD+); succinic semialdehyde dehydrogenase (NAD+); succinyl semialdehyde dehydrogenase (NAD+); succinate semialdehyde:NAD+ oxidoreductase
Systematic name: succinate-semialdehyde:NAD+ oxidoreductase
Comments: This enzyme participates in the degradation of glutamate and 4-aminobutyrate. It is similar to EC 1.2.1.79 [succinate-semialdehyde dehydrogenase (NADP+)], and EC 1.2.1.16 [succinate-semialdehyde dehydrogenase (NAD(P)+)], but is specific for NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-95-9
References:
1.  Albers, R.W. and Koval, G.J. Succinic semialdehyde dehydrogenase : purification and properties of the enzyme from monkey brain. Biochim. Biophys. Acta 52 (1961) 29–35. [DOI] [PMID: 13860092]
2.  Ryzlak, M.T. and Pietruszko, R. Human brain "high Km" aldehyde dehydrogenase: purification, characterization, and identification as NAD+ -dependent succinic semialdehyde dehydrogenase. Arch. Biochem. Biophys. 266 (1988) 386–396. [DOI] [PMID: 3190233]
3.  Busch, K.B. and Fromm, H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol. 121 (1999) 589–597. [PMID: 10517851]
[EC 1.2.1.24 created 1972, modified 2010]
 
 
EC 1.2.1.26     
Accepted name: 2,5-dioxovalerate dehydrogenase
Reaction: 2,5-dioxopentanoate + NADP+ + H2O = 2-oxoglutarate + NADPH + 2 H+
Other name(s): 2-oxoglutarate semialdehyde dehydrogenase; α-ketoglutaric semialdehyde dehydrogenase
Systematic name: 2,5-dioxopentanoate:NADP+ 5-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-92-3
References:
1.  Adams, E. and Rosso, G. α-Ketoglutaric semialdehyde dehydrogenase of Pseudomonas. Properties of the purified enzyme induced by hydroxyproline and of the glucarate-induced and constitutive enzymes. J. Biol. Chem. 242 (1967) 1803–1814. [PMID: 6024771]
[EC 1.2.1.26 created 1972]
 
 
EC 1.2.1.27     
Accepted name: methylmalonate-semialdehyde dehydrogenase (CoA-acylating)
Reaction: 2-methyl-3-oxopropanoate + CoA + H2O + NAD+ = propanoyl-CoA + HCO3- + NADH
For diagram of inositol catabolism, click here
Glossary: methylmalonate semialdehyde = 2-methyl-3-oxopropanoate
Other name(s): MSDH; MMSA dehydrogenase; iolA (gene name); methylmalonate-semialdehyde dehydrogenase (acylating)
Systematic name: 2-methyl-3-oxopropanoate:NAD+ 3-oxidoreductase (CoA-propanoylating)
Comments: Also converts 3-oxopropanoate into acetyl-CoA [3]. The reaction occurs in two steps with the decarboxylation process preceding CoA-binding [3]. Bicarbonate rather than CO2 is released as a final product [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-49-5
References:
1.  Sokatch, J.R., Sanders, L.E. and Marshall, V.P. Oxidation of methylmalonate semialdehyde to propionyl coenzyme A in Pseudomonas aeruginosa grown on valine. J. Biol. Chem. 243 (1968) 2500–2506. [PMID: 4297649]
2.  Dubourg, H., Stines-Chaumeil, C., Didierjean, C., Talfournier, F., Rahuel-Clermont, S., Branlant, G. and Aubry, A. Expression, purification, crystallization and preliminary X-ray diffraction data of methylmalonate-semialdehyde dehydrogenase from Bacillus subtilis. Acta Crystallogr. D Biol. Crystallogr. 60 (2004) 1435–1437. [DOI] [PMID: 15272169]
3.  Stines-Chaumeil, C., Talfournier, F. and Branlant, G. Mechanistic characterization of the MSDH (methylmalonate semialdehyde dehydrogenase) from Bacillus subtilis. Biochem. J. 395 (2006) 107–115. [DOI] [PMID: 16332250]
[EC 1.2.1.27 created 1972, modified 2014]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald