The Enzyme Database

Displaying entries 51-100 of 241.

<< Previous | Next >>    printer_iconPrintable version

EC 1.14.11.10     
Accepted name: pyrimidine-deoxynucleoside 1′-dioxygenase
Reaction: 2′-deoxyuridine + 2-oxoglutarate + O2 = uracil + 2-deoxyribonolactone + succinate + CO2
Other name(s): deoxyuridine-uridine 1′-dioxygenase
Systematic name: 2′-deoxyuridine,2-oxoglutarate:oxygen oxidoreductase (1′-hydroxylating)
Comments: Requires iron(II) and ascorbate. cf. EC 1.14.11.3, pyrimidine-deoxynucleoside 2′-dioxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 98865-52-2
References:
1.  Stubbe, J. Identification of two α-ketoglutarate-dependent dioxygenases in extracts of Rhodotorula glutinis catalyzing deoxyuridine hydroxylation. J. Biol. Chem. 260 (1985) 9972–9975. [PMID: 4040518]
[EC 1.14.11.10 created 1989, modified 2002]
 
 
EC 1.14.11.11     
Accepted name: hyoscyamine (6S)-dioxygenase
Reaction: L-hyoscyamine + 2-oxoglutarate + O2 = (6S)-hydroxyhyoscyamine + succinate + CO2
For diagram of tropane alkaloid biosynthesis, click here
Other name(s): hyoscyamine 6β-hydroxylase; hyoscyamine 6β-dioxygenase; hyoscyamine 6-hydroxylase
Systematic name: L-hyoscyamine,2-oxoglutarate:oxygen oxidoreductase [(6S)-hydroxylating]
Comments: Requires Fe2+ and ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 103865-33-4
References:
1.  Hashimoto, T. and Yamada, Y. Hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol. 81 (1986) 619–625. [PMID: 16664866]
[EC 1.14.11.11 created 1989]
 
 
EC 1.14.11.12     
Accepted name: gibberellin-44 dioxygenase
Reaction: gibberellin 44 + 2-oxoglutarate + O2 = gibberellin 19 + succinate + CO2
For diagram of diterpenoid biosynthesis, click here
Other name(s): oxygenase, gibberellin A44 oxidase; (gibberellin-44), 2-oxoglutarate:oxygen oxidoreductase
Systematic name: (gibberellin-44),2-oxoglutarate:oxygen oxidoreductase
Comments: Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 112198-85-3
References:
1.  Gilmour, S.J., Bleecker, A.B. and Zeevaart, J.A.D. Partial-purification of gibberellin oxidases from spinach leaves. Plant Physiol. 85 (1987) 87–90. [PMID: 16665690]
[EC 1.14.11.12 created 1990]
 
 
EC 1.14.11.13     
Accepted name: gibberellin 2β-dioxygenase
Reaction: gibberellin 1 + 2-oxoglutarate + O2 = 2β-hydroxygibberellin 1 + succinate + CO2
For diagram of diterpenoid biosynthesis, click here
Other name(s): gibberellin 2β-hydroxylase
Systematic name: (gibberellin-1),2-oxoglutarate:oxygen oxidoreductase (2β-hydroxylating)
Comments: Also acts on a number of other gibberellins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 85713-20-8
References:
1.  Smith, V.A. and MacMillan, J. The partial-purification and characterization of gibberellin 2β-hydroxylases from seeds of Pisum sativum. Planta 167 (1986) 9–18. [PMID: 24241725]
[EC 1.14.11.13 created 1990]
 
 
EC 1.14.11.14      
Transferred entry: 6β-hydroxyhyoscyamine epoxidase. Now EC 1.14.20.13, 6β-hydroxyhyoscyamine epoxidase
[EC 1.14.11.14 created 1992, deleted 2018]
 
 
EC 1.14.11.15     
Accepted name: gibberellin 3β-dioxygenase
Reaction: gibberellin 20 + 2-oxoglutarate + O2 = gibberellin 1 + succinate + CO2
For diagram of diterpenoid biosynthesis, click here
Other name(s): gibberellin 3β-hydroxylase; (gibberrellin-20),2-oxoglutarate: oxygen oxidoreductase (3β-hydroxylating)
Systematic name: (gibberellin-20),2-oxoglutarate:oxygen oxidoreductase (3β-hydroxylating)
Comments: Requires Fe2+ and ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 120860-89-1
References:
1.  Kwak, S.-S., Kamiya, Y., Sakurai, A., Takahishi, N. and Graebe, J.E. Partial-purification and characterization of gibberellin 3β-hydroxylase from immature seeds of Phaseolus vulgaris L. Plant Cell Physiol. 29 (1988) 935–943.
[EC 1.14.11.15 created 1992]
 
 
EC 1.14.11.16     
Accepted name: peptide-aspartate β-dioxygenase
Reaction: peptide-L-aspartate + 2-oxoglutarate + O2 = peptide-3-hydroxy-L-aspartate + succinate + CO2
Other name(s): aspartate β-hydroxylase; aspartylpeptide β-dioxygenase
Systematic name: peptide-L-aspartate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+. Some vitamin K-dependent coagulation factors, as well as synthetic peptides based on the structure of the first epidermal growth factor domain of human coagulation factor IX or X, can act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 122544-66-5
References:
1.  Gronke, R.S., Welsch, D.J., VanDusen, W.J., Garsky, V.M., Sardana, M.K., Stern, A.M. and Friedman, P.A. Partial purification and characterization of bovine liver aspartyl β-hydroxylase. J. Biol. Chem. 265 (1990) 8558–8565. [PMID: 2187868]
[EC 1.14.11.16 created 1992]
 
 
EC 1.14.11.17     
Accepted name: taurine dioxygenase
Reaction: taurine + 2-oxoglutarate + O2 = sulfite + aminoacetaldehyde + succinate + CO2
Other name(s): 2-aminoethanesulfonate dioxygenase; α-ketoglutarate-dependent taurine dioxygenase
Systematic name: taurine, 2-oxoglutarate:oxygen oxidoreductase (sulfite-forming)
Comments: Requires FeII. The enzyme from Escherichia coli also acts on pentanesulfonate, 3-(N-morpholino)propanesulfonate and 2-(1,3-dioxoisoindolin-2-yl)ethanesulfonate, but at lower rates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 197809-75-9
References:
1.  Eichhorn, E., Van Der Poeg, J.R., Kertesz, M.A. and Leisinger, T. Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J. Biol. Chem. 272 (1997) 23031–23036. [DOI] [PMID: 9287300]
[EC 1.14.11.17 created 2000]
 
 
EC 1.14.11.18     
Accepted name: phytanoyl-CoA dioxygenase
Reaction: phytanoyl-CoA + 2-oxoglutarate + O2 = 2-hydroxyphytanoyl-CoA + succinate + CO2
Glossary: phytanate = 3,7,11,15-tetramethylhexadecanoate
Other name(s): phytanoyl-CoA hydroxylase
Systematic name: phytanoyl-CoA, 2-oxoglutarate:oxygen oxidoreductase (2-hydroxylating)
Comments: Part of the peroxisomal phytanic acid α-oxidation pathway. Requires Fe2+ and ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 185402-46-4
References:
1.  Jansen, G.A., Mihalik, S.J., Watkins, P.A., Jakobs, C., Moser, H.W. and Wanders, R.J.A. Characterization of phytanoyl-CoA hydroxylase in human liver and activity measurements in patients with peroxisomal disorders. Clin. Chim. Acta 271 (1998) 203–211. [DOI] [PMID: 9565335]
2.  Jansen, G.A., Mihalik, S.J., Watkins, P.A., Moser, H.W., Jakobs, C., Denis, S. and Wanders, R.J.A. Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes, and deficient in Zellweger syndrome: direct, unequivocal evidence for the new, revised pathway of phytanic acid α-oxidation in humans. Biochem. Biophys. Res. Commun. 229 (1996) 205–210. [DOI] [PMID: 8954107]
3.  Jansen, G.A., Ofman, R., Ferdinandusse, S., Ijlst, L., Muijsers, A.O., Skjeldal, O.H., Stokke, O., Jakobs, C., Besley, G.T.N., Wraith, J.E. and Wanders, R.J.A. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat. Genet. 17 (1997) 190–193. [DOI] [PMID: 9326940]
4.  Mihalik, S.J., Rainville, A.M. and Watkins, P.A. Phytanic acid α-oxidation in rat liver peroxisomes. Production of α-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur. J. Biochem. 232 (1995) 545–551. [DOI] [PMID: 7556205]
5.  Mihalik, S.J., Morrell, J.C., Kim, D., Sacksteder, K.A., Watkins, P.A. and Gould, S.J. Identification of PAHX, a Refsum disease gene. Nat. Genet. 17 (1997) 185–189. [DOI] [PMID: 9326939]
[EC 1.14.11.18 created 2000]
 
 
EC 1.14.11.19      
Transferred entry: anthocyanidin synthase. Now EC 1.14.20.4, anthocyanidin synthase
[EC 1.14.11.19 created 2001, modified 2017, deleted 2018]
 
 
EC 1.14.11.20     
Accepted name: deacetoxyvindoline 4-hydroxylase
Reaction: deacetoxyvindoline + 2-oxoglutarate + O2 = deacetylvindoline + succinate + CO2
For diagram of vindoline biosynthesis, click here
Other name(s): desacetoxyvindoline 4-hydroxylase; desacetyoxyvindoline-17-hydroxylase; D17H; desacetoxyvindoline,2-oxoglutarate:oxygen oxidoreductase (4β-hydroxylating)
Systematic name: deacetoxyvindoline,2-oxoglutarate:oxygen oxidoreductase (4β-hydroxylating)
Comments: Requires Fe2+ and ascorbate. Also acts on 3-hydroxy-16-methoxy-2,3-dihydrotabersonine and to a lesser extent on 16-methoxy-2,3-dihydrotabersonine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 132084-83-4
References:
1.  De Carolis, E., Chan, F., Balsevich, J. and De Luca, V. Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the 2nd-to-last step in vindoline biosynthesis. Plant Physiol. 94 (1990) 1323–1329. [PMID: 16667836]
2.  De Carolis, E. and De Luca, V. Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus. J. Biol. Chem. 268 (1993) 5504–5511. [PMID: 8449913]
3.  Vazquez-Flota, F.A. and De Luca, V. Developmental and light regulation of desacetoxyvindoline 4-hydroxylase in Catharanthus roseus (L.) G. Don. Evidence of a multilevel regulatory mechanism. Plant Physiol. 117 (1998) 1351–1361. [PMID: 9701591]
[EC 1.14.11.20 created 2002, modified 2005]
 
 
EC 1.14.11.21     
Accepted name: clavaminate synthase
Reaction: (1) deoxyamidinoproclavaminate + 2-oxoglutarate + O2 = amidinoproclavaminate + succinate + CO2
(2) proclavaminate + 2-oxoglutarate + O2 = dihydroclavaminate + succinate + CO2 + H2O
(3) dihydroclavaminate + 2-oxoglutarate + O2 = clavaminate + succinate + CO2 + H2O
For diagram of clavulanate biosynthesis, click here
Other name(s): clavaminate synthase 2; clavaminic acid synthase
Systematic name: deoxyamidinoproclavaminate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Contains nonheme iron. Catalyses three separate oxidative reactions in the pathway for the biosythesis of the β-lactamase inhibitor clavulanate in Streptomyces clavuligerus. The first step (hydroxylation) is separated from the latter two (oxidative cyclization and desaturation) by the action of EC 3.5.3.22, proclavaminate amidinohydrolase. The three reactions are all catalysed at the same nonheme iron site.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 122799-56-8
References:
1.  Salowe, S.P., Krol, W.J., Iwatareuyl, D. and Townsend, C.A. Elucidation of the order of oxidations and identification of an intermediate in the multistep clavaminate synthase reaction. Biochemistry 30 (1991) 2281–2292. [PMID: 1998687]
2.  Zhou, J., Gunsior, M., Bachmann, B.O., Townsend, C.A. and Solomon, E.I. Substrate binding to the α-ketoglutarate-dependent non-heme iron enzyme clavaminate synthase 2: Coupling mechanism of oxidative decarboxylation and hydroxylation. J. Am. Chem. Soc. 120 (1998) 13539–13540.
3.  Zhang, Z.H., Ren, J.S., Stammers, D.K., Baldwin, J.E., Harlos, K. and Schofield, C.J. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat. Struct. Biol. 7 (2000) 127–133. [DOI] [PMID: 10655615]
4.  Zhou, J., Kelly, W.L., Bachmann, B.O., Gunsior, M., Townsend, C.A. and Solomon, E.I. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional α-KG-dependent non-heme iron enzyme: Correlation with mechanisms and reactivities. J. Am. Chem. Soc. 123 (2001) 7388–7398. [DOI] [PMID: 11472170]
5.  Townsend, C.A. New reactions in clavulanic acid biosynthesis. Curr. Opin. Chem. Biol. 6 (2002) 583–589. [DOI] [PMID: 12413541]
[EC 1.14.11.21 created 2003]
 
 
EC 1.14.11.22      
Transferred entry: flavone synthase. Now EC 1.14.20.5, flavone synthase
[EC 1.14.11.22 created 2004, deleted 2018]
 
 
EC 1.14.11.23      
Transferred entry: flavonol synthase. Now EC 1.14.20.6, flavonol synthase
[EC 1.14.11.23 created 2004, deleted 2018]
 
 
EC 1.14.11.24     
Accepted name: 2′-deoxymugineic-acid 2′-dioxygenase
Reaction: 2′-deoxymugineic acid + 2-oxoglutarate + O2 = mugineic acid + succinate + CO2
For diagram of nicotianamine biosynthesis, click here
Other name(s): IDS3
Systematic name: 2′-deoxymugineic acid,2-oxoglutarate:oxygen oxidoreductase (2-hydroxylating)
Comments: Requires iron(II). It is also likely that this enzyme can catalyse the hydroxylation of 3-epihydroxy-2′-deoxymugineic acid to form 3-epihydroxymugineic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 133758-62-0
References:
1.  Nakanishi, H., Yamaguchi, H., Sasakuma, T., Nishizawa, N.K. and Mori, S. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol. Biol. 44 (2000) 199–207. [PMID: 11117263]
2.  Kobayashi, T., Nakanishi, H., Takahashi, M., Kawasaki, S., Nishizawa, N.K. and Mori, S. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212 (2001) 864–871. [PMID: 11346963]
[EC 1.14.11.24 created 2005]
 
 
EC 1.14.11.25     
Accepted name: mugineic-acid 3-dioxygenase
Reaction: (1) mugineic acid + 2-oxoglutarate + O2 = 3-epihydroxymugineic acid + succinate + CO2
(2) 2′-deoxymugineic acid + 2-oxoglutarate + O2 = 3-epihydroxy-2′-deoxymugineic acid + succinate + CO2
For diagram of nicotianamine biosynthesis, click here
Other name(s): IDS2
Systematic name: mugineic acid,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires iron(II).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nakanishi, H., Yamaguchi, H., Sasakuma, T., Nishizawa, N.K. and Mori, S. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol. Biol. 44 (2000) 199–207. [PMID: 11117263]
2.  Okumura, N., Nishizawa, N.K., Umehara, Y., Ohata, T., Nakanishi, H., Yamaguchi, T., Chino, M. and Mori. S. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol. Biol. 25 (1994) 705–719. [PMID: 8061321]
[EC 1.14.11.25 created 2005]
 
 
EC 1.14.11.26     
Accepted name: deacetoxycephalosporin-C hydroxylase
Reaction: deacetoxycephalosporin C + 2-oxoglutarate + O2 = deacetylcephalosporin C + succinate + CO2
For diagram of cephalosporin biosynthesis, click here
Other name(s): deacetylcephalosporin C synthase; 3′-methylcephem hydroxylase; DACS; DAOC hydroxylase; deacetoxycephalosporin C hydroxylase
Systematic name: deacetoxycephalosporin-C,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires iron(II). The enzyme can also use 3-exomethylenecephalosporin C as a substrate to form deacetoxycephalosporin C, although more slowly [2]. In Acremonium chrysogenum, the enzyme forms part of a bifunctional protein along with EC 1.14.20.1, deactoxycephalosporin-C synthase. It is a separate enzyme in Streptomyces clavuligerus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 69772-89-0
References:
1.  Dotzlaf, J.E. and Yeh, W.K. Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J. Bacteriol. 169 (1987) 1611–1618. [DOI] [PMID: 3558321]
2.  Baker, B.J., Dotzlaf, J.E. and Yeh, W.K. Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. J. Biol. Chem. 266 (1991) 5087–5093. [PMID: 2002049]
3.  Coque, J.J., Enguita, F.J., Cardoza, R.E., Martin, J.F. and Liras, P. Characterization of the cefF gene of Nocardia lactamdurans encoding a 3′-methylcephem hydroxylase different from the 7-cephem hydroxylase. Appl. Microbiol. Biotechnol. 44 (1996) 605–609. [PMID: 8703431]
4.  Ghag, S.K., Brems, D.N., Hassell, T.C. and Yeh, W.K. Refolding and purification of Cephalosporium acremonium deacetoxycephalosporin C synthetase/hydroxylase from granules of recombinant Escherichia coli. Biotechnol. Appl. Biochem. 24 (1996) 109–119. [PMID: 8865604]
5.  Lloyd, M.D., Lipscomb, S.J., Hewitson, K.S., Hensgens, C.M., Baldwin, J.E. and Schofield, C.J. Controlling the substrate selectivity of deacetoxycephalosporin/deacetylcephalosporin C synthase. J. Biol. Chem. 279 (2004) 15420–15426. [DOI] [PMID: 14734549]
6.  Wu, X.B., Fan, K.Q., Wang, Q.H. and Yang, K.Q. C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. FEMS Microbiol. Lett. 246 (2005) 103–110. [DOI] [PMID: 15869968]
7.  Martín, J.F., Gutiérrez, S., Fernández, F.J., Velasco, J., Fierro, F., Marcos, A.T. and Kosalkova, K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek 65 (1994) 227–243. [PMID: 7847890]
[EC 1.14.11.26 created 2005]
 
 
EC 1.14.11.27     
Accepted name: [histone H3]-dimethyl-L-lysine36 demethylase
Reaction: a [histone H3]-N6,N6-dimethyl-L-lysine36 + 2 2-oxoglutarate + 2 O2 = a [histone H3]-L-lysine36 + 2 succinate + 2 formaldehyde + 2 CO2 (overall reaction)
(1a) a [histone H3]-N6,N6-dimethyl-L-lysine36 + 2-oxoglutarate + O2 = a [histone H3]-N6-methyl-L-lysine36 + succinate + formaldehyde + CO2
(1b) a [histone H3]-N6-methyl-L-lysine36 + 2-oxoglutarate + O2 = a [histone H3]-L-lysine36 + succinate + formaldehyde + CO2
Other name(s): KDM2A (gene name); KDM2B (gene name); JHDM1A (gene name); JHDM1B (gene name); JmjC domain-containing histone demethylase 1A; H3-K36-specific demethylase (ambiguous); histone-lysine (H3-K36) demethylase (ambiguous); histone demethylase (ambiguous); protein-6-N,6-N-dimethyl-L-lysine,2-oxoglutarate:oxygen oxidoreductase; protein-N6,N6-dimethyl-L-lysine,2-oxoglutarate:oxygen oxidoreductase; [histone-H3]-lysine-36 demethylase
Systematic name: [histone H3]-N6,N6-dimethyl-L-lysine36,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires iron(II). Of the seven potential methylation sites in histones H3 (K4, K9, K27, K36, K79) and H4 (K20, R3) from HeLa cells, the enzyme is specific for Lys36. Lysine residues exist in three methylation states (mono-, di- and trimethylated). The enzyme preferentially demethylates the dimethyl form of Lys36 (K36me2), which is its natural substrate, to form the monomethylated and unmethylated forms of Lys36. It can also demethylate monomethylated (but not the trimethylated) Lys36. cf. EC 1.14.11.69, [histone H3]-trimethyl-L-lysine36 demethylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P. and Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439 (2006) 811–816. [DOI] [PMID: 16362057]
[EC 1.14.11.27 created 2006, modified 2019]
 
 
EC 1.14.11.28     
Accepted name: proline 3-hydroxylase
Reaction: L-proline + 2-oxoglutarate + O2 = cis-3-hydroxy-L-proline + succinate + CO2
For diagram of reaction, click here
Other name(s): P-3-H
Systematic name: L-proline,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires iron(II) for activity. Unlike the proline hydroxylases involved in collagen biosynthesis [EC 1.14.11.2 (procollagen-proline dioxygenase) and EC 1.14.11.7 (procollagen-proline 3-dioxygenase)], this enzyme does not require ascorbate for activity although it does increase the activity of the enzyme [2]. The enzyme is specific for L-proline as D-proline, trans-4-hydroxy-L-proline, cis-4-hydroxy-L-proline and 3,4-dehydro-DL-proline are not substrates [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 162995-24-6
References:
1.  Mori, H., Shibasaki, T., Uozaki, Y., Ochiai, K. and Ozaki, A. Detection of novel proline 3-hydroxylase activities in Streptomyces and Bacillus spp. by regio- and stereospecific hydroxylation of L-proline. Appl. Environ. Microbiol. 62 (1996) 1903–1907. [PMID: 16535329]
2.  Mori, H., Shibasaki, T., Yano, K. and Ozaki, A. Purification and cloning of a proline 3-hydroxylase, a novel enzyme which hydroxylates free L-proline to cis-3-hydroxy-L-proline. J. Bacteriol. 179 (1997) 5677–5683. [DOI] [PMID: 9294421]
3.  Clifton, I.J., Hsueh, L.C., Baldwin, J.E., Harlos, K. and Schofield, C.J. Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur. J. Biochem. 268 (2001) 6625–6636. [DOI] [PMID: 11737217]
[EC 1.14.11.28 created 2006]
 
 
EC 1.14.11.29     
Accepted name: hypoxia-inducible factor-proline dioxygenase
Reaction: hypoxia-inducible factor-L-proline + 2-oxoglutarate + O2 = hypoxia-inducible factor-trans-4-hydroxy-L-proline + succinate + CO2
Other name(s): HIF hydroxylase
Systematic name: hypoxia-inducible factor-L-proline, 2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: Contains iron, and requires ascorbate. Specifically hydroxylates a proline residue in HIF-α, the α subunit of the transcriptional regulator HIF (hypoxia-inducible factor), which targets HIF for proteasomal destruction. The requirement of oxygen for the hydroxylation reaction enables animals to respond to hypoxia.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim Av, Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292 (2001) 468–472. [DOI] [PMID: 11292861]
2.  Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin , W.G., Jr. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292 (2001) 464–468. [DOI] [PMID: 11292862]
3.  Bruick, R.K. and McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294 (2001) 1337–1340. [DOI] [PMID: 11598268]
4.  Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., Tian, Y.M., Masson, N., Hamilton, D.L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P.H., Pugh, C.W., Schofield, C.J. and Ratcliffe, P.J. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107 (2001) 43–54. [DOI] [PMID: 11595184]
5.  Oehme, F., Ellinghaus, P., Kolkhof, P., Smith, T.J., Ramakrishnan, S., Hutter, J., Schramm, M. and Flamme, I. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem. Biophys. Res. Commun. 296 (2002) 343–349. [DOI] [PMID: 12163023]
6.  McNeill, L.A., Hewitson, K.S., Gleadle, J.M., Horsfall, L.E., Oldham, N.J., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J. and Schofield, C.J. The use of dioxygen by HIF prolyl hydroxylase (PHD1). Bioorg. Med. Chem. Lett. 12 (2002) 1547–1550. [DOI] [PMID: 12039559]
[EC 1.14.11.29 created 2010]
 
 
EC 1.14.11.30     
Accepted name: hypoxia-inducible factor-asparagine dioxygenase
Reaction: hypoxia-inducible factor-L-asparagine + 2-oxoglutarate + O2 = hypoxia-inducible factor-(3S)-3-hydroxy-L-asparagine + succinate + CO2
Other name(s): HIF hydroxylase
Systematic name: hypoxia-inducible factor-L-asparagine, 2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: Contains iron, and requires ascorbate. Catalyses hydroxylation of an asparagine in the C-terminal transcriptional activation domain of HIF-α, the α subunit of the transcriptional regulator HIF (hypoxia-inducible factor), which reduces its interaction with the transcriptional coactivator protein p300. The requirement of oxygen for the hydroxylation reaction enables animals to respond to hypoxia.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mahon, P.C., Hirota, K. and Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15 (2001) 2675–2686. [DOI] [PMID: 11641274]
2.  Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Oldham, N.J., Bhattacharya, S., Gleadle, J.M., Ratcliffe, P.J., Pugh, C.W. and Schofield, C.J. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277 (2002) 26351–26355. [DOI] [PMID: 12042299]
3.  Dann, C.E., 3rd, Bruick, R.K. and Deisenhofer, J. Structure of factor-inhibiting hypoxia-inducible factor 1: An asparaginyl hydroxylase involved in the hypoxic response pathway. Proc. Natl. Acad. Sci. USA 99 (2002) 15351–15356. [DOI] [PMID: 12432100]
4.  Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. and Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295 (2002) 858–861. [DOI] [PMID: 11823643]
5.  Koivunen, P., Hirsila, M., Gunzler, V., Kivirikko, K.I. and Myllyharju, J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279 (2004) 9899–9904. [DOI] [PMID: 14701857]
6.  Elkins, J.M., Hewitson, K.S., McNeill, L.A., Seibel, J.F., Schlemminger, I., Pugh, C.W., Ratcliffe, P.J. and Schofield, C.J. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 α. J. Biol. Chem. 278 (2003) 1802–1806. [DOI] [PMID: 12446723]
[EC 1.14.11.30 created 2010]
 
 
EC 1.14.11.31     
Accepted name: thebaine 6-O-demethylase
Reaction: thebaine + 2-oxoglutarate + O2 = neopinone + formaldehyde + succinate + CO2
Other name(s): T6ODM
Systematic name: thebaine,2-oxoglutarate:oxygen oxidoreductase (6-O-demethylating)
Comments: Requires Fe2+. Catalyses a step in morphine biosynthesis. The product neopinione spontaneously rearranges to the more stable codeinone. The enzyme also catalyses the 6-O-demethylation of oripavine to morphinone, with lower efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hagel, J.M. and Facchini, P.J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat. Chem. Biol. 6 (2010) 273–275. [DOI] [PMID: 20228795]
[EC 1.14.11.31 created 2010]
 
 
EC 1.14.11.32     
Accepted name: codeine 3-O-demethylase
Reaction: codeine + 2-oxoglutarate + O2 = morphine + formaldehyde + succinate + CO2
Other name(s): codeine O-demethylase; CODM
Systematic name: codeine,2-oxoglutarate:oxygen oxidoreductase (3-O-demethylating)
Comments: Requires Fe2+. Catalyses a step in morphine biosynthesis. The enzyme also catalyses the 3-O-demethylation of thebaine to oripavine, with lower efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hagel, J.M. and Facchini, P.J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat. Chem. Biol. 6 (2010) 273–275. [DOI] [PMID: 20228795]
[EC 1.14.11.32 created 2010]
 
 
EC 1.14.11.33     
Accepted name: DNA oxidative demethylase
Reaction: DNA-base-CH3 + 2-oxoglutarate + O2 = DNA-base + formaldehyde + succinate + CO2
Other name(s): alkylated DNA repair protein; α-ketoglutarate-dependent dioxygenase ABH1; alkB (gene name)
Systematic name: methyl DNA-base, 2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)
Comments: Contains iron; activity is slightly stimulated by ascorbate. Catalyses oxidative demethylation of the DNA base lesions N1-methyladenine, N3-methylcytosine, N1-methylguanine, and N3-methylthymine. It works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Falnes, P.O., Johansen, R.F. and Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419 (2002) 178–182. [DOI] [PMID: 12226668]
2.  Yi, C., Yang, C.G. and He, C. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc. Chem. Res. 42 (2009) 519–529. [DOI] [PMID: 19852088]
3.  Yi, C., Jia, G., Hou, G., Dai, Q., Zhang, W., Zheng, G., Jian, X., Yang, C.G., Cui, Q. and He, C. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase. Nature 468 (2010) 330–333. [DOI] [PMID: 21068844]
[EC 1.14.11.33 created 2011]
 
 
EC 1.14.11.34      
Transferred entry: 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming). Now EC 1.14.20.7, 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)
[EC 1.14.11.34 created 2011, deleted 2018]
 
 
EC 1.14.11.35     
Accepted name: 1-deoxypentalenic acid 11β-hydroxylase
Reaction: 1-deoxypentalenate + 2-oxoglutarate + O2 = 1-deoxy-11β-hydroxypentalenate + succinate + CO2
For diagram of pentalenolactone biosynthesis, click here
Glossary: 1-deoxypentalenate = (1R,3aR,5aS,8aR)-1,7,7-trimethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
1-deoxy-11β-hydroxypentalenate = (1S,2R,3aR,5aS,8aR)-2-hydroxy-1,7,7-trimethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
Other name(s): ptlH (gene name); sav2991 (gene name); pntH (gene name)
Systematic name: 1-deoxypentalenic acid,2-oxoglutarate:oxygen oxidoreductase
Comments: The enzyme requires iron(II) and ascorbate. Isolated from the bacterium Streptomyces avermitilis. Part of the pathway for pentalenolactone biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  You, Z., Omura, S., Ikeda, H. and Cane, D.E. Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtlH, a non-heme iron dioxygenase of Streptomyces avermitilis. J. Am. Chem. Soc. 128 (2006) 6566–6567. [DOI] [PMID: 16704250]
2.  You, Z., Omura, S., Ikeda, H., Cane, D.E. and Jogl, G. Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J. Biol. Chem. 282 (2007) 36552–36560. [DOI] [PMID: 17942405]
[EC 1.14.11.35 created 2012]
 
 
EC 1.14.11.36     
Accepted name: pentalenolactone F synthase
Reaction: pentalenolactone D + 2 2-oxoglutarate + 2 O2 = pentalenolactone F + 2 succinate + 2 CO2 + H2O (overall reaction)
(1a) pentalenolactone D + 2-oxoglutarate + O2 = pentalenolactone E + succinate + CO2 + H2O
(1b) pentalenolactone E + 2-oxoglutarate + O2 = pentalenolactone F + succinate + CO2
For diagram of pentalenolactone biosynthesis, click here
Glossary: pentalenolactone D = (1S,4aR,6aS,9aR)-1,8,8-trimethyl-2-oxo-1,2,4,4a,6a,7,8,9-octahydropentaleno[1,6a-c]pyran-5-carboxylate
pentalenolactone E = (4aR,6aS,9aR)-8,8-dimethyl-1-methylene-2-oxo-1,2,4,4a,6a,7,8,9-octahydropentaleno[1,6a-c]pyran-5-carboxylate
pentalenolactone F = (1′R,4′aR,6′aS,9′aR)-8′,8′-dimethyl-2′-oxo-4′,4′a,6′a,8′,9′-hexahydrospiro[oxirane-2,1′-pentaleno[1,6a-c]pyran]-5′-carboxylic acid
Other name(s): penD (gene name); pntD (gene name); ptlD (gene name)
Systematic name: pentalenolactone-D,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires iron(II) and ascorbate. Isolated from the bacteria Streptomyces exfoliatus, Streptomyces arenae and Streptomyces avermitilis. Part of the pentalenolactone biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Seo, M.J., Zhu, D., Endo, S., Ikeda, H. and Cane, D.E. Genome mining in Streptomyces. Elucidation of the role of Baeyer-Villiger monooxygenases and non-heme iron-dependent dehydrogenase/oxygenases in the final steps of the biosynthesis of pentalenolactone and neopentalenolactone. Biochemistry 50 (2011) 1739–1754. [DOI] [PMID: 21250661]
[EC 1.14.11.36 created 2012]
 
 
EC 1.14.11.37     
Accepted name: kanamycin B dioxygenase
Reaction: kanamycin B + 2-oxoglutarate + O2 = 2′-dehydrokanamycin A + succinate + NH3 + CO2
For diagram of kanamycin A biosynthesis, click here
Other name(s): kanJ (gene name)
Systematic name: kanamycin-B,2-oxoglutarate:oxygen oxidoreductase (deaminating, 2′-hydroxylating)
Comments: Requires Fe2+ and ascorbate. Found in the bacterium Streptomyces kanamyceticus where it is involved in the conversion of the aminoglycoside antibiotic kanamycin B to kanamycin A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sucipto, H., Kudo, F. and Eguchi, T. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK. Angew. Chem. Int. Ed. Engl. 51 (2012) 3428–3431. [DOI] [PMID: 22374809]
[EC 1.14.11.37 created 2013, modified 2013]
 
 
EC 1.14.11.38     
Accepted name: verruculogen synthase
Reaction: fumitremorgin B + 2-oxoglutarate + 2 O2 + reduced acceptor = verruculogen + succinate + CO2 + H2O + acceptor
For diagram of fumitremorgin alkaloid biosynthesis (part 2), click here
Glossary: fumitremorgin B = (5aR,6S,12S,14aS)-5a,6-dihydroxy-9-methoxy-11-(3-methylbut-2-en-1-yl)-12-(2-methylprop-1-en-1-yl)-1,2,3,5a,6,11,12,14a-octahydro-5H,14H-pyrrolo[1′′,2′′:4′,5′]pyrazino[1′,2′:1,6]pyrido[3,4-b]indole-5,14-dione
verruculogen = (5R,10S,10aR,14aS,15bS)-10,10a-dihydroxy-6-methoxy-2,2-dimethyl-5-(2-methylprop-1-en-1-yl)-1,10,10a,14,14a,15b-hexahydro-12H-3,4-dioxa-5a,11a,15a-triazacycloocta[1,2,3-lm]indeno[5,6-b]fluorene-11,15(2H,13H)-dione
Other name(s): fmtF (gene name); FmtOx1
Systematic name: fumitremorgin B,2-oxoglutarate:oxygen oxidoreductase (verruculogen-forming)
Comments: Requires Fe2+ and ascorbate. Found in the fungus Aspergillus fumigatus. Both atoms of a dioxygen molecule are incorporated into verruculogen [1,2]. Involved in the biosynthetic pathways of several indole alkaloids such as fumitremorgin A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Steffan, N., Grundmann, A., Afiyatullov, S., Ruan, H. and Li, S.M. FtmOx1, a non-heme Fe(II) and α-ketoglutarate-dependent dioxygenase, catalyses the endoperoxide formation of verruculogen in Aspergillus fumigatus. Org. Biomol. Chem. 7 (2009) 4082–4087. [DOI] [PMID: 19763315]
2.  Kato, N., Suzuki, H., Takagi, H., Uramoto, M., Takahashi, S. and Osada, H. Gene disruption and biochemical characterization of verruculogen synthase of Aspergillus fumigatus. ChemBioChem 12 (2011) 711–714. [DOI] [PMID: 21404415]
[EC 1.14.11.38 created 2013]
 
 
EC 1.14.11.39     
Accepted name: L-asparagine hydroxylase
Reaction: L-asparagine + 2-oxoglutarate + O2 = (2S,3S)-3-hydroxyasparagine + succinate + CO2
Other name(s): L-asparagine 3-hydroxylase; AsnO
Systematic name: L-asparagine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+. The enzyme is only able to hydroxylate free L-asparagine. It is not active toward D-asparagine. The β-hydroxylated asparagine produced is incorporated at position 9 of the calcium-dependent antibiotic (CDA), an 11-residue non-ribosomally synthesized acidic lipopeptide lactone.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Strieker, M., Kopp, F., Mahlert, C., Essen, L.O. and Marahiel, M.A. Mechanistic and structural basis of stereospecific Cβ-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem. Biol. 2 (2007) 187–196. [DOI] [PMID: 17373765]
[EC 1.14.11.39 created 2013]
 
 
EC 1.14.11.40     
Accepted name: enduracididine β-hydroxylase
Reaction: L-enduracididine + 2-oxoglutarate + O2 = (3S)-3-hydroxy-L-enduracididine + succinate + CO2
Glossary: L-enduracididine = 3-[(4R)-2-iminoimidazolidin-4-yl]-L-alanine = 2-amino-3-[(2S)-iminoimidazolin-4-yl]propanoic acid
(3S)-3-hydroxy-L-enduracididine = (2S,3R)-2-amino-3-hydroxy-3-[(S)-2-iminoimidazolidin-4-yl]propanoic acid = (3R)-3-[(4S)-2-iminoimidazolidin-4-yl]-L-serine
Other name(s): MppO; L-enduracididine,2-oxoglutarate:O2 oxidoreductase (3-hydroxylating)
Systematic name: L-enduracididine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Fe2+-dependent enzyme. The enzyme is involved in biosynthesis of the nonproteinogenic amino acid β-hydroxyenduracididine, a component of the mannopeptimycins (cyclic glycopeptide antibiotic), produced by Streptomyces hygroscopicus NRRL 30439.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Haltli, B., Tan, Y., Magarvey, N.A., Wagenaar, M., Yin, X., Greenstein, M., Hucul, J.A. and Zabriskie, T.M. Investigating β-hydroxyenduracididine formation in the biosynthesis of the mannopeptimycins. Chem. Biol. 12 (2005) 1163–1168. [DOI] [PMID: 16298295]
2.  Magarvey, N.A., Haltli, B., He, M., Greenstein, M. and Hucul, J.A. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrob. Agents Chemother. 50 (2006) 2167–2177. [DOI] [PMID: 16723579]
[EC 1.14.11.40 created 2013]
 
 
EC 1.14.11.41     
Accepted name: L-arginine hydroxylase
Reaction: L-arginine + 2-oxoglutarate + O2 = (3S)-3-hydroxy-L-arginine + succinate + CO2
Other name(s): VioC (ambiguous); L-arginine,2-oxoglutarate:O2 oxidoreductase (3-hydroxylating)
Systematic name: L-arginine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Fe2+-dependent enzyme. The enzyme is involved in the biosynthesis of the cyclic pentapeptide antibiotic viomycin. It differs from EC 1.14.20.7, 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming), because it does not form guanidine and (S)-1-pyrroline-5-carboxylate from 3-hydroxy-L-arginine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ju, J., Ozanick, S.G., Shen, B. and Thomas, M.G. Conversion of (2S)-arginine to (2S,3R)-capreomycidine by VioC and VioD from the viomycin biosynthetic pathway of Streptomyces sp. strain ATCC11861. ChemBioChem 5 (2004) 1281–1285. [DOI] [PMID: 15368582]
2.  Helmetag, V., Samel, S.A., Thomas, M.G., Marahiel, M.A. and Essen, L.O. Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J. 276 (2009) 3669–3682. [DOI] [PMID: 19490124]
[EC 1.14.11.41 created 2013]
 
 
EC 1.14.11.42     
Accepted name: tRNAPhe (7-(3-amino-3-carboxypropyl)wyosine37-C2)-hydroxylase
Reaction: 7-(3-amino-3-carboxypropyl)wyosine37 in tRNAPhe + 2-oxoglutarate + O2 = 7-(2-hydroxy-3-amino-3-carboxypropyl)wyosine37 in tRNAPhe + succinate + CO2
For diagram of wyosine biosynthesis, click here
Glossary: 7-(3-amino-3-carboxypropyl)wyosine = 7-[(3S)-3-amino-3-carboxypropyl]-4,6-dimethyl-3-(-D-ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-9-one
7-(2-hydroxy-3-amino-3-carboxypropyl)wyosine = 4-[4,6-dimethyl-9-oxo-3-(-D-ribofuranosyl)-4,9-dihydro-3H-imidazo[1,2-a]purin-7-yl]-L-threonine
Other name(s): TYW5; tRNA yW-synthesizing enzyme 5
Systematic name: tRNAPhe 7-(3-amino-3-carboxypropyl)wyosine37,2-oxoglutarate:oxygen oxidoreductase (2-hydroxylating)
Comments: Requires Fe2+. The enzyme is not active with wybutosine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Noma, A., Ishitani, R., Kato, M., Nagao, A., Nureki, O. and Suzuki, T. Expanding role of the jumonji C domain as an RNA hydroxylase. J. Biol. Chem. 285 (2010) 34503–34507. [DOI] [PMID: 20739293]
2.  Kato, M., Araiso, Y., Noma, A., Nagao, A., Suzuki, T., Ishitani, R. and Nureki, O. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Nucleic Acids Res. 39 (2011) 1576–1585. [DOI] [PMID: 20972222]
[EC 1.14.11.42 created 2013]
 
 
EC 1.14.11.43     
Accepted name: (S)-dichlorprop dioxygenase (2-oxoglutarate)
Reaction: (1) (S)-2-(4-chloro-2-methylphenoxy)propanoate + 2-oxoglutarate + O2 = 4-chloro-2-methylphenol + pyruvate + succinate + CO2
(2) (S)-(2,4-dichlorophenoxy)propanoate + 2-oxoglutarate + O2 = 2,4-dichlorophenol + pyruvate + succinate + CO2
Glossary: (S)-2-(4-chloro-2-methylphenoxy)propanoate = (S)-mecoprop
(S)-(2,4-dichlorophenoxy)propanoate = (S)-dichlorprop
Other name(s): SdpA; α-ketoglutarate-dependent (S)-dichlorprop dioxygenase; (S)-phenoxypropionate/α-ketoglutarate-dioxygenase; 2-oxoglutarate-dependent (S)-dichlorprop dioxygenase; (S)-mecoprop dioxygenase; 2-oxoglutarate-dependent (S)-mecoprop dioxygenase
Systematic name: (S)-2-(4-chloro-2-methylphenoxy)propanoate,2-oxoglutarate:oxygen oxidoreductase (pyruvate-forming)
Comments: Fe2+-dependent enzyme. The enzymes from the Gram-negative bacteria Delftia acidovorans MC1 and Sphingomonas herbicidovorans MH are involved in the degradation of the (S)-enantiomer of the phenoxyalkanoic acid herbicides mecoprop and dichlorprop [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Westendorf, A., Benndorf, D., Muller, R.H. and Babel, W. The two enantiospecific dichlorprop/α-ketoglutarate-dioxygenases from Delftia acidovorans MC1 – protein and sequence data of RdpA and SdpA. Microbiol. Res. 157 (2002) 317–322. [PMID: 12501996]
2.  Muller, T.A., Fleischmann, T., van der Meer, J.R. and Kohler, H.P. Purification and characterization of two enantioselective α-ketoglutarate-dependent dioxygenases, RdpA and SdpA, from Sphingomonas herbicidovorans MH. Appl. Environ. Microbiol. 72 (2006) 4853–4861. [DOI] [PMID: 16820480]
3.  Muller, T.A., Zavodszky, M.I., Feig, M., Kuhn, L.A. and Hausinger, R.P. Structural basis for the enantiospecificities of R- and S-specific phenoxypropionate/α-ketoglutarate dioxygenases. Protein Sci. 15 (2006) 1356–1368. [DOI] [PMID: 16731970]
[EC 1.14.11.43 created 2013]
 
 
EC 1.14.11.44     
Accepted name: (R)-dichlorprop dioxygenase (2-oxoglutarate)
Reaction: (1) (R)-2-(4-chloro-2-methylphenoxy)propanoate + 2-oxoglutarate + O2 = 4-chloro-2-methylphenol + pyruvate + succinate + CO2
(2) (R)-(2,4-dichlorophenoxy)propanoate + 2-oxoglutarate + O2 = 2,4-dichlorophenol + pyruvate + succinate + CO2
Glossary: (R)-2-(4-chloro-2-methylphenoxy)propanoate = (R)-mecoprop
(R)-(2,4-dichlorophenoxy)propanoate = (R)-dichlorprop
Other name(s): RdpA; α-ketoglutarate-dependent (R)-dichlorprop dioxygenase; (R)-phenoxypropionate/α-ketoglutarate-dioxygenase; 2-oxoglutarate-dependent (R)-dichlorprop dioxygenase; (R)-mecoprop dioxygenase; 2-oxoglutarate-dependent (R)-mecoprop dioxygenase
Systematic name: (R)-2-(4-chloro-2-methylphenoxy)propanoate,2-oxoglutarate:oxygen oxidoreductase (pyruvate-forming)
Comments: Fe2+-dependent enzyme. The enzymes from the Gram-negative bacteria Delftia acidovorans MC1 and Sphingomonas herbicidovorans MH are involved in the degradation of the (R)-enantiomer of the phenoxyalkanoic acid herbicides mecoprop and dichlorprop [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Westendorf, A., Benndorf, D., Muller, R.H. and Babel, W. The two enantiospecific dichlorprop/α-ketoglutarate-dioxygenases from Delftia acidovorans MC1 – protein and sequence data of RdpA and SdpA. Microbiol. Res. 157 (2002) 317–322. [PMID: 12501996]
2.  Muller, T.A., Fleischmann, T., van der Meer, J.R. and Kohler, H.P. Purification and characterization of two enantioselective α-ketoglutarate-dependent dioxygenases, RdpA and SdpA, from Sphingomonas herbicidovorans MH. Appl. Environ. Microbiol. 72 (2006) 4853–4861. [DOI] [PMID: 16820480]
3.  Muller, T.A., Zavodszky, M.I., Feig, M., Kuhn, L.A. and Hausinger, R.P. Structural basis for the enantiospecificities of R- and S-specific phenoxypropionate/α-ketoglutarate dioxygenases. Protein Sci. 15 (2006) 1356–1368. [DOI] [PMID: 16731970]
[EC 1.14.11.44 created 2013]
 
 
EC 1.14.11.45     
Accepted name: L-isoleucine 4-hydroxylase
Reaction: L-isoleucine + 2-oxoglutarate + O2 = (4S)-4-hydroxy-L-isoleucine + succinate + CO2
Glossary: (4S)-4-hydroxy-L-isoleucine = (2S,3R,4S)-2-amino-4-hydroxy-3-methylpentanoate
Other name(s): ido (gene name)
Systematic name: L-isoleucine,2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: The enzyme, characterized from the bacterium Bacillus thuringiensis, can also catalyse the hydroxylation of L-leucine, L-norvaline, L-norleucine, and L-allo-isoleucine, as well as the sulfoxidation of L-methionine, L-ethionine, S-methyl-L-cysteine, S-ethyl-L-cysteine, and S-allyl-L-cysteine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kodera, T., Smirnov, S.V., Samsonova, N.N., Kozlov, Y.I., Koyama, R., Hibi, M., Ogawa, J., Yokozeki, K. and Shimizu, S. A novel L-isoleucine hydroxylating enzyme, L-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S,3R,4S)-4-hydroxyisoleucine. Biochem. Biophys. Res. Commun. 390 (2009) 506–510. [DOI] [PMID: 19850012]
2.  Hibi, M., Kawashima, T., Kodera, T., Smirnov, S.V., Sokolov, P.M., Sugiyama, M., Shimizu, S., Yokozeki, K. and Ogawa, J. Characterization of Bacillus thuringiensis L-isoleucine dioxygenase for production of useful amino acids. Appl. Environ. Microbiol. 77 (2011) 6926–6930. [DOI] [PMID: 21821743]
3.  Hibi, M., Kawashima, T., Yajima, H., Smirnov, S.V., Kodera, T., Sugiyama, M., Shimizu, S., Yokozeki, K., and Ogawa, J. Enzymatic synthesis of chiral amino acid sulfoxides by Fe(II)/α ketoglutarate-dependent dioxygenase. Tetrahedron Asym. 24 (2013) 990–994.
[EC 1.14.11.45 created 2014]
 
 
EC 1.14.11.46     
Accepted name: 2-aminoethylphosphonate dioxygenase
Reaction: (2-aminoethyl)phosphonate + 2-oxoglutarate + O2 = (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2
Other name(s): phnY (gene name)
Systematic name: (2-aminoethyl)phosphonate,2-oxoglutarate:oxygen oxidoreductase (1-hydroxylating)
Comments: Requires Fe2+ and ascorbate. The enzyme, characterized from an uncultured marine bacterium, is involved in a (2-aminoethyl)phosphonate degradation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  McSorley, F.R., Wyatt, P.B., Martinez, A., DeLong, E.F., Hove-Jensen, B. and Zechel, D.L. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon-phosphorus bond. J. Am. Chem. Soc. 134 (2012) 8364–8367. [DOI] [PMID: 22564006]
[EC 1.14.11.46 created 2014]
 
 
EC 1.14.11.47     
Accepted name: [50S ribosomal protein L16]-arginine 3-hydroxylase
Reaction: [50S ribosomal protein L16]-L-Arg81 + 2-oxoglutarate + O2 = [50S ribosomal protein L16]-(3R)-3-hydroxy-L-Arg81 + succinate + CO2
Other name(s): ycfD (gene name)
Systematic name: [50S ribosomal protein L16]-L-Arg81,2-oxoglutarate:oxygen oxidoreductase (3R-hydroxylating)
Comments: The enzyme, characterized from the bacterium Escherichia coli, hydroxylates an arginine residue on the 50S ribosomal protein L16, and is involved in regulation of bacterial ribosome assembly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ge, W., Wolf, A., Feng, T., Ho, C.H., Sekirnik, R., Zayer, A., Granatino, N., Cockman, M.E., Loenarz, C., Loik, N.D., Hardy, A.P., Claridge, T.DW., Hamed, R.B., Chowdhury, R., Gong, L., Robinson, C.V., Trudgian, D.C., Jiang, M., Mackeen, M.M., Mccullagh, J.S., Gordiyenko, Y., Thalhammer, A., Yamamoto, A., Yang, M., Liu-Yi, P., Zhang, Z., Schmidt-Zachmann, M., Kessler, B.M., Ratcliffe, P.J., Preston, G.M., Coleman, M.L. and Schofield, C.J. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat. Chem. Biol. 8 (2012) 960–962. [DOI] [PMID: 23103944]
2.  van Staalduinen, L.M., Novakowski, S.K. and Jia, Z. Structure and functional analysis of YcfD, a novel 2-oxoglutarate/Fe2(+)-dependent oxygenase involved in translational regulation in Escherichia coli. J. Mol. Biol. 426 (2014) 1898–1910. [DOI] [PMID: 24530688]
[EC 1.14.11.47 created 2014]
 
 
EC 1.14.11.48     
Accepted name: xanthine dioxygenase
Reaction: xanthine + 2-oxoglutarate + O2 = urate + succinate + CO2
For diagram of AMP catabolism, click here
Other name(s): XanA; α-ketoglutarate-dependent xanthine hydroxylase
Systematic name: xanthine,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires Fe2+ and L-ascorbate. The enzyme, which was characterized from fungi, is specific for xanthine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cultrone, A., Scazzocchio, C., Rochet, M., Montero-Moran, G., Drevet, C. and Fernandez-Martin, R. Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via α-ketoglutarate-dependent dioxygenases. Mol. Microbiol. 57 (2005) 276–290. [DOI] [PMID: 15948966]
2.  Montero-Moran, G.M., Li, M., Rendon-Huerta, E., Jourdan, F., Lowe, D.J., Stumpff-Kane, A.W., Feig, M., Scazzocchio, C. and Hausinger, R.P. Purification and characterization of the FeII- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 46 (2007) 5293–5304. [DOI] [PMID: 17429948]
3.  Li, M., Muller, T.A., Fraser, B.A. and Hausinger, R.P. Characterization of active site variants of xanthine hydroxylase from Aspergillus nidulans. Arch. Biochem. Biophys. 470 (2008) 44–53. [DOI] [PMID: 18036331]
[EC 1.14.11.48 created 2015]
 
 
EC 1.14.11.49     
Accepted name: uridine-5′-phosphate dioxygenase
Reaction: UMP + 2-oxoglutarate + O2 = 5′-dehydrouridine + succinate + CO2 + phosphate
For diagram of pyrimidine biosynthesis, click here
Glossary: 5′-dehydrouridine = uridine-5′-aldehyde
Other name(s): lipL (gene name)
Systematic name: UMP,2-oxoglutarate:oxygen oxidoreductase
Comments: The enzyme catalyses a net dephosphorylation and oxidation of UMP to generate 5′-dehydrouridine, the first intermediate in the biosynthesis of the unusual aminoribosyl moiety found in several C7-furanosyl nucleosides such as A-90289s, caprazamycins, liposidomycins, muraymycins and FR-900453. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yang, Z., Chi, X., Funabashi, M., Baba, S., Nonaka, K., Pahari, P., Unrine, J., Jacobsen, J.M., Elliott, G.I., Rohr, J. and Van Lanen, S.G. Characterization of LipL as a non-heme, Fe(II)-dependent α-ketoglutarate:UMP dioxygenase that generates uridine-5′-aldehyde during A-90289 biosynthesis. J. Biol. Chem. 286 (2011) 7885–7892. [DOI] [PMID: 21216959]
2.  Yang, Z., Unrine, J., Nonaka, K. and Van Lanen, S.G. Fe(II)-dependent, uridine-5′-monophosphate α-ketoglutarate dioxygenases in the synthesis of 5′-modified nucleosides. Methods Enzymol. 516 (2012) 153–168. [DOI] [PMID: 23034228]
[EC 1.14.11.49 created 2015]
 
 
EC 1.14.11.50      
Transferred entry: (–)-deoxypodophyllotoxin synthase. Now EC 1.14.20.8, (–)-deoxypodophyllotoxin synthase
[EC 1.14.11.50 created 2016, deleted 2018]
 
 
EC 1.14.11.51     
Accepted name: DNA N6-methyladenine demethylase
Reaction: N6-methyladenine in DNA + 2-oxoglutarate + O2 = adenine in DNA + formaldehyde + succinate + CO2
Other name(s): ALKBH1
Systematic name: DNA-N6-methyladenosine,2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)
Comments: Contains iron(II). Catalyses oxidative demethylation of DNA N6-methyladenine, a prevalent modification in LINE-1 transposons, which are specifically enriched on the human X chromosome.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Wu, T.P., Wang, T., Seetin, M.G., Lai, Y., Zhu, S., Lin, K., Liu, Y., Byrum, S.D., Mackintosh, S.G., Zhong, M., Tackett, A., Wang, G., Hon, L.S., Fang, G., Swenberg, J.A. and Xiao, A.Z. DNA methylation on N-adenine in mammalian embryonic stem cells. Nature 532 (2016) 329–333. [DOI] [PMID: 27027282]
[EC 1.14.11.51 created 2016]
 
 
EC 1.14.11.52     
Accepted name: validamycin A dioxygenase
Reaction: validamycin A + 2-oxoglutarate + O2 = validamycin B + succinate + CO2
For diagram of validamycin biosynthesis, click here
Glossary: validamycin A = (1R,2R,3S,4S,6R)-2,3-dihydroxy-6-(hydroxymethyl)-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}cyclohexyl β-D-glucopyranoside
validamycin B = (1R,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-6-(hydroxymethyl)-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}cyclohexyl β-D-glucopyranoside
Other name(s): vldW (gene name)
Systematic name: validamycin-A,2-oxoglutarate:oxygen oxidoreductase (6′-hydroxylating)
Comments: The enzyme was characterized from the bacterium Streptomyces hygroscopicus subsp. limoneus. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Almabruk, K.H., Asamizu, S., Chang, A., Varghese, S.G. and Mahmud, T. The α-ketoglutarate/Fe(II)-dependent dioxygenase VldW is responsible for the formation of validamycin B. ChemBioChem 13 (2012) 2209–2211. [DOI] [PMID: 22961651]
[EC 1.14.11.52 created 2016]
 
 
EC 1.14.11.53     
Accepted name: mRNA N6-methyladenine demethylase
Reaction: N6-methyladenine in mRNA + 2-oxoglutarate + O2 = adenine in mRNA + formaldehyde + succinate + CO2
Other name(s): ALKBH5; FTO
Systematic name: mRNA-N6-methyladenosine,2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)
Comments: Contains iron(II). Catalyses oxidative demethylation of mRNA N6-methyladenine. The FTO enzyme from human can also demethylate N3-methylthymine from single stranded DNA and N3-methyluridine from single stranded RNA [1,2] with low activity [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jia, G., Yang, C.G., Yang, S., Jian, X., Yi, C., Zhou, Z. and He, C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582 (2008) 3313–3319. [DOI] [PMID: 18775698]
2.  Han, Z., Niu, T., Chang, J., Lei, X., Zhao, M., Wang, Q., Cheng, W., Wang, J., Feng, Y. and Chai, J. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464 (2010) 1205–1209. [DOI] [PMID: 20376003]
3.  Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G. and He, C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7 (2011) 885–887. [DOI] [PMID: 22002720]
4.  Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vagbo, C.B., Shi, Y., Wang, W.L., Song, S.H., Lu, Z., Bosmans, R.P., Dai, Q., Hao, Y.J., Yang, X., Zhao, W.M., Tong, W.M., Wang, X.J., Bogdan, F., Furu, K., Fu, Y., Jia, G., Zhao, X., Liu, J., Krokan, H.E., Klungland, A., Yang, Y.G. and He, C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49 (2013) 18–29. [DOI] [PMID: 23177736]
5.  Feng, C., Liu, Y., Wang, G., Deng, Z., Zhang, Q., Wu, W., Tong, Y., Cheng, C. and Chen, Z. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J. Biol. Chem. 289 (2014) 11571–11583. [DOI] [PMID: 24616105]
6.  Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J. and Min, J. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J. Biol. Chem. 289 (2014) 17299–17311. [DOI] [PMID: 24778178]
7.  Aik, W., Scotti, J.S., Choi, H., Gong, L., Demetriades, M., Schofield, C.J. and McDonough, M.A. Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. 42 (2014) 4741–4754. [DOI] [PMID: 24489119]
[EC 1.14.11.53 created 2016]
 
 
EC 1.14.11.54     
Accepted name: mRNA N1-methyladenine demethylase
Reaction: N1-methyladenine in mRNA + 2-oxoglutarate + O2 = adenine in mRNA + formaldehyde + succinate + CO2
Other name(s): ALKBH3
Systematic name: mRNA-N1-methyladenine,2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)
Comments: Contains iron(II). Catalyses oxidative demethylation of mRNA N1-methyladenine. The enzyme is also involved in alkylation repair in DNA [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sundheim, O., Vågbø, C.B., Bjørås, M., Sousa, M.M., Talstad, V., Aas, P.A., Drabløs, F., Krokan, H.E., Tainer, J.A. and Slupphaug, G. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J. 25 (2006) 3389–3397. [DOI] [PMID: 16858410]
2.  Dango, S., Mosammaparast, N., Sowa, M.E., Xiong, L.J., Wu, F., Park, K., Rubin, M., Gygi, S., Harper, J.W. and Shi, Y. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol. Cell 44 (2011) 373–384. [DOI] [PMID: 22055184]
3.  Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S. and Yi, C. Transcriptome-wide mapping reveals reversible and dynamic N-methyladenosine methylome. Nat. Chem. Biol. (2016) . [DOI] [PMID: 26863410]
[EC 1.14.11.54 created 2016]
 
 
EC 1.14.11.55     
Accepted name: ectoine hydroxylase
Reaction: ectoine + 2-oxoglutarate + O2 = 5-hydroxyectoine + succinate + CO2
Glossary: ectoine = (4S)-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylate
5-hydroxyectoine = (4S,5S)-5-hydroxy-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylate
Other name(s): ectD (gene name); ectoine dioxygenase
Systematic name: ectoine,2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating)
Comments: Requires Fe2+ and ascorbate. The enzyme, found in bacteria, is specific for ectoine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bursy, J., Pierik, A.J., Pica, N. and Bremer, E. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J. Biol. Chem. 282 (2007) 31147–31155. [DOI] [PMID: 17636255]
2.  Bursy, J., Kuhlmann, A.U., Pittelkow, M., Hartmann, H., Jebbar, M., Pierik, A.J. and Bremer, E. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl. Environ. Microbiol. 74 (2008) 7286–7296. [DOI] [PMID: 18849444]
3.  Reuter, K., Pittelkow, M., Bursy, J., Heine, A., Craan, T. and Bremer, E. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. PLoS One 5 (2010) e10647. [DOI] [PMID: 20498719]
[EC 1.14.11.55 created 2017]
 
 
EC 1.14.11.56     
Accepted name: L-proline cis-4-hydroxylase
Reaction: L-proline + 2-oxoglutarate + O2 = cis-4-hydroxy-L-proline + succinate + CO2
Systematic name: L-proline,2-oxoglutarate:oxygen oxidoreductase (cis-4-hydroxylating)
Comments: Requires Fe2+ and ascorbate. The enzyme, isolated from Rhizobium species, only produces cis-4-hydroxy-L-proline (cf. EC 1.14.11.57, L-proline trans-4-hydroxylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hara, R. and Kino, K. Characterization of novel 2-oxoglutarate dependent dioxygenases converting L-proline to cis-4-hydroxy-L-proline. Biochem. Biophys. Res. Commun. 379 (2009) 882–886. [DOI] [PMID: 19133227]
[EC 1.14.11.56 created 2017]
 
 
EC 1.14.11.57     
Accepted name: L-proline trans-4-hydroxylase
Reaction: L-proline + 2-oxoglutarate + O2 = trans-4-hydroxy-L-proline + succinate + CO2
Systematic name: L-proline,2-oxoglutarate:oxygen oxidoreductase (trans-4-hydroxylating)
Comments: Requires Fe2+ and ascorbate. The enzyme, isolated from multiple bacterial species, only produces trans-4-hydroxy-L-proline (cf. EC 1.14.11.56, L-proline cis-4-hydroxylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lawrence, C.C., Sobey, W.J., Field, R.A., Baldwin, J.E. and Schofield, C.J. Purification and initial characterization of proline 4-hydroxylase from Streptomyces griseoviridus P8648: a 2-oxoacid, ferrous-dependent dioxygenase involved in etamycin biosynthesis. Biochem. J. 313 (1996) 185–191. [PMID: 8546682]
2.  Shibasaki, T., Mori, H., Chiba, S. and Ozaki, A. Microbial proline 4-hydroxylase screening and gene cloning. Appl. Environ. Microbiol. 65 (1999) 4028–4031. [PMID: 10473412]
[EC 1.14.11.57 created 2017]
 
 
EC 1.14.11.58     
Accepted name: ornithine lipid ester-linked acyl 2-hydroxylase
Reaction: an ornithine lipid + 2-oxoglutarate + O2 = a 2-hydroxyornithine lipid + succinate + CO2
Glossary: an ornithine lipid = an Nα-[(3R)-3-(acyloxy)acyl]-L-ornithine
a 2-hydroxyornithine lipid = an Nα-[(3R)-3-(2-hydroxyacyloxy)acyl]-L-ornithine
Other name(s): olsC (gene name)
Systematic name: ornithine lipid,2-oxoglutarate:oxygen oxidoreductase (ester-linked acyl 2-hydroxylase)
Comments: The enzyme, characterized from the bacterium Rhizobium tropici, catalyses the hydroxylation of C-2 of the fatty acyl group that is ester-linked to the 3-hydroxy position of the amide-linked fatty acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rojas-Jimenez, K., Sohlenkamp, C., Geiger, O., Martinez-Romero, E., Werner, D. and Vinuesa, P. A ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Mol. Plant Microbe Interact. 18 (2005) 1175–1185. [DOI] [PMID: 16353552]
2.  Vences-Guzman, M.A., Guan, Z., Ormeno-Orrillo, E., Gonzalez-Silva, N., Lopez-Lara, I.M., Martinez-Romero, E., Geiger, O. and Sohlenkamp, C. Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol. Microbiol. 79 (2011) 1496–1514. [DOI] [PMID: 21205018]
[EC 1.14.11.58 created 2018]
 
 
EC 1.14.11.59     
Accepted name: 2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside dioxygenase
Reaction: (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + 2-oxoglutarate + O2 = (2R)-4,7-dihydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + succinate + CO2 + H2O
For diagram of benzoxazinone biosynthesis, click here
Glossary: (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = DIBOA β-D-glucoside
(2R)-4,7-dihydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = TRIBOA β-D-glucoside
Other name(s): BX6 (gene name); DIBOA-Glc dioxygenase
Systematic name: (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside:oxygen oxidoreductase (7-hydroxylating)
Comments: The enzyme is involved in the biosynthesis of protective and allelophatic benzoxazinoids in some plants, most commonly from the family of Poaceae (grasses).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jonczyk, R., Schmidt, H., Osterrieder, A., Fiesselmann, A., Schullehner, K., Haslbeck, M., Sicker, D., Hofmann, D., Yalpani, N., Simmons, C., Frey, M. and Gierl, A. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiol. 146 (2008) 1053–1063. [DOI] [PMID: 18192444]
[EC 1.14.11.59 created 2012 as EC 1.14.20.2, transferred 2018 to EC 1.14.11.59]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald