The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version

EC 2.3.2.2     
Accepted name: γ-glutamyltransferase
Reaction: a (5-L-glutamyl)-peptide + an amino acid = a peptide + a 5-L-glutamyl amino acid
Other name(s): glutamyl transpeptidase; α-glutamyl transpeptidase; γ-glutamyl peptidyltransferase; γ-glutamyl transpeptidase (ambiguous); γ-GPT; γ-GT; γ-GTP; L-γ-glutamyl transpeptidase; L-γ-glutamyltransferase; L-glutamyltransferase; GGT (ambiguous); γ-glutamyltranspeptidase (ambiguous)
Systematic name: (5-L-glutamyl)-peptide:amino-acid 5-glutamyltransferase
Comments: The mammlian enzyme is part of the cell antioxidant defense mechanism. It initiates extracellular glutathione (GSH) breakdown, provides cells with a local cysteine supply and contributes to maintain intracelular GSH levels. The protein also has EC 3.4.19.13 (glutathione hydrolase) activity [3-4]. The enzyme consists of two chains that are created by the proteolytic cleavage of a single precursor polypeptide. The N-terminal L-threonine of the C-terminal subunit functions as the active site for both the cleavage and the hydrolysis reactions [3-4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9046-27-9
References:
1.  Goore, M.Y. and Thompson, J.F. γ-Glutamyl transpeptidase from kidney bean fruit. I. Purification and mechanism of action. Biochim. Biophys. Acta 132 (1967) 15–26. [DOI] [PMID: 6030345]
2.  Leibach, F.H. and Binkley, F. γ-Glutamyl transferase of swine kidney. Arch. Biochem. Biophys. 127 (1968) 292–301. [PMID: 5698023]
3.  Okada, T., Suzuki, H., Wada, K., Kumagai, H. and Fukuyama, K. Crystal structures of γ-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc. Natl. Acad. Sci. USA 103 (2006) 6471–6476. [DOI] [PMID: 16618936]
4.  Boanca, G., Sand, A., Okada, T., Suzuki, H., Kumagai, H., Fukuyama, K. and Barycki, J.J. Autoprocessing of Helicobacter pylori γ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J. Biol. Chem. 282 (2007) 534–541. [DOI] [PMID: 17107958]
5.  Wickham, S., West, M.B., Cook, P.F. and Hanigan, M.H. Gamma-glutamyl compounds: substrate specificity of γ-glutamyl transpeptidase enzymes. Anal. Biochem. 414 (2011) 208–214. [DOI] [PMID: 21447318]
[EC 2.3.2.2 created 1972, modified 1976, modified 2011]
 
 
EC 2.3.2.20     
Accepted name: cyclo(L-leucyl-L-phenylalanyl) synthase
Reaction: L-leucyl-tRNALeu + L-phenylalanyl-tRNAPhe = tRNALeu + tRNAPhe + cyclo(L-leucyl-L-phenylalanyl)
For diagram of cyclic dipeptide biosynthesis, click here
Glossary: cyclo(L-leucyl-L-phenylalanyl) = (3S,6S)-3-benzyl-6-(2-methylpropyl)piperazine-2,5-dione
Other name(s): AlbC; cFL synthase
Systematic name: L-leucyl-tRNALeu:L-phenylalanyl-tRNAPhe leucyltransferase (cyclizing)
Comments: The reaction proceeds following a ping-pong mechanism forming a covalent intermediate between an active site serine and the L-phenylalanine residue [2]. The protein, found in the bacterium Streptomyces noursei, also forms cyclo(L-phenylalanyl-L-phenylalanyl), cyclo(L-methionyl-L-phenylalanyl), cyclo(L-phenylalanyl-L-tyrosyl) and cyclo(L-methionyl-L-tyrosyl) [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gondry, M., Sauguet, L., Belin, P., Thai, R., Amouroux, R., Tellier, C., Tuphile, K., Jacquet, M., Braud, S., Courcon, M., Masson, C., Dubois, S., Lautru, S., Lecoq, A., Hashimoto, S., Genet, R. and Pernodet, J.L. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat. Chem. Biol. 5 (2009) 414–420. [DOI] [PMID: 19430487]
2.  Sauguet, L., Moutiez, M., Li, Y., Belin, P., Seguin, J., Le Du, M.H., Thai, R., Masson, C., Fonvielle, M., Pernodet, J.L., Charbonnier, J.B. and Gondry, M. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Nucleic Acids Res. 39 (2011) 4475–4489. [DOI] [PMID: 21296757]
[EC 2.3.2.20 created 2013]
 
 
EC 2.3.2.21     
Accepted name: cyclo(L-tyrosyl-L-tyrosyl) synthase
Reaction: 2 L-tyrosyl-tRNATyr = 2 tRNATyr + cyclo(L-tyrosyl-L-tyrosyl)
For diagram of cyclic dipeptide biosynthesis, click here
Glossary: cyclo(L-tyrosyl-L-tyrosyl) = (3S,6S)-3,6-bis[(4-hydroxyphenyl)methyl]piperazine-2,5-dione
Other name(s): Rv2275 (gene name); cYY synthase; cyclodityrosine synthase
Systematic name: L-tyrosyl-tRNATyr:L-tyrosyl-tRNATyr tyrosyltransferase (cyclizing)
Comments: The reaction proceeds following a ping-pong mechanism forming a covalent intermediate between an active site serine and the first L-tyrosine residue [2]. The protein, from the bacterium Mycobacterium tuberculosis, also forms small amounts of cyclo(L-tyrosyl-L-phenylalanyl) [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gondry, M., Sauguet, L., Belin, P., Thai, R., Amouroux, R., Tellier, C., Tuphile, K., Jacquet, M., Braud, S., Courcon, M., Masson, C., Dubois, S., Lautru, S., Lecoq, A., Hashimoto, S., Genet, R. and Pernodet, J.L. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat. Chem. Biol. 5 (2009) 414–420. [DOI] [PMID: 19430487]
2.  Vetting, M.W., Hegde, S.S. and Blanchard, J.S. The structure and mechanism of the Mycobacterium tuberculosis cyclodityrosine synthetase. Nat. Chem. Biol. 6 (2010) 797–799. [DOI] [PMID: 20852636]
[EC 2.3.2.21 created 2013]
 
 
EC 2.3.2.22     
Accepted name: cyclo(L-leucyl-L-leucyl) synthase
Reaction: 2 L-leucyl-tRNALeu = 2 tRNALeu + cyclo(L-leucyl-L-leucyl)
For diagram of cyclic dipeptide biosynthesis, click here
Glossary: cyclo(L-leucyl-L-leucyl) = (3S,6S)-3,6-bis(2-methylpropyl)piperazine-2,5-dione
Other name(s): YvmC; cLL synthase; cyclodileucine synthase
Systematic name: L-leucyl-tRNALeu:L-leucyl-tRNALeu leucyltransferase (cyclizing)
Comments: The reaction proceeds following a ping-pong mechanism forming a covalent intermediate between an active site serine and the first L-leucine residue [2]. The proteins from bacteria of the genus Bacillus also form small amounts of cyclo(L-phenylalanyl-L-leucyl) and cyclo(L-leucyl-L-methionyl) [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gondry, M., Sauguet, L., Belin, P., Thai, R., Amouroux, R., Tellier, C., Tuphile, K., Jacquet, M., Braud, S., Courcon, M., Masson, C., Dubois, S., Lautru, S., Lecoq, A., Hashimoto, S., Genet, R. and Pernodet, J.L. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat. Chem. Biol. 5 (2009) 414–420. [DOI] [PMID: 19430487]
2.  Bonnefond, L., Arai, T., Sakaguchi, Y., Suzuki, T., Ishitani, R. and Nureki, O. Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc. Natl. Acad. Sci. USA 108 (2011) 3912–3917. [DOI] [PMID: 21325056]
[EC 2.3.2.22 created 2013]
 
 
EC 2.3.2.23     
Accepted name: E2 ubiquitin-conjugating enzyme
Reaction: S-ubiquitinyl-[E1 ubiquitin-activating enzyme]-L-cysteine + [E2 ubiquitin-conjugating enzyme]-L-cysteine = [E1 ubiquitin-activating enzyme]-L-cysteine + S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine
Other name(s): ubiquitin-carrier-protein E2; UBC (ambiguous); ubiquitin-conjugating enzyme E2
Systematic name: S-ubiquitinyl-[E1 ubiquitin-activating enzyme]-L-cysteine:[E2 ubiquitin-conjugating enzyme] ubiquitinyl transferase
Comments: The E2 ubiquitin-conjugating enzyme acquires the activated ubquitin from the E1 ubiquitin-activating enzyme (EC 6.2.1.45) and binds it via a transthioesterification reaction to itself. In the human enzyme the catalytic center is located at Cys-87 where ubiquitin is bound via its C-terminal glycine in a thioester linkage.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  van Wijk, S.J. and Timmers, H.T. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24 (2010) 981–993. [DOI] [PMID: 19940261]
2.  David, Y., Ziv, T., Admon, A. and Navon, A. The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem. 285 (2010) 8595–8604. [DOI] [PMID: 20061386]
3.  Papaleo, E., Casiraghi, N., Arrigoni, A., Vanoni, M., Coccetti, P. and De Gioia, L. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade. PLoS One 7:e40786 (2012). [DOI] [PMID: 22815819]
4.  Cook, B.W. and Shaw, G.S. Architecture of the catalytic HPN motif is conserved in all E2 conjugating enzymes. Biochem. J. 445 (2012) 167–174. [DOI] [PMID: 22563859]
5.  Li, D.F., Feng, L., Hou, Y.J. and Liu, W. The expression, purification and crystallization of a ubiquitin-conjugating enzyme E2 from Agrocybe aegerita underscore the impact of His-tag location on recombinant protein properties. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69 (2013) 153–157. [DOI] [PMID: 23385757]
[EC 2.3.2.23 created 2015]
 
 
EC 2.3.2.24     
Accepted name: (E3-independent) E2 ubiquitin-conjugating enzyme
Reaction: [E1 ubiquitin-activating enzyme]-S-ubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [E1 ubiquitin-activating enzyme]-L-cysteine + [acceptor protein]-N6-monoubiquitinyl-L-lysine (overall reaction)
(1a) [E1 ubiquitin-activating enzyme]-S-ubiquitinyl-L-cysteine + [(E3-independent) E2 ubiquitin-conjugating enzyme]-L-cysteine = [E1 ubiquitin-activating enzyme]-L-cysteine + [(E3-independent) ubiquitin-conjugating enzyme]-S-monoubiquitinyl-L-cysteine
(1b) [(E3-independent) E2 ubiquitin-conjugating E2 enzyme]-S-monoubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [(E3-independent) E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-N6-monoubiquitinyl-L-lysine
Other name(s): E2-230K; UBE2O; E3-independent ubiquitin-conjugating enzyme E2
Systematic name: [E1 ubiquitin-activating enzyme]-S-ubiquitinyl-L-cysteine:L-lysine ubiquitinyl transferase ([E3 ubiquitin transferase]-independent)
Comments: The enzyme transfers a single ubiquitin directly from an ubiquitinated E1 ubiquitin-activating enzyme to itself, and on to a lysine residue of the acceptor protein without involvement of E3 ubiquitin transferases (cf. EC 2.3.2.26, EC 2.3.2.27). It forms a labile ubiquitin adduct in the presence of E1, ubiquitin, and Mg2+-ATP and catalyses the conjugation of ubiquitin to protein substrates, independently of E3. This transfer has only been observed with small proteins. In vitro a transfer to small acceptors (e.g. L-lysine, N-acetyl-L-lysine methyl ester) has been observed [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pickart, C.M. and Rose, I.A. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260 (1985) 1573–1581. [PMID: 2981864]
2.  Hoeller, D., Hecker, C.M., Wagner, S., Rogov, V., Dotsch, V. and Dikic, I. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell 26 (2007) 891–898. [DOI] [PMID: 17588522]
3.  Ramanathan, H.N., Zhang, G. and Ye, Y. Monoubiquitination of EEA1 regulates endosome fusion and trafficking. Cell Biosci 3:24 (2013). [DOI] [PMID: 23701900]
[EC 2.3.2.24 created 2015]
 
 
EC 2.3.2.25     
Accepted name: N-terminal E2 ubiquitin-conjugating enzyme
Reaction: S-ubiquitinyl-[E1 ubiquitin-activating enzyme]-L-cysteine + [acceptor protein]-N-terminal-amino acid = [E1 ubiquitin-activating enzyme]-L-cysteine + N-terminal-ubiquitinyl-[acceptor protein] (overall reaction)
(1a) S-ubiquitinyl-[E1 ubiquitin-activating enzyme]-L-cysteine + [N-terminal E2 ubiquitin-conjugating enzyme]-L-cysteine = [E1 ubiquitin-activating enzyme]-L-cysteine + S-ubiquitinyl-[N-terminal ubiquitin-conjugating enzyme]-L-cysteine
(1b) S-ubiquitinyl-[N-terminal E2 ubiquitin-conjugating E2 enzyme]-L-cysteine + [acceptor protein]-N-terminal-amino acid = [N-terminal E2 ubiquitin-conjugating enzyme]-L-cysteine + N-ubiquitinyl-[acceptor protein]-N-terminal amino acid
Other name(s): Ube2w; N-terminal ubiquitin-conjugating enzyme E2
Systematic name: S-ubiquitinyl-[E1 ubiquitin-activating enzyme]-L-cysteine:acceptor protein ubiquitin ligase (peptide bond-forming)
Comments: The enzyme ubiquitinylates the N-terminus of the acceptor protein. It is not reactive towards free lysine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Breitschopf, K., Bengal, E., Ziv, T., Admon, A. and Ciechanover, A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 17 (1998) 5964–5973. [DOI] [PMID: 9774340]
2.  Tatham, M.H., Plechanovova, A., Jaffray, E.G., Salmen, H. and Hay, R.T. Ube2W conjugates ubiquitin to α-amino groups of protein N-termini. Biochem. J. 453 (2013) 137–145. [DOI] [PMID: 23560854]
3.  Scaglione, K.M., Basrur, V., Ashraf, N.S., Konen, J.R., Elenitoba-Johnson, K.S., Todi, S.V. and Paulson, H.L. The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. J. Biol. Chem. 288 (2013) 18784–18788. [DOI] [PMID: 23696636]
[EC 2.3.2.25 created 2015]
 
 
EC 2.3.2.26     
Accepted name: HECT-type E3 ubiquitin transferase
Reaction: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-N6-ubiquitinyl-L-lysine (overall reaction)
(1a) [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine + [HECT-type E3 ubiquitin transferase]-L-cysteine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + [HECT-type E3 ubiquitin transferase]-S-ubiquitinyl-L-cysteine
(1b) [HECT-type E3 ubiquitin transferase]-S-ubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [HECT-type E3 ubiquitin transferase]-L-cysteine + [acceptor protein]-N6-ubiquitinyl-L-lysine
Glossary: HECT protein domain = Homologous to the E6-AP Carboxyl Terminus protein domain
Other name(s): HECT E3 ligase (misleading); ubiquitin transferase HECT-E3; S-ubiquitinyl-[HECT-type E3-ubiquitin transferase]-L-cysteine:acceptor protein ubiquitin transferase (isopeptide bond-forming)
Systematic name: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine:[acceptor protein] ubiquitin transferase (isopeptide bond-forming)
Comments: In the first step the enzyme transfers ubiquitin from the E2 ubiquitin-conjugating enzyme (EC 2.3.2.23) to a cysteine residue in its HECT domain (which is located in the C-terminal region), forming a thioester bond. In a subsequent step the enzyme transfers the ubiquitin to an acceptor protein, resulting in the formation of an isopeptide bond between the C-terminal glycine residue of ubiquitin and the ε-amino group of an L-lysine residue of the acceptor protein. cf. EC 2.3.2.27, RING-type E3 ubiquitin transferase and EC 2.3.2.31, RBR-type E3 ubiquitin transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Maspero, E., Mari, S., Valentini, E., Musacchio, A., Fish, A., Pasqualato, S. and Polo, S. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12 (2011) 342–349. [DOI] [PMID: 21399620]
2.  Metzger, M.B., Hristova, V.A. and Weissman, A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125 (2012) 531–537. [DOI] [PMID: 22389392]
[EC 2.3.2.26 created 2015, modified 2017]
 
 
EC 2.3.2.27     
Accepted name: RING-type E3 ubiquitin transferase
Reaction: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-N6-ubiquitinyl-L-lysine
Glossary: RING = Really Interesting New Gene
Other name(s): RING E3 ligase (misleading); ubiquitin transferase RING E3; S-ubiquitinyl-[ubiquitin-conjugating E2 enzyme]-L-cysteine:acceptor protein ubiquitin transferase (isopeptide bond-forming, RING-type)
Systematic name: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine:[acceptor protein] ubiquitin transferase (isopeptide bond-forming; RING-type)
Comments: RING E3 ubiquitin transferases serve as mediators bringing the ubiquitin-charged E2 ubiquitin-conjugating enzyme (EC 2.3.2.23) and an acceptor protein together to enable the direct transfer of ubiquitin through the formation of an isopeptide bond between the C-terminal glycine residue of ubiquitin and the ε-amino group of an L-lysine residue of the acceptor protein. Unlike EC 2.3.2.26, HECT-type E3 ubiquitin transferase, the RING-E3 domain does not form a catalytic thioester intermediate with ubiquitin. Many members of the RING-type E3 ubiquitin transferase family are not able to bind a substrate directly, and form a complex with a cullin scaffold protein and a substrate recognition module (the complexes are named CRL for Cullin-RING-Ligase). In these complexes, the RING-type E3 ubiquitin transferase provides an additional function, mediating the transfer of a NEDD8 protein from a dedicated E2 carrier to the cullin protein (see EC 2.3.2.32, cullin-RING-type E3 NEDD8 transferase). cf. EC 2.3.2.31, RBR-type E3 ubiquitin transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Eisele, F. and Wolf, D.H. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582 (2008) 4143–4146. [DOI] [PMID: 19041308]
2.  Metzger, M.B., Hristova, V.A. and Weissman, A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125 (2012) 531–537. [DOI] [PMID: 22389392]
3.  Plechanovova, A., Jaffray, E.G., Tatham, M.H., Naismith, J.H. and Hay, R.T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489 (2012) 115–120. [DOI] [PMID: 22842904]
4.  Pruneda, J.N., Littlefield, P.J., Soss, S.E., Nordquist, K.A., Chazin, W.J., Brzovic, P.S. and Klevit, R.E. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47 (2012) 933–942. [DOI] [PMID: 22885007]
5.  Metzger, M.B., Pruneda, J.N., Klevit, R.E. and Weissman, A.M. RING -type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta 1843 (2014) 47–60. [DOI] [PMID: 23747565]
[EC 2.3.2.27 created 2015, modified 2017]
 
 
EC 2.3.2.28     
Accepted name: L-allo-isoleucyltransferase
Reaction: L-allo-isoleucyl-[CmaA peptidyl-carrier protein] + holo-[CmaD peptidyl-carrier protein] = L-allo-isoleucyl-[CmaD peptidyl-carrier protein] + holo-[CmaA peptidyl-carrier protein]
Glossary: L-allo-isoleucine = (2S,3R)-2-amino-3-methylpentanoic acid
Other name(s): CmaE
Systematic name: L-allo-isoleucyl-[CmaA peptidyl-carrier protein]:holo-[CmaD peptidyl-carrier protein] L-allo-isoleucyltransferase
Comments: The enzyme, characterized from the bacterium Pseudomonas syringae, is involved in the biosynthesis of the toxin coronatine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vaillancourt, F.H., Yeh, E., Vosburg, D.A., O'Connor, S.E. and Walsh, C.T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436 (2005) 1191–1194. [DOI] [PMID: 16121186]
2.  Strieter, E.R., Vaillancourt, F.H. and Walsh, C.T. CmaE: a transferase shuttling aminoacyl groups between carrier protein domains in the coronamic acid biosynthetic pathway. Biochemistry 46 (2007) 7549–7557. [DOI] [PMID: 17530782]
[EC 2.3.2.28 created 2015]
 
 
EC 2.3.2.29     
Accepted name: aspartate/glutamate leucyltransferase
Reaction: (1) L-leucyl-tRNALeu + N-terminal L-glutamyl-[protein] = tRNALeu + N-terminal L-leucyl-L-glutamyl-[protein]
(2) L-leucyl-tRNALeu + N-terminal L-aspartyl-[protein] = tRNALeu + N-terminal L-leucyl-L-aspartyl-[protein]
Other name(s): leucylD,E-transferase; bpt (gene name)
Systematic name: L-leucyl-tRNALeu:[protein] N-terminal L-glutamate/L-aspartate leucyltransferase
Comments: The enzyme participates in the N-end rule protein degradation pathway in certain bacteria, by attaching the primary destabilizing residue L-leucine to the N-termini of proteins that have an N-terminal L-aspartate or L-glutamate residue. Once modified, the proteins are recognized by EC 3.4.21.92, the ClpAP/ClpS endopeptidase system. cf. EC 2.3.2.6, lysine/arginine leucyltransferase, and EC 2.3.2.8, arginyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Graciet, E., Hu, R.G., Piatkov, K., Rhee, J.H., Schwarz, E.M. and Varshavsky, A. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc. Natl. Acad. Sci. USA 103 (2006) 3078–3083. [DOI] [PMID: 16492767]
[EC 2.3.2.29 created 2016]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald