The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 3.2.1.158     
Accepted name: α-agarase
Reaction: Endohydrolysis of (1→3)-α-L-galactosidic linkages in agarose, yielding agarotetraose as the major product
Glossary: agarose = a polysaccharide
In the field of oligosaccharides derived from agarose, carrageenans, etc., in which alternate residues are 3,6-anhydro sugars, the prefix ’neo’ designates an oligosaccharide whose non-reducing end is the anhydro sugar, and the absence of this prefix means that it is not.
For example:
neoagarobiose = 3,6-anhydro-α-L-galactopyranosyl-(1→3)-D-galactose
agarobiose = β-D-galactopyranosyl-(1→4)-3,6-anhydro-L-galactose
Other name(s): agarase (ambiguous); agaraseA33
Systematic name: agarose 3-glycanohydrolase
Comments: Requires Ca2+. The enzyme from Thalassomonas sp. can use agarose, agarohexaose and neoagarohexaose as substrate. The products of agarohexaose hydrolysis are dimers and tetramers, with agarotetraose being the predominant product, whereas hydrolysis of neoagarohexaose gives rise to two types of trimer. While the enzyme can also hydrolyse the highly sulfated agarose porphyran very efficiently, it cannot hydrolyse the related compounds κ-carrageenan (see EC 3.2.1.83) and ι-carrageenan (see EC 3.2.1.157) [2]. See also EC 3.2.1.81, β-agarase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 63952-00-1
References:
1.  Potin, P., Richard, C., Rochas, C. and Kloareg, B. Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur. J. Biochem. 214 (1993) 599–607. [PMID: 8513809]
2.  Ohta, Y., Hatada, Y., Miyazaki, M., Nogi, Y., Ito, S. and Horikoshi, K. Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr. Microbiol. 50 (2005) 212–216. [PMID: 15902469]
[EC 3.2.1.158 created 2006]
 
 


Data © 2001–2016 IUBMB
Web site © 2005–2016 Andrew McDonald