The Enzyme Database

Your query returned 49 entries.    printer_iconPrintable version



EC 1.1.3.1     
Deleted entry:  glycolate oxidase. Now included with EC 1.1.3.15 (S)-2-hydroxy-acid oxidase
[EC 1.1.3.1 created 1961, deleted 1984]
 
 
EC 1.1.3.2     
Transferred entry: lactate oxidase. Now EC 1.13.12.4, lactate 2-monooxygenase
[EC 1.1.3.2 created 1961, deleted 1972]
 
 
EC 1.1.3.3     
Deleted entry: malate oxidase. Now classified as EC 1.1.5.4, malate dehydrogenase (quinone).
[EC 1.1.3.3 created 1961, deleted 2014]
 
 
EC 1.1.3.4     
Accepted name: glucose oxidase
Reaction: β-D-glucose + O2 = D-glucono-1,5-lactone + H2O2
Other name(s): glucose oxyhydrase; corylophyline; penatin; glucose aerodehydrogenase; microcid; β-D-glucose oxidase; D-glucose oxidase; D-glucose-1-oxidase; β-D-glucose:quinone oxidoreductase; glucose oxyhydrase; deoxin-1; GOD
Systematic name: β-D-glucose:oxygen 1-oxidoreductase
Comments: A flavoprotein (FAD).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-37-0
References:
1.  Bentley, R. Glucose oxidase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 567–586.
2.  Coulthard, C.E., Michaelis, R., Short, W.F., Sykes, G., Skrimshire, G.E.H., Standfast, A.F.B., Birkinshaw, J.H. and Raistick, H. Notatin: an anti-bacterial glucose-aerodehydrogenase from Penicillium notatum Westling and Penicillium resticulosum sp. nov. Biochem. J. 39 (1945) 24–36. [PMID: 16747849]
3.  Keilin, D. and Hartree, E.F. Properties of glucose oxidase (notatin). Biochem. J. 42 (1948) 221–229. [PMID: 16748271]
4.  Keilin, D. and Hartree, E.F. Specificity of glucose oxidase (notatin). Biochem. J. 50 (1952) 331–341. [PMID: 14915954]
[EC 1.1.3.4 created 1961]
 
 
EC 1.1.3.5     
Accepted name: hexose oxidase
Reaction: D-glucose + O2 = D-glucono-1,5-lactone + H2O2
Systematic name: D-hexose:oxygen 1-oxidoreductase
Comments: A copper glycoprotein. Also oxidizes D-galactose, D-mannose, maltose, lactose and cellobiose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-75-5
References:
1.  Bean, R.C. and Hassid, W.Z. Carbohydrate oxidase from a red alga Iridophycus flaccidum. J. Biol. Chem. 218 (1956) 425–436. [PMID: 13278350]
2.  Bean, R.C., Porter, G.G. and Steinberg, B.M. Carbohydrate metabolism of citrus fruit. II. Oxidation of sugars by an aerodehydrogenase from young orange fruit. J. Biol. Chem. 236 (1961) 1235–1240. [PMID: 13688220]
3.  Sullivan, J.D. and Ikawa, M. Purification and characterization of hexose oxidase from the red alga Chondrus crispus. Biochim. Biophys. Acta 309 (1973) 11–22. [PMID: 4708670]
[EC 1.1.3.5 created 1961, modified 1976]
 
 
EC 1.1.3.6     
Accepted name: cholesterol oxidase
Reaction: cholesterol + O2 = cholest-5-en-3-one + H2O2
For diagram of cholesterol catabolism (rings A, B and C), click here
Other name(s): cholesterol- O2 oxidoreductase; 3β-hydroxy steroid oxidoreductase; 3β-hydroxysteroid:oxygen oxidoreductase
Systematic name: cholesterol:oxygen oxidoreductase
Comments: Contains FAD. Cholesterol oxidases are secreted bacterial bifunctional enzymes that catalyse the first two steps in the degradation of cholesterol. The enzyme catalyses the oxidation of the 3β-hydroxyl group to a keto group, and the isomerization of the double bond in the oxidized steroid ring system from the Δ5 position to Δ6 position (cf. EC 5.3.3.1, steroid Δ-isomerase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-76-6
References:
1.  Richmond, W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 19 (1973) 1350–1356. [PMID: 4757363]
2.  Stadtman, T.C., Cherkes, A. and Anfinsen, C.B. Studies on the microbiological degradation of cholesterol. J. Biol. Chem. 206 (1954) 511–523. [PMID: 13143010]
3.  MacLachlan, J., Wotherspoon, A.T., Ansell, R.O. and Brooks, C.J. Cholesterol oxidase: sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol. 72 (2000) 169–195. [PMID: 10822008]
4.  Vrielink, A. Cholesterol oxidase: structure and function. Subcell. Biochem. 51 (2010) 137–158. [PMID: 20213543]
[EC 1.1.3.6 created 1961, modified 1982, modified 2012]
 
 
EC 1.1.3.7     
Accepted name: aryl-alcohol oxidase
Reaction: an aromatic primary alcohol + O2 = an aromatic aldehyde + H2O2
Other name(s): aryl alcohol oxidase; veratryl alcohol oxidase; arom. alcohol oxidase
Systematic name: aryl-alcohol:oxygen oxidoreductase
Comments: Oxidizes many primary alcohols containing an aromatic ring; best substrates are (2-naphthyl)methanol and 3-methoxybenzyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-77-7
References:
1.  Farmer, V.C., Henderson, M.E.K. and Russell, J.D. Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem. J. 74 (1960) 257–262. [PMID: 13821599]
[EC 1.1.3.7 created 1965]
 
 
EC 1.1.3.8     
Accepted name: L-gulonolactone oxidase
Reaction: L-gulono-1,4-lactone + O2 = L-ascorbate + H2O2 (overall reaction)
(1a) L-gulono-1,4-lactone + O2 = L-xylo-hex-2-ulono-1,4-lactone + H2O2
(1b) L-xylo-hex-2-ulono-1,4-lactone = L-ascorbate (spontaneous)
For diagram of mammalian ascorbic acid biosynthesis, click here
Other name(s): L-gulono-γ-lactone: O2 oxidoreductase; L-gulono-γ-lactone oxidase; L-gulono-γ-lactone:oxidoreductase; GLO
Systematic name: L-gulono-1,4-lactone:oxygen 3-oxidoreductase
Comments: A microsomal flavoprotein (FAD). The product spontaneously isomerizes to L-ascorbate. While most higher animals can synthesize asborbic acid, primates and guinea pigs cannot [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-78-8
References:
1.  Isherwood, F.A., Mapson, L.W. and Chen, Y.T. Synthesis of L-ascorbic acid in rat liver homogenates. Conversion of L-gulono- and L-galactono-γ-lactone and the respective acids into L-ascorbic acid. Biochem. J. 76 (1960) 157–171. [PMID: 14405898]
2.  Kiuchi, K., Noshikimi, M. and Yagi, K. Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes. Biochemistry 21 (1982) 5076–5082. [PMID: 7138847]
3.  Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N. and Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 269 (1994) 13685–13688. [PMID: 8175804]
4.  Chatterjee, I.B., Chatterjee, G.C., Ghosh, N.C. and Guha, B.C. Identification of 2-keto-L-gulonolactone as an intermediate in the biosynthesis of L-ascorbic acid. Naturwissenschaften 46 (1959) 475.
[EC 1.1.3.8 created 1965, modified 2001, modified 2006]
 
 
EC 1.1.3.9     
Accepted name: galactose oxidase
Reaction: D-galactose + O2 = D-galacto-hexodialdose + H2O2
Other name(s): D-galactose oxidase; β-galactose oxidase
Systematic name: D-galactose:oxygen 6-oxidoreductase
Comments: A copper protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-79-9
References:
1.  Avigad, G., Amaral, D., Asensio, C. and Horecker, B.L. The D-galactose oxidase of Polyporus circinatus. J. Biol. Chem. 237 (1962) 2736–2743. [PMID: 13863403]
[EC 1.1.3.9 created 1965]
 
 
EC 1.1.3.10     
Accepted name: pyranose oxidase
Reaction: D-glucose + O2 = 2-dehydro-D-glucose + H2O2
Other name(s): glucose 2-oxidase; pyranose-2-oxidase
Systematic name: pyranose:oxygen 2-oxidoreductase
Comments: A flavoprotein (FAD). Also oxidizes D-xylose, L-sorbose and D-glucono-1,5-lactone, which have the same ring conformation and configuration at C-2, C-3 and C-4.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-80-9
References:
1.  Janssen, F.W. and Ruelius, H.W. Carbohydrate oxidase, a novel enzyme from Polyporus obtusus. II. Specificity and characterization of reaction products. Biochim. Biophys. Acta 167 (1968) 501–510. [PMID: 5722278]
2.  Machida, Y. and Nakanishi, T. Purification and properties of pyranose oxidase from Coriolus versicolor. Agric. Biol. Chem. 48 (1984) 2463–2470.
3.  Neidleman, S.L., Amon, W.F., Jr. and Geigert, J. Process for the production of fructose. Patent US4246347, 1981, Chem. Abstr., 94 (1981), 20737 (PDF).
4.  Ruelius, H.W., Kerwin, R.M. and Janssen, F.W. Carbohydrate oxidase, a novel enzyme from Polyporus obtusus. I. Isolation and purification. Biochim. Biophys. Acta 167 (1968) 493–500. [PMID: 5725162]
[EC 1.1.3.10 created 1972]
 
 
EC 1.1.3.11     
Accepted name: L-sorbose oxidase
Reaction: L-sorbose + O2 = 5-dehydro-D-fructose + H2O2
Systematic name: L-sorbose:oxygen 5-oxidoreductase
Comments: Also acts on D-glucose, D-galactose and D-xylose, but not on D-fructose. 2,6-Dichloroindophenol can act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-81-0
References:
1.  Yamada, Y., Iizuka, K., Aida, K. and Uemura, T. Enzymatic studies on the oxidation of sugar and sugar alcohol. 3. Purification and properties of L-sorbose oxidase from Trametes sanguinea. J. Biochem. (Tokyo) 62 (1967) 223–229. [PMID: 5586487]
[EC 1.1.3.11 created 1972]
 
 
EC 1.1.3.12     
Accepted name: pyridoxine 4-oxidase
Reaction: pyridoxine + O2 = pyridoxal + H2O2
Other name(s): pyridoxin 4-oxidase; pyridoxol 4-oxidase
Systematic name: pyridoxine:oxygen 4-oxidoreductase
Comments: A flavoprotein. Can also use 2,6-dichloroindophenol as an acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37250-82-1
References:
1.  Sundaram, T.K. and Snell, E.E. The bacterial oxidation of vitamin B6. V. The enzymatic formation of pyridoxal and isopyridoxal from pyridoxine. J. Biol. Chem. 244 (1969) 2577–2584. [PMID: 5769992]
[EC 1.1.3.12 created 1972, modified 1976]
 
 
EC 1.1.3.13     
Accepted name: alcohol oxidase
Reaction: a primary alcohol + O2 = an aldehyde + H2O2
Other name(s): ethanol oxidase; alcohol:oxygen oxidoreductase
Systematic name: alcohol:oxygen oxidoreductase (H2O2-forming)
Comments: The enzymes from the fungi Candida methanosorbosa and several Basidiomycetes species contain an FAD cofactor [1,3]. The enzyme from the phytopathogenic fungi Colletotrichum graminicola and Colletotrichum gloeosporioides utilize a mononuclear copper-radical mechanism [4]. The enzyme acts on primary alcohols and unsaturated alcohols, and has much lower activity with branched-chain and secondary alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9073-63-6
References:
1.  Janssen, F.W. and Ruelius, H.W. Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. Biochim. Biophys. Acta 151 (1968) 330–342. [PMID: 5636370]
2.  Nishida, A., Ishihara, T. and Hiroi, T. Studies on enzymes related to lignan biodegradation. Baiomasu Henkan Keikaku Kenkyu Hokoku (1987) 38–59. (in Japanese)
3.  Suye, S. Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003. Curr. Microbiol. 34 (1997) 374–377. [PMID: 9142745]
4.  Yin, D.T., Urresti, S., Lafond, M., Johnston, E.M., Derikvand, F., Ciano, L., Berrin, J.G., Henrissat, B., Walton, P.H., Davies, G.J. and Brumer, H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat. Commun. 6:10197 (2015). [PMID: 26680532]
[EC 1.1.3.13 created 1972]
 
 
EC 1.1.3.14     
Accepted name: catechol oxidase (dimerizing)
Reaction: 4 catechol + 3 O2 = 2 dibenzo[1,4]dioxin-2,3-dione + 6 H2O
For diagram of reaction, click here
Systematic name: catechol:oxygen oxidoreductase (dimerizing)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-83-2
References:
1.  Nair, P.M. and Vining, L.C. Enzymic oxidation of catechol to diphenylenedioxide-2,3-quinone. Arch. Biochem. Biophys. 106 (1964) 422–427.
[EC 1.1.3.14 created 1972]
 
 
EC 1.1.3.15     
Accepted name: (S)-2-hydroxy-acid oxidase
Reaction: an (S)-2-hydroxy carboxylate + O2 = a 2-oxo carboxylate + H2O2
Other name(s): hydroxy-acid oxidase A; hydroxy-acid oxidase B; glycolate oxidase; L-2-hydroxy acid oxidase; hydroxyacid oxidase A; L-α-hydroxy acid oxidase
Systematic name: (S)-2-hydroxy carboxylate:oxygen 2-oxidoreductase
Comments: A flavoprotein (FMN). Exists as two major isoenzymes; the A form preferentially oxidizes short-chain aliphatic hydroxy acids, and was previously listed as EC 1.1.3.1, glycolate oxidase; the B form preferentially oxidizes long-chain and aromatic hydroxy acids. The rat isoenzyme B also acts as EC 1.4.3.2, L-amino-acid oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-71-1
References:
1.  Blanchard, M., Green, D.E., Nocito-Carroll, V. and Ratner, S. l-Hydroxy acid oxidase. J. Biol. Chem. 163 (1946) 137–144.
2.  Frigerio, N.A. and Harbury, H.A. Preparation and some properties of crystalline glycolic acid oxidase of spinach. J. Biol. Chem. 231 (1958) 135–157. [PMID: 13538955]
3.  Kun, E., Dechary, J.M. and Pitot, H.C. The oxidation of glycolic acid by a liver enzyme. J. Biol. Chem. 210 (1954) 269–280. [PMID: 13201588]
4.  Nakano, M. and Danowski, T.S. Crystalline mammalian L-amino acid oxidase from rat kidney mitochondria. J. Biol. Chem. 241 (1966) 2075–2083. [PMID: 5946631]
5.  Nakano, M., Ushijima, Y., Saga, M., Tsutsumi, Y. and Asami, H. Aliphatic L-α-hydroxyacid oxidase from rat livers: purification and properties. Biochim. Biophys. Acta 167 (1968) 9–22. [PMID: 5686300]
6.  Phillips, D.R., Duley, J.A., Fennell, D.J. and Holmes, R.S. The self-association of L-α hydroxyacid oxidase. Biochim. Biophys. Acta 427 (1976) 679–687. [PMID: 1268224]
7.  Schuman, M. and Massey, V. Purification and characterization of glycolic acid oxidase from pig liver. Biochim. Biophys. Acta 227 (1971) 500–520. [PMID: 5569122]
8.  Jones, J.M., Morrell, J.C. and Gould, S.J. Identification and characterization of HAOX1, HAOX2, and HAOX3, three human peroxisomal 2-hydroxy acid oxidases. J. Biol. Chem. 275 (2000) 12590–12597. [PMID: 10777549]
[EC 1.1.3.15 created 1972 (EC 1.1.3.1 created 1961, incorporated 1984)]
 
 
EC 1.1.3.16     
Accepted name: ecdysone oxidase
Reaction: ecdysone + O2 = 3-dehydroecdysone + H2O2
Other name(s): β-ecdysone oxidase
Systematic name: ecdysone:oxygen 3-oxidoreductase
Comments: 2,6-Dichloroindophenol can act as an acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56803-12-4
References:
1.  Koolman, J. and Karlson, P. Ecdysone oxidase, an enzyme from the blowfly Calliphora erythrocephala (Meigen). Hoppe-Seyler's Z. Physiol. Chem. 35 (1975) 1131. [PMID: 297]
[EC 1.1.3.16 created 1976]
 
 
EC 1.1.3.17     
Accepted name: choline oxidase
Reaction: choline + 2 O2 + H2O = betaine + 2 H2O2 (overall reaction)
(1a) choline + O2 = betaine aldehyde + H2O2
(1b) betaine aldehyde + O2 + H2O = betaine + H2O2
Glossary: choline = (2-hydroxyethyl)trimethylammonium
betaine aldehyde = N,N,N-trimethyl-2-oxoethylammonium
betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
Systematic name: choline:oxygen 1-oxidoreductase
Comments: A flavoprotein (FAD). In many bacteria, plants and animals, the osmoprotectant betaine is synthesized using different enzymes to catalyse the conversion of (1) choline into betaine aldehyde and (2) betaine aldehyde into betaine. In plants, the first reaction is catalysed by EC 1.14.15.7, choline monooxygenase, whereas in animals and many bacteria, it is catalysed by either membrane-bound choline dehydrogenase (EC 1.1.99.1) or soluble choline oxidase (EC 1.1.3.17) [6]. The enzyme involved in the second step, EC 1.2.1.8, betaine-aldehyde dehydrogenase, appears to be the same in those plants, animals and bacteria that use two separate enzymes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-67-5
References:
1.  Ikuta, S., Imamura, S., Misaki, H. and Horiuti, Y. Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem. (Tokyo) 82 (1977) 1741–1749. [PMID: 599154]
2.  Rozwadowski, K.L., Khachatourians, G.G. and Selvaraj, G. Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 173 (1991) 472–478. [PMID: 1987142]
3.  Rand, T., Halkier, T. and Hansen, O.C. Structural characterization and mapping of the covalently linked FAD cofactor in choline oxidase from Arthrobacter globiformis. Biochemistry 42 (2003) 7188–7194. [PMID: 12795615]
4.  Gadda, G., Powell, N.L. and Menon, P. The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase. Arch. Biochem. Biophys. 430 (2004) 264–273. [PMID: 15369826]
5.  Fan, F. and Gadda, G. On the catalytic mechanism of choline oxidase. J. Am. Chem. Soc. 127 (2005) 2067–2074. [PMID: 15713082]
6.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [PMID: 12466265]
7.  Fan, F., Ghanem, M. and Gadda, G. Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Arch. Biochem. Biophys. 421 (2004) 149–158. [PMID: 14678796]
8.  Gadda, G. Kinetic mechanism of choline oxidase from Arthrobacter globiformis. Biochim. Biophys. Acta 1646 (2003) 112–118. [PMID: 12637017]
[EC 1.1.3.17 created 1978, modified 2005, modified 2007]
 
 
EC 1.1.3.18     
Accepted name: secondary-alcohol oxidase
Reaction: a secondary alcohol + O2 = a ketone + H2O2
Other name(s): polyvinyl alcohol oxidase; secondary alcohol oxidase
Systematic name: secondary-alcohol:oxygen oxidoreductase
Comments: Acts on secondary alcohols with five or more carbons, and polyvinyl alcohols with molecular mass over 300 Da. The Pseudomonas enzyme contains one atom of non-heme iron per molecule.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71245-08-4
References:
1.  Morita, M., Hamada, N., Sakai, K. and Watanabe, Y. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas. Agric. Biol. Chem. 43 (1979) 1225–1235.
2.  Sakai, K., Hamada, N. and Watanabe, Y. Separation of secondary alcohol oxidase and oxidized poly(vinyl alcohol) hydrolase by hydrophobic and dye-ligand chromatographies. Agric. Biol. Chem. 47 (1983) 153–155.
3.  Suzuki, T. Purification and some properties of polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric. Biol. Chem. 40 (1976) 497–504.
4.  Suzuki, T. Oxidation of secondary alcohols by polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric. Biol. Chem. 42 (1977) 1187–1194.
[EC 1.1.3.18 created 1981]
 
 
EC 1.1.3.19     
Accepted name: 4-hydroxymandelate oxidase (decarboxylating)
Reaction: (S)-4-hydroxymandelate + O2 = 4-hydroxybenzaldehyde + CO2 + H2O2
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
Other name(s): L-4-hydroxymandelate oxidase (decarboxylating); (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate:oxygen 1-oxidoreductase; (S)-4-hydroxymandelate:oxygen 1-oxidoreductase; 4-hydroxymandelate oxidase
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase (decarboxylating)
Comments: A flavoprotein (FAD), requires Mn2+. The enzyme from the bacterium Pseudomonas putida is involved in the degradation of mandelate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 60976-30-9
References:
1.  Bhat, S.G. and Vaidyanathan, C.S. Purification and properties of L-4-hydroxymandelate oxidase from Pseudomonas convexa. Eur. J. Biochem. 68 (1976) 323–331. [PMID: 976259]
[EC 1.1.3.19 created 1984, modified 2014]
 
 
EC 1.1.3.20     
Accepted name: long-chain-alcohol oxidase
Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase
Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129430-50-8
References:
1.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [PMID: 36040]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
3.  Cheng, Q., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett. 574 (2004) 62–68. [PMID: 15358540]
4.  Zhao, S., Lin, Z., Ma, W., Luo, D. and Cheng, Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Prog. 24 (2008) 773–779. [PMID: 18396913]
5.  Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim. Biophys. Acta 1735 (2005) 192–203. [PMID: 16046182]
[EC 1.1.3.20 created 1984, modified 2010]
 
 
EC 1.1.3.21     
Accepted name: glycerol-3-phosphate oxidase
Reaction: sn-glycerol 3-phosphate + O2 = glycerone phosphate + H2O2
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): glycerol phosphate oxidase; glycerol-1-phosphate oxidase; glycerol phosphate oxidase; L-α-glycerophosphate oxidase; α-glycerophosphate oxidase; L-α-glycerol-3-phosphate oxidase
Systematic name: sn-glycerol-3-phosphate:oxygen 2-oxidoreductase
Comments: A flavoprotein (FAD).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9046-28-0
References:
1.  Gancedo, C., Gancedo, J.M. and Sols, A. Glycerol metabolism in yeasts. Pathways of utilization and production. Eur. J. Biochem. 5 (1968) 165–172. [PMID: 5667352]
2.  Koditschek, L.K. and Umbreit, W.W. α-Glycerophosphate oxidase in Streptococcus faecium F 24. J. Bacteriol. 93 (1969) 1063–1068. [PMID: 5788698]
[EC 1.1.3.21 created 1984]
 
 
EC 1.1.3.22     
Transferred entry: xanthine oxidase. Now EC 1.17.3.2, xanthine oxidase. The enzyme was incorrectly classified as acting on a CH-OH group
[EC 1.1.3.22 created 1961 as EC 1.2.3.2, transferred 1984 to EC 1.1.3.22, modified 1989, deleted 2004]
 
 
EC 1.1.3.23     
Accepted name: thiamine oxidase
Reaction: thiamine + 2 O2 + H2O = thiamine acetic acid + 2 H2O2
Other name(s): thiamin dehydrogenase; thiamine dehydrogenase; thiamin:oxygen 5-oxidoreductase
Systematic name: thiamine:oxygen 5-oxidoreductase
Comments: A flavoprotein (FAD). The product differs from thiamine in replacement of -CH2.CH2.OH by -CH2.COOH; the two-step oxidation proceeds without the release of the intermediate aldehyde from the enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 96779-44-1
References:
1.  Edmondson, D.E., Kenney, W.C. and Singer, T.P. Structural elucidation and properties of 8α-(N1-histidyl)riboflavin: the flavin component of thiamine dehydrogenase and β-cyclopiazonate oxidocyclase. Biochemistry 15 (1976) 2937–2945. [PMID: 8076]
2.  Gomez-Moreno, C. and Edmondson, D.E. Evidence for an aldehyde intermediate in the catalytic mechanism of thiamine oxidase. Arch. Biochem. Biophys. 239 (1985) 46–52. [PMID: 2988447]
3.  Neal, R.A. Bacterial metabolism of thiamine. 3. Metabolism of thiamine to 3-(2′-methyl-4′-amino-5′-pyrimidylmethyl)-4-methyl-thiazole-5-acetic acid (thiamine acetic acid) by a flavoprotein isolated from a soil microorganism. J. Biol. Chem. 245 (1970) 2599–2604. [PMID: 4987737]
[EC 1.1.3.23 created 1984]
 
 
EC 1.1.3.24     
Transferred entry: L-galactonolactone oxidase. Now EC 1.3.3.12, L-galactonolactone oxidase. The enzyme had been incorrectly classified as acting upon a CH-OH donor rather than a CH-CH donor
[EC 1.1.3.24 created 1984, deleted 2006]
 
 
EC 1.1.3.25     
Transferred entry: cellobiose oxidase. Now included with EC 1.1.99.18, cellobiose dehydrogenase (acceptor)
[EC 1.1.3.25 created 1986, deleted 2005]
 
 
EC 1.1.3.26     
Transferred entry: columbamine oxidase. Now EC 1.21.3.2, columbamine oxidase
[EC 1.1.3.26 created 1989, deleted 2002]
 
 
EC 1.1.3.27     
Accepted name: hydroxyphytanate oxidase
Reaction: L-2-hydroxyphytanate + O2 = 2-oxophytanate + H2O2
Other name(s): L-2-hydroxyphytanate:oxygen 2-oxidoreductase
Systematic name: L-2-hydroxyphytanate:oxygen 2-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 114454-12-5
References:
1.  Vamecq, J. and Draye, J.P. The enzymatic and mass spectrometric identification of 2-oxophytanic acid, a product of the peroxisomal oxidation of l-2-hydroxyphytanic acid. Biomed. Environ. Mass Spectrom. 15 (1988) 345–351. [PMID: 3288289]
[EC 1.1.3.27 created 1990]
 
 
EC 1.1.3.28     
Accepted name: nucleoside oxidase
Reaction: inosine + O2 = 9-riburonosylhypoxanthine + H2O
(1a) 2 inosine + O2 = 2 5′-dehydroinosine + 2 H2O
(1b) 2 5′-dehydroinosine + O2 = 2 9-riburonosylhypoxanthine
Systematic name: nucleoside:oxygen 5′-oxidoreductase
Comments: Other purine and pyrimidine nucleosides (as well as 2′-deoxyribonucleosides) are substrates, but ribose and nucleotides are not substrates. The overall reaction takes place in two separate steps, with the 5′-dehydro nucleoside being released from the enzyme to serve as substrate for the second reaction. This enzyme differs from EC 1.1.3.39, nucleoside oxidase (H2O2-forming), as it produces water rather than hydrogen peroxide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82599-71-1
References:
1.  Isono, Y., Sudo, T. and Hoshino, M. Purification and reaction of a new enzyme, nucleoside oxidase. Agric. Biol. Chem. 53 (1989) 1663–1669.
2.  Isono, Y., Sudo, T. and Hoshino, M. Properties of a new enzyme, nucleoside oxidase, from Pseudomonas maltophilia LB-86. Agric. Biol. Chem. 53 (1989) 1671–1677.
[EC 1.1.3.28 created 1992, modified 2001]
 
 
EC 1.1.3.29     
Accepted name: N-acylhexosamine oxidase
Reaction: N-acetyl-D-glucosamine + O2 = N-acetyl-D-glucosaminate + H2O2
Other name(s): N-acyl-D-hexosamine oxidase; N-acyl-β-D-hexosamine:oxygen 1-oxidoreductase
Systematic name: N-acyl-D-hexosamine:oxygen 1-oxidoreductase
Comments: Also acts on N-glycolylglucosamine, N-acetylgalactosamine and, more slowly, on N-acetylmannosamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 121479-58-1
References:
1.  Horiuchi, T. Purification and properties of N-acyl-D-hexosamine oxidase from Pseudomonas sp 15-1. Agric. Biol. Chem. 53 (1989) 361–368.
[EC 1.1.3.29 created 1992]
 
 
EC 1.1.3.30     
Accepted name: polyvinyl-alcohol oxidase
Reaction: polyvinyl alcohol + O2 = oxidized polyvinyl alcohol + H2O2
Other name(s): dehydrogenase, polyvinyl alcohol; PVA oxidase
Systematic name: polyvinyl-alcohol:oxygen oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119940-13-5
References:
1.  Shimao, M., Nishimura, Y., Kato, N. and Sakazawa, C. Localization of polyvinyl alcohol oxidase produced by a bacterial symbiont Pseudomonas sp strain VM 15C. Appl. Environ. Microbiol. 49 (1985) 8–10. [PMID: 16346711]
2.  Shimao, M., Onishi, S., Kato, N. and Sakazawa, C. Pyrroloquinoline quinone-dependent cytochrome reduction in polyvinyl alcohol-degrading Pseudomonas sp strain VM15C. Appl. Environ. Microbiol. 55 (1989) 275–278. [PMID: 16347841]
[EC 1.1.3.30 created 1992]
 
 
EC 1.1.3.31     
Deleted entry:  methanol oxidase. Cannot be distinguished from EC 1.1.3.13, alcohol oxidase
[EC 1.1.3.31 created 1992, deleted 2003]
 
 
EC 1.1.3.32     
Transferred entry: (S)-stylopine synthase. Now EC 1.14.21.1, (S)-stylopine synthase
[EC 1.1.3.32 created 1999, deleted 2002]
 
 
EC 1.1.3.33     
Transferred entry: S-cheilanthifoline synthase. Now EC 1.14.21.2, (S)-cheilanthifoline synthase
[EC 1.1.3.33 created 1999, deleted 2002]
 
 
EC 1.1.3.34     
Transferred entry: berbamunine synthase. Now EC 1.14.21.3, berbamunine synthase
[EC 1.1.3.34 created 1999, deleted 2002]
 
 
EC 1.1.3.35     
Transferred entry: salutaridine synthase. Now EC 1.14.21.4, salutaridine synthase
[EC 1.1.3.35 created 1999, deleted 2002]
 
 
EC 1.1.3.36     
Transferred entry: (S)-canadine synthase. Now EC 1.14.21.5, (S)-canadine synthase
[EC 1.1.3.36 created 1999, deleted 2002]
 
 
EC 1.1.3.37     
Accepted name: D-arabinono-1,4-lactone oxidase
Reaction: D-arabinono-1,4-lactone + O2 = dehydro-D-arabinono-1,4-lactone + H2O2
For diagram of reaction, click here
Glossary: dehydro-D-arabinono-1,4-lactone = (5R)-3,4-dihydroxy-5-(hydroxymethyl)furan-2(5H)-one
Other name(s): D-arabinono-γ-lactone oxidase; ALO
Systematic name: D-arabinono-1,4-lactone:oxygen oxidoreductase
Comments: A flavoprotein (FAD). L-Galactono-1,4-lactone, L-gulono-1,4-lactone and L-xylono-1,4-lactone can also act as substrates but D-glucono-1,5-lactone, L-arabinono-1,4-lactone, D-galactono-1,4-lactone and D-gulono-1,4-lactone cannot [1]. With L-galactono-1,4-lactone as substrate, the product is L-ascorbate [3]. The product dehydro-D-arabinono-1,4-lactone had previously been referred to erroneously as D-erythroascorbate (CAS no.: 5776-48-7; formula: C6H8O6), although it was referred to as a five-carbon compound [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 182372-12-9
References:
1.  Huh, W.K., Kim, S.T., Yang, K.S., Seok, Y.J., Hah, Y.C. and Kang, S.O. Characterisation of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231. Eur. J. Biochem. 225 (1994) 1073–1079. [PMID: 7957197]
2.  Huh, W.K., Lee, B.H., Kim, S.T., Kim, Y.R., Rhie, G.E., Baek, Y.W., Hwang, C.S., Lee, J.S. and Kang, S.O. D-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol. Microbiol. 30 (1998) 895–903. [PMID: 10094636]
3.  Lee, B.H., Huh, W.K., Kim, S.T., Lee, J.S. and Kang, S.O. Bacterial production of D-erythroascorbic acid and L-ascorbic acid through functional expression of Saccharomyces cerevisiae D-arabinono-1,4-lactone oxidase in Escherichia coli. Appl. Environ. Microbiol. 65 (1999) 4685–4687. [PMID: 10508108]
[EC 1.1.3.37 created 1999]
 
 
EC 1.1.3.38     
Accepted name: vanillyl-alcohol oxidase
Reaction: vanillyl alcohol + O2 = vanillin + H2O2
Other name(s): 4-hydroxy-2-methoxybenzyl alcohol oxidase
Systematic name: vanillyl alcohol:oxygen oxidoreductase
Comments: Vanillyl-alcohol oxidase from Penicillium simplicissimum contains covalently bound FAD. It converts a wide range of 4-hydroxybenzyl alcohols and 4-hydroxybenzylamines into the corresponding aldehydes. The allyl group of 4-allylphenols is also converted into the -CH=CH-CH2OH group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 143929-24-2
References:
1.  de Jong, E., van Berkel, W.J.H., van der Zwan, R.P. and de Bont, J.A.M. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum, a novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208 (1992) 651–657. [PMID: 1396672]
2.  Fraaije, M.W., Veeger, C. and van Berkel, W.J.H. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols. Eur. J. Biochem. 234 (1995) 271–277. [PMID: 8529652]
[EC 1.1.3.38 created 1999]
 
 
EC 1.1.3.39     
Accepted name: nucleoside oxidase (H2O2-forming)
Reaction: adenosine + 2 O2 + H2O = 9-riburonosyladenine + 2 H2O2 (overall reaction)
(1a) adenosine + O2 = 5′-dehydroadenosine + H2O2
(1b) 5′-dehydroadenosine + O2 + H2O = 9-riburonosyladenine + H2O2
Systematic name: nucleoside:oxygen 5′-oxidoreductase (H2O2-forming)
Comments: A heme-containing flavoprotein (FAD). Other purine and pyrimidine nucleosides (as well as 2′-deoxyribonucleosides and arabinosides) are substrates, but ribose and nucleotides are not substrates. The overall reaction takes place in two separate steps, with the 5′-dehydro nucleoside being released from the enzyme to serve as substrate for the second reaction. This enzyme differs from EC 1.1.3.28, nucleoside oxidase, as it produces hydrogen peroxide rather than water.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koga, S., Ogawa, J., Cheng, L.Y., Choi, Y.M., Yamada, H. and Shimizu, S. Nucleoside oxidase, a hydrogen peroxide-forming oxidase, from Flavobacterium meningosepticum. Appl. Environ. Microbiol. 63 (1997) 4282–4286. [PMID: 16535726]
[EC 1.1.3.39 created 2001]
 
 
EC 1.1.3.40     
Accepted name: D-mannitol oxidase
Reaction: mannitol + O2 = mannose + H2O2
Other name(s): mannitol oxidase; D-arabitol oxidase
Systematic name: mannitol:oxygen oxidoreductase (cyclizing)
Comments: Also catalyses the oxidation of D-arabinitol and, to a lesser extent, D-glucitol (sorbitol), whereas L-arabinitol is not a good substrate. The enzyme from the snails Helix aspersa and Arion ater is found in a specialised tubular organelle that has been termed the mannosome.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 73562-29-5
References:
1.  Vorhaben, J.E., Scott, J.F., Smith, D.D. and Campbell, J.W. Mannitol oxidase: partial purification and characterisation of the membrane-bound enzyme from the snail Helix aspersa. Int. J. Biochem. 18 (1986) 337–344. [PMID: 3519307]
2.  Large, A.T., Jones, C.J.P. and Connock, M.J. The association of mannitol oxidase with a distinct organelle in the digestive gland of the terrestrial slug Arion ater. Protoplasma 175 (1993) 93–101.
[EC 1.1.3.40 created 2001]
 
 
EC 1.1.3.41     
Accepted name: alditol oxidase
Reaction: an alditol + O2 = an aldose + H2O2
Other name(s): xylitol oxidase; xylitol:oxygen oxidoreductase; AldO
Systematic name: alditol:oxygen oxidoreductase
Comments: The enzyme from Streptomyces sp. IKD472 and from Streptomyces coelicolor is a monomeric oxidase containing one molecule of FAD per molecule of protein [1,2]. While xylitol (five carbons) and sorbitol (6 carbons) are the preferred substrates, other alditols, including L-threitol (four carbons), D-arabinitol (five carbons), D-galactitol (six carbons) and D-mannitol (six carbons) can also act as substrates, but more slowly [1,2]. Belongs in the vanillyl-alcohol-oxidase family of enzymes [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 177322-52-0
References:
1.  Yamashita, M., Omura, H., Okamoto, E., Furuya, Y., Yabuuchi, M., Fukahi, K. and Murooka, Y. Isolation, characterization, and molecular cloning of a thermostable xylitol oxidase from Streptomyces sp. IKD472. J. Biosci. Bioeng. 89 (2000) 350–360. [PMID: 16232758]
2.  Heuts, D.P., van Hellemond, E.W., Janssen, D.B. and Fraaije, M.W. Discovery, characterization, and kinetic analysis of an alditol oxidase from Streptomyces coelicolor. J. Biol. Chem. 282 (2007) 20283–20291. [PMID: 17517896]
3.  Forneris, F., Heuts, D.P., Delvecchio, M., Rovida, S., Fraaije, M.W. and Mattevi, A. Structural analysis of the catalytic mechanism and stereoselectivity in Streptomyces coelicolor alditol oxidase. Biochemistry 47 (2008) 978–985. [PMID: 18154360]
[EC 1.1.3.41 created 2002, modified 2008]
 
 
EC 1.1.3.42     
Accepted name: prosolanapyrone-II oxidase
Reaction: prosolanapyrone II + O2 = prosolanapyrone III + H2O2
For diagram of solanapyrone biosynthesis, click here
Glossary: prosolanapyrone II = 3-(hydroxymethyl)-4-methoxy-6-(1E,7E,9E)-undeca-1,7,9-trien-1-yl-2H-pyran-2-one
prosolanapyrone III = 4-methoxy-2-oxo-6-(1E,7E,9E)-undeca-1,7,9-trien-1-yl-2H-pyran-3-carboxaldehyde
Other name(s): Sol5 (ambiguous); SPS (ambiguous); solanapyrone synthase (bifunctional enzyme: prosolanapyrone II oxidase/prosolanapyrone III cycloisomerase); prosolanapyrone II oxidase
Systematic name: prosolanapyrone-II:oxygen 3′-oxidoreductase
Comments: The enzyme is involved in the biosynthesis of the phytotoxin solanapyrone by some fungi. The bifunctional enzyme catalyses the oxidation of prosolanapyrone II and the subsequent Diels Alder cycloisomerization of the product prosolanapyrone III to (-)-solanapyrone A (cf. EC 5.5.1.20, prosolanapyrone III cycloisomerase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kasahara, K., Miyamoto, T., Fujimoto, T., Oguri, H., Tokiwano, T., Oikawa, H., Ebizuka, Y. and Fujii, I. Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. Chembiochem. 11 (2010) 1245–1252. [PMID: 20486243]
2.  Katayama, K., Kobayashi, T., Oikawa, H., Honma, M. and Ichihara, A. Enzymatic activity and partial purification of solanapyrone synthase: first enzyme catalyzing Diels-Alder reaction. Biochim. Biophys. Acta 1384 (1998) 387–395. [PMID: 9659400]
3.  Katayama, K., Kobayashi, T., Chijimatsu, M., Ichihara, A. and Oikawa, H. Purification and N-terminal amino acid sequence of solanapyrone synthase, a natural Diels-Alderase from Alternaria solani. Biosci. Biotechnol. Biochem. 72 (2008) 604–607. [PMID: 18256508]
[EC 1.1.3.42 created 2011]
 
 
EC 1.1.3.43     
Accepted name: paromamine 6′-oxidase
Reaction: paromamine + O2 = 6′-dehydroparomamine + H2O2
Other name(s): btrQ (gene name); neoG (gene name); kanI (gene name); tacB (gene name); neoQ (obsolete gene name)
Systematic name: paromamine:oxygen 6′-oxidoreductase
Comments: Contains FAD. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Works in combination with EC 2.6.1.93, neamine transaminase, to replace the 6′-hydroxy group of paromamine with an amino group. The enzyme from the bacterium Streptomyces fradiae also catalyses EC 1.1.3.44, 6′′′-hydroxyneomycin C oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem. 8 (2007) 283–288. [PMID: 17206729]
2.  Yu, Y., Hou, X., Ni, X. and Xia, H. Biosynthesis of 3′-deoxy-carbamoylkanamycin C in a Streptomyces tenebrarius mutant strain by tacB gene disruption. J. Antibiot. (Tokyo) 61 (2008) 63–69. [PMID: 18408324]
3.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [PMID: 21689223]
[EC 1.1.3.43 created 2012]
 
 
EC 1.1.3.44     
Accepted name: 6′′′-hydroxyneomycin C oxidase
Reaction: 6′′′-deamino-6′′′-hydroxyneomycin C + O2 = 6′′′-deamino-6′′′-oxoneomycin C + H2O2
Other name(s): neoG (gene name); neoQ (obsolete gene name)
Systematic name: 6′′′-deamino-6′′′-hydroxyneomycin C:oxygen 6′′′-oxidoreductase
Comments: Contains FAD. Involved in the biosynthetic pathway of aminoglycoside antibiotics of the neomycin family. Works in combination with EC 2.6.1.95, neomycin C transaminase, to replace the 6′′′-hydroxy group of 6′′′-hydroxyneomycin C with an amino group. Also catalyses EC 1.1.3.43, paromamine 6′-oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem. 8 (2007) 283–288. [PMID: 17206729]
2.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [PMID: 21689223]
[EC 1.1.3.44 created 2012]
 
 
EC 1.1.3.45     
Accepted name: aclacinomycin-N oxidase
Reaction: aclacinomycin N + O2 = aclacinomycin A + H2O2
For diagram of aclacinomycin A and Y biosynthesis, click here
Glossary: aclacinomycin N = 2-ethyl-2,5,7-trihydroxy-6,11-dioxo-4-[[2,3,6-trideoxy-4-O-[2,6-dideoxy-4-O-[(2S,5S,6S)-5-hydroxy-6-methyltetrahydro-2H-pyran-2-yl]-α-L-lyxo-hexopyranosyl]-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy]-1,2,3,4,6,11-hexahydronaphthacene-1-carboxylic acid methyl ester
aclacinomycin A = 2-ethyl-2,5,7-trihydroxy-6,11-dioxo-4-[[2,3,6-trideoxy-4-O-[2,6-dideoxy-4-O-[(2R,6S)-6-methyl-5-oxotetrahydro-2H-pyran-2-yl]-α-L-lyxo-hexopyranosyl]-3-(dimethylamino)-α-L-lyxo-hexopyranosyl]oxy]-1,2,3,4,6,11-hexahydronaphthacene-1-carboxylic acid methyl ester
Other name(s): AknOx (ambiguous); aclacinomycin oxidoreductase (ambiguous)
Systematic name: aclacinomycin-N:oxygen oxidoreductase
Comments: A flavoprotein (FAD). This bifunctional enzyme is a secreted flavin-dependent enzyme that is involved in the modification of the terminal sugar residues in the biosynthesis of aclacinomycins. The enzyme utilizes the same active site to catalyse the oxidation of the rhodinose moiety of aclacinomycin N to the cinerulose A moiety of aclacinomycin A and the oxidation of the latter to the L-aculose moiety of aclacinomycin Y (cf. EC 1.3.3.14, aclacinomycin A oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Alexeev, I., Sultana, A., Mantsala, P., Niemi, J. and Schneider, G. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Proc. Natl. Acad. Sci. USA 104 (2007) 6170–6175. [PMID: 17395717]
2.  Sultana, A., Alexeev, I., Kursula, I., Mantsala, P., Niemi, J. and Schneider, G. Structure determination by multiwavelength anomalous diffraction of aclacinomycin oxidoreductase: indications of multidomain pseudomerohedral twinning. Acta Crystallogr. D Biol. Crystallogr. 63 (2007) 149–159. [PMID: 17242508]
[EC 1.1.3.45 created 2013]
 
 
EC 1.1.3.46     
Accepted name: 4-hydroxymandelate oxidase
Reaction: (S)-4-hydroxymandelate + O2 = 2-(4-hydroxyphenyl)-2-oxoacetate + H2O2
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
2-(4-hydroxyphenyl)-2-oxoacetate = 4-hydroxyphenylglyoxylate = (4-hydroxyphenyl)(oxo)acetate
L-(4-hydroxyphenyl)glycine = (S)-4-hydroxyphenylglycine
L-(3,5-dihydroxyphenyl)glycine = (S)-3,5-dihydroxyphenylglycine
Other name(s): 4HmO; HmO
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase
Comments: A flavoprotein (FMN). The enzyme from the bacterium Amycolatopsis orientalis is involved in the biosynthesis of L-(4-hydroxyphenyl)glycine and L-(3,5-dihydroxyphenyl)glycine, two non-proteinogenic amino acids occurring in the vancomycin group of antibiotics.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hubbard, B.K., Thomas, M.G. and Walsh, C.T. Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem. Biol. 7 (2000) 931–942. [PMID: 11137816]
2.  Li, T.L., Choroba, O.W., Charles, E.H., Sandercock, A.M., Williams, D.H. and Spencer, J.B. Characterisation of a hydroxymandelate oxidase involved in the biosynthesis of two unusual amino acids occurring in the vancomycin group of antibiotics. Chem. Commun. (Camb.) (2001) 1752–1753. [PMID: 12240298]
[EC 1.1.3.46 created 2014]
 
 
EC 1.1.3.47     
Accepted name: 5-(hydroxymethyl)furfural oxidase
Reaction: 5-(hydroxymethyl)furfural + 3 O2 + 2 H2O = furan-2,5-dicarboxylate + 3 H2O2 (overall reaction)
(1a) 5-(hydroxymethyl)furfural + O2 = furan-2,5-dicarbaldehyde + H2O2
(1b) furan-2,5-dicarbaldehyde + H2O = 5-(dihydroxymethyl)furan-2-carbaldehyde (spontaneous)
(1c) 5-(dihydroxymethyl)furan-2-carbaldehyde + O2 = 5-formylfuran-2-carboxylate + H2O2
(1d) 5-formylfuran-2-carboxylate + H2O = 5-(dihydroxymethyl)furan-2-carboxylate (spontaneous)
(1e) 5-(dihydroxymethyl)furan-2-carboxylate + O2 = furan-2,5-dicarboxylate + H2O2
Glossary: 5-(hydroxymethyl)furfural = 5-(hydroxymethyl)furan-2-carbaldehyde
Systematic name: 5-(hydroxymethyl)furfural:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Methylovorus sp. strain MP688, is involved in the degradation and detoxification of 5-(hydroxymethyl)furfural. The enzyme acts only on alcohol groups and requires the spontaneous hydration of aldehyde groups for their oxidation [3]. The enzyme has a broad substrate range that overlaps with EC 1.1.3.7, aryl-alcohol oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koopman, F., Wierckx, N., de Winde, J.H. and Ruijssenaars, H.J. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc. Natl. Acad. Sci. USA 107 (2010) 4919–4924. [PMID: 20194784]
2.  Dijkman, W.P. and Fraaije, M.W. Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl. Environ. Microbiol. 80 (2014) 1082–1090. [PMID: 24271187]
3.  Dijkman, W.P., Groothuis, D.E. and Fraaije, M.W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew. Chem. Int. Ed. Engl. 53 (2014) 6515–6518. [PMID: 24802551]
[EC 1.1.3.47 created 2014]
 
 
EC 1.1.3.48     
Accepted name: 3-deoxy-α-D-manno-octulosonate 8-oxidase
Reaction: 3-deoxy-α-D-manno-octulopyranosonate + O2 = 3,8-dideoxy-8-oxo-α-D-manno-octulosonate + H2O2
Glossary: 3-deoxy-α-D-manno-octulosonate = Kdo
3,8-dideoxy-8-oxo-α-D-manno-octulosonate = (2R,4R,5R,6S)-2,4,5-trihydroxy-6-[(1S)-1-hydroxy-2-oxoethyl]oxane-2-carboxylate
Other name(s): kdnB (gene name)
Systematic name: 3-deoxy-α-D-manno-octulopyranosonate:oxygen 8-oxidoreductase
Comments: The enzyme, characterized from the bacterium Shewanella oneidensis, is involved in the formation of 8-amino-3,8-dideoxy-α-D-manno-octulosonate, an aminated form of Kdo found in lipopolysaccharides of members of the Shewanella genus. cf. EC 2.6.1.109, 8-amino-3,8-dideoxy-α-D-manno-octulosonate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gattis, S.G., Chung, H.S., Trent, M.S. and Raetz, C.R. The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis. J. Biol. Chem. 288 (2013) 9216–9225. [PMID: 23413030]
[EC 1.1.3.48 created 2015]
 
 
EC 1.1.3.49     
Accepted name: (R)-mandelonitrile oxidase
Reaction: (R)-mandelonitrile + O2 = benzoyl cyanide + H2O2
Glossary: (R)-mandelonitrile = (R)-2-hydroxy-2-phenylacetonitrile
Other name(s): ChuaMOX (gene name)
Systematic name: (R)-mandelonitrile:oxygen oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the millipede Chamberlinius hualienensis, is segregated from its substrate, which is contained in special sacs. The sacs are ruptured during defensive behavior, allowing the enzyme and substrate to mix in special reaction chambers leading to production of the defensive chemical benzoyl cyanide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ishida, Y., Kuwahara, Y., Dadashipour, M., Ina, A., Yamaguchi, T., Morita, M., Ichiki, Y. and Asano, Y. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase. Sci Rep 6:26998 (2016). [PMID: 27265180]
[EC 1.1.3.49 created 2016]
 
 


Data © 2001–2017 IUBMB
Web site © 2005–2017 Andrew McDonald