The Enzyme Database

Displaying entries 151-200 of 580.

<< Previous | Next >>    printer_iconPrintable version

EC 2.1.1.10     
Accepted name: homocysteine S-methyltransferase
Reaction: S-methyl-L-methionine + L-homocysteine = 2 L-methionine
Other name(s): S-adenosylmethionine homocysteine transmethylase; S-methylmethionine homocysteine transmethylase; adenosylmethionine transmethylase; methylmethionine:homocysteine methyltransferase; adenosylmethionine:homocysteine methyltransferase; homocysteine methylase; homocysteine methyltransferase; homocysteine transmethylase; L-homocysteine S-methyltransferase; S-adenosyl-L-methionine:L-homocysteine methyltransferase; S-adenosylmethionine-homocysteine transmethylase; S-adenosylmethionine:homocysteine methyltransferase
Systematic name: S-methyl-L-methionine:L-homocysteine S-methyltransferase
Comments: The enzyme uses S-adenosyl-L-methionine as methyl donor less actively than S-methyl-L-methionine.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9012-40-2
References:
1.  Balish, E. and Shapiro, S.K. Methionine biosynthesis in Escherichia coli: induction and repression of methylmethionine (or adenosylmethionine):homocysteine methyltransferase. Arch. Biochem. Biophys. 119 (1967) 62–68. [DOI] [PMID: 4861151]
2.  Shapiro, S.K. Adenosylmethionine-homocysteine transmethylase. Biochim. Biophys. Acta 29 (1958) 405–409. [DOI] [PMID: 13572358]
3.  Shapiro, S.K. and Yphantis, D.A. Assay of S-methylmethionine and S-adenosylmethionine homocysteine transmethylases. Biochim. Biophys. Acta 36 (1959) 241–244. [DOI] [PMID: 14445542]
4.  Mudd, S.H. and Datko, A.H. The S-Methylmethionine Cycle in Lemna paucicostata. Plant Physiol. 93 (1990) 623–630. [PMID: 16667513]
5.  Ranocha, P., McNeil, S.D., Ziemak, M.J., Li, C., Tarczynski, M.C. and Hanson, A.D. The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J. 25 (2001) 575–584. [DOI] [PMID: 11309147]
6.  Ranocha, P., Bourgis, F., Ziemak, M.J., Rhodes, D., Gage, D.A. and Hanson, A.D. Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. J. Biol. Chem. 275 (2000) 15962–15968. [DOI] [PMID: 10747987]
7.  Grue-Sørensen, G., Kelstrup, E., Kjær, A. and Madsen, J.Ø. Diastereospecific, enzymically catalysed transmethylation from S-methyl-L-methionine to L-homocysteine, a naturally occurring process. J. Chem. Soc. Perkin Trans. 1 (1984) 1091–1097.
[EC 2.1.1.10 created 1965, modified 2010]
 
 
EC 2.1.1.35     
Accepted name: tRNA (uracil54-C5)-methyltransferase
Reaction: S-adenosyl-L-methionine + uracil54 in tRNA = S-adenosyl-L-homocysteine + 5-methyluracil54 in tRNA
Other name(s): transfer RNA uracil54 5-methyltransferase; transfer RNA uracil54 methylase; tRNA uracil54 5-methyltransferase; m5U54-methyltransferase; tRNA:m5U54-methyltransferase; RUMT; TrmA; 5-methyluridine54 tRNA methyltransferase; tRNA(uracil-54,C5)-methyltransferase; Trm2; tRNA(m5U54)methyltransferase
Systematic name: S-adenosyl-L-methionine:tRNA (uracil54-C5)-methyltransferase
Comments: Unlike this enzyme, EC 2.1.1.74 (methylenetetrahydrofolate—tRNA-(uracil54-C5)-methyltransferase (FADH2-oxidizing)), uses 5,10-methylenetetrahydrofolate and FADH2 to supply the atoms for methylation of U54 [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37257-02-6
References:
1.  Björk, G.R. and Svensson, I. Studies on microbial RNA. Fractionation of tRNA methylases from Saccharomyces cerevisiae. Eur. J. Biochem. 9 (1969) 207–215. [DOI] [PMID: 4896260]
2.  Greenberg, R. and Dudock, B. Isolation and characterization of m5U-methyltransferase from Escherichia coli. J. Biol. Chem. 255 (1980) 8296–8302. [PMID: 6997293]
3.  Hurwitz, J., Gold, M. and Anders, M. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. 3. Purification of soluble ribonucleic acid-methylating enzymes. J. Biol. Chem. 239 (1964) 3462–3473. [PMID: 14245404]
4.  Delk, A.S., Nagle, D.P., Jr. and Rabinowitz, J.C. Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2. J. Biol. Chem. 255 (1980) 4387–4390. [PMID: 6768721]
5.  Kealey, J.T., Gu, X. and Santi, D.V. Enzymatic mechanism of tRNA (m5U54)methyltransferase. Biochimie 76 (1994) 1133–1142. [DOI] [PMID: 7748948]
6.  Gu, X., Ivanetich, K.M. and Santi, D.V. Recognition of the T-arm of tRNA by tRNA (m5U54)-methyltransferase is not sequence specific. Biochemistry 35 (1996) 11652–11659. [DOI] [PMID: 8794745]
7.  Becker, H.F., Motorin, Y., Sissler, M., Florentz, C. and Grosjean, H. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the TΨ-loop of yeast tRNAs. J. Mol. Biol. 274 (1997) 505–518. [DOI] [PMID: 9417931]
8.  Walbott, H., Leulliot, N., Grosjean, H. and Golinelli-Pimpaneau, B. The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity. Nucleic Acids Res. 36 (2008) 4929–4940. [DOI] [PMID: 18653523]
[EC 2.1.1.35 created 1972, modified 2011]
 
 
EC 2.1.1.41     
Accepted name: sterol 24-C-methyltransferase
Reaction: S-adenosyl-L-methionine + 5α-cholesta-8,24-dien-3β-ol = S-adenosyl-L-homocysteine + 24-methylene-5α-cholest-8-en-3β-ol
For diagram of sterol sidechain modification, click here
Glossary: desmosterol = cholesta-5,24-dien-3β-ol
zymostrol = 5α-cholesta-8,24-dien-3β-ol
Other name(s): Δ24-methyltransferase; Δ24-sterol methyltransferase; zymosterol-24-methyltransferase; S-adenosyl-4-methionine:sterol Δ24-methyltransferase; SMT1; 24-sterol C-methyltransferase; S-adenosyl-L-methionine:Δ24(23)-sterol methyltransferase; phytosterol methyltransferase
Systematic name: S-adenosyl-L-methionine:zymosterol 24-C-methyltransferase
Comments: Requires glutathione. Acts on a range of sterols with a 24(25)-double bond in the sidechain. While zymosterol is the preferred substrate it also acts on desmosterol, 5α-cholesta-7,24-dien-3β-ol, 5α-cholesta-5,7,24-trien-3β-ol, 4α-methylzymosterol and others. S-Adenosyl-L-methionine attacks the Si-face of the 24(25) double bond and the C-24 hydrogen is transferred to C-25 on the Re face of the double bond.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37257-07-1
References:
1.  Moore, J.T., Jr. and Gaylor, J.L. Isolation and purification of an S-adenosylmethionine: Δ24-sterol methyltransferase from yeast. J. Biol. Chem. 244 (1969) 6334–6340. [PMID: 5354959]
2.  Venkatramesh, M., Guo, D., Jia, Z. and Nes, W.D. Mechanism and structural requirements for transformations of substrates by the S-adenosyl-L-methionine:Δ24(25)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1299 (1996) 313–324. [DOI] [PMID: 8597586]
3.  Tong, Y., McCourt, B.S., Guo, D., Mangla, A.T., Zhou, W.X., Jenkins, M.D., Zhou, W., Lopez, M. and Nes, W.D. , Stereochemical features of C-methylation on the path to Δ24(28)-methylene and Δ24(28)-ethylidene sterols: studies on the recombinant phytosterol methyl transferase from Arabidopsis thaliana. Tetrahedron Lett. 38 (1997) 6115–6118.
4.  Bouvier-Navé, P., Husselstein, T. and Benveniste, P. Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant biosynthesis. Eur. J. Biochem. 256 (1998) 88–96. [DOI] [PMID: 9746350]
5.  Nes, W.D., McCourt, B.S., Zhou, W., Ma, J., Marshall, J.A., Peek, L.A. and Brennan, M. Overexpression, purification, and stereochemical studies of the recombinant S-adenosyl-L-methionine:Δ24(25)- to Δ24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae sterol methyl transferase. Arch. Biochem. Biophys. 353 (1998) 297–311. [DOI] [PMID: 9606964]
[EC 2.1.1.41 created 1972, modified 2001]
 
 
EC 2.1.1.42     
Accepted name: flavone 3′-O-methyltransferase
Reaction: S-adenosyl-L-methionine + 3′-hydroxyflavone = S-adenosyl-L-homocysteine + 3′-methoxyflavone
For diagram of luteolin biosynthesis click here
Other name(s): o-dihydric phenol methyltransferase; luteolin methyltransferase; luteolin 3′-O-methyltransferase; o-diphenol m-O-methyltransferase; o-dihydric phenol meta-O-methyltransferase; S-adenosylmethionine:flavone/flavonol 3′-O-methyltransferase; quercetin 3′-O-methyltransferase
Systematic name: S-adenosyl-L-methionine:3′-hydroxyflavone 3′-O-methyltransferase
Comments: The enzyme prefers flavones with vicinal 3′,4′-dihydroxyl groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37205-55-3
References:
1.  Ebel, J., Hahlbrock, K. and Grisebach, H. Purification and properties of an o-dihydricphenol meta-O-methyltransferase from cell suspension cultures of parsley and its relation to flavonoid biosynthesis. Biochim. Biophys. Acta 268 (1972) 313–326. [DOI] [PMID: 5026305]
2.  Muzac, I., Wang, J., Anzellotti, D., Zhang, H. and Ibrahim, R.K. Functional expression of an Arabidopsis cDNA clone encoding a flavonol 3′-O-methyltransferase and characterization of the gene product. Arch. Biochem. Biophys. 375 (2000) 385–388. [DOI] [PMID: 10700397]
3.  Poulton, J.E., Hahlbrock, K. and Grisebach, H. O-Methylation of flavonoid substrates by a partially purified enzyme from soybean cell suspension cultures. Arch. Biochem. Biophys. 180 (1977) 543–549. [DOI] [PMID: 18099]
4.  Kim, B.G., Lee, H.J., Park, Y., Lim, Y. and Ahn, J.H. Characterization of an O-methyltransferase from soybean. Plant Physiol. Biochem. 44 (2006) 236–241. [DOI] [PMID: 16777424]
5.  Lee, Y.J., Kim, B.G., Chong, Y., Lim, Y. and Ahn, J.H. Cation dependent O-methyltransferases from rice. Planta 227 (2008) 641–647. [DOI] [PMID: 17943312]
[EC 2.1.1.42 created 1976, modified 2011]
 
 
EC 2.1.1.74     
Accepted name: methylenetetrahydrofolate—tRNA-(uracil54-C5)-methyltransferase [NAD(P)H-oxidizing]
Reaction: 5,10-methylenetetrahydrofolate + uracil54 in tRNA + NAD(P)H + H+ = tetrahydrofolate + 5-methyluracil54 in tRNA + NAD(P)+
Glossary: Ψ = pseudouridine
T = ribothymidine = 5-methyluridine
Other name(s): folate-dependent ribothymidyl synthase; methylenetetrahydrofolate-transfer ribonucleate uracil 5-methyltransferase; 5,10-methylenetetrahydrofolate:tRNA-UΨC (uracil-5-)-methyl-transferase; 5,10-methylenetetrahydrofolate:tRNA (uracil-5-)-methyl-transferase; TrmFO; folate/FAD-dependent tRNA T54 methyltransferase; methylenetetrahydrofolate—tRNA-(uracil54-C5)-methyltransferase (FADH2-oxidizing)
Systematic name: 5,10-methylenetetrahydrofolate:tRNA (uracil54-C5)-methyltransferase
Comments: A flavoprotein (FAD). Up to 25% of the bases in mature tRNA are post-translationally modified or hypermodified. One almost universal post-translational modification is the conversion of U54 into ribothymidine in the TΨC loop, and this modification is found in most species studied to date [2]. Unlike this enzyme, which uses 5,10-methylenetetrahydrofolate and NAD(P)H to supply the atoms for methylation of U54, EC 2.1.1.35, tRNA (uracil54-C5)-methyltransferase, uses S-adenosyl-L-methionine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 56831-74-4
References:
1.  Delk, A.S., Nagle, D.P., Jr. and Rabinowitz, J.C. Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2. J. Biol. Chem. 255 (1980) 4387–4390. [PMID: 6768721]
2.  Becker, H.F., Motorin, Y., Sissler, M., Florentz, C. and Grosjean, H. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the TΨ-loop of yeast tRNAs. J. Mol. Biol. 274 (1997) 505–518. [DOI] [PMID: 9417931]
3.  Nishimasu, H., Ishitani, R., Yamashita, K., Iwashita, C., Hirata, A., Hori, H. and Nureki, O. Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase. Proc. Natl. Acad. Sci. USA 106 (2009) 8180–8185. [DOI] [PMID: 19416846]
4.  Yamagami, R., Yamashita, K., Nishimasu, H., Tomikawa, C., Ochi, A., Iwashita, C., Hirata, A., Ishitani, R., Nureki, O. and Hori, H. The tRNA recognition mechanism of folate/FAD-dependent tRNA methyltransferase (TrmFO). J. Biol. Chem. 287 (2012) 42480–42494. [PMID: 23095745]
[EC 2.1.1.74 created 1983 as EC 2.1.2.12, transferred 1984 to EC 2.1.1.74, modified 2011, modified 2019]
 
 
EC 2.1.1.95     
Accepted name: tocopherol C-methyltransferase
Reaction: (1) S-adenosyl-L-methionine + γ-tocopherol = S-adenosyl-L-homocysteine + α-tocopherol
(2) S-adenosyl-L-methionine + δ-tocopherol = S-adenosyl-L-homocysteine + β-tocopherol
(3) S-adenosyl-L-methionine + γ-tocotrienol = S-adenosyl-L-homocysteine + α-tocotrienol
(4) S-adenosyl-L-methionine + δ-tocotrienol = S-adenosyl-L-homocysteine + β-tocotrienol
For diagram of tocopherol biosynthesis, click here and for diagram of tocotrienol biosynthesis, click here
Other name(s): γ-tocopherol methyltransferase; VTE4 (gene name); S-adenosyl-L-methionine:γ-tocopherol 5-O-methyltransferase (incorrect); tocopherol O-methyltransferase (incorrect)
Systematic name: S-adenosyl-L-methionine:γ-tocopherol 5-C-methyltransferase
Comments: The enzymes from plants and photosynthetic bacteria have similar efficiency with the γ and δ isomers of tocopherols and tocotrienols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 84788-82-9
References:
1.  Camara, B. and d'Harlingue, A. Demonstration and solubilization of S-adenosylmethionine: γ-tocopherol methyltransferase from Capsicum chromoplasts. Plant Cell Rep. 4 (1985) 31–32. [DOI] [PMID: 24253640]
2.  Koch, M., Lemke, R., Heise, K.P. and Mock, H.P. Characterization of γ-tocopherol methyltransferases from Capsicum annuum L and Arabidopsis thaliana. Eur. J. Biochem. 270 (2003) 84–92. [DOI] [PMID: 12492478]
3.  Zhang, G.Y., Liu, R.R., Xu, G., Zhang, P., Li, Y., Tang, K.X., Liang, G.H. and Liu, Q.Q. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase. Transgenic Res. 22 (2013) 89–99. [DOI] [PMID: 22763462]
[EC 2.1.1.95 created 1989, modified 2013, modified 2019]
 
 
EC 2.1.1.127     
Accepted name: [ribulose-bisphosphate carboxylase]-lysine N-methyltransferase
Reaction: 3 S-adenosyl-L-methionine + [ribulose-1,5-bisphosphate carboxylase]-L-lysine = 3 S-adenosyl-L-homocysteine + [ribulose-1,5-bisphosphate carboxylase]-N6,N6,N6-trimethyl-L-lysine
Other name(s): rubisco methyltransferase; ribulose-bisphosphate-carboxylase/oxygenase N-methyltransferase; ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit &epsilon;N-methyltransferase; S-adenosyl-L-methionine:[3-phospho-D-glycerate-carboxy-lyase (dimerizing)]-lysine 6-N-methyltransferase; RuBisCO methyltransferase; RuBisCO LSMT
Systematic name: S-adenosyl-L-methionine:[3-phospho-D-glycerate-carboxy-lyase (dimerizing)]-lysine N6-methyltransferase
Comments: The enzyme catalyses three successive methylations of Lys-14 in the large subunits of hexadecameric higher plant ribulose-bisphosphate-carboxylase (EC 4.1.1.39). Only the three methylated form is observed [3]. The enzyme from pea (Pisum sativum) also three-methylates a specific lysine in the chloroplastic isoforms of fructose-bisphosphate aldolase (EC 4.1.2.13) [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 139171-98-5
References:
1.  Wang, P., Royer, M., Houtz, R.L. Affinity purification of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit &epsilon;N-methyltransferase. Protein Expr. Purif. 6 (1995) 528–536. [DOI] [PMID: 8527940]
2.  Ying, Z., Janney, N., Houtz, R.L. Organization and characterization of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase gene in tobacco. Plant Mol. Biol. 32 (1996) 663–672. [PMID: 8980518]
3.  Dirk, L.M., Flynn, E.M., Dietzel, K., Couture, J.F., Trievel, R.C. and Houtz, R.L. Kinetic manifestation of processivity during multiple methylations catalyzed by SET domain protein methyltransferases. Biochemistry 46 (2007) 3905–3915. [DOI] [PMID: 17338551]
4.  Magnani, R., Nayak, N.R., Mazarei, M., Dirk, L.M. and Houtz, R.L. Polypeptide substrate specificity of PsLSMT. A set domain protein methyltransferase. J. Biol. Chem. 282 (2007) 27857–27864. [DOI] [PMID: 17635932]
5.  Mininno, M., Brugiere, S., Pautre, V., Gilgen, A., Ma, S., Ferro, M., Tardif, M., Alban, C. and Ravanel, S. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J. Biol. Chem. 287 (2012) 21034–21044. [DOI] [PMID: 22547063]
[EC 2.1.1.127 created 1999, modified 2012]
 
 
EC 2.1.1.165     
Accepted name: methyl halide transferase
Reaction: S-adenosyl-L-methionine + iodide = S-adenosyl-L-homocysteine + methyl iodide
Other name(s): MCT; methyl chloride transferase; S-adenosyl-L-methionine:halide/bisulfide methyltransferase; AtHOL1; AtHOL2; AtHOL3; HARMLESS TO OZONE LAYER protein; HMT; S-adenosyl-L-methionine: halide ion methyltransferase; SAM:halide ion methyltransferase
Systematic name: S-adenosylmethionine:iodide methyltransferase
Comments: This enzyme contributes to the methyl halide emissions from Arabidopsis [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ni, X. and Hager, L.P. Expression of Batis maritima methyl chloride transferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 96 (1999) 3611–3615. [DOI] [PMID: 10097085]
2.  Saxena, D., Aouad, S., Attieh, J. and Saini, H.S. Biochemical characterization of chloromethane emission from the wood-rotting fungus Phellinus pomaceus. Appl. Environ. Microbiol. 64 (1998) 2831–2835. [PMID: 9687437]
3.  Attieh, J.M., Hanson, A.D. and Saini, H.S. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem. 270 (1995) 9250–9257. [DOI] [PMID: 7721844]
4.  Itoh, N., Toda, H., Matsuda, M., Negishi, T., Taniguchi, T. and Ohsawa, N. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish). BMC Plant Biol. 9 (2009) 116. [DOI] [PMID: 19723322]
5.  Ohsawa, N., Tsujita, M., Morikawa, S. and Itoh, N. Purification and characterization of a monohalomethane-producing enzyme S-adenosyl-L-methionine: halide ion methyltransferase from a marine microalga, Pavlova pinguis. Biosci. Biotechnol. Biochem. 65 (2001) 2397–2404. [DOI] [PMID: 11791711]
6.  Nagatoshi, Y.and Nakamura, T. Characterization of three halide methyltransferases in Arabidopsis thaliana. Plant Biotechnol. 24 (2007) 503–506.
[EC 2.1.1.165 created 2010]
 
 
EC 2.1.1.177     
Accepted name: 23S rRNA (pseudouridine1915-N3)-methyltransferase
Reaction: S-adenosyl-L-methionine + pseudouridine1915 in 23S rRNA = S-adenosyl-L-homocysteine + N3-methylpseudouridine1915 in 23S rRNA
Other name(s): YbeA; RlmH; pseudouridine methyltransferase; m3Ψ methyltransferase; Ψ1915-specific methyltransferase; rRNA large subunit methyltransferase H
Systematic name: S-adenosyl-L-methionine:23S rRNA (pseudouridine1915-N3)-methyltransferase
Comments: YbeA does not methylate uridine at position 1915 [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ero, R., Peil, L., Liiv, A. and Remme, J. Identification of pseudouridine methyltransferase in Escherichia coli. RNA 14 (2008) 2223–2233. [DOI] [PMID: 18755836]
2.  Purta, E., Kaminska, K.H., Kasprzak, J.M., Bujnicki, J.M. and Douthwaite, S. YbeA is the m3Ψ methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. RNA 14 (2008) 2234–2244. [DOI] [PMID: 18755835]
[EC 2.1.1.177 created 2010]
 
 
EC 2.1.1.190     
Accepted name: 23S rRNA (uracil1939-C5)-methyltransferase
Reaction: S-adenosyl-L-methionine + uracil1939 in 23S rRNA = S-adenosyl-L-homocysteine + 5-methyluracil1939 in 23S rRNA
Other name(s): RumA; RNA uridine methyltransferase A; YgcA
Systematic name: S-adenosyl-L-methionine:23S rRNA (uracil1939-C5)-methyltransferase
Comments: The enzyme specifically methylates uracil1939 at C5 in 23S rRNA [1]. The enzyme contains an [4Fe-4S] cluster coordinated by four conserved cysteine residues [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Agarwalla, S., Kealey, J.T., Santi, D.V. and Stroud, R.M. Characterization of the 23 S ribosomal RNA m5U1939 methyltransferase from Escherichia coli. J. Biol. Chem. 277 (2002) 8835–8840. [DOI] [PMID: 11779873]
2.  Lee, T.T., Agarwalla, S. and Stroud, R.M. Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. Structure 12 (2004) 397–407. [DOI] [PMID: 15016356]
3.  Madsen, C.T., Mengel-Jorgensen, J., Kirpekar, F. and Douthwaite, S. Identifying the methyltransferases for m5U747 and m5U1939 in 23S rRNA using MALDI mass spectrometry. Nucleic Acids Res. 31 (2003) 4738–4746. [PMID: 12907714]
4.  Persaud, C., Lu, Y., Vila-Sanjurjo, A., Campbell, J.L., Finley, J. and O'Connor, M. Mutagenesis of the modified bases, m5U1939 and Ψ2504, in Escherichia coli 23S rRNA. Biochem. Biophys. Res. Commun. 392 (2010) 223–227. [DOI] [PMID: 20067766]
5.  Agarwalla, S., Stroud, R.M. and Gaffney, B.J. Redox reactions of the iron-sulfur cluster in a ribosomal RNA methyltransferase, RumA: optical and EPR studies. J. Biol. Chem. 279 (2004) 34123–34129. [DOI] [PMID: 15181002]
6.  Lee, T.T., Agarwalla, S. and Stroud, R.M. A unique RNA Fold in the RumA-RNA-cofactor ternary complex contributes to substrate selectivity and enzymatic function. Cell 120 (2005) 599–611. [DOI] [PMID: 15766524]
[EC 2.1.1.190 created 2010]
 
 
EC 2.1.1.257     
Accepted name: tRNA (pseudouridine54-N1)-methyltransferase
Reaction: S-adenosyl-L-methionine + pseudouridine54 in tRNA = S-adenosyl-L-homocysteine + N1-methylpseudouridine54 in tRNA
Other name(s): TrmY; m1Ψ methyltransferase
Systematic name: S-adenosyl-L-methionine:tRNA (pseudouridine54-N1)-methyltransferase
Comments: While this archaeal enzyme is specific for the 54 position and does not methylate pseudouridine at position 55, the presence of pseudouridine at position 55 is necessary for the efficient methylation of pseudouridine at position 54 [2,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Chen, H.Y. and Yuan, Y.A. Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase. J. Mol. Cell. Biol. 2 (2010) 366–374. [DOI] [PMID: 21098051]
2.  Wurm, J.P., Griese, M., Bahr, U., Held, M., Heckel, A., Karas, M., Soppa, J. and Wohnert, J. Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs. RNA 18 (2012) 412–420. [DOI] [PMID: 22274954]
3.  Chatterjee, K., Blaby, I.K., Thiaville, P.C., Majumder, M., Grosjean, H., Yuan, Y.A., Gupta, R. and de Crecy-Lagard, V. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. RNA 18 (2012) 421–433. [DOI] [PMID: 22274953]
[EC 2.1.1.257 created 2012]
 
 
EC 2.1.1.259     
Accepted name: [fructose-bisphosphate aldolase]-lysine N-methyltransferase
Reaction: 3 S-adenosyl-L-methionine + [fructose-bisphosphate aldolase]-L-lysine = 3 S-adenosyl-L-homocysteine + [fructose-bisphosphate aldolase]-N6,N6,N6-trimethyl-L-lysine
Other name(s): rubisco methyltransferase; ribulose-bisphosphate-carboxylase/oxygenase N-methyltransferase; ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit &epsilon;N-methyltransferase; S-adenosyl-L-methionine:[3-phospho-D-glycerate-carboxy-lyase (dimerizing)]-lysine 6-N-methyltransferase
Systematic name: S-adenosyl-L-methionine:[fructose-bisphosphate aldolase]-lysine N6-methyltransferase
Comments: The enzyme methylates a conserved lysine in the C-terminal part of higher plant fructose-bisphosphate aldolase (EC 4.1.2.13). The enzyme from pea (Pisum sativum) also methylates Lys-14 in the large subunits of hexadecameric higher plant ribulose-bisphosphate-carboxylase (EC 4.1.1.39) [2], but that from Arabidopsis thaliana does not.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Magnani, R., Nayak, N.R., Mazarei, M., Dirk, L.M. and Houtz, R.L. Polypeptide substrate specificity of PsLSMT. A set domain protein methyltransferase. J. Biol. Chem. 282 (2007) 27857–27864. [DOI] [PMID: 17635932]
2.  Mininno, M., Brugiere, S., Pautre, V., Gilgen, A., Ma, S., Ferro, M., Tardif, M., Alban, C. and Ravanel, S. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J. Biol. Chem. 287 (2012) 21034–21044. [DOI] [PMID: 22547063]
[EC 2.1.1.259 created 2012]
 
 
EC 2.1.1.260     
Accepted name: rRNA small subunit pseudouridine methyltransferase Nep1
Reaction: S-adenosyl-L-methionine + pseudouridine1191 in yeast 18S rRNA = S-adenosyl-L-homocysteine + N1-methylpseudouridine1191 in yeast 18S rRNA
Other name(s): Nep1; nucleolar essential protein 1
Systematic name: S-adenosyl-L-methionine:18S rRNA (pseudouridine1191-N1)-methyltransferase
Comments: This enzyme, which occurs in both prokaryotes and eukaryotes, recognizes specific pseudouridine residues (Ψ) in small subunits of ribosomal RNA based on the local RNA structure. It recognizes Ψ914 in 16S rRNA from the archaeon Methanocaldococcus jannaschii, Ψ1191 in yeast 18S rRNA, and Ψ1248 in human 18S rRNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Taylor, A.B., Meyer, B., Leal, B.Z., Kötter, P., Schirf, V., Demeler, B., Hart, P.J., Entian, K.-D. and Wöhnert, J. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res. 36 (2008) 1542–1554. [DOI] [PMID: 18208838]
2.  Wurm, J.P., Meyer, B., Bahr, U., Held, M., Frolow, O., Kötter, P., Engels, J.W., Heckel, A., Karas, M., Entian, K.-D. and Wöhnert, J. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res. 38 (2010) 2387–2398. [DOI] [PMID: 20047967]
3.  Meyer, B., Wurm, J.P., Kötter, P., Leisegang, M.S., Schilling, V., Buchhaupt, M., Held, M., Bahr, U., Karas, M., Heckel, A., Bohnsack, M.T., Wöhnert, J. and Entian, K.-D. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res. 39 (2011) 1526–1537. [DOI] [PMID: 20972225]
[EC 2.1.1.260 created 2012]
 
 
EC 2.1.1.273     
Accepted name: benzoate O-methyltransferase
Reaction: S-adenosyl-L-methionine + benzoate = S-adenosyl-L-homocysteine + methyl benzoate
Other name(s): BAMT; S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase
Systematic name: S-adenosyl-L-methionine:benzoate O-methyltransferase
Comments: While the enzyme from the plant Zea mays is specific for benzoate [6], the enzymes from Arabidopsis species and Clarkia breweri also catalyse the reaction of EC 2.1.1.274, salicylate 1-O-methyltransferase [1,5]. In snapdragon (Antirrhinum majus) two isoforms are found, one specific for benzoate [2,3] and one that is also active towards salicylate [4]. The volatile product is an important scent compound in some flowering species [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ross, J.R., Nam, K.H., D'Auria, J.C. and Pichersky, E. S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch. Biochem. Biophys. 367 (1999) 9–16. [DOI] [PMID: 10375393]
2.  Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., Bonham, C. and Wood, K. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12 (2000) 949–961. [PMID: 10852939]
3.  Murfitt, L.M., Kolosova, N., Mann, C.J. and Dudareva, N. Purification and characterization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Arch. Biochem. Biophys. 382 (2000) 145–151. [DOI] [PMID: 11051108]
4.  Negre, F., Kolosova, N., Knoll, J., Kish, C.M. and Dudareva, N. Novel S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch. Biochem. Biophys. 406 (2002) 261–270. [DOI] [PMID: 12361714]
5.  Chen, F., D'Auria, J.C., Tholl, D., Ross, J.R., Gershenzon, J., Noel, J.P. and Pichersky, E. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 36 (2003) 577–588. [DOI] [PMID: 14617060]
6.  Köllner, T.G., Lenk, C., Zhao, N., Seidl-Adams, I., Gershenzon, J., Chen, F. and Degenhardt, J. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine. Plant Physiol. 153 (2010) 1795–1807. [DOI] [PMID: 20519632]
[EC 2.1.1.273 created 2013]
 
 
EC 2.1.1.274     
Accepted name: salicylate 1-O-methyltransferase
Reaction: S-adenosyl-L-methionine + salicylate = S-adenosyl-L-homocysteine + methyl salicylate
Glossary: methyl salicylate = methyl 2-hydroxybenzoate
Other name(s): SAMT; S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase; salicylate carboxymethyltransferase
Systematic name: S-adenosyl-L-methionine:salicylate 1-O-methyltransferase
Comments: The enzyme, which is found in flowering plants, also has the activity of EC 2.1.1.273, benzoate O-methyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ross, J.R., Nam, K.H., D'Auria, J.C. and Pichersky, E. S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch. Biochem. Biophys. 367 (1999) 9–16. [DOI] [PMID: 10375393]
2.  Negre, F., Kolosova, N., Knoll, J., Kish, C.M. and Dudareva, N. Novel S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch. Biochem. Biophys. 406 (2002) 261–270. [DOI] [PMID: 12361714]
3.  Chen, F., D'Auria, J.C., Tholl, D., Ross, J.R., Gershenzon, J., Noel, J.P. and Pichersky, E. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 36 (2003) 577–588. [DOI] [PMID: 14617060]
4.  Zubieta, C., Ross, J.R., Koscheski, P., Yang, Y., Pichersky, E. and Noel, J.P. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15 (2003) 1704–1716. [DOI] [PMID: 12897246]
[EC 2.1.1.274 created 2013]
 
 
EC 2.1.1.275     
Accepted name: gibberellin A9 O-methyltransferase
Reaction: S-adenosyl-L-methionine + gibberellin A9 = S-adenosyl-L-homocysteine + methyl gibberellin A9
Glossary: gibberellin A9 = (1R,4aR,4bR,7R,9aR,10S,10aR)-1-methyl-8-methylene-13-oxododecahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylic acid
methyl gibberellin A9 = methyl (1R,4aR,4bR,7R,9aR,10S,10aR)-1-methyl-8-methylene-13-oxododecahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylate
Other name(s): GAMT1
Systematic name: S-adenosyl-L-methionine:gibberellin A9 O-methyltransferase
Comments: The enzyme also methylates gibberellins A20 (95%), A3 (80%), A4 (69%) and A34 (46%) with significant activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Varbanova, M., Yamaguchi, S., Yang, Y., McKelvey, K., Hanada, A., Borochov, R., Yu, F., Jikumaru, Y., Ross, J., Cortes, D., Ma, C.J., Noel, J.P., Mander, L., Shulaev, V., Kamiya, Y., Rodermel, S., Weiss, D. and Pichersky, E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19 (2007) 32–45. [DOI] [PMID: 17220201]
[EC 2.1.1.275 created 2013]
 
 
EC 2.1.1.276     
Accepted name: gibberellin A4 carboxyl methyltransferase
Reaction: S-adenosyl-L-methionine + gibberellin A4 = S-adenosyl-L-homocysteine + methyl gibberellin A4
Glossary: gibberellin A4 = (1S,2S,4aR,4bR,7R,9aR,10S,10aR)-2-hydroxy-1-methyl-8-methylidene-13-oxododecahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylic acid
methyl gibberellin A4 = methyl (1S,2S,4aR,4bR,7R,9aR,10S,10aR)-2-hydroxy-1-methyl-8-methylene-13-oxododecahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylate
Other name(s): GAMT2; gibberellin A4 O-methyltransferase
Systematic name: S-adenosyl-L-methionine:gibberellin A4 O-methyltransferase
Comments: The enzyme also methylates gibberellins A34 (80%), A9 (60%), and A3 (45%) with significant activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Varbanova, M., Yamaguchi, S., Yang, Y., McKelvey, K., Hanada, A., Borochov, R., Yu, F., Jikumaru, Y., Ross, J., Cortes, D., Ma, C.J., Noel, J.P., Mander, L., Shulaev, V., Kamiya, Y., Rodermel, S., Weiss, D. and Pichersky, E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19 (2007) 32–45. [DOI] [PMID: 17220201]
[EC 2.1.1.276 created 2013]
 
 
EC 2.1.1.278     
Accepted name: indole-3-acetate O-methyltransferase
Reaction: S-adenosyl-L-methionine + (indol-3-yl)acetate = S-adenosyl-L-homocysteine + methyl (indol-3-yl)acetate
Other name(s): IAA carboxylmethyltransferase; IAMT
Systematic name: S-adenosyl-L-methionine:(indol-3-yl)acetate O-methyltransferase
Comments: Binds Mg2+. The enzyme is found in plants and is important for regulation of the plant hormone (indol-3-yl)acetate. The product, methyl (indol-3-yl)acetate is inactive as hormone [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zubieta, C., Ross, J.R., Koscheski, P., Yang, Y., Pichersky, E. and Noel, J.P. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15 (2003) 1704–1716. [DOI] [PMID: 12897246]
2.  Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., Gu, H., Zhao, Y. and Qu, L.J. The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Rep. 27 (2008) 575–584. [DOI] [PMID: 17926040]
3.  Zhao, N., Ferrer, J.L., Ross, J., Guan, J., Yang, Y., Pichersky, E., Noel, J.P. and Chen, F. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol. 146 (2008) 455–467. [DOI] [PMID: 18162595]
[EC 2.1.1.278 created 2013]
 
 
EC 2.1.1.292     
Accepted name: carminomycin 4-O-methyltransferase
Reaction: S-adenosyl-L-methionine + carminomycin = S-adenosyl-L-homocysteine + daunorubicin
For diagram of daunorubicin biosynthesis, click here
Glossary: daunorubicin = (+)-daunomycin = (8S,10S)-8-acetyl-10-[(2S,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,8,11-trihydroxy-1-methoxy-9,10-dihydro-7H-tetracene-5,12-dione
carminomycin = (1S,3S)-3-acetyl-3,5,10,12-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside = (1S,3S)-3-acetyl-3,5,10,12-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydronaphthacen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
carubicin = (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
= (8S,10S)-8-acetyl-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-6,8,11-trihydroxy-1-methoxy-7,8,9,10-tetrahydronaphthacene-5,12-dione
Other name(s): DnrK; DauK
Systematic name: S-adenosyl-L-methionine:carminomycin 4-O-methyltransferase
Comments: The enzymes from the Gram-positive bacteria Streptomyces sp. C5 and Streptomyces peucetius are involved in the biosynthesis of the anthracycline daunorubicin. In vitro the enzyme from Streptomyces sp. C5 also catalyses the 4-O-methylation of 13-dihydrocarminomycin, rhodomycin D and 10-carboxy-13-deoxycarminomycin [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Connors, N.C. and Strohl, W.R. Partial purification and properties of carminomycin 4-O-methyltransferase from Streptomyces sp. strain C5. J. Gen. Microbiol. 139 Pt 6 (1993) 1353–1362. [DOI] [PMID: 8360627]
2.  Jansson, A., Koskiniemi, H., Mantsala, P., Niemi, J. and Schneider, G. Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. J. Biol. Chem. 279 (2004) 41149–41156. [DOI] [PMID: 15273252]
3.  Dickens, M.L., Priestley, N.D. and Strohl, W.R. In vivo and in vitro bioconversion of &epsilon;-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J. Bacteriol. 179 (1997) 2641–2650. [DOI] [PMID: 9098063]
[EC 2.1.1.292 created 2013]
 
 
EC 2.1.1.295     
Accepted name: 2-methyl-6-phytyl-1,4-hydroquinone methyltransferase
Reaction: (1) S-adenosyl-L-methionine + 2-methyl-6-phytylbenzene-1,4-diol = S-adenosyl-L-homocysteine + 2,3-dimethyl-6-phytylbenzene-1,4-diol
(2) S-adenosyl-L-methionine + 2-methyl-6-all-trans-nonaprenylbenzene-1,4-diol = S-adenosyl-L-homocysteine + plastoquinol
(3) S-adenosyl-L-methionine + 6-geranylgeranyl-2-methylbenzene-1,4-diol = S-adenosyl-L-homocysteine + 6-geranylgeranyl-2,3-dimethylbenzene-1,4-diol
For diagram of tocopherol biosynthesis, click here and for diagram of tocotrienol biosynthesis, click here
Other name(s): VTE3 (gene name); 2-methyl-6-solanyl-1,4-hydroquinone methyltransferase; MPBQ/MSBQ methyltransferase; MPBQ/MSBQ MT
Systematic name: S-adenosyl-L-methionine:2-methyl-6-phytyl-1,4-benzoquinol C-3-methyltransferase
Comments: Involved in the biosynthesis of plastoquinol, as well as vitamin E (tocopherols and tocotrienols).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shintani, D.K., Cheng, Z. and DellaPenna, D. The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett. 511 (2002) 1–5. [DOI] [PMID: 11821038]
2.  Cheng, Z., Sattler, S., Maeda, H., Sakuragi, Y., Bryant, D.A. and DellaPenna, D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15 (2003) 2343–2356. [DOI] [PMID: 14508009]
3.  Van Eenennaam, A.L., Lincoln, K., Durrett, T.P., Valentin, H.E., Shewmaker, C.K., Thorne, G.M., Jiang, J., Baszis, S.R., Levering, C.K., Aasen, E.D., Hao, M., Stein, J.C., Norris, S.R. and Last, R.L. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15 (2003) 3007–3019. [DOI] [PMID: 14630966]
[EC 2.1.1.295 created 2014]
 
 
EC 2.1.1.301     
Accepted name: cypemycin N-terminal methyltransferase
Reaction: 2 S-adenosyl-L-methionine + N-terminal L-alanine-[cypemycin] = 2 S-adenosyl-L-homocysteine + N-terminal N,N-dimethyl-L-alanine-[cypemycin]
Other name(s): CypM
Systematic name: S-adenosyl-L-methionine:N-terminal L-alanine-[cypemycin] N-methyltransferase
Comments: The enzyme, isolated from the bacterium Streptomyces sp. OH-4156, can methylate a variety of linear oligopeptides, cyclic peptides such as nisin and haloduracin, and the &epsilon;-amino group of lysine [2]. Cypemycin is a peptide antibiotic, a member of the linaridins, a class of posttranslationally modified ribosomally synthesized peptides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Claesen, J. and Bibb, M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc. Natl. Acad. Sci. USA 107 (2010) 16297–16302. [DOI] [PMID: 20805503]
2.  Zhang, Q. and van der Donk, W.A. Catalytic promiscuity of a bacterial α-N-methyltransferase. FEBS Lett. 586 (2012) 3391–3397. [DOI] [PMID: 22841713]
[EC 2.1.1.301 created 2014]
 
 
EC 2.1.1.315     
Accepted name: 27-O-demethylrifamycin SV methyltransferase
Reaction: S-adenosyl-L-methionine + 27-O-demethylrifamycin SV = S-adenosyl-L-homocysteine + rifamycin SV
Glossary: rifamycin SV = (7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.14,7.05,28]triaconta-1(28),2,4,9, 19,21,25(29),26-octaen-13-yl acetate
Other name(s): AdoMet:27-O-demethylrifamycin SV methyltransferase
Systematic name: S-adenosyl-L-methionine:27-O-demethylrifamycin-SV 27-O-methyltransferase
Comments: The enzyme, characterized from the bacterium Amycolatopsis mediterranei, is involved in biosynthesis of the antitubercular drug rifamycin B.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xu, J., Mahmud, T. and Floss, H.G. Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Arch. Biochem. Biophys. 411 (2003) 277–288. [DOI] [PMID: 12623077]
[EC 2.1.1.315 created 2015]
 
 
EC 2.1.1.320     
Accepted name: type II protein arginine methyltransferase
Reaction: 2 S-adenosyl-L-methionine + [protein]-L-arginine = 2 S-adenosyl-L-homocysteine + [protein]-Nω,Nω′-dimethyl-L-arginine (overall reaction)
(1a) S-adenosyl-L-methionine + [protein]-L-arginine = S-adenosyl-L-homocysteine + [protein]-Nω-methyl-L-arginine
(1b) S-adenosyl-L-methionine + [protein]-Nω-methyl-L-arginine = S-adenosyl-L-homocysteine + [protein]-Nω,Nω′-dimethyl-L-arginine
Other name(s): PRMT5 (gene name); PRMT9 (gene name)
Systematic name: S-adenosyl-L-methionine:[protein]-L-arginine N-methyltransferase ([protein]-Nω,Nω′-dimethyl-L-arginine-forming)
Comments: The enzyme catalyses the methylation of one of the terminal guanidino nitrogen atoms in arginine residues within proteins, forming monomethylarginine, followed by the methylation of the second terminal nitrogen atom to form a symmetrical dimethylarginine. The mammalian enzyme is active in both the nucleus and the cytoplasm, and plays a role in the assembly of snRNP core particles by methylating certain small nuclear ribonucleoproteins. cf. EC 2.1.1.319, type I protein arginine methyltransferase, EC 2.1.1.321, type III protein arginine methyltransferase, and EC 2.1.1.322, type IV protein arginine methyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Branscombe, T.L., Frankel, A., Lee, J.H., Cook, J.R., Yang, Z., Pestka, S. and Clarke, S. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276 (2001) 32971–32976. [DOI] [PMID: 11413150]
2.  Wang, X., Zhang, Y., Ma, Q., Zhang, Z., Xue, Y., Bao, S. and Chong, K. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J. 26 (2007) 1934–1941. [DOI] [PMID: 17363895]
3.  Lacroix, M., El Messaoudi, S., Rodier, G., Le Cam, A., Sardet, C. and Fabbrizio, E. The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep. 9 (2008) 452–458. [DOI] [PMID: 18404153]
4.  Chari, A., Golas, M.M., Klingenhager, M., Neuenkirchen, N., Sander, B., Englbrecht, C., Sickmann, A., Stark, H. and Fischer, U. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135 (2008) 497–509. [DOI] [PMID: 18984161]
5.  Antonysamy, S., Bonday, Z., Campbell, R.M., Doyle, B., Druzina, Z., Gheyi, T., Han, B., Jungheim, L.N., Qian, Y., Rauch, C., Russell, M., Sauder, J.M., Wasserman, S.R., Weichert, K., Willard, F.S., Zhang, A. and Emtage, S. Crystal structure of the human PRMT5:MEP50 complex. Proc. Natl. Acad. Sci. USA 109 (2012) 17960–17965. [DOI] [PMID: 23071334]
6.  Hadjikyriacou, A., Yang, Y., Espejo, A., Bedford, M.T. and Clarke, S.G. Unique features of human protein arginine methyltransferase 9 (PRMT9) and its substrate RNA splicing factor SF3B2. J. Biol. Chem. 290 (2015) 16723–16743. [DOI] [PMID: 25979344]
[EC 2.1.1.320 created 2015]
 
 
EC 2.1.1.329     
Accepted name: demethylphylloquinol methyltransferase
Reaction: S-adenosyl-L-methionine + demethylphylloquinol = S-adenosyl-L-homocysteine + phylloquinol
For diagram of vitamin K biosynthesis, click here
Glossary: demethylphylloquinol = 2-phytyl-1,4-naphthoquinol
phylloquinol = 2-methyl-3-phytyl-1,4-naphthoquinol = vitamin K1
Other name(s): menG (gene name); 2-phytyl-1,4-naphthoquinol methyltransferase
Systematic name: S-adenosyl-L-methionine:2-phytyl-1,4-naphthoquinol C-methyltransferase
Comments: The enzyme, found in plants and cyanobacteria, catalyses the final step in the biosynthesis of phylloquinone (vitamin K1), an electron carrier associated with photosystem I. The enzyme is specific for the quinol form of the substrate, and does not act on the quinone form [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sakuragi, Y., Zybailov, B., Shen, G., Jones, A.D., Chitnis, P.R., van der Est, A., Bittl, R., Zech, S., Stehlik, D., Golbeck, J.H. and Bryant, D.A. Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A1 site and alteration of the equilibrium constant between A1 and F(X) in photosystem I. Biochemistry 41 (2002) 394–405. [DOI] [PMID: 11772039]
2.  Lohmann, A., Schottler, M.A., Brehelin, C., Kessler, F., Bock, R., Cahoon, E.B. and Dormann, P. Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J. Biol. Chem. 281 (2006) 40461–40472. [DOI] [PMID: 17082184]
3.  Fatihi, A., Latimer, S., Schmollinger, S., Block, A., Dussault, P.H., Vermaas, W.F., Merchant, S.S. and Basset, G.J. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in Synechocystis and Arabidopsis. Plant Cell 27 (2015) 1730–1741. [DOI] [PMID: 26023160]
[EC 2.1.1.329 created 2016]
 
 
EC 2.1.1.345     
Accepted name: psilocybin synthase
Reaction: 2 S-adenosyl-L-methionine + 4-hydroxytryptamine 4-phosphate = 2 S-adenosyl-L-homocysteine + psilocybin (overall reaction)
(1a) S-adenosyl-L-methionine + 4-hydroxytryptamine 4-phosphate = S-adenosyl-L-homocysteine + 4-hydroxy-N-methyltryptamine 4-phosphate
(1b) S-adenosyl-L-methionine + 4-hydroxy-N-methyltryptamine 4-phosphate = S-adenosyl-L-homocysteine + psilocybin
For diagram of psilocybin biosynthesis, click here
Glossary: psilocybin = 3-[2-(dimethylamino)ethyl]-1H-indol-4-yl phosphate
Other name(s): PsiM
Systematic name: S-adenosyl-L-methionine:4-hydroxytryptamine-4-phosphate N,N-dimethyltransferase
Comments: Isolated from the fungus Psilocybe cubensis. The product, psilocybin, is a psychoactive compound.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fricke, J., Blei, F. and Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. Engl. 56 (2017) 12352–12355. [DOI] [PMID: 28763571]
[EC 2.1.1.345 created 2017]
 
 
EC 2.1.1.368     
Accepted name: [histone H3]-lysine9 N-dimethyltransferase
Reaction: 2 S-adenosyl-L-methionine + a [histone H3]-L-lysine9 = 2 S-adenosyl-L-homocysteine + a [histone H3]-N6,N6-dimethyl-L-lysine9 (overall reaction)
(1a) S-adenosyl-L-methionine + a [histone H3]-L-lysine9 = S-adenosyl-L-homocysteine + a [histone H3]-N6-methyl-L-lysine9
(1b) S-adenosyl-L-methionine + a [histone H3]-N6-methyl-L-lysine9 = S-adenosyl-L-homocysteine + a [histone H3]-N6,N6-dimethyl-L-lysine9
Other name(s): SUVH1 (gene name); SUVR1 (gene name); SET32 (gene name); SDG32 (gene name); SET13 (gene name)
Systematic name: S-adenosyl-L-methionine:[histone H3]-L-lysine9 N6-dimethyltransferase
Comments: This entry describes several enzymes, characterized from plants, that successively methylate the L-lysine-9 residue of histone H3 (H3K9) twice, ultimately generating a dimethylated form. These modifications influence the binding of chromatin-associated proteins. In general, the methylation of H3K9 leads to transcriptional repression of the affected target genes. cf. EC 2.1.1.367, [histone H3]-lysine9 N-methyltransferase, EC 2.1.1.366, [histone H3]-N6,N6-dimethyl-lysine9 N-methyltransferase, and EC 2.1.1.355, [histone H3]-lysine9 N-trimethyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, Y., Dong, A. and Shen, W.H. Molecular characterization of the tobacco SET domain protein NtSET1 unravels its role in histone methylation, chromatin binding, and segregation. Plant J. 40 (2004) 699–711. [PMID: 15546353]
2.  Shen, W.H. and Meyer, D. Ectopic expression of the NtSET1 histone methyltransferase inhibits cell expansion, and affects cell division and differentiation in tobacco plants. Plant Cell Physiol. 45 (2004) 1715–1719. [PMID: 15574848]
3.  Naumann, K., Fischer, A., Hofmann, I., Krauss, V., Phalke, S., Irmler, K., Hause, G., Aurich, A.C., Dorn, R., Jenuwein, T. and Reuter, G. Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J. 24 (2005) 1418–1429. [PMID: 15775980]
[EC 2.1.1.368 created 2020]
 
 
EC 2.1.1.386     
Accepted name: small RNA 2′-O-methyltransferase
Reaction: S-adenosyl-L-methionine + an [sRNA]-3′-end ribonucleotide = S-adenosyl-L-homocysteine + an [sRNA]-3′-end 2′-O-methylated ribonucleotide
Glossary: sRNA = small RNA
Other name(s): HENMT1 (gene name); HEN1 (gene name)
Systematic name: S-adenosyl-L-methionine:[sRNA]-3′-end ribonucleotide 2′-O-methyltransferase
Comments: The enzyme adds a 2′-O-methyl group to the ribose of the last nucleotide in several types of small RNAs (sRNAs), protecting the 3′-end of sRNAs from uridylation activity and subsequent degradation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Park, W., Li, J., Song, R., Messing, J. and Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12 (2002) 1484–1495. [DOI] [PMID: 12225663]
2.  Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R. and Chen, X. Methylation as a crucial step in plant microRNA biogenesis. Science 307 (2005) 932–935. [DOI] [PMID: 15705854]
3.  Kirino, Y. and Mourelatos, Z. 2′-O-methyl modification in mouse piRNAs and its methylase. Nucleic Acids Symp Ser (Oxf) (2007) 417–418. [DOI] [PMID: 18029764]
4.  Huang, Y., Ji, L., Huang, Q., Vassylyev, D.G., Chen, X. and Ma, J.B. Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 461 (2009) 823–827. [DOI] [PMID: 19812675]
5.  Peng, L., Zhang, F., Shang, R., Wang, X., Chen, J., Chou, J.J., Ma, J., Wu, L. and Huang, Y. Identification of substrates of the small RNA methyltransferase Hen1 in mouse spermatogonial stem cells and analysis of its methyl-transfer domain. J. Biol. Chem. 293 (2018) 9981–9994. [DOI] [PMID: 29703750]
[EC 2.1.1.386 created 2022]
 
 
EC 2.3.1.32     
Accepted name: lysine N-acetyltransferase
Reaction: acetyl phosphate + L-lysine = phosphate + N6-acetyl-L-lysine
Other name(s): lysine acetyltransferase; acetyl-phosphate:L-lysine 6-N-acetyltransferase
Systematic name: acetyl-phosphate:L-lysine N6-acetyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37257-12-8
References:
1.  Paik, W.K. and Kim, S. Enzymic synthesis of &epsilon;-N-acetyl-L-lysine. Arch. Biochem. Biophys. 108 (1964) 221–229. [DOI] [PMID: 14240571]
[EC 2.3.1.32 created 1972]
 
 
EC 2.3.1.48     
Accepted name: histone acetyltransferase
Reaction: acetyl-CoA + [protein]-L-lysine = CoA + [protein]-N6-acetyl-L-lysine
Other name(s): nucleosome-histone acetyltransferase; histone acetokinase; histone acetylase; histone transacetylase; lysine acetyltransferase; protein lysine acetyltransferase; acetyl-CoA:histone acetyltransferase
Systematic name: acetyl-CoA:[protein]-L-lysine acetyltransferase
Comments: A group of enzymes acetylating histones. Several of the enzymes can also acetylate lysines in other proteins [3,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9054-51-7
References:
1.  Gallwitz, D. and Sures, I. Histone acetylation. Purification and properties of three histone-specific acetyltransferases from rat thymus nuclei. Biochim. Biophys. Acta 263 (1972) 315–328. [DOI] [PMID: 5031160]
2.  Makowski, A.M., Dutnall, R.N. and Annunziato, A.T. Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J. Biol. Chem. 276 (2001) 43499–43502. [DOI] [PMID: 11585814]
3.  Lee, K.K. and Workman, J.L. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell. Biol. 8 (2007) 284–295. [DOI] [PMID: 17380162]
4.  Thao, S. and Escalante-Semerena, J.C. Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N&epsilon;-lysine acetyltransferase involved in carbon and energy metabolism. MBio 2 (2011) E216. [DOI] [PMID: 22010215]
5.  Wu, H., Moshkina, N., Min, J., Zeng, H., Joshua, J., Zhou, M.M. and Plotnikov, A.N. Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proc. Natl. Acad. Sci. USA 109 (2012) 8925–8930. [DOI] [PMID: 22615379]
6.  Das, C., Roy, S., Namjoshi, S., Malarkey, C.S., Jones, D.N., Kutateladze, T.G., Churchill, M.E. and Tyler, J.K. Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc. Natl. Acad. Sci. USA 111 (2014) E1072–E1081. [DOI] [PMID: 24616510]
[EC 2.3.1.48 created 1976, modified 2017]
 
 
EC 2.3.1.102     
Accepted name: N6-hydroxylysine N-acetyltransferase
Reaction: acetyl-CoA + N6-hydroxy-L-lysine = CoA + N6-acetyl-N6-hydroxy-L-lysine
For diagram of aerobactin biosynthesis, click here
Other name(s): N6-hydroxylysine:acetyl CoA N6-transacetylase; N6-hydroxylysine acetylase; acetyl-CoA:6-N-hydroxy-L-lysine 6-acetyltransferase; N6-hydroxylysine O-acetyltransferase (incorrect)
Systematic name: acetyl-CoA:N6-hydroxy-L-lysine 6-acetyltransferase
Comments: Involved in the synthesis of aerobactin from lysine in a strain of Escherichia coli.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 101077-53-6
References:
1.  Coy, M., Paw, B.H., Bindereif, A. and Neilands, J.B. Isolation and properties of N&epsilon;-hydroxylysine:acetyl coenzyme A N&epsilon;-transacetylase from Escherichia coli pABN11. Biochemistry 25 (1986) 2485–2489. [PMID: 3521734]
2.  de Lorenzo, V., Bindereif, A., Paw, B.H. and Neilands, J.B. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J. Bacteriol. 165 (1986) 570–578. [DOI] [PMID: 2935523]
[EC 2.3.1.102 created 1989]
 
 
EC 2.3.1.103     
Accepted name: sinapoylglucose—sinapoylglucose O-sinapoyltransferase
Reaction: 2 1-O-sinapoyl-β-D-glucose = D-glucose + 1,2-bis-O-sinapoyl-β-D-glucose
Glossary: 1-O-sinapoyl-β-D-glucose = 1-O-[(2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-propenoyl]-β-D-glucopyranose
Other name(s): hydroxycinnamoylglucose-hydroxycinnamoylglucose hydroxycinnamoyltransferase; 1-(hydroxycinnamoyl)-glucose:1-(hydroxycinnamoyl)-glucose hydroxycinnamoyltransferase; 1-O-(4-hydroxy-3,5-dimethoxycinnamoyl)-β-D-glucoside:1-O-(4-hydroxy-3,5-dimethoxycinnamoyl)-β-D-glucoside 1-O-sinapoyltransferase
Systematic name: 1-O-sinapoyl-β-D-glucose:1-O-sinnapoyl-β-D-glucose 1-O-sinapoyltransferase
Comments: The plant enzyme, characterized from Brassicaceae, is involved in secondary metabolism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 103537-11-7
References:
1.  Dahlbender, B. and Strack, D. Purification and properties of 1-(hydroxycinnamoyl)-glucose-1-(hydroxycinnamoyl)-glucose hydroxycinnamoyl-transferase from radish seedlings. Phytochemistry 25 (1986) 1043–1046.
2.  Fraser, C.M., Thompson, M.G., Shirley, A.M., Ralph, J., Schoenherr, J.A., Sinlapadech, T., Hall, M.C. and Chapple, C. Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol. 144 (2007) 1986–1999. [PMID: 17600138]
[EC 2.3.1.103 created 1989]
 
 
EC 2.3.1.152     
Accepted name: alcohol O-cinnamoyltransferase
Reaction: 1-O-trans-cinnamoyl-β-D-glucopyranose + ROH = alkyl cinnamate + glucose
Systematic name: 1-O-trans-cinnamoyl-β-D-glucopyranose:alcohol O-cinnamoyltransferase
Comments: Acceptor alcohols (ROH) include methanol, ethanol and propanol. No cofactors are required as 1-O-trans-cinnamoyl-β-D-glucopyranose itself is an "energy-rich" (activated) acyl-donor, comparable to CoA-thioesters. 1-O-trans-Cinnamoyl-β-D-gentobiose can also act as the acyl donor, but with much less affinity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 203009-15-8
References:
1.  Mock, H.-P., Strack, D. Energetics of uridine 5′-diphosphoglucose-hydroxy-cinnamic acid acyl-glucotransferase reaction. Phytochemistry 32 (1993) 575–579.
2.  Latza, S., Gansser, D., Berger, R.G. Carbohydrate esters of cinnamic acid from fruits of Physalis peruviana, Psidium guajava and Vaccinium vitis IDAEA. Phytochemistry 43 (1996) 481–485.
[EC 2.3.1.152 created 1999]
 
 
EC 2.3.1.181     
Accepted name: lipoyl(octanoyl) transferase
Reaction: an octanoyl-[acyl-carrier protein] + a protein = a protein N6-(octanoyl)lysine + an [acyl-carrier protein]
Glossary: lipoyl group
Other name(s): LipB; lipoyl (octanoyl)-[acyl-carrier-protein]-protein N-lipoyltransferase; lipoyl (octanoyl)-acyl carrier protein:protein transferase; lipoate/octanoate transferase; lipoyltransferase; octanoyl-[acyl carrier protein]-protein N-octanoyltransferase; lipoyl(octanoyl)transferase; octanoyl-[acyl-carrier-protein]:protein N-octanoyltransferase
Systematic name: octanoyl-[acyl-carrier protein]:protein N-octanoyltransferase
Comments: This is the first committed step in the biosynthesis of lipoyl cofactor. Lipoylation is essential for the function of several key enzymes involved in oxidative metabolism, as it converts apoprotein into the biologically active holoprotein. Examples of such lipoylated proteins include pyruvate dehydrogenase (E2 domain), 2-oxoglutarate dehydrogenase (E2 domain), the branched-chain 2-oxoacid dehydrogenases and the glycine cleavage system (H protein) [2,3]. Lipoyl-ACP can also act as a substrate [4] although octanoyl-ACP is likely to be the true substrate [6]. The other enzyme involved in the biosynthesis of lipoyl cofactor is EC 2.8.1.8, lipoyl synthase. An alternative lipoylation pathway involves EC 6.3.1.20, lipoate—protein ligase, which can lipoylate apoproteins using exogenous lipoic acid (or its analogues).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 392687-64-8
References:
1.  Nesbitt, N.M., Baleanu-Gogonea, C., Cicchillo, R.M., Goodson, K., Iwig, D.F., Broadwater, J.A., Haas, J.A., Fox, B.G. and Booker, S.J. Expression, purification, and physical characterization of Escherichia coli lipoyl(octanoyl)transferase. Protein Expr. Purif. 39 (2005) 269–282. [DOI] [PMID: 15642479]
2.  Vanden Boom, T.J., Reed, K.E. and Cronan, J.E., Jr. Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. J. Bacteriol. 173 (1991) 6411–6420. [DOI] [PMID: 1655709]
3.  Jordan, S.W. and Cronan, J.E., Jr. A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J. Biol. Chem. 272 (1997) 17903–17906. [DOI] [PMID: 9218413]
4.  Zhao, X., Miller, J.R., Jiang, Y., Marletta, M.A. and Cronan, J.E. Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem. Biol. 10 (2003) 1293–1302. [DOI] [PMID: 14700636]
5.  Wada, M., Yasuno, R., Jordan, S.W., Cronan, J.E., Jr. and Wada, H. Lipoic acid metabolism in Arabidopsis thaliana: cloning and characterization of a cDNA encoding lipoyltransferase. Plant Cell Physiol. 42 (2001) 650–656. [PMID: 11427685]
6.  Perham, R.N. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69 (2000) 961–1004. [DOI] [PMID: 10966480]
[EC 2.3.1.181 created 2006, modified 2016]
 
 
EC 2.3.1.195     
Accepted name: (Z)-3-hexen-1-ol acetyltransferase
Reaction: acetyl-CoA + (3Z)-hex-3-en-1-ol = CoA + (3Z)-hex-3-en-1-yl acetate
Other name(s): CHAT; At3g03480
Systematic name: acetyl-CoA:(3Z)-hex-3-en-1-ol acetyltransferase
Comments: The enzyme is resonsible for the production of (3Z)-hex-3-en-1-yl acetate, the major volatile compound released upon mechanical wounding of the leaves of Arabidopsis thaliana [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  D'Auria, J.C., Pichersky, E., Schaub, A., Hansel, A. and Gershenzon, J. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 49 (2007) 194–207. [DOI] [PMID: 17163881]
2.  D'Auria, J.C., Chen, F. and Pichersky, E. Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130 (2002) 466–476. [DOI] [PMID: 12226525]
[EC 2.3.1.195 created 2011]
 
 
EC 2.3.1.199     
Accepted name: very-long-chain 3-oxoacyl-CoA synthase
Reaction: a very-long-chain acyl-CoA + malonyl-CoA = a very-long-chain 3-oxoacyl-CoA + CO2 + CoA
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): very-long-chain 3-ketoacyl-CoA synthase; very-long-chain β-ketoacyl-CoA synthase; condensing enzyme (ambiguous); CUT1 (gene name); CER6 (gene name); FAE1 (gene name); KCS (gene name); ELO (gene name)
Systematic name: malonyl-CoA:very-long-chain acyl-CoA malonyltransferase (decarboxylating and thioester-hydrolysing)
Comments: This is the first component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. Multiple forms exist with differing preferences for the substrate, and thus the specific form expressed determines the local composition of very-long-chain fatty acids [6,7]. For example, the FAE1 form from the plant Arabidopsis thaliana accepts only 16 and 18 carbon substrates, with oleoyl-CoA (18:1) being the preferred substrate [5], while CER6 from the same plant prefers substrates with chain length of C22 to C32 [4,8]. cf. EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Toke, D.A. and Martin, C.E. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J. Biol. Chem. 271 (1996) 18413–18422. [DOI] [PMID: 8702485]
2.  Oh, C.S., Toke, D.A., Mandala, S. and Martin, C.E. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272 (1997) 17376–17384. [DOI] [PMID: 9211877]
3.  Dittrich, F., Zajonc, D., Huhne, K., Hoja, U., Ekici, A., Greiner, E., Klein, H., Hofmann, J., Bessoule, J.J., Sperling, P. and Schweizer, E. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur. J. Biochem. 252 (1998) 477–485. [DOI] [PMID: 9546663]
4.  Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C. and Kunst, L. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11 (1999) 825–838. [PMID: 10330468]
5.  Ghanevati, M. and Jaworski, J.G. Engineering and mechanistic studies of the Arabidopsis FAE1 β-ketoacyl-CoA synthase, FAE1 KCS. Eur. J. Biochem. 269 (2002) 3531–3539. [DOI] [PMID: 12135493]
6.  Blacklock, B.J. and Jaworski, J.G. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem. Biophys. Res. Commun. 346 (2006) 583–590. [DOI] [PMID: 16765910]
7.  Denic, V. and Weissman, J.S. A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130 (2007) 663–677. [DOI] [PMID: 17719544]
8.  Tresch, S., Heilmann, M., Christiansen, N., Looser, R. and Grossmann, K. Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases. Phytochemistry 76 (2012) 162–171. [DOI] [PMID: 22284369]
[EC 2.3.1.199 created 2012]
 
 
EC 2.3.1.225     
Accepted name: protein S-acyltransferase
Reaction: palmitoyl-CoA + [protein]-L-cysteine = [protein]-S-palmitoyl-L-cysteine + CoA
Other name(s): DHHC palmitoyl transferase; S-protein acyltransferase; G-protein palmitoyltransferase
Systematic name: palmitoyl-CoA:[protein]-L-cysteine S-palmitoyltransferase
Comments: The enzyme catalyses the posttranslational protein palmitoylation that plays a role in protein-membrane interactions, protein trafficking, and enzyme activity. Palmitoylation increases the hydrophobicity of proteins or protein domains and contributes to their membrane association.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Dunphy, J.T., Greentree, W.K., Manahan, C.L. and Linder, M.E. G-protein palmitoyltransferase activity is enriched in plasma membranes. J. Biol. Chem. 271 (1996) 7154–7159. [DOI] [PMID: 8636152]
2.  Veit, M., Dietrich, L.E. and Ungermann, C. Biochemical characterization of the vacuolar palmitoyl acyltransferase. FEBS Lett. 540 (2003) 101–105. [DOI] [PMID: 12681491]
3.  Batistic, O. Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family. Plant Physiol. 160 (2012) 1597–1612. [DOI] [PMID: 22968831]
4.  Jennings, B.C. and Linder, M.E. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J. Biol. Chem. 287 (2012) 7236–7245. [DOI] [PMID: 22247542]
5.  Zhou, L.Z., Li, S., Feng, Q.N., Zhang, Y.L., Zhao, X., Zeng, Y.L., Wang, H., Jiang, L. and Zhang, Y. Protein S-acyl transferase10 is critical for development and salt tolerance in Arabidopsis. Plant Cell 25 (2013) 1093–1107. [DOI] [PMID: 23482856]
[EC 2.3.1.225 created 2013]
 
 
EC 2.3.1.246     
Accepted name: 3,5-dihydroxyphenylacetyl-CoA synthase
Reaction: 4 malonyl-CoA = (3,5-dihydroxyphenylacetyl)-CoA + 3 CoA + 4 CO2 + H2O
Other name(s): DpgA
Systematic name: malonyl-CoA:malonyl-CoA malonyltransferase (3,5-dihydroxyphenylacetyl-CoA-forming)
Comments: The enzyme, characterized from the bacterium Amycolatopsis mediterranei, is involved in biosynthesis of the nonproteinogenic amino acid (S)-3,5-dihydroxyphenylglycine, a component of the vancomycin-type antibiotic balhimycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pfeifer, V., Nicholson, G.J., Ries, J., Recktenwald, J., Schefer, A.B., Shawky, R.M., Schroder, J., Wohlleben, W. and Pelzer, S. A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. J. Biol. Chem. 276 (2001) 38370–38377. [DOI] [PMID: 11495926]
2.  Chen, H., Tseng, C.C., Hubbard, B.K. and Walsh, C.T. Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated amino acid monomer (S)-3,5-dihydroxyphenylglycine. Proc. Natl. Acad. Sci. USA 98 (2001) 14901–14906. [DOI] [PMID: 11752437]
3.  Tseng, C.C., McLoughlin, S.M., Kelleher, N.L. and Walsh, C.T. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase. Biochemistry 43 (2004) 970–980. [DOI] [PMID: 14744141]
4.  Wu, H.C., Li, Y.S., Liu, Y.C., Lyu, S.Y., Wu, C.J. and Li, T.L. Chain elongation and cyclization in type III PKS DpgA. ChemBioChem 13 (2012) 862–871. [DOI] [PMID: 22492619]
[EC 2.3.1.246 created 2015]
 
 
EC 2.3.1.248     
Accepted name: spermidine disinapoyl transferase
Reaction: 2 sinapoyl-CoA + spermidine = 2 CoA + N1,N8-bis(sinapoyl)-spermidine
Other name(s): SDT
Systematic name: sinapoyl-CoA:spermidine N-(hydroxycinnamoyl)transferase
Comments: The enzyme from the plant Arabidopsis thaliana has no activity with 4-coumaroyl-CoA (cf. EC 2.3.1.249, spermidine dicoumaroyl transferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Luo, J., Fuell, C., Parr, A., Hill, L., Bailey, P., Elliott, K., Fairhurst, S.A., Martin, C. and Michael, A.J. A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21 (2009) 318–333. [DOI] [PMID: 19168716]
[EC 2.3.1.248 created 2015]
 
 
EC 2.3.1.249     
Accepted name: spermidine dicoumaroyl transferase
Reaction: 2 4-coumaroyl-CoA + spermidine = 2 CoA + N1,N8-bis(4-coumaroyl)-spermidine
Other name(s): SCT
Systematic name: 4-coumaroyl-CoA:spermidine N-(hydroxycinnamoyl)transferase
Comments: The enzyme from the plant Arabidopsis thaliana has no activity with sinapoyl-CoA (cf. EC 2.3.1.248, spermidine disinapoyl transferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Luo, J., Fuell, C., Parr, A., Hill, L., Bailey, P., Elliott, K., Fairhurst, S.A., Martin, C. and Michael, A.J. A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21 (2009) 318–333. [DOI] [PMID: 19168716]
[EC 2.3.1.249 created 2015]
 
 
EC 2.3.1.254     
Accepted name: N-terminal methionine Nα-acetyltransferase NatB
Reaction: (1) acetyl-CoA + an N-terminal L-methionyl-L-asparaginyl-[protein] = an N-terminal Nα-acetyl-L-methionyl-L-asparaginyl-[protein] + CoA
(2) acetyl-CoA + an N-terminal L-methionyl-L-glutaminyl-[protein] = an N-terminal Nα-acetyl-L-methionyl-L-glutaminyl-[protein] + CoA
(3) acetyl-CoA + an N-terminal L-methionyl-L-aspartyl-[protein] = an N-terminal Nα-acetyl-L-methionyl-L-aspartyl-[protein] + CoA
(4) acetyl-CoA + an N-terminal L-methionyl-L-glutamyl-[protein] = an N-terminal Nα-acetyl-L-methionyl-L-glutamyl-[protein] + CoA
Other name(s): NAA20 (gene name); NAA25 (gene name)
Systematic name: acetyl-CoA:N-terminal Met-Asn/Gln/Asp/Glu-[protein] Met-Nα-acetyltransferase
Comments: N-terminal acetylases (NATs) catalyse the covalent attachment of an acetyl moiety from acetyl-CoA to the free α-amino group at the N-terminus of a protein. This irreversible modification neutralizes the positive charge at the N-terminus and makes the N-terminal residue larger and more hydrophobic, and may also play a role in membrane targeting and gene silencing. The NatB complex is found in all eukaryotic organisms, and specifically targets N-terminal L-methionine residues attached to Asn, Asp, Gln, or Glu residues at the second position.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Starheim, K.K., Arnesen, T., Gromyko, D., Ryningen, A., Varhaug, J.E. and Lillehaug, J.R. Identification of the human Nα-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem. J. 415 (2008) 325–331. [DOI] [PMID: 18570629]
2.  Ferrandez-Ayela, A., Micol-Ponce, R., Sanchez-Garcia, A.B., Alonso-Peral, M.M., Micol, J.L. and Ponce, M.R. Mutation of an Arabidopsis NatB N-α-terminal acetylation complex component causes pleiotropic developmental defects. PLoS One 8:e80697 (2013). [DOI] [PMID: 24244708]
3.  Lee, K.E., Ahn, J.Y., Kim, J.M. and Hwang, C.S. Synthetic lethal screen of NAA20, a catalytic subunit gene of NatB N-terminal acetylase in Saccharomyces cerevisiae. J Microbiol 52 (2014) 842–848. [DOI] [PMID: 25163837]
[EC 2.3.1.254 created 1989 as EC 2.3.1.88, part transferred 2016 to EC 2.3.1.254]
 
 
EC 2.3.1.255     
Accepted name: N-terminal amino-acid Nα-acetyltransferase NatA
Reaction: (1) acetyl-CoA + an N-terminal-glycyl-[protein] = an N-terminal-Nα-acetyl-glycyl-[protein] + CoA
(2) acetyl-CoA + an N-terminal-L-alanyl-[protein] = an N-terminal-Nα-acetyl-L-alanyl-[protein] + CoA
(3) acetyl-CoA + an N-terminal-L-seryl-[protein] = an N-terminal-Nα-acetyl-L-seryl-[protein] + CoA
(4) acetyl-CoA + an N-terminal-L-valyl-[protein] = an N-terminal-Nα-acetyl-L-valyl-[protein] + CoA
(5) acetyl-CoA + an N-terminal-L-cysteinyl-[protein] = an N-terminal-Nα-acetyl-L-cysteinyl-[protein] + CoA
(6) acetyl-CoA + an N-terminal-L-threonyl-[protein] = an N-terminal-Nα-acetyl-L-threonyl-[protein] + CoA
Other name(s): NAA10 (gene name); NAA15 (gene name); ARD1 (gene name)
Systematic name: acetyl-CoA:N-terminal-Gly/Ala/Ser/Val/Cys/Thr-[protein] Nα-acetyltransferase
Comments: N-terminal-acetylases (NATs) catalyse the covalent attachment of an acetyl moiety from acetyl-CoA to the free α-amino group at the N-terminus of a protein. This irreversible modification neutralizes the positive charge at the N-terminus and makes the N-terminal residue larger and more hydrophobic. The NatA complex is found in all eukaryotic organisms, and specifically targets N-terminal Ala, Gly, Cys, Ser, Thr, and Val residues, that became available after removal of the initiator methionine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mullen, J.R., Kayne, P.S., Moerschell, R.P., Tsunasawa, S., Gribskov, M., Colavito-Shepanski, M., Grunstein, M., Sherman, F. and Sternglanz, R. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8 (1989) 2067–2075. [PMID: 2551674]
2.  Park, E.C. and Szostak, J.W. ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J. 11 (1992) 2087–2093. [PMID: 1600941]
3.  Sugiura, N., Adams, S.M. and Corriveau, R.A. An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development. J. Biol. Chem. 278 (2003) 40113–40120. [DOI] [PMID: 12888564]
4.  Gautschi, M., Just, S., Mun, A., Ross, S., Rucknagel, P., Dubaquie, Y., Ehrenhofer-Murray, A. and Rospert, S. The yeast Nα-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell Biol. 23 (2003) 7403–7414. [DOI] [PMID: 14517307]
5.  Xu, F., Huang, Y., Li, L., Gannon, P., Linster, E., Huber, M., Kapos, P., Bienvenut, W., Polevoda, B., Meinnel, T., Hell, R., Giglione, C., Zhang, Y., Wirtz, M., Chen, S. and Li, X. Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis. Plant Cell 27 (2015) 1547–1562. [DOI] [PMID: 25966763]
6.  Dorfel, M.J. and Lyon, G.J. The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 567 (2015) 103–131. [DOI] [PMID: 25987439]
[EC 2.3.1.255 created 1989 as EC 2.3.1.88, part transferred 2016 to EC 2.3.1.255]
 
 
EC 2.3.1.256     
Accepted name: N-terminal methionine Nα-acetyltransferase NatC
Reaction: (1) acetyl-CoA + an N-terminal-L-methionyl-L-leucyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-leucyl-[protein] + CoA
(2) acetyl-CoA + an N-terminal-L-methionyl-L-isoleucyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-isoleucyl-[protein] + CoA
(3) acetyl-CoA + an N-terminal-L-methionyl-L-phenylalanyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-phenylalanyl-[protein] + CoA
(4) acetyl-CoA + an N-terminal-L-methionyl-L-tryptophyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-tryptophyl-[protein] + CoA
(5) acetyl-CoA + an N-terminal-L-methionyl-L-tyrosyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-tyrosyl-[protein] + CoA
Other name(s): NAA30 (gene name); NAA35 (gene name); NAA38 (gene name); MAK3 (gene name); MAK10 (gene name); MAK31 (gene name)
Systematic name: acetyl-CoA:N-terminal-Met-Leu/Ile/Phe/Trp/Tyr-[protein] Met Nα-acetyltransferase
Comments: N-terminal-acetylases (NATs) catalyse the covalent attachment of an acetyl moiety from acetyl-CoA to the free α-amino group at the N-terminus of a protein. This irreversible modification neutralizes the positive charge at the N-terminus and makes the N-terminal residue larger and more hydrophobic, and may also play a role in membrane targeting and gene silencing. The NatC complex is found in all eukaryotic organisms, and specifically targets N-terminal L-methionine residues attached to bulky hydrophobic residues at the second position, including Leu, Ile, Phe, Trp, and Tyr residues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Polevoda, B. and Sherman, F. NatC Nα-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J. Biol. Chem. 276 (2001) 20154–20159. [DOI] [PMID: 11274203]
2.  Polevoda, B. and Sherman, F. Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun. 308 (2003) 1–11. [DOI] [PMID: 12890471]
3.  Pesaresi, P., Gardner, N.A., Masiero, S., Dietzmann, A., Eichacker, L., Wickner, R., Salamini, F. and Leister, D. Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell 15 (2003) 1817–1832. [DOI] [PMID: 12897255]
4.  Wenzlau, J.M., Garl, P.J., Simpson, P., Stenmark, K.R., West, J., Artinger, K.B., Nemenoff, R.A. and Weiser-Evans, M.C. Embryonic growth-associated protein is one subunit of a novel N-terminal acetyltransferase complex essential for embryonic vascular development. Circ. Res. 98 (2006) 846–855. [DOI] [PMID: 16484612]
5.  Starheim, K.K., Gromyko, D., Evjenth, R., Ryningen, A., Varhaug, J.E., Lillehaug, J.R. and Arnesen, T. Knockdown of human Nα-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol. Cell Biol. 29 (2009) 3569–3581. [DOI] [PMID: 19398576]
[EC 2.3.1.256 created 1989 as EC 2.3.1.88, part transferred 2016 to EC 2.3.1.256]
 
 
EC 2.3.1.258     
Accepted name: N-terminal methionine Nα-acetyltransferase NatE
Reaction: (1) acetyl-CoA + an N-terminal-L-methionyl-L-alanyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-alanyl-[protein] + CoA
(2) acetyl-CoA + an N-terminal-L-methionyl-L-seryl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-seryl-[protein] + CoA
(3) acetyl-CoA + an N-terminal-L-methionyl-L-valyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-valyl-[protein] + CoA
(4) acetyl-CoA + an N-terminal-L-methionyl-L-threonyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-threonyl-[protein] + CoA
(5) acetyl-CoA + an N-terminal-L-methionyl-L-lysyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-lysyl-[protein] + CoA
(6) acetyl-CoA + an N-terminal-L-methionyl-L-leucyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-leucyl-[protein] + CoA
(7) acetyl-CoA + an N-terminal-L-methionyl-L-phenylalanyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-phenylalanyl-[protein] + CoA
(8) acetyl-CoA + an N-terminal-L-methionyl-L-tyrosyl-[protein] = an N-terminal-Nα-acetyl-L-methionyl-L-tyrosyl-[protein] + CoA
Other name(s): NAA50 (gene name); NAT5; SAN
Systematic name: acetyl-CoA:N-terminal-Met-Ala/Ser/Val/Thr/Lys/Leu/Phe/Tyr-[protein] Met-Nα-acetyltransferase
Comments: N-terminal-acetylases (NATs) catalyse the covalent attachment of an acetyl moiety from acetyl-CoA to the free α-amino group at the N-terminus of a protein. This irreversible modification neutralizes the positive charge at the N-terminus, makes the N-terminal residue larger and more hydrophobic, and prevents its removal by hydrolysis. It may also play a role in membrane targeting and gene silencing. NatE is found in all eukaryotic organisms and plays an important role in chromosome resolution and segregation. It specifically targets N-terminal L-methionine residues attached to Lys, Val, Ala, Tyr, Phe, Leu, Ser, and Thr. There is some substrate overlap with EC 2.3.1.256, N-terminal methionine Nα-acetyltransferase NatC. In addition, the acetylation of Met followed by small residues such as Ser, Thr, Ala, or Val suggests a kinetic competition between NatE and EC 3.4.11.18, methionyl aminopeptidase. The enzyme also has the activity of EC 2.3.1.48, histone acetyltransferase, and autoacetylates several of its own lysine residues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hou, F., Chu, C.W., Kong, X., Yokomori, K. and Zou, H. The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J. Cell Biol. 177 (2007) 587–597. [DOI] [PMID: 17502424]
2.  Pimenta-Marques, A., Tostoes, R., Marty, T., Barbosa, V., Lehmann, R. and Martinho, R.G. Differential requirements of a mitotic acetyltransferase in somatic and germ line cells. Dev. Biol. 323 (2008) 197–206. [DOI] [PMID: 18801358]
3.  Evjenth, R., Hole, K., Karlsen, O.A., Ziegler, M., Arnesen, T. and Lillehaug, J.R. Human Naa50p (Nat5/San) displays both protein Nα- and N&epsilon;-acetyltransferase activity. J. Biol. Chem. 284 (2009) 31122–31129. [DOI] [PMID: 19744929]
4.  Van Damme, P., Hole, K., Gevaert, K. and Arnesen, T. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases. Proteomics 15 (2015) 2436–2446. [DOI] [PMID: 25886145]
[EC 2.3.1.258 created 1989 as EC 2.3.1.88, part transferred 2016 to EC 2.3.1.258]
 
 
EC 2.3.1.264     
Accepted name: β-lysine N6-acetyltransferase
Reaction: acetyl-CoA + (3S)-3,6-diaminohexanoate = CoA + (3S)-6-acetamido-3-aminohexanoate
Glossary: (3S)-3,6-diaminohexanoate = β-L-lysine
(3S)-6-acetamido-3-aminohexanoate = N6-acetyl-β-L-lysine
Other name(s): ablB (gene name)
Systematic name: acetyl-CoA:(3S)-3,6-diaminohexanoate N6-acetyltransferase
Comments: The enzyme is found in some methanogenic archaea and bacteria. In archaea it is induced under salt stress. The product, N6-acetyl-β-L-lysine, serves as a compatible solute, conferring high salt resistance on the producing organisms.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pfluger, K., Baumann, S., Gottschalk, G., Lin, W., Santos, H. and Muller, V. Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of N&epsilon;-acetyl-β-lysine and growth at high salinity. Appl. Environ. Microbiol. 69 (2003) 6047–6055. [DOI] [PMID: 14532061]
2.  Muller, S., Hoffmann, T., Santos, H., Saum, S.H., Bremer, E. and Muller, V. Bacterial abl-like genes: production of the archaeal osmolyte N(&epsilon;)-acetyl-β-lysine by homologous overexpression of the yodP-kamA genes in Bacillus subtilis. Appl. Microbiol. Biotechnol. 91 (2011) 689–697. [DOI] [PMID: 21538109]
[EC 2.3.1.264 created 2017]
 
 
EC 2.3.1.314     
Accepted name: phytol O-acyltransferase
Reaction: an acyl-CoA + phytol = a fatty acid phytyl ester + CoA
Other name(s): phytyl ester synthase; PES1 (gene name); PES2 (gene name); slr2103 (locus name)
Systematic name: acyl-CoA:phytol O-acyltransferase
Comments: The enzyme is found in plant chloroplasts and cyanobacteria. The plant enzyme can also employ acyl carrier proteins and galactolipids as acyl donors, while the enzyme from the cyanobacterium Synechocystis sp. PCC 6803 only uses acyl-CoAs. The enzyme also catalyses the activity of EC 2.3.1.20, diacylglycerol O-acyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ischebeck, T., Zbierzak, A.M., Kanwischer, M. and Dormann, P. A salvage pathway for phytol metabolism in Arabidopsis. J. Biol. Chem. 281 (2006) 2470–2477. [DOI] [PMID: 16306049]
2.  Lippold, F., vom Dorp, K., Abraham, M., Holzl, G., Wewer, V., Yilmaz, J.L., Lager, I., Montandon, C., Besagni, C., Kessler, F., Stymne, S. and Dormann, P. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24 (2012) 2001–2014. [DOI] [PMID: 22623494]
3.  Aizouq, M., Peisker, H., Gutbrod, K., Melzer, M., Holzl, G. and Dormann, P. Triacylglycerol and phytyl ester synthesis in Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 117 (2020) 6216–6222. [DOI] [PMID: 32123083]
4.  Tanaka, M., Ishikawa, T., Tamura, S., Saito, Y., Kawai-Yamada, M. and Hihara, Y. Quantitative and qualitative analyses of triacylglycerol production in the wild-type Cyanobacterium Synechocystis sp. PCC 6803 and the strain expressing AtfA from Acinetobacter baylyi ADP1. Plant Cell Physiol. 61 (2020) 1537–1547. [DOI] [PMID: 32433767]
[EC 2.3.1.314 created 2024]
 
 
EC 2.3.2.13     
Accepted name: protein-glutamine γ-glutamyltransferase
Reaction: protein glutamine + alkylamine = protein N5-alkylglutamine + NH3
Other name(s): transglutaminase; Factor XIIIa; fibrinoligase; fibrin stabilizing factor; glutaminylpeptide γ-glutamyltransferase; polyamine transglutaminase; tissue transglutaminase; R-glutaminyl-peptide:amine γ-glutamyl transferase
Systematic name: protein-glutamine:amine γ-glutamyltransferase
Comments: Requires Ca2+. The γ-carboxamide groups of peptide-bound glutamine residues act as acyl donors, and the 6-amino-groups of protein- and peptide-bound lysine residues act as acceptors, to give intra- and inter-molecular N6-(5-glutamyl)-lysine crosslinks. Formed by proteolytic cleavage from plasma Factor XIII
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 80146-85-6
References:
1.  Folk, J.E. and Chung, S.I. Molecular and catalytic properties of transglutaminases. Adv. Enzymol. Relat. Areas Mol. Biol. 38 (1973) 109–191. [PMID: 4151471]
2.  Folk, J.E. and Cole, P.W. Mechanism of action of guinea pig liver transglutaminase. I. Purification and properties of the enzyme: identification of a functional cysteine essential for activity. J. Biol. Chem. 241 (1966) 5518–5525. [PMID: 5928192]
3.  Folk, J.E. and Finlayson, J.S. The &epsilon;-(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv. Protein Chem. 31 (1977) 1–133. [PMID: 73346]
4.  Takahashi, N., Takahashi, Y. and Putnam, F.W. Primary structure of blood coagulation factor XIIIa (fibrinoligase, transglutaminase) from human placenta. Proc. Natl. Acad. Sci. USA 83 (1986) 8019–8023. [DOI] [PMID: 2877456]
[EC 2.3.2.13 created 1978, modified 1981, modified 1983]
 
 
EC 2.3.2.26     
Accepted name: HECT-type E3 ubiquitin transferase
Reaction: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-N6-ubiquitinyl-L-lysine (overall reaction)
(1a) [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine + [HECT-type E3 ubiquitin transferase]-L-cysteine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + [HECT-type E3 ubiquitin transferase]-S-ubiquitinyl-L-cysteine
(1b) [HECT-type E3 ubiquitin transferase]-S-ubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [HECT-type E3 ubiquitin transferase]-L-cysteine + [acceptor protein]-N6-ubiquitinyl-L-lysine
Glossary: HECT protein domain = Homologous to the E6-AP Carboxyl Terminus protein domain
Other name(s): HECT E3 ligase (misleading); ubiquitin transferase HECT-E3; S-ubiquitinyl-[HECT-type E3-ubiquitin transferase]-L-cysteine:acceptor protein ubiquitin transferase (isopeptide bond-forming)
Systematic name: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine:[acceptor protein] ubiquitin transferase (isopeptide bond-forming)
Comments: In the first step the enzyme transfers ubiquitin from the E2 ubiquitin-conjugating enzyme (EC 2.3.2.23) to a cysteine residue in its HECT domain (which is located in the C-terminal region), forming a thioester bond. In a subsequent step the enzyme transfers the ubiquitin to an acceptor protein, resulting in the formation of an isopeptide bond between the C-terminal glycine residue of ubiquitin and the &epsilon;-amino group of an L-lysine residue of the acceptor protein. cf. EC 2.3.2.27, RING-type E3 ubiquitin transferase and EC 2.3.2.31, RBR-type E3 ubiquitin transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Maspero, E., Mari, S., Valentini, E., Musacchio, A., Fish, A., Pasqualato, S. and Polo, S. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12 (2011) 342–349. [DOI] [PMID: 21399620]
2.  Metzger, M.B., Hristova, V.A. and Weissman, A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125 (2012) 531–537. [DOI] [PMID: 22389392]
[EC 2.3.2.26 created 2015, modified 2017]
 
 
EC 2.3.2.27     
Accepted name: RING-type E3 ubiquitin transferase
Reaction: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-N6-ubiquitinyl-L-lysine
Glossary: RING = Really Interesting New Gene
Other name(s): RING E3 ligase (misleading); ubiquitin transferase RING E3; S-ubiquitinyl-[ubiquitin-conjugating E2 enzyme]-L-cysteine:acceptor protein ubiquitin transferase (isopeptide bond-forming, RING-type)
Systematic name: [E2 ubiquitin-conjugating enzyme]-S-ubiquitinyl-L-cysteine:[acceptor protein] ubiquitin transferase (isopeptide bond-forming; RING-type)
Comments: RING E3 ubiquitin transferases serve as mediators bringing the ubiquitin-charged E2 ubiquitin-conjugating enzyme (EC 2.3.2.23) and an acceptor protein together to enable the direct transfer of ubiquitin through the formation of an isopeptide bond between the C-terminal glycine residue of ubiquitin and the &epsilon;-amino group of an L-lysine residue of the acceptor protein. Unlike EC 2.3.2.26, HECT-type E3 ubiquitin transferase, the RING-E3 domain does not form a catalytic thioester intermediate with ubiquitin. Many members of the RING-type E3 ubiquitin transferase family are not able to bind a substrate directly, and form a complex with a cullin scaffold protein and a substrate recognition module (the complexes are named CRL for Cullin-RING-Ligase). In these complexes, the RING-type E3 ubiquitin transferase provides an additional function, mediating the transfer of a NEDD8 protein from a dedicated E2 carrier to the cullin protein (see EC 2.3.2.32, cullin-RING-type E3 NEDD8 transferase). cf. EC 2.3.2.31, RBR-type E3 ubiquitin transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Eisele, F. and Wolf, D.H. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582 (2008) 4143–4146. [DOI] [PMID: 19041308]
2.  Metzger, M.B., Hristova, V.A. and Weissman, A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125 (2012) 531–537. [DOI] [PMID: 22389392]
3.  Plechanovova, A., Jaffray, E.G., Tatham, M.H., Naismith, J.H. and Hay, R.T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489 (2012) 115–120. [DOI] [PMID: 22842904]
4.  Pruneda, J.N., Littlefield, P.J., Soss, S.E., Nordquist, K.A., Chazin, W.J., Brzovic, P.S. and Klevit, R.E. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47 (2012) 933–942. [DOI] [PMID: 22885007]
5.  Metzger, M.B., Pruneda, J.N., Klevit, R.E. and Weissman, A.M. RING -type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta 1843 (2014) 47–60. [DOI] [PMID: 23747565]
[EC 2.3.2.27 created 2015, modified 2017]
 
 
EC 2.3.2.35     
Accepted name: capsaicin synthase
Reaction: (6E)-8-methylnon-6-enoyl-CoA + vanillylamine = CoA + capsaicin
Other name(s): CS (gene name) (ambiguous); Pun1 (locus name)
Systematic name: (6E)-8-methylnon-6-enoyl-CoA:vanillylamine 8-methylnon-6-enoyltransferase
Comments: The enzyme, found only in plants that belong to the Capsicum genus, catalyses the last step in the biosynthesis of capsaicinoids. The enzyme catalyses the acylation of vanillylamine by a branched-chain fatty acid. The exact structure of the fatty acid determines the type of capsaicinoid formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Blum, E., Liu, K., Mazourek, M., Yoo, E.Y., Jahn, M. and Paran, I. Molecular mapping of the C locus for presence of pungency in Capsicum. Genome 45 (2002) 702–705. [PMID: 12175073]
2.  Stewart, C., Jr., Kang, B.C., Liu, K., Mazourek, M., Moore, S.L., Yoo, E.Y., Kim, B.D., Paran, I. and Jahn, M.M. The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J. 42 (2005) 675–688. [PMID: 15918882]
3.  Kim, S., Park, M., Yeom, S.I., Kim, Y.M., Lee, J.M., Lee, H.A., Seo, E., Choi, J., Cheong, K., Kim, K.T., Jung, K., Lee, G.W., Oh, S.K., Bae, C., Kim, S.B., Lee, H.Y., Kim, S.Y., Kim, M.S., Kang, B.C., Jo, Y.D., Yang, H.B., Jeong, H.J., Kang, W.H., Kwon, J.K., Shin, C., Lim, J.Y., Park, J.H., Huh, J.H., Kim, J.S., Kim, B.D., Cohen, O., Paran, I., Suh, M.C., Lee, S.B., Kim, Y.K., Shin, Y., Noh, S.J., Park, J., Seo, Y.S., Kwon, S.Y., Kim, H.A., Park, J.M., Kim, H.J., Choi, S.B., Bosland, P.W., Reeves, G., Jo, S.H., Lee, B.W., Cho, H.T., Choi, H.S., Lee, M.S., Yu, Y., Do Choi, Y., Park, B.S., van Deynze, A., Ashrafi, H., Hill, T., Kim, W.T., Pai, H.S., Ahn, H.K., Yeam, I., Giovannoni, J.J., Rose, J.K., Sorensen, I., Lee, S.J., Kim, R.W., Choi, I.Y., Choi, B.S., Lim, J.S., Lee, Y.H. and Choi, D. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46 (2014) 270–278. [PMID: 24441736]
[EC 2.3.2.35 created 2020]
 
 
EC 2.3.3.17     
Accepted name: methylthioalkylmalate synthase
Reaction: an ω-(methylsulfanyl)-2-oxoalkanoate + acetyl-CoA + H2O = a 2-[ω-(methylsulfanyl)alkyl]malate + CoA
For diagram of L-Homomethionine biosynthesis, click here
Other name(s): MAM1 (gene name); MAM3 (gene name); acetyl-CoA:ω-(methylthio)-2-oxoalkanoate C-acetyltransferase
Systematic name: acetyl-CoA:ω-(methylsulfanyl)-2-oxoalkanoate C-acetyltransferase
Comments: The enzyme, characterized from the plant Arabidopsis thaliana, is involved in the L-methionine side-chain elongation pathway, forming substrates for the biosynthesis of aliphatic glucosinolates. Two forms are known - MAM1 catalyses only only the first two rounds of methionine chain elongation, while MAM3 catalyses all six cycles, up to formation of L-hexahomomethionine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Textor, S., Bartram, S., Kroymann, J., Falk, K.L., Hick, A., Pickett, J.A. and Gershenzon, J. Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta 218 (2004) 1026–1035. [DOI] [PMID: 14740211]
2.  Textor, S., de Kraker, J.W., Hause, B., Gershenzon, J. and Tokuhisa, J.G. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol. 144 (2007) 60–71. [DOI] [PMID: 17369439]
[EC 2.3.3.17 created 2016]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald