The Enzyme Database

Displaying entries 51-100 of 118.

<< Previous | Next >>    printer_iconPrintable version

EC 1.7.1.16     
Accepted name: nitrobenzene nitroreductase
Reaction: N-phenylhydroxylamine + 2 NADP+ + H2O = nitrobenzene + 2 NADPH + 2 H+ (overall reaction)
(1a) N-phenylhydroxylamine + NADP+ = nitrosobenzene + NADPH + H+
(1b) nitrosobenzene + NADP+ + H2O = nitrobenzene + NADPH + H+
Other name(s): cnbA (gene name)
Systematic name: N-phenylhydroxylamine:NADP+ oxidoreductase
Comments: Contains FMN. The enzyme, characterized from Pseudomonas species, catalyses two successive reductions of nitrobenzene, via a nitrosobenzene intermediate. It is also active on 1-chloro-4-nitrobenzene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Somerville, C.C., Nishino, S.F. and Spain, J.C. Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 177 (1995) 3837–3842. [DOI] [PMID: 7601851]
2.  Wu, J.F., Jiang, C.Y., Wang, B.J., Ma, Y.F., Liu, Z.P. and Liu, S.J. Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl. Environ. Microbiol. 72 (2006) 1759–1765. [DOI] [PMID: 16517619]
[EC 1.7.1.16 created 2017]
 
 
EC 1.7.1.17     
Accepted name: FMN-dependent NADH-azoreductase
Reaction: anthranilate + N,N-dimethyl-1,4-phenylenediamine + 2 NAD+ = 2-(4-dimethylaminophenyl)diazenylbenzoate + 2 NADH + 2 H+
Glossary: 2-(4-dimethylaminophenyl)diazenylbenzoate = methyl red
Other name(s): azoR (gene name); NADH-azoreductase
Systematic name: N,N-dimethyl-1,4-phenylenediamine, anthranilate:NAD+ oxidoreductase
Comments: Requires FMN. The enzyme catalyses the reductive cleavage of an azo bond in aromatic azo compounds to form the corresponding amines. Does not accept NADPH. cf. EC 1.7.1.6, azobenzene reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nakanishi, M., Yatome, C., Ishida, N. and Kitade, Y. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J. Biol. Chem. 276 (2001) 46394–46399. [DOI] [PMID: 11583992]
2.  Ito, K., Nakanishi, M., Lee, W.C., Sasaki, H., Zenno, S., Saigo, K., Kitade, Y. and Tanokura, M. Crystallization and preliminary X-ray analysis of AzoR (azoreductase) from Escherichia coli. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 399–402. [DOI] [PMID: 16511052]
3.  Ito, K., Nakanishi, M., Lee, W.C., Zhi, Y., Sasaki, H., Zenno, S., Saigo, K., Kitade, Y. and Tanokura, M. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J. Biol. Chem. 283 (2008) 13889–13896. [DOI] [PMID: 18337254]
4.  Mercier, C., Chalansonnet, V., Orenga, S. and Gilbert, C. Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction. J. Appl. Microbiol. 115 (2013) 1012–1022. [DOI] [PMID: 23795903]
[EC 1.7.1.17 created 2018]
 
 
EC 1.7.3.5     
Accepted name: 3-aci-nitropropanoate oxidase
Reaction: 3-aci-nitropropanoate + O2 + H2O = 3-oxopropanoate + nitrite + H2O2
Other name(s): propionate-3-nitronate oxidase
Systematic name: 3-aci-nitropropanoate:oxygen oxidoreductase
Comments: A flavoprotein (FMN). The primary products of the enzymic reaction are probably the nitropropanoate free radical and superoxide. Also acts, more slowly, on 4-aci-nitrobutanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111940-52-4
References:
1.  Porter, D.J.T. and Bright, H.J. Propionate-3-nitronate oxidase from Penicillium atrovenetum is a flavoprotein which initiates the autoxidation of its substrate by O2. J. Biol. Chem. 262 (1987) 14428–14434. [PMID: 3667582]
[EC 1.7.3.5 created 1990]
 
 
EC 1.8.1.2     
Accepted name: assimilatory sulfite reductase (NADPH)
Reaction: hydrogen sulfide + 3 NADP+ + 3 H2O = sulfite + 3 NADPH + 3 H+
Other name(s): sulfite reductase (NADPH); sulfite (reduced nicotinamide adenine dinucleotide phosphate) reductase; NADPH-sulfite reductase; NADPH-dependent sulfite reductase; H2S-NADP oxidoreductase; sulfite reductase (NADPH2); MET5 (gene name); MET10 (gene name); cysI (gene name); cysJ (gene name)
Systematic name: hydrogen-sulfide:NADP+ oxidoreductase
Comments: Contains siroheme, [4Fe-4S] cluster, FAD and FMN. The enzyme, which catalyses the six-electron reduction of sulfite to sulfide, is involved in sulfate assimilation in bacteria and yeast. Different from EC 1.8.1.22, dissimilatory sulfite reductase system, which is involved in prokaryotic sulfur-based energy metabolism. cf. EC 1.8.7.1, assimilatory sulfite reductase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-35-0
References:
1.  Hilz, H., Kittler, M. and Knape, G. Die Reduktion von Sulfate in der Hefe. Biochem. Z. 332 (1959) 151–166. [PMID: 14401842]
2.  Yoshimoto, A. and Sato, R. Studies on yeast sulfite reductase. I. Purification and characterization. Biochim. Biophys. Acta 153 (1968) 555–575. [DOI] [PMID: 4384979]
3.  Siegel, L.M., Murphy, M.J. and Kamin, H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J. Biol. Chem. 248 (1973) 251–264. [PMID: 4144254]
4.  Kobayashi, K. and Yoshimoto, A. Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim. Biophys. Acta 705 (1982) 348–356. [DOI] [PMID: 6751400]
5.  Siegel, L.M., Rueger, D.C., Barber, M.J., Krueger, R.J., Orme-Johnson, N.R. and Orme-Johnson, W.H. Escherichia coli sulfite reductase hemoprotein subunit. Prosthetic groups, catalytic parameters, and ligand complexes. J. Biol. Chem. 257 (1982) 6343–6350. [PMID: 6281269]
6.  Coves, J., Zeghouf, M., Macherel, D., Guigliarelli, B., Asso, M. and Fontecave, M. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Biochemistry 36 (1997) 5921–5928. [DOI] [PMID: 9153434]
7.  Crane, B.R., Siegel, L.M. and Getzoff, E.D. Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: heme activation via reduction-gated exogenous ligand exchange. Biochemistry 36 (1997) 12101–12119. [DOI] [PMID: 9315848]
[EC 1.8.1.2 created 1961, modified 2015]
 
 
EC 1.8.1.20     
Accepted name: 4,4′-dithiodibutanoate disulfide reductase
Reaction: 2 4-sulfanylbutanoate + NAD+ = 4,4′-disulfanediyldibutanoate + NADH + H+
Systematic name: 4-sulfanylbutanoate:NAD+ oxidoreductase
Comments: The enzyme, characterized from the bacterium Rhodococcus erythropolis MI2, contains an FMN cofator.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Khairy, H., Wubbeler, J.H. and Steinbuchel, A. Biodegradation of the organic disulfide 4,4′-dithiodibutyric acid by Rhodococcus spp. Appl. Environ. Microbiol. 81 (2015) 8294–8306. [DOI] [PMID: 26407888]
2.  Khairy, H., Wubbeler, J.H. and Steinbuchel, A. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4′-dithiodibutyric acid degradation. Lett. Appl. Microbiol. 63 (2016) 434–441. [DOI] [PMID: 27564089]
[EC 1.8.1.20 created 2017]
 
 
EC 1.10.3.16     
Accepted name: dihydrophenazinedicarboxylate synthase
Reaction: (1) (1R,6R)-1,4,5,5a,6,9-hexahydrophenazine-1,6-dicarboxylate + O2 = (1R,10aS)-1,4,10,10a-tetrahydrophenazine-1,6-dicarboxylate + H2O2
(2) (1R,10aS)-1,4,10,10a-tetrahydrophenazine-1,6-dicarboxylate + O2 = (5aS)-5,5a-dihydrophenazine-1,6-dicarboxylate + H2O2
(3) (1R,10aS)-1,4,10,10a-tetrahydrophenazine-1-carboxylate + O2 = (10aS)-10,10a-dihydrophenazine-1-carboxylate + H2O2
(4) (1R)-1,4,5,10-tetrahydrophenazine-1-carboxylate + O2 = (10aS)-5,10-dihydrophenazine-1-carboxylate + H2O2
For diagram of enediyne antitumour antibiotic biosynthesis and pyocyanin biosynthesis, click here
Other name(s): phzG (gene name)
Systematic name: 1,4,5a,6,9,10a-hexahydrophenazine-1,6-dicarboxylate:oxygen oxidoreductase
Comments: Requires FMN. The enzyme, isolated from the bacteria Pseudomonas fluorescens 2-79 and Burkholderia lata 383, is involved in biosynthesis of the reduced forms of phenazine, phenazine-1-carboxylate, and phenazine-1,6-dicarboxylate, where it catalyses multiple reactions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Xu, N., Ahuja, E.G., Janning, P., Mavrodi, D.V., Thomashow, L.S. and Blankenfeldt, W. Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis. Acta Crystallogr. D Biol. Crystallogr. 69 (2013) 1403–1413. [DOI] [PMID: 23897464]
[EC 1.10.3.16 created 2016]
 
 
EC 1.12.1.2     
Accepted name: hydrogen dehydrogenase
Reaction: H2 + NAD+ = H+ + NADH
Other name(s): H2:NAD+ oxidoreductase; NAD-linked hydrogenase; bidirectional hydrogenase; hydrogenase
Systematic name: hydrogen:NAD+ oxidoreductase
Comments: An iron-sulfur flavoprotein (FMN or FAD). Some forms of this enzyme contain nickel.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-05-8
References:
1.  Bone, D.H., Bernstein, S. and Vishniac, W. Purification and some properties of different forms of hydrogen dehydrogenase. Biochim. Biophys. Acta 67 (1963) 581–588. [PMID: 13968752]
2.  Schneider, K. and Schlegel, H.G. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. Biochim. Biophys. Acta 452 (1976) 66–80. [DOI] [PMID: 186126]
[EC 1.12.1.2 created 1972, modified 2002]
 
 
EC 1.13.11.32      
Transferred entry: 2-nitropropane dioxygenase. Now EC 1.13.12.16, nitronate monooxygenase
[EC 1.13.11.32 created 1984, modified 2006, deleted 2009]
 
 
EC 1.13.11.79     
Accepted name: aerobic 5,6-dimethylbenzimidazole synthase
Reaction: FMNH2 + O2 = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + other product(s)
For diagram of FAD biosynthesis, click here
Other name(s): BluB; flavin destructase
Systematic name: FMNH2 oxidoreductase (5,6-dimethylbenzimidazole-forming)
Comments: The enzyme catalyses a complex oxygen-dependent conversion of reduced flavin mononucleotide to form 5,6-dimethylbenzimidazole, the lower ligand of vitamin B12. This conversion involves many sequential steps in two distinct stages, and an alloxan intermediate that acts as a proton donor, a proton acceptor, and a hydride acceptor [4]. The C-2 of 5,6-dimethylbenzimidazole is derived from C-1′ of the ribityl group of FMNH2 and 2-H from the ribityl 1′-pro-S hydrogen. While D-erythrose 4-phosphate has been shown to be one of the byproducts, the nature of the other product(s) has not been verified yet.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gray, M.J. and Escalante-Semerena, J.C. Single-enzyme conversion of FMNH2 to 5,6-dimethylbenzimidazole, the lower ligand of B12. Proc. Natl. Acad. Sci. USA 104 (2007) 2921–2926. [DOI] [PMID: 17301238]
2.  Ealick, S.E. and Begley, T.P. Biochemistry: molecular cannibalism. Nature 446 (2007) 387–388. [DOI] [PMID: 17377573]
3.  Taga, M.E., Larsen, N.A., Howard-Jones, A.R., Walsh, C.T. and Walker, G.C. BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature 446:449 (2007). [DOI] [PMID: 17377583]
4.  Wang, X.L. and Quan, J.M. Intermediate-assisted multifunctional catalysis in the conversion of flavin to 5,6-dimethylbenzimidazole by BluB: a density functional theory study. J. Am. Chem. Soc. 133 (2011) 4079–4091. [DOI] [PMID: 21344938]
5.  Collins, H.F., Biedendieck, R., Leech, H.K., Gray, M., Escalante-Semerena, J.C., McLean, K.J., Munro, A.W., Rigby, S.E., Warren, M.J. and Lawrence, A.D. Bacillus megaterium has both a functional BluB protein required for DMB synthesis and a related flavoprotein that forms a stable radical species. PLoS One 8:e55708 (2013). [DOI] [PMID: 23457476]
[EC 1.13.11.79 created 2010 as EC 1.14.99.40, transferred 2014 to EC 1.13.11.79, modified 2019]
 
 
EC 1.13.12.4     
Accepted name: lactate 2-monooxygenase
Reaction: (S)-lactate + O2 = acetate + CO2 + H2O
Other name(s): lactate oxidative decarboxylase; lactate oxidase; lactic oxygenase; lactate oxygenase; lactic oxidase; L-lactate monooxygenase; lactate monooxygenase; L-lactate-2-monooxygenase
Systematic name: (S)-lactate:oxygen 2-oxidoreductase (decarboxylating)
Comments: A flavoprotein (FMN).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-72-2
References:
1.  Hayaishi, O. and Sutton, W.B. Enzymatic oxygen fixation into acetate concomitant with the enzymatic decarboxylation of L-lactate. J. Am. Chem. Soc. 79 (1957) 4809–4810.
2.  Sutton, W.B. Mechanism of action and crystalization of lactic oxidative decarboxylase from Mycobacterium phlei. J. Biol. Chem. 226 (1957) 395–405. [PMID: 13428772]
[EC 1.13.12.4 created 1961 as EC 1.1.3.2, transferred 1972 to EC 1.13.12.4]
 
 
EC 1.13.12.16     
Accepted name: nitronate monooxygenase
Reaction: ethylnitronate + O2 = acetaldehyde + nitrite + other products
Other name(s): NMO; 2-nitropropane dioxygenase (incorrect)
Systematic name: nitronate:oxygen 2-oxidoreductase (nitrite-forming)
Comments: Previously classified as 2-nitropropane dioxygenase (EC 1.13.11.32), but it is now recognized that this was the result of the slow ionization of nitroalkanes to their nitronate (anionic) forms. The enzymes from the fungus Neurospora crassa and the yeast Williopsis saturnus var. mrakii (formerly classified as Hansenula mrakii) contain non-covalently bound FMN as the cofactor. Neither hydrogen peroxide nor superoxide were detected during enzyme turnover. Active towards linear alkyl nitronates of lengths between 2 and 6 carbon atoms and, with lower activity, towards propyl-2-nitronate. The enzyme from N. crassa can also utilize neutral nitroalkanes, but with lower activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Francis, K., Russell, B. and Gadda, G. Involvement of a flavosemiquinone in the enzymatic oxidation of nitroalkanes catalyzed by 2-nitropropane dioxygenase. J. Biol. Chem. 280 (2005) 5195–5204. [DOI] [PMID: 15582992]
2.  Ha, J.Y., Min, J.Y., Lee, S.K., Kim, H.S., Kim do, J., Kim, K.H., Lee, H.H., Kim, H.K., Yoon, H.J. and Suh, S.W. Crystal structure of 2-nitropropane dioxygenase complexed with FMN and substrate. Identification of the catalytic base. J. Biol. Chem. 281 (2006) 18660–18667. [DOI] [PMID: 16682407]
3.  Gadda, G. and Francis, K. Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis. Arch. Biochem. Biophys. 493 (2010) 53–61. [DOI] [PMID: 19577534]
4.  Francis, K. and Gadda, G. Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase. Bioorg. Chem. 37 (2009) 167–172. [DOI] [PMID: 19683782]
[EC 1.13.12.16 created 1984 as EC 1.13.11.32, transferred 2009 to EC 1.13.12.16, modified 2011]
 
 
EC 1.14.12.7     
Accepted name: phthalate 4,5-dioxygenase
Reaction: phthalate + NADH + H+ + O2 = cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,2-dicarboxylate + NAD+
For diagram of reaction, click here
Other name(s): PDO ; phthalate dioxygenase
Systematic name: phthalate,NADH:oxygen oxidoreductase (4,5-hydroxylating)
Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FMN), an iron-sulfur oxygenase, and no independent ferredoxin. Requires Fe2+.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 63626-44-8
References:
1.  Batie, C.J., LaHaie, E. and Ballou, D.P. Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J. Biol. Chem. 262 (1987) 1510–1518. [PMID: 3805038]
[EC 1.14.12.7 created 1990]
 
 
EC 1.14.12.8     
Accepted name: 4-sulfobenzoate 3,4-dioxygenase
Reaction: 4-sulfobenzoate + NADH + H+ + O2 = 3,4-dihydroxybenzoate + sulfite + NAD+
For diagram of reaction, click here
Other name(s): 4-sulfobenzoate dioxygenase; 4-sulfobenzoate 3,4-dioxygenase system
Systematic name: 4-sulfobenzoate,NADH:oxygen oxidoreductase (3,4-hydroxylating, sulfite-forming)
Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FMN), an iron-sulfur oxygenase, and no independent ferredoxin. Requires Fe2+.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 122933-81-7
References:
1.  Locher, H.H., Leisinger, T. and Cook, A.M. 4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Biochem. J. 274 (1991) 833–842. [PMID: 2012609]
[EC 1.14.12.8 created 1992]
 
 
EC 1.14.13.39     
Accepted name: nitric-oxide synthase (NADPH)
Reaction: 2 L-arginine + 3 NADPH + 3 H+ + 4 O2 = 2 L-citrulline + 2 nitric oxide + 3 NADP+ + 4 H2O (overall reaction)
(1a) 2 L-arginine + 2 NADPH + 2 H+ + 2 O2 = 2 Nω-hydroxy-L-arginine + 2 NADP+ + 2 H2O
(1b) 2 Nω-hydroxy-L-arginine + NADPH + H+ + 2 O2 = 2 L-citrulline + 2 nitric oxide + NADP+ + 2 H2O
Glossary: nitric oxide = NO = nitrogen(II) oxide
Other name(s): NOS (gene name); nitric oxide synthetase (ambiguous); endothelium-derived relaxation factor-forming enzyme; endothelium-derived relaxing factor synthase; NO synthase (ambiguous); NADPH-diaphorase (ambiguous)
Systematic name: L-arginine,NADPH:oxygen oxidoreductase (nitric-oxide-forming)
Comments: The enzyme consists of linked oxygenase and reductase domains. The eukaryotic enzyme binds FAD, FMN, heme (iron protoporphyrin IX) and tetrahydrobiopterin, and its two domains are linked via a regulatory calmodulin-binding domain. Upon calcium-induced calmodulin binding, the reductase and oxygenase domains form a complex, allowing electrons to flow from NADPH via FAD and FMN to the active center. The reductase domain of the enzyme from the bacterium Sorangium cellulosum utilizes a [2Fe-2S] cluster to transfer the electrons from NADPH to the active center. cf. EC 1.14.14.47, nitric-oxide synthase (flavodoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 125978-95-2
References:
1.  Bredt, D.S. and Snyder, S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87 (1990) 682–685. [DOI] [PMID: 1689048]
2.  Stuehr, D.J., Kwon, N.S., Nathan, C.F., Griffith, O.W., Feldman, P.L. and Wiseman, J. Nω-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J. Biol. Chem. 266 (1991) 6259–6263. [PMID: 1706713]
3.  Stuehr, D., Pou, S. and Rosen, G.M. Oxygen reduction by nitric-oxide synthases. J. Biol. Chem. 276 (2001) 14533–14536. [DOI] [PMID: 11279231]
4.  Agapie, T., Suseno, S., Woodward, J.J., Stoll, S., Britt, R.D. and Marletta, M.A. NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum. Proc. Natl. Acad. Sci. USA 106 (2009) 16221–16226. [DOI] [PMID: 19805284]
5.  Foresi, N., Correa-Aragunde, N., Parisi, G., Calo, G., Salerno, G. and Lamattina, L. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22 (2010) 3816–3830. [DOI] [PMID: 21119059]
[EC 1.14.13.39 created 1992, modified 2012, modified 2017]
 
 
EC 1.14.13.58     
Accepted name: benzoyl-CoA 3-monooxygenase
Reaction: benzoyl-CoA + NADPH + H+ + O2 = 3-hydroxybenzoyl-CoA + NADP+ + H2O
Other name(s): benzoyl-CoA 3-hydroxylase
Systematic name: benzoyl-CoA,NADPH:oxygen oxidoreductase (3-hydroxylating)
Comments: The enzyme from the denitrifying bacterium Pseudomonas KB740 catalyses a flavin-requiring reaction (FAD or FMN). Benzoate is not a substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 151616-61-4
References:
1.  Niemetz, R., Altenschmidt, U., Herrmann, H. and Fuchs, G. Benzoyl-coenzyme-A 3-monooxygenase, a flavin-dependent hydroxylase. Purification, some properties and its role in aerobic benzoate oxidation via gentisate in a denitrifying bacterium. Eur. J. Biochem. 227 (1995) 161–168. [PMID: 7851381]
[EC 1.14.13.58 created 1999]
 
 
EC 1.14.13.103      
Transferred entry: 8-dimethylallylnaringenin 2-hydroxylase. Now EC 1.14.14.142, 8-dimethylallylnaringenin 2-hydroxylase
[EC 1.14.13.103 created 2007, deleted 2018]
 
 
EC 1.14.13.111     
Accepted name: methanesulfonate monooxygenase (NADH)
Reaction: methanesulfonate + NADH + H+ + O2 = formaldehyde + NAD+ + sulfite + H2O
Glossary: methanesulfonate = CH3-SO3-
formaldehyde = H-CHO
Other name(s): mesylate monooxygenase; mesylate,reduced-FMN:oxygen oxidoreductase; MsmABC; methanesulfonic acid monooxygenase; MSA monooxygenase; MSAMO
Systematic name: methanesulfonate,NADH:oxygen oxidoreductase
Comments: A flavoprotein. Methanesulfonate is the simplest of the sulfonates and is a substrate for the growth of certain methylotrophic microorganisms. Compared with EC 1.14.14.5, alkanesulfonate monooxygenase, this enzyme has a restricted substrate range that includes only the short-chain aliphatic sulfonates (methanesulfonate to butanesulfonate) and excludes all larger molecules, such as arylsulfonates [1]. The enzyme from the bacterium Methylosulfonomonas methylovora is a multicomponent system comprising a hydroxylase, a reductase (MsmD) and a ferredoxin (MsmC). The hydroxylase has both large (MsmA) and small (MsmB) subunits, with each large subunit containing a Rieske-type [2Fe-2S] cluster. cf. EC 1.14.14.34, methanesulfonate monooxygenase (FMNH2).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  de Marco, P., Moradas-Ferreira, P., Higgins, T.P., McDonald, I., Kenna, E.M. and Murrell, J.C. Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J. Bacteriol. 181 (1999) 2244–2251. [PMID: 10094704]
2.  Higgins, T.P., Davey, M., Trickett, J., Kelly, D.P. and Murrell, J.C. Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme. Microbiology 142 (1996) 251–260. [DOI] [PMID: 8932698]
[EC 1.14.13.111 created 2009 as EC 1.14.14.6, transferred 2010 to EC 1.14.13.111, modified 2016]
 
 
EC 1.14.13.131     
Accepted name: dissimilatory dimethyl sulfide monooxygenase
Reaction: dimethyl sulfide + O2 + NADH + H+ = methanethiol + formaldehyde + NAD+ + H2O
For diagram of dimethyl sulfide catabolism, click here
Other name(s): dmoAB (gene names); dimethyl sulfide C-monooxygenase; dimethylsulfide monooxygenase (ambiguous); dimethyl sulfide monooxygenase (ambiguous)
Systematic name: dimethyl sulfide,NADH:oxygen oxidoreductase
Comments: The enzyme participates exclusively in sulfur dissimilation. It has lower activity with diethyl sulfide and other short-chain alkyl methyl sulfides. Its activity is stimulated by combined addition of FMN, and, after depletion of cations, of Mg2+ and Fe2+. The enzymes from bacteria of the Hyphomicrobium genus are a two component system that includes an FMN-dependent reductase subunit and a monooxygenase subunit.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  De Bont, J.A.M., Van Dijken, J.P. and Harder, W. Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. J. Gen. Microbiol. 127 (1981) 315–323.
2.  Boden, R., Borodina, E., Wood, A.P., Kelly, D.P., Murrell, J.C. and Schafer, H. Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J. Bacteriol. 193 (2011) 1250–1258. [DOI] [PMID: 21216999]
[EC 1.14.13.131 created 2011]
 
 
EC 1.14.13.156      
Transferred entry: 1,8-cineole 2-endo-monooxygenase. Now EC 1.14.14.133, 1,8-cineole 2-endo-monooxygenase
[EC 1.14.13.156 created 2012, deleted 2018]
 
 
EC 1.14.13.162      
Transferred entry: 2,5-diketocamphane 1,2-monooxygenase. Now EC 1.14.14.108, 2,5-diketocamphane 1,2-monooxygenase
[EC 1.14.13.162 created 1972 as EC 1.14.15.2, transferred 2012 to EC 1.14.13.162, deleted 2018]
 
 
EC 1.14.13.165      
Transferred entry: nitric-oxide synthase [NAD(P)H]. Now classified as EC 1.14.14.47, nitric-oxide synthase (flavodoxin)
[EC 1.14.13.165 created 2012, deleted 2017]
 
 
EC 1.14.13.178     
Accepted name: methylxanthine N1-demethylase
Reaction: (1) caffeine + O2 + NAD(P)H + H+ = theobromine + NAD(P)+ + H2O + formaldehyde
(2) theophylline + O2 + NAD(P)H + H+ = 3-methylxanthine + NAD(P)+ + H2O + formaldehyde
(3) paraxanthine + O2 + NAD(P)H + H+ = 7-methylxanthine + NAD(P)+ + H2O + formaldehyde
Glossary: caffeine = 1,3,7-trimethylxanthine
theobromine = 3,7-dimethylxanthine
theophylline = 1,3-dimethylxanthine
paraxanthine = 1,7-dimethylxanthine
Other name(s): ndmA (gene name)
Systematic name: caffeine:oxygen oxidoreductase (N1-demethylating)
Comments: A non-heme iron oxygenase. The enzyme from the bacterium Pseudomonas putida shares an NAD(P)H-FMN reductase subunit with EC 1.14.13.179, methylxanthine N3-demethylase, and has a 5-fold higher activity with NADH than with NADPH [2]. Also demethylate 1-methylxantine with lower efficiency. Forms part of the degradation pathway of methylxanthines.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Summers, R.M., Louie, T.M., Yu, C.L. and Subramanian, M. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology 157 (2011) 583–592. [DOI] [PMID: 20966097]
2.  Summers, R.M., Louie, T.M., Yu, C.L., Gakhar, L., Louie, K.C. and Subramanian, M. Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids. J. Bacteriol. 194 (2012) 2041–2049. [DOI] [PMID: 22328667]
[EC 1.14.13.178 created 2013]
 
 
EC 1.14.13.179     
Accepted name: methylxanthine N3-demethylase
Reaction: (1) theobromine + O2 + NAD(P)H + H+ = 7-methylxanthine + NAD(P)+ + H2O + formaldehyde
(2) 3-methylxanthine + O2 + NAD(P)H + H+ = xanthine + NAD(P)+ + H2O + formaldehyde
Glossary: theobromine = 3,7-dimethylxanthine
Other name(s): ndmB (gene name)
Systematic name: theobromine:oxygen oxidoreductase (N3-demethylating)
Comments: A non-heme iron oxygenase. The enzyme from the bacterium Pseudomonas putida shares an NAD(P)H-FMN reductase subunit with EC 1.14.13.178, methylxanthine N1-demethylase, and has higher activity with NADH than with NADPH [1]. Also demethylates caffeine and theophylline with lower efficiency. Forms part of the degradation pathway of methylxanthines.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Summers, R.M., Louie, T.M., Yu, C.L. and Subramanian, M. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology 157 (2011) 583–592. [DOI] [PMID: 20966097]
2.  Summers, R.M., Louie, T.M., Yu, C.L., Gakhar, L., Louie, K.C. and Subramanian, M. Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids. J. Bacteriol. 194 (2012) 2041–2049. [DOI] [PMID: 22328667]
[EC 1.14.13.179 created 2013]
 
 
EC 1.14.13.215     
Accepted name: protoasukamycin 4-monooxygenase
Reaction: protoasukamycin + NADH + H+ + O2 = 4-hydroxyprotoasukamycin + NAD+ + H2O
Glossary: asuE1 (gene name)
Systematic name: protoasukamycin,NADH:oxygen oxidoreductase (4-hydroxylating)
Comments: The enzyme, characterized from the bacterium Streptomyces nodosus subsp. asukaensis, is involved in the biosynthesis of the antibiotic asukamycin. Requires a flavin cofactor, with no preference among FMN, FAD or riboflavin. When flavin concentration is low, activity is enhanced by the presence of the NADH-dependent flavin-reductase AsuE2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rui, Z., Sandy, M., Jung, B. and Zhang, W. Tandem enzymatic oxygenations in biosynthesis of epoxyquinone pharmacophore of manumycin-type metabolites. Chem. Biol. 20 (2013) 879–887. [DOI] [PMID: 23890006]
[EC 1.14.13.215 created 2016]
 
 
EC 1.14.13.238     
Accepted name: dimethylamine monooxygenase
Reaction: dimethylamine + NADPH + H+ + O2 = methylamine + formaldehyde + NADP+ + H2O
Other name(s): dmmABC (gene names)
Systematic name: dimethylamine,NADPH:oxygen oxidoreductase (formaldehyde-forming)
Comments: The enzyme, characterized from several bacterial species, is involved in a pathway for the degradation of methylated amines. It is composed of three subunits, one of which is a ferredoxin, and contains heme iron and an FMN cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Eady, R.R. and Large, P.J. Bacterial oxidation of dimethylamine, a new mono-oxygenase reaction. Biochem. J. 111 (1969) 37P–38P. [PMID: 4389011]
2.  Eady, R.R., Jarman, T.R. and Large, P.J. Microbial oxidation of amines. Partial purification of a mixed-function secondary-amine oxidase system from Pseudomonas aminovorans that contains an enzymically active cytochrome-P-420-type haemoprotein. Biochem. J. 125 (1971) 449–459. [PMID: 4401380]
3.  Alberta, J.A. and Dawson, J.H. Purification to homogeneity and initial physical characterization of secondary amine monooxygenase. J. Biol. Chem. 262 (1987) 11857–11863. [PMID: 3624236]
4.  Lidbury, I., Mausz, M.A., Scanlan, D.J. and Chen, Y. Identification of dimethylamine monooxygenase in marine bacteria reveals a metabolic bottleneck in the methylated amine degradation pathway. ISME J. 11 (2017) 1592–1601. [DOI] [PMID: 28304370]
[EC 1.14.13.238 created 2017]
 
 
EC 1.14.14.3     
Accepted name: bacterial luciferase
Reaction: a long-chain aldehyde + FMNH2 + O2 = a long-chain fatty acid + FMN + H2O +
Other name(s): aldehyde monooxygenase; luciferase; Vibrio fischeri luciferase; alkanal,reduced-FMN:oxygen oxidoreductase (1-hydroxylating, luminescing); alkanal,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing); alkanal monooxygenase (FMN); aldehyde,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing)
Systematic name: long-chain-aldehyde,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing)
Comments: The reaction sequence starts with the incorporation of a molecule of oxygen into reduced FMN bound to the enzyme, forming luciferase peroxyflavin. The peroxyflavin interacts with an aliphatic long-chain aldehyde, producing a highly fluorescent species believed to be luciferase hydroxyflavin. The enzyme is highly specific for reduced FMN and for long-chain aliphatic aldehydes with eight carbons or more. The highest efficiency is achieved with tetradecanal. cf. EC 1.13.12.18, dinoflagellate luciferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-00-0
References:
1.  Hastings, J.W. and Nealson, K.H. Bacterial bioluminescence. Annu. Rev. Microbiol. 31 (1977) 549–595. [DOI] [PMID: 199107]
2.  Hastings, J.W. Bacterial bioluminescence light emission in the mixed function oxidation of reduced flavin and fatty aldehyde. Crit. Rev. Biochem. 5 (1978) 163–184. [PMID: 363350]
3.  Hastings, J.W. and Presswood, R.P. Bacterial luciferase: FMNH2-aldehyde oxidase. Methods Enzymol. 53 (1978) 558–570. [PMID: 309549]
4.  Nealson, K.H. and Hastings, J.W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43 (1979) 496–518. [PMID: 396467]
5.  Suzuki, K., Kaidoh, T., Katagiri, M. and Tsuchiya, T. O2 incorporation into a long-chain fatty-acid during bacterial luminescence. Biochim. Biophys. Acta 722 (1983) 297–301.
6.  Kurfurst, M., Ghisla, S. and Hastings, J.W. Characterization and postulated structure of the primary emitter in the bacterial luciferase reaction. Proc. Natl. Acad. Sci. USA 81 (1984) 2990–2994. [DOI] [PMID: 16593462]
[EC 1.14.14.3 created 1981, modified 2016]
 
 
EC 1.14.14.5     
Accepted name: alkanesulfonate monooxygenase
Reaction: an alkanesulfonate + FMNH2 + O2 = an aldehyde + FMN + sulfite + H2O
Glossary: an alkanesulfonate = R-CH2-SO3-
an aldehyde = R-CHO
Other name(s): SsuD; sulfate starvation-induced protein 6; alkanesulfonate,reduced-FMN:oxygen oxidoreductase
Systematic name: alkanesulfonate,FMNH2:oxygen oxidoreductase
Comments: The enzyme from Escherichia coli catalyses the desulfonation of a wide range of aliphatic sulfonates (unsubstituted C1- to C14-sulfonates as well as substituted C2-sulfonates). Does not desulfonate taurine (2-aminoethanesulfonate) or aromatic sulfonates. Does not use FMN as a bound cofactor. Instead, it uses reduced FMN (i.e., FMNH2) as a substrate. FMNH2 is provided by SsuE, the associated FMN reductase (EC 1.5.1.38).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 256383-67-2
References:
1.  Eichhorn, E., van der Ploeg, J.R. and Leisinger, T. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J. Biol. Chem. 274 (1999) 26639–26646. [DOI] [PMID: 10480865]
[EC 1.14.14.5 created 2002]
 
 
EC 1.14.14.6      
Transferred entry: methanesulfonate monooxygenase. Now EC 1.14.13.111, methanesulfonate monooxygenase. Formerly thought to involve FMNH2 but now shown to use NADH.
[EC 1.14.14.6 created 2009, deleted 2010]
 
 
EC 1.14.14.8     
Accepted name: anthranilate 3-monooxygenase (FAD)
Reaction: anthranilate + FADH2 + O2 = 3-hydroxyanthranilate + FAD + H2O
Glossary: anthranilate = 2-aminobenzoate
Other name(s): anthranilate 3-hydroxylase; anthranilate hydroxylase
Systematic name: anthranilate,FADH2:oxygen oxidoreductase (3-hydroxylating)
Comments: This enzyme, isolated from the bacterium Geobacillus thermodenitrificans, participates in the pathway of tryptophan degradation. The enzyme is part of a system that also includes a bifunctional riboflavin kinase/FMN adenylyltransferase and an FAD reductase, which ensures ample supply of FAD to the monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, X., Dong, Y., Li, X., Ren, Y., Li, Y., Wang, W., Wang, L. and Feng, L. Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2. Microbiology 156 (2010) 589–595. [DOI] [PMID: 19942660]
[EC 1.14.14.8 created 2010]
 
 
EC 1.14.14.10     
Accepted name: nitrilotriacetate monooxygenase
Reaction: nitrilotriacetate + FMNH2 + H+ + O2 = iminodiacetate + glyoxylate + FMN + H2O
Systematic name: nitrilotriacetate,FMNH2:oxygen oxidoreductase (glyoxylate-forming)
Comments: Requires Mg2+. The enzyme from Aminobacter aminovorans (previously Chelatobacter heintzii) is part of a two component system that also includes EC 1.5.1.42 (FMN reductase), which provides reduced flavin mononucleotide for this enzyme.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Uetz, T., Schneider, R., Snozzi, M. and Egli, T. Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from "Chelatobacter" strain ATCC 29600. J. Bacteriol. 174 (1992) 1179–1188. [DOI] [PMID: 1735711]
2.  Knobel, H.R., Egli, T. and van der Meer, J.R. Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600. J. Bacteriol. 178 (1996) 6123–6132. [DOI] [PMID: 8892809]
3.  Xu, Y., Mortimer, M.W., Fisher, T.S., Kahn, M.L., Brockman, F.J. and Xun, L. Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase. J. Bacteriol. 179 (1997) 1112–1116. [DOI] [PMID: 9023192]
[EC 1.14.14.10 created 2011]
 
 
EC 1.14.14.12     
Accepted name: 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxygenase
Reaction: 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 = 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H2O
Other name(s): HsaA
Systematic name: 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione,FMNH2:oxygen oxidoreductase
Comments: This bacterial enzyme participates in the degradation of several steroids, including cholesterol and testosterone. It can use either FADH or FMNH2 as flavin cofactor. The enzyme forms a two-component system with a reductase (HsaB) that utilizes NADH to reduce the flavin, which is then transferred to the oxygenase subunit.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Dresen, C., Lin, L.Y., D'Angelo, I., Tocheva, E.I., Strynadka, N. and Eltis, L.D. A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J. Biol. Chem. 285 (2010) 22264–22275. [DOI] [PMID: 20448045]
[EC 1.14.14.12 created 2011]
 
 
EC 1.14.14.13     
Accepted name: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] monooxygenase
Reaction: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] + FMNH2 + O2 = 4-(γ-L-glutamylamino)-(2S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] + FMN + H2O
Other name(s): btrO (gene name)
Systematic name: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein],FMNH2:oxygen oxidoreductase (2-hydroxylating)
Comments: Catalyses a step in the biosynthesis of the side chain of the aminoglycoside antibiotics of the butirosin family. FMNH2 is used as a free cofactor. Forms a complex with a dedicated NAD(P)H:FMN oxidoreductase. The enzyme is not able to hydroxylate free substrates, activation by the acyl-carrier protein is mandatory. Octanoyl-S-[BtrI acyl-carrier protein] is also accepted.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Li, Y., Llewellyn, N.M., Giri, R., Huang, F. and Spencer, J.B. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12 (2005) 665–675. [DOI] [PMID: 15975512]
[EC 1.14.14.13 created 2012]
 
 
EC 1.14.14.20     
Accepted name: phenol 2-monooxygenase (FADH2)
Reaction: phenol + FADH2 + O2 = catechol + FAD + H2O
Other name(s): pheA1 (gene name)
Systematic name: phenol,FADH2:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme catalyses the ortho-hydroxylation of simple phenols into the corresponding catechols. It accepts 4-methylphenol, 4-chlorophenol, and 4-fluorophenol [1] as well as 4-nitrophenol, 3-nitrophenol, and resorcinol [3]. The enzyme is part of a two-component system that also includes an NADH-dependent flavin reductase. It is strictly dependent on FADH2 and does not accept FMNH2 [1,3]. cf. EC 1.14.13.7, phenol 2-monooxygenase (NADPH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kirchner, U., Westphal, A.H., Muller, R. and van Berkel, W.J. Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. J. Biol. Chem. 278 (2003) 47545–47553. [DOI] [PMID: 12968028]
2.  van den Heuvel, R.H., Westphal, A.H., Heck, A.J., Walsh, M.A., Rovida, S., van Berkel, W.J. and Mattevi, A. Structural studies on flavin reductase PheA2 reveal binding of NAD in an unusual folded conformation and support novel mechanism of action. J. Biol. Chem. 279 (2004) 12860–12867. [DOI] [PMID: 14703520]
3.  Saa, L., Jaureguibeitia, A., Largo, E., Llama, M.J. and Serra, J.L. Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl. Microbiol. Biotechnol. 86 (2010) 201–211. [DOI] [PMID: 19787347]
[EC 1.14.14.20 created 2016]
 
 
EC 1.14.14.21     
Accepted name: dibenzothiophene monooxygenase
Reaction: dibenzothiophene + 2 FMNH2 + 2 O2 = dibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O (overall reaction)
(1a) dibenzothiophene + FMNH2 + O2 = dibenzothiophene-5-oxide + FMN + H2O
(1b) dibenzothiophene-5-oxide + FMNH2 + O2 = dibenzothiophene-5,5-dioxide + FMN + H2O
Glossary: dibenzothiophene-5,5-dioxide = dibenzothiophene sulfone
Other name(s): dszC (gene name)
Systematic name: dibenzothiophene,FMNH2:oxygen oxidoreductase
Comments: This bacterial enzyme catalyses the first two steps in the desulfurization pathway of dibenzothiophenes, the oxidation of dibenzothiophene into dibenzothiophene sulfone via dibenzothiophene-5-oxide. The enzyme forms a two-component system with a dedicated NADH-dependent FMN reductase (EC 1.5.1.42) encoded by the dszD gene, which also interacts with EC 1.14.14.22, dibenzothiophene sulfone monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, D.J. and Squires, C.H. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14 (1996) 1705–1709. [DOI] [PMID: 9634856]
2.  Liu, S., Zhang, C., Su, T., Wei, T., Zhu, D., Wang, K., Huang, Y., Dong, Y., Yin, K., Xu, S., Xu, P. and Gu, L. Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Proteins 82 (2014) 1708–1720. [DOI] [PMID: 24470304]
3.  Guan, L.J., Lee, W.C., Wang, S., Ohshiro, T., Izumi, Y., Ohtsuka, J. and Tanokura, M. Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1. FEBS J. 282 (2015) 3126–3135. [DOI] [PMID: 25627402]
[EC 1.14.14.21 created 2016]
 
 
EC 1.14.14.22     
Accepted name: dibenzothiophene sulfone monooxygenase
Reaction: dibenzothiophene-5,5-dioxide + FMNH2 + NADH + O2 = 2′-hydroxybiphenyl-2-sulfinate + H2O + FMN + NAD+ + H+ (overall reaction)
(1a) FMNH2 + O2 = FMN-N5-peroxide
(1b) dibenzothiophene-5,5-dioxide + FMN-N5-peroxide = 2′-hydroxybiphenyl-2-sulfinate + FMN-N5-oxide
(1c) FMN-N5-oxide + NADH = FMN + H2O + NAD+ + H+ (spontaneous)
Glossary: dibenzothiophene-5,5-dioxide = dibenzothiophene sulfone
Other name(s): dszA (gene name)
Systematic name: dibenzothiophene-5,5-dioxide,FMNH2:oxygen oxidoreductase
Comments: This bacterial enzyme catalyses a step in the desulfurization pathway of dibenzothiophenes. The enzyme forms a two-component system with a dedicated NADH-dependent FMN reductase (EC 1.5.1.42) encoded by the dszD gene, which also interacts with EC 1.14.14.21, dibenzothiophene monooxygenase. The flavin-N5-oxide that is formed by the enzyme reacts spontaneously with NADH to give oxidized flavin, releasing a water molecule.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, D.J. and Squires, C.H. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14 (1996) 1705–1709. [DOI] [PMID: 9634856]
2.  Ohshiro, T., Kojima, T., Torii, K., Kawasoe, H. and Izumi, Y. Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J. Biosci. Bioeng. 88 (1999) 610–616. [DOI] [PMID: 16232672]
3.  Konishi, J., Ishii, Y., Onaka, T., Ohta, Y., Suzuki, M. and Maruhashi, K. Purification and characterization of dibenzothiophene sulfone monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp. strain A11-2. J. Biosci. Bioeng. 90 (2000) 607–613. [DOI] [PMID: 16232919]
4.  Ohshiro, T., Ishii, Y., Matsubara, T., Ueda, K., Izumi, Y., Kino, K. and Kirimura, K. Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J. Biosci. Bioeng. 100 (2005) 266–273. [DOI] [PMID: 16243275]
5.  Adak, S. and Begley, T.P. Dibenzothiophene catabolism proceeds via a flavin-N5-oxide intermediate. J. Am. Chem. Soc. 138 (2016) 6424–6426. [PMID: 27120486]
6.  Adak, S. and Begley, T.P. Flavin-N5-oxide: A new, catalytic motif in flavoenzymology. Arch. Biochem. Biophys. 632 (2017) 4–10. [PMID: 28784589]
7.  Matthews, A., Saleem-Batcha, R., Sanders, J.N., Stull, F., Houk, K.N. and Teufel, R. Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases. Nat. Chem. Biol. 16 (2020) 556–563. [DOI] [PMID: 32066967]
[EC 1.14.14.22 created 2016, modified 2019]
 
 
EC 1.14.14.28     
Accepted name: long-chain alkane monooxygenase
Reaction: a long-chain alkane + FMNH2 + O2 = a long-chain primary alcohol + FMN + H2O
Systematic name: long-chain-alkane,FMNH2:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Geobacillus thermodenitrificans NG80-2, is capable of converting alkanes ranging from C15 to C36 into their corresponding primary alcohols [1,2]. The FMNH2 cofactor is provided by an FMN reductase [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X., Han, W., Peng, X., Liu, R. and Wang, L. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc. Natl. Acad. Sci. USA 104 (2007) 5602–5607. [DOI] [PMID: 17372208]
2.  Li, L., Liu, X., Yang, W., Xu, F., Wang, W., Feng, L., Bartlam, M., Wang, L. and Rao, Z. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J. Mol. Biol. 376 (2008) 453–465. [DOI] [PMID: 18164311]
3.  Dong, Y., Yan, J., Du, H., Chen, M., Ma, T. and Feng, L. Engineering of LadA for enhanced hexadecane oxidation using random- and site-directed mutagenesis. Appl. Microbiol. Biotechnol. 94 (2012) 1019–1029. [DOI] [PMID: 22526792]
[EC 1.14.14.28 created 2016]
 
 
EC 1.14.14.30     
Accepted name: isobutylamine N-monooxygenase
Reaction: (1) 2-methylpropan-1-amine + FADH2 + O2 = N-(2-methylpropyl)hydroxylamine + FAD + H2O
(2) 2-methylpropan-1-amine + FMNH2 + O2 = N-(2-methylpropyl)hydroxylamine + FMN + H2O
Glossary: 2-methylpropan-1-amine = isobutylamine
N-(2-methylpropyl)hydroxylamine = N-hydroxy-2-methylpropan-1-amine = isobutylhydroxylamine
Other name(s): vlmH (gene name)
Systematic name: 2-methylpropan-1-amine,FADH2:O2 N-oxidoreductase
Comments: The enzyme, characterized from the bacterium Streptomyces viridifaciens, is part of a two component system that also includes a flavin reductase, which provides reduced flavin mononucleotide for this enzyme. The enzyme, which is involved in the biosynthesis of the azoxy antibiotic valanimycin, has a similar activity with either FMNH2 or FADH2. It exhibits broad specificity, and also accepts propan-1-amine, butan-1-amine, butan-2-amine and benzylamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Parry, R.J. and Li, W. Purification and characterization of isobutylamine N-hydroxylase from the valanimycin producer Streptomyces viridifaciens MG456-hF10. Arch. Biochem. Biophys. 339 (1997) 47–54. [DOI] [PMID: 9056232]
2.  Parry, R.J., Li, W. and Cooper, H.N. Cloning, analysis, and overexpression of the gene encoding isobutylamine N-hydroxylase from the valanimycin producer, Streptomyces viridifaciens. J. Bacteriol. 179 (1997) 409–416. [DOI] [PMID: 8990292]
3.  Parry, R.J. and Li, W. An NADPH:FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. Cloning, analysis, and overexpression. J. Biol. Chem. 272 (1997) 23303–23311. [DOI] [PMID: 9287340]
[EC 1.14.14.30 created 2016, modified 2017]
 
 
EC 1.14.14.33     
Accepted name: ethylenediaminetetraacetate monooxygenase
Reaction: ethylenediaminetetraacetate + 2 FMNH2 + 2 O2 = ethylenediamine-N,N′-diacetate + 2 glyoxylate + 2 FMN + 2 H2O (overall reaction)
(1a) ethylenediaminetetraacetate + FMNH2 + O2 = ethylenediaminetriacetate + glyoxylate + FMN + H2O
(1b) ethylenediaminetriacetate + FMNH2 + O2 = ethylenediamine-N,N′-diacetate + glyoxylate + FMN + H2O
Glossary: ethylenediaminetetraacetate = EDTA
Systematic name: ethylenediaminetetraacetate,FMNH2:O2 oxidoreductase (glyoxylate-forming)
Comments: The enzyme is part of a two component system that also includes EC 1.5.1.42, FMN reductase (NADH), which provides reduced flavin mononucleotide for this enzyme. It acts on EDTA only when it is complexed with divalent cations such as Mg2+, Zn2+, Mn2+, Co2+, or Cu2+. While the enzyme has a substrate overlap with EC 1.14.14.10, nitrilotriacetate monooxygenase, it has a much wider substrate range, which includes nitrilotriacetate (NTA) and diethylenetriaminepentaacetate (DTPA) in addition to EDTA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Witschel, M., Nagel, S. and Egli, T. Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J. Bacteriol. 179 (1997) 6937–6943. [DOI] [PMID: 9371437]
2.  Payne, J.W., Bolton, H., Jr., Campbell, J.A. and Xun, L. Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J. Bacteriol. 180 (1998) 3823–3827. [PMID: 9683478]
3.  Bohuslavek, J., Payne, J.W., Liu, Y., Bolton, H., Jr. and Xun, L. Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Appl. Environ. Microbiol. 67 (2001) 688–695. [DOI] [PMID: 11157232]
[EC 1.14.14.33 created 2016]
 
 
EC 1.14.14.34     
Accepted name: methanesulfonate monooxygenase (FMNH2)
Reaction: methanesulfonate + FMNH2 + O2 = formaldehyde + FMN + sulfite + H2O
Glossary: methanesulfonate = CH3-SO3-
formaldehyde = H-CHO
Other name(s): msuD (gene name); ssuD (gene name)
Systematic name: methanesulfonate,FMNH2:oxygen oxidoreductase
Comments: The enzyme, characterized from Pseudomonas strains, allows the organisms to utilize methanesulfonate as their sulfur source. It acts in combination with a dedicated NADH-dependent FMN reductase (EC 1.5.1.42), which provides it with reduced FMN. cf. EC 1.14.13.111, methanesulfonate monooxygenase (NADH).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kertesz, M.A., Schmidt-Larbig, K. and Wuest, T. A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. J. Bacteriol. 181 (1999) 1464–1473. [PMID: 10049377]
2.  Endoh, T., Kasuga, K., Horinouchi, M., Yoshida, T., Habe, H., Nojiri, H. and Omori, T. Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Appl. Microbiol. Biotechnol. 62 (2003) 83–91. [DOI] [PMID: 12835925]
[EC 1.14.14.34 created 2016]
 
 
EC 1.14.14.35     
Accepted name: dimethylsulfone monooxygenase
Reaction: dimethyl sulfone + FMNH2 + O2 = methanesulfinate + formaldehyde + FMN + H2O
Other name(s): sfnG (gene name)
Systematic name: dimethyl sulfone,FMNH2:oxygen oxidoreductase
Comments: The enzyme, characterized from Pseudomonas spp., is involved in a dimethyl sulfide degradation pathway. It is dependent on NAD(P)H-dependent FMN reductase (EC 1.5.1.38, EC 1.5.1.39, or EC 1.5.1.42), which provides it with reduced FMN. The product, methanesulfinate, is oxidized spontaneously to methanesulfonate in the presence of dioxygen and FMNH2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Endoh, T., Habe, H., Nojiri, H., Yamane, H. and Omori, T. The σ54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol. Microbiol. 55 (2005) 897–911. [DOI] [PMID: 15661012]
2.  Wicht, D.K. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate. Arch. Biochem. Biophys. 604 (2016) 159–166. [DOI] [PMID: 27392454]
[EC 1.14.14.35 created 2016]
 
 
EC 1.14.14.108     
Accepted name: 2,5-diketocamphane 1,2-monooxygenase
Reaction: (+)-bornane-2,5-dione + FMNH2 + O2 = (+)-5-oxo-1,2-campholide + FMN + H2O
For diagram of camphor catabolism, click here
Glossary: (+)-bornane-2,5-dione = 2,5-diketocamphane
Other name(s): 2,5-diketocamphane lactonizing enzyme; ketolactonase I (ambiguous); 2,5-diketocamphane 1,2-monooxygenase oxygenating component; 2,5-DKCMO; camP (gene name); camphor 1,2-monooxygenase; camphor ketolactonase I
Systematic name: (+)-bornane-2,5-dione,FMNH2:oxygen oxidoreductase (1,2-lactonizing)
Comments: A Baeyer-Villiger monooxygenase isolated from camphor-grown strains of Pseudomonas putida and encoded on the cam plasmid. Involved in the degradation of (+)-camphor. Requires a dedicated NADH-FMN reductase [cf. EC 1.5.1.42, FMN reductase (NADH)] [1-3]. Can accept several bicyclic ketones including (+)- and (–)-camphor [6] and adamantanone [4]. The product spontaneously converts to [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Conrad, H.E., DuBus, R., Namtvedt, M.J. and Gunsalus, I.C. Mixed function oxidation. II. Separation and properties of the enzymes catalyzing camphor lactonizaton. J. Biol. Chem. 240 (1965) 495–503. [PMID: 14253460]
2.  Yu, C.A. and Gunsalus, I.C. Monoxygenases. VII. Camphor ketolactonase I and the role of three protein components. J. Biol. Chem. 244 (1969) 6149–6152. [PMID: 4310834]
3.  Taylor, D.G. and Trudgill, P.W. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J. Bacteriol. 165 (1986) 489–497. [DOI] [PMID: 3944058]
4.  Selifonov, S.A. Microbial oxidation of adamantanone by Pseudomonas putida carrying the camphor catabolic plasmid. Biochem. Biophys. Res. Commun. 186 (1992) 1429–1436. [DOI] [PMID: 1510672]
5.  Jones, K.H., Smith, R.T. and Trudgill, P.W. Diketocamphane enantiomer-specific ’Baeyer-Villiger’ monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J. Gen. Microbiol. 139 (1993) 797–805. [DOI] [PMID: 8515237]
6.  Kadow, M., Sass, S., Schmidt, M. and Bornscheuer, U.T. Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007. AMB Express 1:13 (2011). [DOI] [PMID: 21906366]
7.  Iwaki, H., Grosse, S., Bergeron, H., Leisch, H., Morley, K., Hasegawa, Y. and Lau, P.C. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl. Environ. Microbiol. 79 (2013) 3282–3293. [PMID: 23524667]
[EC 1.14.14.108 created 1972 as EC 1.14.15.2, transferred 2012 to EC 1.14.13.162, transferred 2018 to EC 1.14.14.108]
 
 
EC 1.14.14.133     
Accepted name: 1,8-cineole 2-endo-monooxygenase
Reaction: 1,8-cineole + [reduced flavodoxin] + O2 = 2-endo-hydroxy-1,8-cineole + [oxidized flavodoxin] + H2O
For diagram of 1,8-cineole catabolism, click here
Glossary: 1,8-cineole = 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane
2-endo-hydroxy-1,8-cineole = (1R,4S,6R)-1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-6-ol
Other name(s): P450cin; CYP176A; CYP176A1
Systematic name: 1,8-cineole,[reduced flavodoxin]:oxygen oxidoreductase (2-endo-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein that uses a flavodoxin-like redox partner to reduce the heme iron. Isolated from the bacterium Citrobacter braakii, which can use 1,8-cineole as the sole source of carbon.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hawkes, D.B., Adams, G.W., Burlingame, A.L., Ortiz de Montellano, P.R. and De Voss, J.J. Cytochrome P450cin (CYP176A), isolation, expression, and characterization. J. Biol. Chem. 277 (2002) 27725–27732. [DOI] [PMID: 12016226]
2.  Meharenna, Y.T., Li, H., Hawkes, D.B., Pearson, A.G., De Voss, J. and Poulos, T.L. Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam. Biochemistry 43 (2004) 9487–9494. [DOI] [PMID: 15260491]
3.  Kimmich, N., Das, A., Sevrioukova, I., Meharenna, Y., Sligar, S.G. and Poulos, T.L. Electron transfer between cytochrome P450cin and its FMN-containing redox partner, cindoxin. J. Biol. Chem. 282 (2007) 27006–27011. [DOI] [PMID: 17606612]
4.  Meharenna, Y.T., Slessor, K.E., Cavaignac, S.M., Poulos, T.L. and De Voss, J.J. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in p450cin. J. Biol. Chem. 283 (2008) 10804–10812. [DOI] [PMID: 18270198]
[EC 1.14.14.133 created 2012 as EC 1.14.13.156, transferred 2018 to EC 1.14.14.133]
 
 
EC 1.14.14.155     
Accepted name: 3,6-diketocamphane 1,2-monooxygenase
Reaction: (–)-bornane-2,5-dione + O2 + FMNH2 = (–)-5-oxo-1,2-campholide + FMN + H2O
Glossary: (–)-bornane-2,5-dione = 3,6-diketocamphane
Other name(s): 3,6-diketocamphane lactonizing enzyme; 3,6-DKCMO
Systematic name: (–)-bornane-2,5-dione,FMNH2:oxygen oxidoreductase (1,2-lactonizing)
Comments: A Baeyer-Villiger monooxygenase isolated from camphor-grown strains of Pseudomonas putida and encoded on the cam plasmid. Involved in the degradation of (–)-camphor. Requires a dedicated NADH—FMN reductase [cf. EC 1.5.1.42, FMN reductase (NADH)] [1,2]. The product spontaneously converts to [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Iwaki, H., Grosse, S., Bergeron, H., Leisch, H., Morley, K., Hasegawa, Y. and Lau, P.C. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl. Environ. Microbiol. 79 (2013) 3282–3293. [PMID: 23524667]
2.  Isupov, M.N., Schroder, E., Gibson, R.P., Beecher, J., Donadio, G., Saneei, V., Dcunha, S.A., McGhie, E.J., Sayer, C., Davenport, C.F., Lau, P.C., Hasegawa, Y., Iwaki, H., Kadow, M., Balke, K., Bornscheuer, U.T., Bourenkov, G. and Littlechild, J.A. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase. Acta Crystallogr. D Biol. Crystallogr. 71 (2015) 2344–2353. [PMID: 26527149]
[EC 1.14.14.155 created 2018]
 
 
EC 1.14.14.181     
Accepted name: sulfoquinovose monooxygenase
Reaction: 6-sulfo-D-quinovose + FMNH2 + O2 = 6-dehydro-D-glucose + FMN + sulfite + H2O
Glossary: D-quinovose = 6-deoxy-D-glucopyranose
6-dehydro-D-glucose = 6-oxo-D-quinovose
Other name(s): 6-deoxy-6-sulfo-D-glucose monooxygenase; smoC (gene name); squD (gene name)
Systematic name: 6-sulfo-D-quinovose,FMNH2:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacteria Agrobacterium fabrum and Rhizobium oryzae, is involved in a D-sulfoquinovose degradation pathway. FMNH2 is provided by an associated FMN reductase [SmoA, EC 1.5.1.42, FMN reductase (NADH)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Liu, J., Wei, Y., Ma, K., An, J., Liu, X., Liu, Y., Ang, E.L., Zhao, H. and Zhang, Y. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal. 11 (2021) 14740–14750. [DOI]
2.  Sharma, M., Lingford, J.P., Petricevic, M., Snow, A.J.D., Zhang, Y., Jarva, M.A., Mui, J.W., Scott, N.E., Saunders, E.C., Mao, R., Epa, R., da Silva, B.M., Pires, D.E.V., Ascher, D.B., McConville, M.J., Davies, G.J., Williams, S.J. and Goddard-Borger, E.D. Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc. Natl. Acad. Sci. USA 119 (2022) e2116022119. [DOI] [PMID: 35074914]
[EC 1.14.14.181 created 20022]
 
 
EC 1.14.19.7      
Transferred entry: (S)-2-hydroxypropylphosphonic acid epoxidase. Now EC 1.11.1.23, (S)-2-hydroxypropylphosphonic acid epoxidase.
[EC 1.14.19.7 created 2011, deleted 2014]
 
 
EC 1.14.99.15     
Accepted name: 4-methoxybenzoate monooxygenase (O-demethylating)
Reaction: 4-methoxybenzoate + reduced acceptor + O2 = 4-hydroxybenzoate + formaldehyde + acceptor + H2O
Other name(s): 4-methoxybenzoate 4-monooxygenase (O-demethylating); 4-methoxybenzoate O-demethylase; p-anisic O-demethylase; piperonylate-4-O-demethylase
Systematic name: 4-methoxybenzoate,hydrogen-donor:oxygen oxidoreductase (O-demethylating)
Comments: The bacterial enzyme consists of a ferredoxin-type protein and an iron-sulfur flavoprotein (FMN). Also acts on 4-ethoxybenzoate, N-methyl-4-aminobenzoate and toluate. The fungal enzyme acts best on veratrate.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-78-3
References:
1.  Bernhardt, F.-H., Nastainczyk, W. and Seydewitz, V. Kinetic studies on a 4-methoxybenzoate O-demethylase from Pseudomonas putida. Eur. J. Biochem. 72 (1977) 107–115. [DOI] [PMID: 188654]
2.  Paszcynski, A. and Trojanowski, J. An affinity-column procedure for the purification of veratrate O-demethylase from fungi. Microbios 18 (1977) 111–121. [PMID: 25369]
3.  Twilfer, H., Bernhardt, F.-H. and Gersonde, K. An electron-spin-resonance study on the redox-active centers of the 4-methoxybenzoate monooxygenase from Pseudomonas putida. Eur. J. Biochem. 119 (1981) 595–602. [DOI] [PMID: 6273164]
[EC 1.14.99.15 created 1972]
 
 
EC 1.14.99.24     
Accepted name: steroid 9α-monooxygenase
Reaction: pregna-4,9(11)-diene-3,20-dione + reduced acceptor + O2 = 9,11α-epoxypregn-4-ene-3,20-dione + acceptor + H2O
Other name(s): steroid 9α-hydroxylase
Systematic name: steroid,hydrogen-donor:oxygen oxidoreductase (9-epoxidizing)
Comments: An enzyme system involving a flavoprotein (FMN) and two iron-sulfur proteins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82869-33-8
References:
1.  Strijewski, A. The steroid-9α-hydroxylation system from Nocardia species. Eur. J. Biochem. 128 (1982) 125–135. [DOI] [PMID: 7173200]
[EC 1.14.99.24 created 1986]
 
 
EC 1.14.99.40      
Transferred entry: 5,6-dimethylbenzimidazole synthase. Now EC 1.13.11.79, 5,6-dimethylbenzimidazole synthase
[EC 1.14.99.40 created 2010, deleted 2014]
 
 
EC 1.14.99.46     
Accepted name: pyrimidine oxygenase
Reaction: (1) uracil + FMNH2 + O2 + NADH = (Z)-3-ureidoacrylate + H2O + FMN + NAD+ + H+ (overall reaction)
(1a) FMNH2 + O2 = FMN-N5-peroxide
(1b) uracil + FMN-N5-peroxide = (Z)-3-ureidoacrylate + FMN-N5-oxide
(1c) FMN-N5-oxide + NADH = FMN + H2O + NAD+ + H+ (spontaneous)
(2) thymine + FMNH2 + O2 + NADH = (Z)-2-methylureidoacrylate + H2O + FMN + NAD+ + H+ (overall reaction)
(2a) FMNH2 + O2 = FMN-N5-peroxide
(2b) thymine + FMN-N5-peroxide = (Z)-2-methylureidoacrylate + FMN-N5-oxide
(2c) FMN-N5-oxide + NADH = FMN + H2O + NAD+ + H+ (spontaneous)
Glossary: (Z)-3-ureidoacrylate = (2Z)-3-(carbamoylamino)prop-2-enoate
(Z)-2-methylureidoacrylate = (2Z)-3-(carbamoylamino)-2-methylprop-2-enoate
Other name(s): rutA (gene name)
Systematic name: uracil,FMNH2:oxygen oxidoreductase (uracil hydroxylating, ring-opening)
Comments: The enzyme participates in the Rut pyrimidine catabolic pathway. The flavin-N5-oxide that is formed by the enzyme reacts spontaneously with NADH to give oxidized flavin, releasing a water molecule.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mukherjee, T., Zhang, Y., Abdelwahed, S., Ealick, S.E. and Begley, T.P. Catalysis of a flavoenzyme-mediated amide hydrolysis. J. Am. Chem. Soc. 132 (2010) 5550–5551. [DOI] [PMID: 20369853]
2.  Kim, K.S., Pelton, J.G., Inwood, W.B., Andersen, U., Kustu, S. and Wemmer, D.E. The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J. Bacteriol. 192 (2010) 4089–4102. [DOI] [PMID: 20400551]
3.  Adak, S. and Begley, T.P. RutA-catalyzed oxidative cleavage of the uracil amide involves formation of a flavin-N5-oxide. Biochemistry 56 (2017) 3708–3709. [PMID: 28661684]
4.  Adak, S. and Begley, T.P. Flavin-N5-oxide: A new, catalytic motif in flavoenzymology. Arch. Biochem. Biophys. 632 (2017) 4–10. [PMID: 28784589]
5.  Matthews, A., Saleem-Batcha, R., Sanders, J.N., Stull, F., Houk, K.N. and Teufel, R. Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases. Nat. Chem. Biol. 16 (2020) 556–563. [DOI] [PMID: 32066967]
[EC 1.14.99.46 created 2012, modified 2019]
 
 
EC 1.16.1.8     
Accepted name: [methionine synthase] reductase
Reaction: 2 [methionine synthase]-methylcob(III)alamin + 2 S-adenosyl-L-homocysteine + NADP+ = 2 [methionine synthase]-cob(II)alamin + NADPH + H+ + 2 S-adenosyl-L-methionine
For diagram of reaction, click here
Other name(s): methionine synthase cob(II)alamin reductase (methylating); methionine synthase reductase; [methionine synthase]-cobalamin methyltransferase (cob(II)alamin reducing); [methionine synthase]-methylcob(I)alamin,S-adenosylhomocysteine:NADP+ oxidoreductase
Systematic name: [methionine synthase]-methylcob(III)alamin,S-adenosyl-L-homocysteine:NADP+ oxidoreductase
Comments: In humans, the enzyme is a flavoprotein containing FAD and FMN. The substrate of the enzyme is the inactivated cobalt(II) form of EC 2.1.1.13, methionine synthase. Electrons are transferred from NADPH to FAD to FMN. Defects in this enzyme lead to hereditary hyperhomocysteinemia.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 207004-87-3
References:
1.  Leclerc, D., Wilson, A., Dumas, R., Gafuik, C., Song, D., Watkins, D., Heng, H.H.Q., Rommens, J.M., Scherer, S.W., Rosenblatt, D.S., Gravel, R.A. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc. Natl. Acad. Sci. USA 95 (1998) 3059–3064. [DOI] [PMID: 9501215]
2.  Olteanu, H. and Banerjee, R. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. J. Biol. Chem. 276 (2001) 35558–35563. [DOI] [PMID: 11466310]
3.  Olteanu, H., Munson, T. and Banerjee, R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry 41 (2002) 13378–13385. [DOI] [PMID: 12416982]
[EC 1.16.1.8 created 1999 as EC 2.1.1.135, transferred 2003 to EC 1.16.1.8, modified 2020]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald