The Enzyme Database

Your query returned 29 entries.    printer_iconPrintable version

EC 1.4.1.13     
Accepted name: glutamate synthase (NADPH)
Reaction: 2 L-glutamate + NADP+ = L-glutamine + 2-oxoglutarate + NADPH + H+ (overall reaction)
(1a) L-glutamate + NH3 = L-glutamine + H2O
(1b) L-glutamate + NADP+ + H2O = NH3 + 2-oxoglutarate + NADPH + H+
Other name(s): glutamate (reduced nicotinamide adenine dinucleotide phosphate) synthase; L-glutamate synthase; L-glutamate synthetase; glutamate synthetase (NADP); NADPH-dependent glutamate synthase; glutamine-ketoglutaric aminotransferase; NADPH-glutamate synthase; NADPH-linked glutamate synthase; glutamine amide-2-oxoglutarate aminotransferase (oxidoreductase, NADP); L-glutamine:2-oxoglutarate aminotransferase, NADPH oxidizing; GOGAT
Systematic name: L-glutamate:NADP+ oxidoreductase (transaminating)
Comments: Binds FMN, FAD, 2 [4Fe-4S] clusters and 1 [3Fe-4S] cluster. The reaction takes place in the direction of L-glutamate production. The protein is composed of two subunits, α and β. The α subunit is composed of two domains, one hydrolysing L-glutamine to NH3 and L-glutamate (cf. EC 3.5.1.2, glutaminase), the other combining the produced NH3 with 2-oxoglutarate to produce a second molecule of L-glutamate (cf. EC 1.4.1.4, glutamate dehydrogenase [NADP+]). The β subunit transfers electrons from the cosubstrate. The NH3 is channeled within the α subunit through a 31 Å channel. The chanelling is very efficient and in the intact α-β complex ammonia is produced only within the complex. In the absence of the β subunit, coupling between the two domains of the α subunit is compromised and some ammonium can leak.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37213-53-9
References:
1.  Miller, R.E. and Stadtman, E.R. Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein. J. Biol. Chem. 247 (1972) 7407–7419. [PMID: 4565085]
2.  Tempest, D.W., Meers, J.L. and Brown, C.M. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem. J. 117 (1970) 405–407. [PMID: 5420057]
3.  Vanoni, M.A. and Curti, B. Glutamate synthase: a complex iron-sulfur flavoprotein. Cell. Mol. Life Sci. 55 (1999) 617–638. [DOI] [PMID: 10357231]
4.  Ravasio, S., Curti, B. and Vanoni, M.A. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase. Biochemistry 40 (2001) 5533–5541. [DOI] [PMID: 11331018]
[EC 1.4.1.13 created 1972 as EC 2.6.1.53, transferred 1976 to EC 1.4.1.13, modified 2001, modified 2012]
 
 
EC 1.4.1.14     
Accepted name: glutamate synthase (NADH)
Reaction: 2 L-glutamate + NAD+ = L-glutamine + 2-oxoglutarate + NADH + H+
(1a) L-glutamate + NH3 = L-glutamine + H2O
(1b) L-glutamate + NAD+ + H2O = NH3 + 2-oxoglutarate + NADH + H+
Other name(s): glutamate (reduced nicotinamide adenine dinucleotide) synthase; NADH: GOGAT; L-glutamate synthase (NADH); L-glutamate synthetase; NADH-glutamate synthase; NADH-dependent glutamate synthase
Systematic name: L-glutamate:NAD+ oxidoreductase (transaminating)
Comments: A flavoprotein (FMN). The reaction takes place in the direction of L-glutamate production. The protein is composed of two domains, one hydrolysing L-glutamine to NH3 and L-glutamate (cf. EC 3.5.1.2, glutaminase), the other combining the produced NH3 with 2-oxoglutarate to produce a second molecule of L-glutamate (cf. EC 1.4.1.2, glutamate dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 65589-88-0
References:
1.  Roon, R.J., Even, H.L. and Larimore, F. Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. J. Bacteriol. 118 (1974) 89–95. [PMID: 4362465]
2.  Boland, M.J. and Benny, A.G. Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules. Eur. J. Biochem. 79 (1977) 355–362. [DOI] [PMID: 21790]
3.  Masters, D.S., Jr. and Meister, A. Inhibition of homocysteine sulfonamide of glutamate synthase purified from Saccharomyces cerevisiae. J. Biol. Chem. 257 (1982) 8711–8715. [PMID: 7047525]
4.  Anderson, M.P., Vance, C.P., Heichel, G.H. and Miller, S.S. Purification and characterization of NADH-glutamate synthase from alfalfa root nodules. Plant Physiol. 90 (1989) 351–358. [PMID: 16666762]
5.  Blanco, L., Reddy, P.M., Silvente, S., Bucciarelli, B., Khandual, S., Alvarado-Affantranger, X., Sanchez, F., Miller, S., Vance, C. and Lara-Flores, M. Molecular cloning, characterization and regulation of two different NADH-glutamate synthase cDNAs in bean nodules. Plant Cell Environ. 31 (2008) 454–472. [PMID: 18182018]
[EC 1.4.1.14 created 1978, modified 2019]
 
 
EC 1.4.7.1     
Accepted name: glutamate synthase (ferredoxin)
Reaction: 2 L-glutamate + 2 oxidized ferredoxin = L-glutamine + 2-oxoglutarate + 2 reduced ferredoxin + 2 H+ (overall reaction)
(1a) L-glutamate + NH3 = L-glutamine + H2O
(1b) L-glutamate + 2 oxidized ferredoxin + H2O = NH3 + 2-oxoglutarate + 2 reduced ferredoxin + 2 H+
Other name(s): ferredoxin-dependent glutamate synthase; ferredoxin-glutamate synthase; glutamate synthase (ferredoxin-dependent)
Systematic name: L-glutamate:ferredoxin oxidoreductase (transaminating)
Comments: Binds a [3Fe-4S] cluster as well as FAD and FMN. The protein is composed of two domains, one hydrolysing L-glutamine to NH3 and L-glutamate (cf. EC 3.5.1.2, glutaminase), the other combining the produced NH3 with 2-oxoglutarate to produce a second molecule of L-glutamate. The NH3 is channeled through a 24 Å channel in the active protein. No hydrolysis of glutamine takes place without ferredoxin and 2-oxoglutarate being bound to the protein [5,6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 62213-56-3
References:
1.  Galván, F., Márquez, A.J. and Vega, J.M. Purification and molecular properties of ferredoxin-glutamate synthase from Chlamydomonas reinhardii. Planta 162 (1984) 180–187. [PMID: 24254054]
2.  Lea, P.J. and Miflin, B.J. Alternative route for nitrogen assimilation in higher plants. Nature (Lond.) 251 (1974) 614–616. [PMID: 4423889]
3.  Ravasio, S., Dossena, L., Martin-Figueroa, E., Florencio, F.J., Mattevi, A., Morandi, P., Curti, B. and Vanoni, M.A. Properties of the recombinant ferredoxin-dependent glutamate synthase of Synechocystis PCC6803. Comparison with the Azospirillum brasilense NADPH-dependent enzyme and its isolated α subunit. Biochemistry 41 (2002) 8120–8133. [DOI] [PMID: 12069605]
4.  Navarro, F., Martin-Figueroa, E., Candau, P. and Florencio, F.J. Ferredoxin-dependent iron-sulfur flavoprotein glutamate synthase (GlsF) from the cyanobacterium Synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. Arch. Biochem. Biophys. 379 (2000) 267–276. [DOI] [PMID: 10898944]
5.  van den Heuvel, R.H., Ferrari, D., Bossi, R.T., Ravasio, S., Curti, B., Vanoni, M.A., Florencio, F.J. and Mattevi, A. Structural studies on the synchronization of catalytic centers in glutamate synthase. J. Biol. Chem. 277 (2002) 24579–24583. [DOI] [PMID: 11967268]
6.  van den Heuvel, R.H., Svergun, D.I., Petoukhov, M.V., Coda, A., Curti, B., Ravasio, S., Vanoni, M.A. and Mattevi, A. The active conformation of glutamate synthase and its binding to ferredoxin. J. Mol. Biol. 330 (2003) 113–128. [DOI] [PMID: 12818206]
[EC 1.4.7.1 created 1976, modified 2012]
 
 
EC 2.6.1.97     
Accepted name: archaeosine synthase
Reaction: L-glutamine + 7-cyano-7-carbaguanine15 in tRNA + H2O = L-glutamate + archaeine15 in tRNA
Glossary: 7-cyano-7-carbaguanine = preQ0 = 7-cyano-7-deazaguanine
archaeine = 7-deaza-7-carbamidoylguanine = base G*
archaeosine = G* = 7-amidino-7-deazaguanosine
Other name(s): ArcS; TgtA2; MJ1022 (gene name); glutamine:preQ0-tRNA amidinotransferase (incorrect)
Systematic name: L-glutamine:7-cyano-7-carbaguanine aminotransferase
Comments: In Euryarchaeota the reaction is catalysed by ArcS [1,2]. In Crenarchaeota, which do not have an ArcS homologue, the reaction is catalysed either by a homologue of EC 6.3.4.20, 7-cyano-7-deazaguanine synthase that includes a glutaminase domain (cf. EC 3.5.1.2), or by a homologue of EC 1.7.1.13, preQ1 synthase [2]. The enzyme from the Euryarchaeon Methanocaldococcus jannaschii can also use arginine and ammonium as amino donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Phillips, G., Chikwana, V.M., Maxwell, A., El-Yacoubi, B., Swairjo, M.A., Iwata-Reuyl, D. and de Crecy-Lagard, V. Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA. J. Biol. Chem. 285 (2010) 12706–12713. [DOI] [PMID: 20129918]
2.  Phillips, G., Swairjo, M.A., Gaston, K.W., Bailly, M., Limbach, P.A., Iwata-Reuyl, D. and de Crecy-Lagard, V. Diversity of archaeosine synthesis in crenarchaeota. ACS Chem. Biol. 7 (2012) 300–305. [DOI] [PMID: 22032275]
[EC 2.6.1.97 created 2012]
 
 
EC 2.6.1.123     
Accepted name: 4-amino-4-deoxychorismate synthase (2-amino-4-deoxychorismate-forming)
Reaction: chorismate + 2 L-glutamine + H2O = 4-amino-4-deoxychorismate + 2 L-glutamate + NH3 (overall reaction)
(1a) 2 L-glutamine + 2 H2O = 2 L-glutamate + 2 NH3
(1b) chorismate + NH3 = (2S)-2-amino-4-deoxychorismate + H2O
(1c) (2S)-2-amino-4-deoxychorismate + NH3 = 4-amino-4-deoxychorismate + NH3
Other name(s): ADCS (ambiguous); ADC synthase (ambiguous); pabAB (gene names)
Systematic name: chorismate:L-glutamine aminotransferase (2-amino-4-deoxychorismate-forming)
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is a heterodimer. The PabA subunit acts successively on two molecules of L-glutamine, hydrolysing each to L-glutamate and ammonia (cf. EC 3.5.1.2, glutaminase). The ammonia molecules are channeled to the active site of PabB, which catalyses the formation of 4-amino-4-deoxychorismate from chorismate in two steps via the intermediate 2-amino-4-deoxychorismate. cf. EC 2.6.1.85, aminodeoxychorismate synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schadt, H.S., Schadt, S., Oldach, F. and Sussmuth, R.D. 2-Amino-2-deoxyisochorismate is a key intermediate in Bacillus subtilis p-aminobenzoic acid biosynthesis. J. Am. Chem. Soc. 131 (2009) 3481–3483. [DOI] [PMID: 19275258]
2.  Bera, A.K., Atanasova, V., Dhanda, A., Ladner, J.E. and Parsons, J.F. Structure of aminodeoxychorismate synthase from Stenotrophomonas maltophilia. Biochemistry 51 (2012) 10208–10217. [DOI] [PMID: 23230967]
[EC 2.6.1.123 created 2021]
 
 
EC 3.4.12.5      
Transferred entry: now EC 3.5.1.28, N-acetylmuramoyl-L-alanine amidase
[EC 3.4.12.5 created 1972, deleted 1978]
 
 
EC 3.4.17.7      
Transferred entry: acylmuramoyl-alanine carboxypeptidase. Now EC 3.5.1.28, N-acetylmuramoyl-L-alanine amidase
[EC 3.4.17.7 created 1978, deleted 1992]
 
 
EC 3.4.19.10      
Transferred entry: acylmuramoyl-Ala peptidase. Now EC 3.5.1.28, N-acetylmuramoyl-L-alanine amidase
[EC 3.4.19.10 created 1972 as EC 3.4.12.5, transferred 1978 to EC 3.4.17.7, transferred 1992 to EC 3.4.19.10, deleted 1997]
 
 
EC 3.5.1.2     
Accepted name: glutaminase
Reaction: L-glutamine + H2O = L-glutamate + NH3
Other name(s): glutaminase I; L-glutaminase; glutamine aminohydrolase
Systematic name: L-glutamine amidohydrolase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-47-2
References:
1.  Kung, H.-F. and Wagner, C. γ-Glutamylmethylamide. A new intermediate in the metabolism of methylamine. J. Biol. Chem. 244 (1969) 4136–4140. [PMID: 5800436]
2.  Roberts, E. Glutaminase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 4, Academic Press, New York, 1960, pp. 285–300.
[EC 3.5.1.2 created 1961]
 
 
EC 3.5.1.20     
Accepted name: citrullinase
Reaction: L-citrulline + H2O = L-ornithine + CO2 + NH3
Other name(s): citrulline ureidase; citrulline hydrolase; L-citrulline 5-N-carbamoyldihydrolase
Systematic name: L-citrulline N5-carbamoyldihydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 59088-17-4
References:
1.  Hill, D.L. and Chambers, P. The biosynthesis of proline by Tetrahymena pyriformis. Biochim. Biophys. Acta 148 (1967) 435–447. [DOI] [PMID: 6075416]
[EC 3.5.1.20 created 1972]
 
 
EC 3.5.1.21     
Accepted name: N-acetyl-β-alanine deacetylase
Reaction: N-acetyl-β-alanine + H2O = acetate + β-alanine
Systematic name: N-acetyl-β-alanine amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37289-04-6
References:
1.  Fujimoto, D., Koyama, T. and Tamiya, N. N-Acetyl-β-alanine deacetylase in hog kidney. Biochim. Biophys. Acta 167 (1968) 407–413.
[EC 3.5.1.21 created 1972]
 
 
EC 3.5.1.22     
Accepted name: pantothenase
Reaction: (R)-pantothenate + H2O = (R)-pantoate + β-alanine
For diagram of pantothenate catabolism, click here
Other name(s): pantothenate hydrolase; pantothenate amidohydrolase
Systematic name: (R)-pantothenate amidohydrolase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9076-90-8
References:
1.  Nurmikko, V., Salo, E., Hakola, H., Makinen, K. and Snell, E.E. The bacterial degradation of pantothenic acid. II. Pantothenate hydrolase. Biochemistry 5 (1966) 399–402. [PMID: 5940928]
[EC 3.5.1.22 created 1972]
 
 
EC 3.5.1.23     
Accepted name: ceramidase
Reaction: a ceramide + H2O = a carboxylate + sphingosine
Glossary: a ceramide = an N-acylsphingosine
Other name(s): acylsphingosine deacylase; glycosphingolipid ceramide deacylase
Systematic name: N-acylsphingosine amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-06-8
References:
1.  Nilsson, A. The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim. Biophys. Acta 176 (1969) 339–347. [DOI] [PMID: 5775951]
2.  Yavin, E. and Gatt, S. Enzymatic hydrolysis of sphingolipids. 8. Further purification and properties of rat brain ceramidase. Biochemistry 8 (1969) 1692–1698. [PMID: 5805303]
[EC 3.5.1.23 created 1972, modified 1990]
 
 
EC 3.5.1.24     
Accepted name: choloylglycine hydrolase
Reaction: glycocholate + H2O = cholate + glycine
For diagram of cholic acid conjugates biosynthesis, click here
Glossary: glycocholate = N-(3α,7α,12α-trihydroxy-5β-cholan-24-oyl)glycine
cholate = 3α,7α,12α-trihydroxy-5β-cholan-24-oate
Other name(s): glycocholase; bile salt hydrolase; choloyltaurine hydrolase; 3α,7α,12α-trihydroxy-5β-cholan-24-oylglycine amidohydrolase
Systematic name: glycocholate amidohydrolase
Comments: Also acts on the 3α,12α-dihydroxy-derivative, and on choloyl-taurine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-07-9
References:
1.  Nair, P.P., Gordon, M. and Reback, J. The enzymatic cleavage of the carbon-nitrogen bond in 3α,7α,12α-trihydroxy-5-β-cholan-24-oylglycine. J. Biol. Chem. 242 (1967) 7–11. [PMID: 6016335]
2.  Stellwag, E.J. and Hylemon, P.B. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim. Biophys. Acta 452 (1976) 165–176. [DOI] [PMID: 10993]
[EC 3.5.1.24 created 1972]
 
 
EC 3.5.1.25     
Accepted name: N-acetylglucosamine-6-phosphate deacetylase
Reaction: N-acetyl-D-glucosamine 6-phosphate + H2O = D-glucosamine 6-phosphate + acetate
For diagram of the biosynthesis of UDP-N-acetylglucosamine, click here
Other name(s): acetylglucosamine phosphate deacetylase; acetylaminodeoxyglucosephosphate acetylhydrolase; 2-acetamido-2-deoxy-D-glucose-6-phosphate amidohydrolase
Systematic name: N-acetyl-D-glucosamine-6-phosphate amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-50-3
References:
1.  White, R.J. and Pasternak, C.A. The purification and properties of N-acetylglucosamine 6-phosphate deacetylase from Escherichia coli. Biochem. J. 105 (1967) 121–125. [PMID: 4861885]
2.  Yamano, N., Matsushita, Y., Kamada, Y., Fujishima, S., Arita, M. Purification and characterization of N-acetylglucosamine 6-phosphate deacetylase with activity against N-acetylglucosamine from Vibrio cholerae non-O1. Biosci. Biotechnol. Biochem. 60 (1996) 1320–1323. [DOI] [PMID: 8987551]
[EC 3.5.1.25 created 1972 (EC 3.5.1.80 created 1999, incorporated 2002)]
 
 
EC 3.5.1.26     
Accepted name: N4-(β-N-acetylglucosaminyl)-L-asparaginase
Reaction: N4-(β-N-acetyl-D-glucosaminyl)-L-asparagine + H2O = N-acetyl-β-D-glucosaminylamine + L-aspartate
Other name(s): aspartylglucosylamine deaspartylase; aspartylglucosylaminase; aspartylglucosaminidase; aspartylglycosylamine amidohydrolase; N-aspartyl-β-glucosaminidase; glucosylamidase; β-aspartylglucosylamine amidohydrolase; 4-N-(β-N-acetyl-D-glucosaminyl)-L-asparagine amidohydrolase
Systematic name: N4-(β-N-acetyl-D-glucosaminyl)-L-asparagine amidohydrolase
Comments: Acts only on asparagine-oligosaccharides containing one amino acid, i.e., the asparagine has free α-amino and α-carboxyl groups [cf. EC 3.5.1.52, peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase]
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-24-5
References:
1.  Kohno, M. and Yamashina, I. Purification and properties of 4-L-aspartylglycosylamine amidohydrolase from hog kidney. Biochim. Biophys. Acta 258 (1972) 600–617. [DOI] [PMID: 5010303]
2.  Mahadevan, S. and Tappel, A.L. β-Aspartylglucosylamine amido hydrolase of rat liver and kidney. J. Biol. Chem. 242 (1967) 4568–4576. [PMID: 6061403]
3.  Tarentino, A.L. and Maley, F. The purification and properties of a β-aspartyl N-acetylglucosylamine amidohydrolase from hen oviduct. Arch. Biochem. Biophys. 130 (1969) 295–303. [PMID: 5778645]
[EC 3.5.1.26 created 1972 (EC 3.5.1.37 created 1972, incorporated 1976)]
 
 
EC 3.5.1.27      
Deleted entry: N-formylmethionylaminoacyl-tRNA deformylase. The activity is covered by EC 3.5.1.88, peptide deformylase
[EC 3.5.1.27 created 1972, deleted 2014]
 
 
EC 3.5.1.28     
Accepted name: N-acetylmuramoyl-L-alanine amidase
Reaction: Hydrolyses the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell-wall glycopeptides
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): acetylmuramyl-L-alanine amidase; N-acetylmuramyl-L-alanine amidase; N-acylmuramyl-L-alanine amidase; acetylmuramoyl-alanine amidase; N-acetylmuramic acid L-alanine amidase; acetylmuramyl-alanine amidase; N-acetylmuramylalanine amidase; murein hydrolase; N-acetylmuramoyl-L-alanine amidase type I; N-acetylmuramoyl-L-alanine amidase type II
Systematic name: peptidoglycan amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-25-6
References:
1.  Ghuysen, J.-M., Dierickx, L., Coyette, J., Leyh-Bouille, M., Guinand, M. and Campbell, J.N. An improved technique for the preparation of Streptomyces peptidases and N-acetylmuramyl-L-alanine amidase active on bacterial wall peptidoglycans. Biochemistry 8 (1969) 213–222. [PMID: 5777325]
2.  Herbold, D.R. and Glaser, L. Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J Biol Chem 250 (1975) 7231–7238. [PMID: 809432]
3.  Herbold, D.R. and Glaser, L. Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J. Biol. Chem. 250 (1975) 1676–1682. [PMID: 803507]
4.  Ward, J.B., Curtis, C.A.M., Taylor, C. and Buxton, R.S. Purification and characterization of two phage PBSX-induced lytic enzymes of Bacillus subtilis 168: an N-acetylmuramoyl-L-alanine amidase and an N-acetylmuramidase. J. Gen. Microbiol. 128 (1982) 1171–1178. [DOI] [PMID: 6126517]
[EC 3.5.1.28 created 1972 (EC 3.4.19.10 created 1992, incorporated 1997)]
 
 
EC 3.5.1.29     
Accepted name: 2-(acetamidomethylene)succinate hydrolase
Reaction: 2-(acetamidomethylene)succinate + 2 H2O = acetate + succinate semialdehyde + NH3 + CO2
Other name(s): α-(N-acetylaminomethylene)succinic acid hydrolase
Systematic name: 2-(acetamidomethylene)succinate amidohydrolase (deaminating, decarboxylating)
Comments: Involved in the degradation of pyridoxin in Pseudomonas.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-09-1
References:
1.  Huynh, M.S. and Snell, E.E. Enzymes of vitamin B6 degradation. Purification and properties of two N-acetylamidohydrolases. J. Biol. Chem. 260 (1985) 2379–2383. [PMID: 3972793]
2.  Nyns, E.J., Zach, D. and Snell, E.E. The bacterial oxidation of vitamin B6. 8. Enzymatic breakdown of α-(N-acetylaminomethylene) succinic acid. J. Biol. Chem. 244 (1969) 2601–2605. [PMID: 5769993]
[EC 3.5.1.29 created 1972]
 
 
EC 3.5.1.37      
Deleted entry:  4-L-aspartylglycosylamine amidohydrolase. Identical with EC 3.5.1.26 N4-(β-N-acetylglucosaminyl)-L-asparaginase
[EC 3.5.1.37 created 1972, deleted 1976]
 
 
EC 3.5.1.38     
Accepted name: glutamin-(asparagin-)ase
Reaction: (1) L-glutamine + H2O = L-glutamate + NH3
(2) L-asparagine + H2O = L-aspartate + NH3
Other name(s): glutaminase-asparaginase; ansB (gene name); L-asparagine/L-glutamine amidohydrolase; L-ASNase/L-GLNase
Systematic name: L-glutamine(L-asparagine) amidohydrolase
Comments: The enzyme from the bacterium Achromobacter hydrolyses L-asparagine at 0.8 of the rate of L-glutamine; the D-isomers are also hydrolysed, but more slowly. cf. EC 3.5.1.2, glutaminase and EC 3.5.1.1, asparaginase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 39335-03-0
References:
1.  Roberts, J., Holcenberg, J.S. and Dolowy, W.C. Isolation, crystallization, and properties of Achromobacteraceae glutaminase-asparaginase with antitumor activity. J. Biol. Chem. 247 (1972) 84–90. [PMID: 5017769]
2.  Tanaka, S., Robinson, E.A., Appella, E., Miller, M., Ammon, H.L., Roberts, J., Weber, I.T. and Wlodawer, A. Structures of amidohydrolases. Amino acid sequence of a glutaminase-asparaginase from Acinetobacter glutaminasificans and preliminary crystallographic data for an asparaginase from Erwinia chrysanthemi. J. Biol. Chem. 263 (1988) 8583–8591. [PMID: 3379033]
3.  Lubkowski, J., Wlodawer, A., Ammon, H.L., Copeland, T.D. and Swain, A.L. Structural characterization of Pseudomonas 7A glutaminase-asparaginase. Biochemistry 33 (1994) 10257–10265. [PMID: 8068664]
4.  Ortlund, E., Lacount, M.W., Lewinski, K. and Lebioda, L. Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. Biochemistry 39 (2000) 1199–1204. [DOI] [PMID: 10684596]
[EC 3.5.1.38 created 1976]
 
 
EC 3.5.1.52     
Accepted name: peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase
Reaction: Hydrolysis of an N4-(acetyl-β-D-glucosaminyl)asparagine residue in which the glucosamine residue may be further glycosylated, to yield a (substituted) N-acetyl-β-D-glucosaminylamine and a peptide containing an aspartate residue
Other name(s): glycopeptide N-glycosidase; glycopeptidase; N-oligosaccharide glycopeptidase; N-glycanase; Jack-bean glycopeptidase; PNGase A; PNGase F
Systematic name: N-linked-glycopeptide-(N-acetyl-β-D-glucosaminyl)-L-asparagine amidohydrolase
Comments: Does not act on (GlcNAc)Asn, because it requires the presence of more than two amino-acid residues in the substrate [cf. EC 3.5.1.26, N4-(β-N-acetylglucosaminyl)-L-asparaginase]. The plant enzyme was previously erroneously listed as EC 3.2.2.18.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83534-39-8
References:
1.  Plummer, T.H., Jr. and Tarentino, A.L. Facile cleavage of complex oligosaccharides from glycopeptides by almond emulsin peptide: N-glycosidase. J. Biol. Chem. 256 (1981) 10243–10246. [PMID: 7287707]
2.  Takahashi, N. Demonstration of a new amidase acting on glycopeptides. Biochem. Biophys. Res. Commun. 76 (1977) 1194–1201. [DOI] [PMID: 901470]
3.  Takahashi, N. and Nishibe, H. Some characteristics of a new glycopeptidase acting on aspartylglycosylamine linkages. J. Biochem. (Tokyo) 84 (1978) 1467–1473. [PMID: 738997]
4.  Tarentino, A.L., Gomez, C.M. and Plummer, T.H., Jr. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry 24 (1985) 4665–4671. [PMID: 4063349]
[EC 3.5.1.52 created 1984, modified 1989 (EC 3.2.2.18 created 1984, incorporated 1989)]
 
 
EC 3.5.1.69     
Accepted name: glycosphingolipid deacylase
Reaction: Hydrolysis of gangliosides and neutral glycosphingolipids, releasing fatty acids to form the lyso-derivatives
Other name(s): glycosphingolipid ceramide deacylase
Systematic name: glycosphingolipid amidohydrolase
Comments: Does not act on sphingolipids such as ceramide. Not identical with EC 3.5.1.23 ceramidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 122544-53-0
References:
1.  Hirabayashi, Y., Kimura, M., Matsumoto, M., Yamamoto, K., Kadowaki, S. and Tochikura, T. A novel glycosphingolipid hydrolyzing enzyme, glycosphingolipid ceramide deacylase, which cleaves the linkage between the fatty acid and sphingosine base in glycosphingolipids. J. Biochem. (Tokyo) 103 (1988) 1–4. [PMID: 3360750]
[EC 3.5.1.69 created 1990]
 
 
EC 3.5.1.80      
Deleted entry: N-acetylgalactosamine-6-phosphate deacetylase. Identical to EC 3.5.1.25, N-acetylglucosamine-6-phosphate deacetylase
[EC 3.5.1.80 created 1999, deleted 2002]
 
 
EC 4.3.2.10     
Accepted name: imidazole glycerol-phosphate synthase
Reaction: 5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide + L-glutamine = 5-amino-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide + D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) 5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide + NH3 = 5-amino-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide + D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate + H2O
For diagram of histidine biosynthesis (late stages), click here
Other name(s): IGP synthase; hisFH (gene names); HIS7 (gene name)
Systematic name: 5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate-lyase (L-glutamine-hydrolysing; 5-amino-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide-forming)
Comments: The enzyme is involved in histidine biosynthesis, as well as purine nucleotide biosynthesis. The enzymes from archaea and bacteria are heterodimeric. A glutaminase component (cf. EC 3.5.1.2, glutaminase) produces an ammonia molecule that is transferred by a 25 Å tunnel to a cyclase component, which adds it to the imidazole ring, leading to lysis of the molecule and cyclization of one of the products. The glutminase subunit is only active within the dimeric complex. In fungi and plants the two subunits are combined into a single polypeptide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Klem, T.J. and Davisson, V.J. Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis. Biochemistry 32 (1993) 5177–5186. [PMID: 8494895]
2.  Fujimori, K. and Ohta, D. An Arabidopsis cDNA encoding a bifunctional glutamine amidotransferase/cyclase suppresses the histidine auxotrophy of a Saccharomyces cerevisiae his7 mutant. FEBS Lett. 428 (1998) 229–234. [PMID: 9654139]
3.  Beismann-Driemeyer, S. and Sterner, R. Imidazole glycerol phosphate synthase from Thermotoga maritima. Quaternary structure, steady-state kinetics, and reaction mechanism of the bienzyme complex. J. Biol. Chem. 276 (2001) 20387–20396. [PMID: 11264293]
4.  Douangamath, A., Walker, M., Beismann-Driemeyer, S., Vega-Fernandez, M.C., Sterner, R. and Wilmanns, M. Structural evidence for ammonia tunneling across the (β α)8 barrel of the imidazole glycerol phosphate synthase bienzyme complex. Structure 10 (2002) 185–193. [PMID: 11839304]
5.  Chaudhuri, B.N., Lange, S.C., Myers, R.S., Davisson, V.J. and Smith, J.L. Toward understanding the mechanism of the complex cyclization reaction catalyzed by imidazole glycerolphosphate synthase: crystal structures of a ternary complex and the free enzyme. Biochemistry 42 (2003) 7003–7012. [PMID: 12795595]
[EC 4.3.2.10 created 2018]
 
 
EC 6.3.4.2     
Accepted name: CTP synthase (glutamine hydrolysing)
Reaction: ATP + UTP + L-glutamine = ADP + phosphate + CTP + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + UTP + NH3 = ADP + phosphate + CTP
Other name(s): UTP—ammonia ligase; cytidine triphosphate synthetase; uridine triphosphate aminase; cytidine 5′-triphosphate synthetase; CTPS (gene name); pyrG (gene name); CTP synthase; UTP:ammonia ligase (ADP-forming)
Systematic name: UTP:L-glutamine amido-ligase (ADP-forming)
Comments: The enzyme contains three functionally distinct sites: an allosteric GTP-binding site, a glutaminase site where glutamine hydrolysis occurs (cf. EC 3.5.1.2, glutaminase), and the active site where CTP synthesis takes place. The reaction proceeds via phosphorylation of UTP by ATP to give an activated intermediate 4-phosphoryl UTP and ADP [4,5]. Ammonia then reacts with this intermediate generating CTP and a phosphate. The enzyme can also use ammonia from the surrounding solution [3,6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-56-7
References:
1.  Lieberman, I. Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. Biol. Chem. 222 (1956) 765–775. [PMID: 13367044]
2.  Long, C.W., Levitzki, A., Houston, L.L and Koshland, D.E., Jr. Subunit structures and interactions of CTP synthetase. Fed. Proc. 28 (1969) 342.
3.  Levitzki, A. and Koshland, D.E., Jr. Ligand-induced dimer-to-tetramer transformation in cytosine triphosphate synthetase. Biochemistry 11 (1972) 247–253. [PMID: 4550560]
4.  von der Saal, W., Anderson, P.M. and Villafranca, J.J. Mechanistic investigations of Escherichia coli cytidine-5′-triphosphate synthetase. Detection of an intermediate by positional isotope exchange experiments. J. Biol. Chem. 260 (1985) 14993–14997. [PMID: 2933396]
5.  Lewis, D.A. and Villafranca, J.J. Investigation of the mechanism of CTP synthetase using rapid quench and isotope partitioning methods. Biochemistry 28 (1989) 8454–8459. [PMID: 2532543]
6.  Wadskov-Hansen, S.L., Willemoes, M., Martinussen, J., Hammer, K., Neuhard, J. and Larsen, S. Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase. J. Biol. Chem. 276 (2001) 38002–38009. [DOI] [PMID: 11500486]
[EC 6.3.4.2 created 1961, modified 2013]
 
 
EC 6.3.5.6     
Accepted name: asparaginyl-tRNA synthase (glutamine-hydrolysing)
Reaction: ATP + L-aspartyl-tRNAAsn + L-glutamine + H2O = ADP + phosphate + L-asparaginyl-tRNAAsn + L-glutamate
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + L-aspartyl-tRNAAsn = ADP + 4-phosphooxy-L-aspartyl-tRNAAsn
(1c) 4-phosphooxy-L-aspartyl-tRNAAsn + NH3 = L-asparaginyl-tRNAAsn + phosphate
Other name(s): Asp-AdT; Asp-tRNAAsn amidotransferase; aspartyl-tRNAAsn amidotransferase; Asn-tRNAAsn:L-glutamine amido-ligase (ADP-forming); aspartyl-tRNAAsn:L-glutamine amido-ligase (ADP-forming); GatCAB
Systematic name: L-aspartyl-tRNAAsn:L-glutamine amido-ligase (ADP-forming)
Comments: This reaction forms part of a two-reaction system for producing asparaginyl-tRNA in Deinococcus radiodurans and other organisms lacking a specific enzyme for asparagine synthesis. In the first step, a non-discriminating ligase (EC 6.1.1.23, aspartate—tRNAAsn ligase) mischarges tRNAAsn with aspartate, leading to the formation of aspartyl-tRNAAsn. The aspartyl-tRNAAsn is not used in protein synthesis until the present enzyme converts it into asparaginyl-tRNAAsn (aspartyl-tRNAAsp is not a substrate for this enzyme). A glutaminase subunit (cf. EC 3.5.1.2, glutaminase) produces an ammonia molecule that is transferred by a 30 Å tunnel to a synthase subunit, where it is ligated to the carboxy group that has been activated by phosphorylation. Bacterial GatCAB complexes also has the activity of EC 6.3.5.7 (glutaminyl-tRNA synthase [glutamine-hydrolysing]).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37211-76-0
References:
1.  Curnow, A.W., Tumbula, D.L., Pelaschier, J.T., Min, B. and Söll, D. Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl. Acad. Sci. USA 95 (1998) 12838–12843. [DOI] [PMID: 9789001]
2.  Ibba, M. and Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69 (2000) 617–650. [DOI] [PMID: 10966471]
3.  Min, B., Pelaschier, J.T., Graham, D.E., Tumbula-Hansen, D. and Söll, D. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc. Natl. Acad. Sci. USA 99 (2002) 2678–2683. [DOI] [PMID: 11880622]
[EC 6.3.5.6 created 2002, modified 2012, modified 2019]
 
 
EC 6.3.5.7     
Accepted name: glutaminyl-tRNA synthase (glutamine-hydrolysing)
Reaction: ATP + L-glutamyl-tRNAGln + L-glutamine = ADP + phosphate + L-glutaminyl-tRNAGln + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + L-glutamyl-tRNAGln = ADP + 5-phosphooxy-L-glutamyl-tRNAGln
(1c) 5-phosphooxy-L-glutamyl-tRNAGln + NH3 = L-glutaminyl-tRNAGln + phosphate
Other name(s): Glu-AdT; Glu-tRNAGln amidotransferase; glutamyl-tRNAGln amidotransferase; Glu-tRNAGln:L-glutamine amido-ligase (ADP-forming); GatCAB; GatFAB; GatDE
Systematic name: L-glutamyl-tRNAGln:L-glutamine amido-ligase (ADP-forming)
Comments: In systems lacking discernible glutamine—tRNA ligase (EC 6.1.1.18), glutaminyl-tRNAGln is formed by a two-enzyme system. In the first step, a nondiscriminating ligase (EC 6.1.1.24, glutamate—tRNAGln ligase) mischarges tRNAGln with glutamate, forming glutamyl-tRNAGln. The glutamyl-tRNAGln is not used in protein synthesis until the present enzyme converts it into glutaminyl-tRNAGln (glutamyl-tRNAGlu is not a substrate for this enzyme). A glutaminase subunit (cf. EC 3.5.1.2, glutaminase) produces an ammonia molecule that is transferred by a 30 Å tunnel to a synthase subunit, where it is ligated to the carboxy group that has been activated by phosphorylation. Some bacterial GatCAB complexes also has the activity of EC 6.3.5.6 (asparaginyl-tRNA synthase [glutamine-hydrolysing]).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52232-48-1
References:
1.  Curnow, A.W., Tumbula, D.L., Pelaschier, J.T., Min, B. and Söll, D. Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl. Acad. Sci. USA 95 (1998) 12838–12843. [DOI] [PMID: 9789001]
2.  Ibba, M. and Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69 (2000) 617–650. [DOI] [PMID: 10966471]
3.  Raczniak, G., Becker, H.D., Min, B. and Soll, D. A single amidotransferase forms asparaginyl-tRNA and glutaminyl-tRNA in Chlamydia trachomatis. J. Biol. Chem. 276 (2001) 45862–45867. [PMID: 11585842]
4.  Horiuchi, K.Y., Harpel, M.R., Shen, L., Luo, Y., Rogers, K.C. and Copeland, R.A. Mechanistic studies of reaction coupling in Glu-tRNAGln amidotransferase. Biochemistry 40 (2001) 6450–6457. [DOI] [PMID: 11371208]
5.  Feng, L., Sheppard, K., Tumbula-Hansen, D. and Soll, D. Gln-tRNAGln formation from Glu-tRNAGln requires cooperation of an asparaginase and a Glu-tRNAGln kinase. J. Biol. Chem. 280 (2005) 8150–8155. [PMID: 15611111]
6.  Nakamura, A., Yao, M., Chimnaronk, S., Sakai, N. and Tanaka, I. Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science 312 (2006) 1954–1958. [PMID: 16809541]
7.  Wu, J., Bu, W., Sheppard, K., Kitabatake, M., Kwon, S.T., Soll, D. and Smith, J.L. Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme. J. Mol. Biol. 391 (2009) 703–716. [PMID: 19520089]
8.  Araiso, Y., Huot, J.L., Sekiguchi, T., Frechin, M., Fischer, F., Enkler, L., Senger, B., Ishitani, R., Becker, H.D. and Nureki, O. Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases. Nucleic Acids Res. 42 (2014) 6052–6063. [PMID: 24692665]
[EC 6.3.5.7 created 2002, modified 2019]
 
 
EC 6.3.5.13     
Accepted name: lipid II isoglutaminyl synthase (glutamine-hydrolysing)
Reaction: ATP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol + L-glutamine + H2O = ADP + phosphate + β-D-GlcNAc-(1→4)-MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol = ADP + β-D-GlcNAc-(1→4)-MurNAc-L-Ala-γ-D-O-P-Glu-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol
(1c) β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-O-P-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol + NH3 = β-D-GlcNAc-(1→4)-MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol + phosphate
Glossary: lipid II = undecaprenyldiphospho-N-acetyl-(N-acetylglucosaminyl)muramoyl peptide; the peptide element refers to L-alanyl-D-γ-glutamyl-L-lysyl/meso-2,6-diaminopimelyl-D-alanyl-D-alanine or a modified version thereof = undecaprenyldiphospho-4-O-(N-acetyl-β-D-glucosaminyl)-3-O-peptidyl-α-N-acetylmuramate; the peptide element refers to L-alanyl-D-γ-glutamyl-L-lysyl/meso-2,6-diaminopimelyl-D-alanyl-D-alanine or a modified version thereof
Other name(s): MurT/GatD; MurT/GatD complex
Systematic name: β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol:L-glutamine amidoligase (ADP-forming)
Comments: The enzyme complex, found in Gram-positive bacteria, consists of two subunits. A glutaminase subunit (cf. EC 3.5.1.2, glutaminase) produces an ammonia molecule that is channeled to a ligase subunit, which adds it to the activated D-glutamate residue of lipid II, converting it to an isoglutamine residue.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Munch, D., Roemer, T., Lee, S.H., Engeser, M., Sahl, H.G. and Schneider, T. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog. 8:e1002509 (2012). [PMID: 22291598]
2.  Noldeke, E.R., Muckenfuss, L.M., Niemann, V., Muller, A., Stork, E., Zocher, G., Schneider, T. and Stehle, T. Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus. Sci. Rep. 8:12953 (2018). [PMID: 30154570]
3.  Morlot, C., Straume, D., Peters, K., Hegnar, O.A., Simon, N., Villard, A.M., Contreras-Martel, C., Leisico, F., Breukink, E., Gravier-Pelletier, C., Le Corre, L., Vollmer, W., Pietrancosta, N., Havarstein, L.S. and Zapun, A. Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat. Commun. 9:3180 (2018). [PMID: 30093673]
[EC 6.3.5.13 created 2019]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald