The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: procollagen-proline 4-dioxygenase
Reaction: procollagen L-proline + 2-oxoglutarate + O2 = procollagen trans-4-hydroxy-L-proline + succinate + CO2
For diagram of reaction, click here
Other name(s): P4HA (gene name); P4HB (gene name); protocollagen hydroxylase; proline hydroxylase; proline,2-oxoglutarate 4-dioxygenase; collagen proline hydroxylase; hydroxylase, collagen proline; peptidyl proline hydroxylase; proline protocollagen hydroxylase; proline, 2-oxoglutarate dioxygenase; prolyl hydroxylase; prolylprotocollagen dioxygenase; prolylprotocollagen hydroxylase; protocollagen proline 4-hydroxylase; protocollagen proline dioxygenase; protocollagen proline hydroxylase; protocollagen prolyl hydroxylase; prolyl 4-hydroxylase; prolyl-glycyl-peptide, 2-oxoglutarate:oxygen oxidoreductase, 4-hydroxylating; procollagen-proline 4-dioxygenase (ambiguous)
Systematic name: procollagen-L-proline,2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: Requires Fe2+ and ascorbate.The enzyme, which is located within the lumen of the endoplasmic reticulum, catalyses the 4-hydroxylation of prolines in -X-Pro-Gly- sequences. The 4-hydroxyproline residues are essential for the formation of the collagen triple helix. The enzyme forms a complex with protein disulfide isomerase and acts not only on procollagen but also on more than 15 other proteins that have collagen-like domains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-06-2
1.  Hutton, J.J., Jr., Tappel, A.L. and Udenfriend, S. Cofactor and substrate requirements of collagen proline hydroxylase. Arch. Biochem. Biophys. 118 (1967) 231–240.
2.  Kivirikko, K.I. and Prockop, D.J. Purification and partial characterization of the enzyme for the hydroxylation of proline in protocollogen. Arch. Biochem. Biophys. 118 (1967) 611–618.
3.  Kivirikko, K.I., Kishida, Y., Sakakibara, S. and Prockop, J. Hydroxylation of (X-Pro-Gly)n by protocollagen proline hydroxylase. Effect of chain length, helical conformation and amino acid sequence in the substrate. Biochim. Biophys. Acta 271 (1972) 347–356. [DOI] [PMID: 5046811]
4.  Berg, R.A. and Prockop, D.J. Affinity column purification of protocollagen proline hydroxylase from chick embryos and further characterization of the enzyme. J. Biol. Chem. 248 (1973) 1175–1182. [PMID: 4346946]
5.  John, D.C. and Bulleid, N.J. Prolyl 4-hydroxylase: defective assembly of α-subunit mutants indicates that assembled α-subunits are intramolecularly disulfide bonded. Biochemistry 33 (1994) 14018–14025. [PMID: 7947811]
6.  Lamberg, A., Pihlajaniemi, T. and Kivirikko, K.I. Site-directed mutagenesis of the α subunit of human prolyl 4-hydroxylase. Identification of three histidine residues critical for catalytic activity. J. Biol. Chem. 270 (1995) 9926–9931. [DOI] [PMID: 7730375]
7.  Myllyharju, J. and Kivirikko, K.I. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 16 (1997) 1173–1180. [DOI] [PMID: 9135134]
8.  Kivirikko, K.I. and Myllyharju, J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol 16 (1998) 357–368. [DOI] [PMID: 9524356]
[EC created 1972, modified 1981, modified 1983, modified 2017]

Data © 2001–2023 IUBMB
Web site © 2005–2023 Andrew McDonald