The Enzyme Database

Displaying entries 101-150 of 1824.

<< Previous | Next >>    printer_iconPrintable version

EC 3.2.1.103     Relevance: 100%
Accepted name: keratan-sulfate endo-1,4-β-galactosidase
Reaction: Endohydrolysis of (1→4)-β-D-galactosidic linkages in keratan sulfate
Other name(s): endo-β-galactosidase (ambiguous); keratan sulfate endogalactosidase; keratanase; keratan-sulfate 1,4-β-D-galactanohydrolase
Systematic name: keratan-sulfate 4-β-D-galactanohydrolase
Comments: Hydrolyses the 1,4-β-D-galactosyl linkages adjacent to 1,3-N-acetyl-α-D-glucosaminyl residues. Also acts on some non-sulfated oligosaccharides, but only acts on blood group substances when the 1,2-linked fucosyl residues have been removed (cf. EC 3.2.1.102 blood-group-substance endo-1,4-β-galactosidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 55072-01-0
References:
1.  Fukuda, M.N. and Matsumara, G. Endo-β-galactosidase of Escherichia freundii. Purification and endoglycosidic action on keratan sulfates, oligosaccharides, and blood group active glycoprotein. J. Biol. Chem. 251 (1976) 6218–6225. [PMID: 135762]
[EC 3.2.1.103 created 1984]
 
 
EC 3.2.1.21     Relevance: 99.7%
Accepted name: β-glucosidase
Reaction: Hydrolysis of terminal, non-reducing β-D-glucosyl residues with release of β-D-glucose
Other name(s): gentiobiase; cellobiase; emulsin; elaterase; aryl-β-glucosidase; β-D-glucosidase; β-glucoside glucohydrolase; arbutinase; amygdalinase; p-nitrophenyl β-glucosidase; primeverosidase; amygdalase; linamarase; salicilinase; β-1,6-glucosidase
Systematic name: β-D-glucoside glucohydrolase
Comments: Wide specificity for β-D-glucosides. Some examples also hydrolyse one or more of the following: β-D-galactosides, α-L-arabinosides, β-D-xylosides, β-D-fucosides.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-22-3
References:
1.  Chinchetru, M.A., Cabezas, J.A. and Calvo, P. Purification and characterization of a broad specificity β-glucosidase from sheep liver. Int. J. Biochem. 21 (1989) 469–476. [PMID: 2503402]
2.  Conchie, J. β-Glucosidase from rumen liquor. Preparation, assay and kinetics of action. Biochem. J. 58 (1954) 552–560. [PMID: 13230003]
3.  Dahlqvist, A. Pig intestinal β-glucosidase activities. I. Relation to β-galactosidase (lactase). Biochim. Biophys. Acta 50 (1961) 55–61. [DOI] [PMID: 13719334]
4.  Heyworth, R. and Walker, P.G. Almond-emulsin β-D-glucosidase and β-D-galactosidase. Biochem. J. 83 (1962) 331–335. [PMID: 13907157]
5.  Larner, J. Other glucosidases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 4, Academic Press, New York, 1960, pp. 369–378.
6.  Sano, K., Amemura, A. and Harada, T. Purification and properties of a β-1,6-glucosidase from Flavobacterium. Biochim. Biophys. Acta 377 (1975) 410–420. [DOI] [PMID: 235305]
[EC 3.2.1.21 created 1961]
 
 
EC 2.4.1.37     Relevance: 98.3%
Accepted name: fucosylgalactoside 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-fucosyl-(1→2)-D-galactosyl-R = UDP + α-D-galactosyl-(1→3)-[α-L-fucosyl(1→2)]-D-galactosyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): UDP-galactose:O-α-L-fucosyl(1→2)D-galactose α-D-galactosyltransferase; UDPgalactose:glycoprotein-α-L-fucosyl-(1,2)-D-galactose 3-α-D-galactosyltransferase; [blood group substance] α-galactosyltransferase; blood-group substance B-dependent galactosyltransferase; glycoprotein-fucosylgalactoside α-galactosyltransferase; histo-blood group B transferase; histo-blood substance B-dependent galactosyltransferase; UDP-galactose:α-L-fucosyl-1,2-D-galactoside 3-α-D-galactosyltransferase; UDP-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Comments: Acts on blood group substance, and can use a number of 2-fucosyl-galactosides as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37257-33-3
References:
1.  Race, C., Ziderman, D. and Watkins, W.M. An α-D-galactosyltransferase associated with the blood-group B character. Biochem. J. 107 (1968) 733–735. [PMID: 16742598]
[EC 2.4.1.37 created 1972, modified 1999, modified 2002]
 
 
EC 2.4.1.211     Relevance: 98%
Accepted name: 1,3-β-galactosyl-N-acetylhexosamine phosphorylase
Reaction: β-D-galactopyranosyl-(1→3)-N-acetyl-D-glucosamine + phosphate = α-D-galactopyranose 1-phosphate + N-acetyl-D-glucosamine
Other name(s): lacto-N-biose phosphorylase; LNBP; galacto-N-biose phosphorylase
Systematic name: β-D-galactopyranosyl-(1→3)-N-acetyl-D-hexosamine:phosphate galactosyltransferase
Comments: Reaction also occurs with β-D-galactopyranosyl-(1→3)-N-acetyl-D-galactosamine as the substrate, giving N-acetyl-D-galactosamine as the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 224427-06-9
References:
1.  Derensy-Dron, D., Krzewinski, F., Brassart, C. and Bouquelet S. β-1,3-Galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol. Appl. Biochem. 29 (1999) 3–10. [PMID: 9889079]
[EC 2.4.1.211 created 2001]
 
 
EC 3.2.1.193     Relevance: 96.8%
Accepted name: ginsenosidase type I
Reaction: (1) a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + H2O = a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + D-glucopyranose
(2) a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + H2O = a protopanaxadiol-type ginsenoside with no glycosidic modifications at position 3 + D-glucopyranose
(3) a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside C-K = 20β-(β-D-glucopyranosyloxy)dammar-24-ene-3β,12β-diol
ginsenoside Rh2 = 3β-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Systematic name: ginsenoside glucohydrolase
Comments: Ginsenosidase type I is slightly activated by Mg2+ or Ca2+ [1]. The enzyme hydrolyses the 3-O-β-D-(1→2)-glucosidic bond, the 3-O-β-D-glucopyranosyl bond and the 20-O-β-D-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. It usually leaves a single glucosyl residue attached at position 20 and one or no glucosyl residues at position 3. Starting with a ginsenoside that is glycosylated at both positions (e.g. ginsenoside Rb1, Rb2, Rb3, Rc or Rd), the most common products are ginsenoside F2 and ginsenoside C-K, with low amounts of ginsenoside Rh2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, H., Zhang, C., Lu, M., Sun, F., Fu, Y. and Jin, F. Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem Pharm Bull (Tokyo) 55 (2007) 231–235. [PMID: 17268094]
[EC 3.2.1.193 created 2014]
 
 
EC 2.4.1.96     Relevance: 95.5%
Accepted name: sn-glycerol-3-phosphate 1-galactosyltransferase
Reaction: UDP-α-D-galactose + sn-glycerol 3-phosphate = UDP + 1-O-α-D-galactosyl-sn-glycerol 3-phosphate
Other name(s): isofloridoside-phosphate synthase; UDP-Gal:sn-glycero-3-phosphoric acid 1-α-galactosyl-transferase; UDPgalactose:sn-glycerol-3-phosphate α-D-galactosyltransferase; uridine diphosphogalactose-glycerol phosphate galactosyltransferase; glycerol 3-phosphate 1α-galactosyltransferase; UDP-galactose:sn-glycerol-3-phosphate 1-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sn-glycerol-3-phosphate 1-α-D-galactosyltransferase
Comments: The product is hydrolysed by a phosphatase to isofloridoside, which is involved in osmoregulation (cf. EC 2.4.1.137 sn-glycerol-3-phosphate 2-α-galactosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-70-4
References:
1.  Kauss, H. and Quader, H. In vitro activation of a galactosyl transferase involved in the osmotic regulation of Ochromonas. Plant Physiol. 58 (1976) 295–298. [PMID: 16659666]
2.  Kauss, H. and Schubert, B. `First demonstration of UDP-gal:sn-glycero-3-phosphoric acid 1α-galactosyl-transferase and its possible role in osmoregulation. FEBS Lett. 19 (1971) 131–135. [DOI] [PMID: 11946194]
[EC 2.4.1.96 created 1978]
 
 
EC 2.4.1.12     Relevance: 94.9%
Accepted name: cellulose synthase (UDP-forming)
Reaction: UDP-α-D-glucose + [(1→4)-β-D-glucosyl]n = UDP + [(1→4)-β-D-glucosyl]n+1
Other name(s): UDP-glucose—β-glucan glucosyltransferase; UDP-glucose-cellulose glucosyltransferase; GS-I; β-1,4-glucosyltransferase; uridine diphosphoglucose-1,4-β-glucan glucosyltransferase; β-1,4-glucan synthase; β-1,4-glucan synthetase; β-glucan synthase; 1,4-β-D-glucan synthase; 1,4-β-glucan synthase; glucan synthase; UDP-glucose-1,4-β-glucan glucosyltransferase; uridine diphosphoglucose-cellulose glucosyltransferase; UDP-glucose:1,4-β-D-glucan 4-β-D-glucosyltransferase; UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of cellulose. A similar enzyme utilizes GDP-glucose [EC 2.4.1.29 cellulose synthase (GDP-forming)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-19-4
References:
1.  Glaser, L. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. Biol. Chem. 232 (1958) 627–636. [PMID: 13549448]
[EC 2.4.1.12 created 1961]
 
 
EC 3.2.1.195     Relevance: 94.9%
Accepted name: 20-O-multi-glycoside ginsenosidase
Reaction: a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside Rg3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Other name(s): ginsenosidase type II (erroneous)
Systematic name: protopanaxadiol-type ginsenoside 20-β-D-glucohydrolase
Comments: The 20-O-multi-glycoside ginsenosidase catalyses the hydrolysis of the 20-O-α-(1→6)-glycosidic bond and the 20-O-β-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. The enzyme usually leaves a single glucosyl residue attached at position 20, although it can cleave the remaining glucosyl residue with a lower efficiency. Starting with a ginsenoside that is glycosylated at positions 3 and 20, such as ginsenosides Rb1, Rb2, Rb3 and Rc, the most common product is ginsenoside Rd, with a low amount of ginsenoside Rg3 also formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, H., Liu, Q., Zhang, C., Lu, M., Fu, Y., Im, W.-T., Lee, S.-T. and Jin, F. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44 (2009) 772–775.
[EC 3.2.1.195 created 2014]
 
 
EC 2.4.1.166     Relevance: 94.6%
Accepted name: raffinose—raffinose α-galactosyltransferase
Reaction: 2 raffinose = 1F-α-D-galactosylraffinose + sucrose
Glossary: raffinose = β-D-fructofuranosyl α-D-galactopyranosyl-(1→6)-α-D-glucopyranoside
Other name(s): raffinose (raffinose donor) galactosyltransferase; raffinose:raffinose α-galactosyltransferase; raffinose—raffinose α-galactotransferase
Systematic name: raffinose:raffinose α-D-galactosyltransferase
Comments: The 3F position of raffinose can also act as galactosyl acceptor; the enzyme is involved in the accumulation of the tetrasaccharides lychnose and isolychnose in the leaves of Cerastium arvense and other plants of the family Caryophyllaceae during late autumn.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 93389-38-9
References:
1.  Hopf, H., Gruber, G., Zinn, A. and Kandler, O. Physiology and biosynthesis of lychnose in Cerastium arvense. Planta 162 (1984) 283–288. [PMID: 24253101]
[EC 2.4.1.166 created 1989]
 
 
EC 2.4.1.44     Relevance: 94.5%
Accepted name: lipopolysaccharide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + lipopolysaccharide = UDP + 3-α-D-galactosyl-[lipopolysaccharide glucose]
Other name(s): UDP-galactose:lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:polysaccharide galactosyltransferase; uridine diphosphate galactose:lipopolysaccharide α-3-galactosyltransferase; uridine diphosphogalactose-lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Comments: Transfers α-D-galactosyl residues to D-glucose in the partially completed core of lipopolysaccharide [cf. EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase), EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-98-7
References:
1.  Endo, A. and Rothfield, L. Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose: lipopolysaccharide α-3-galactosyl transferase. Biochemistry 8 (1969) 3500–3507. [PMID: 4898284]
2.  Wollin, R., Creeger, E.S., Rothfield, L.I., Stocker, B.A.D. and Lindberg, A.A. Salmonella typhimurium mutants defective in UDP-D-galactose:lipopolysaccharide α-1,6-D-galactosyltransferase. Structural, immunochemical, and enzymologic studies of rfaB mutants. J. Biol. Chem. 258 (1983) 3769–3774. [PMID: 6403519]
[EC 2.4.1.44 created 1972, modified 2002]
 
 
EC 2.4.1.334     Relevance: 93.9%
Accepted name: 1,3-α-oligoglucan phosphorylase
Reaction: [(1→3)-α-D-glucosyl]n + phosphate = [(1→3)-α-D-glucosyl]n-1 + β-D-glucose 1-phosphate
Systematic name: 1,3-α-D-glucan:phosphate β-D-glucosyltransferase
Comments: The enzyme, isolated from the bacterium Clostridium phytofermentans, catalyses a reversible reaction. Substrates for the phosphorolytic reaction are α-1,3-linked oligoglucans with a polymerisation degree of 3 or more. Nigerose (i.e. 3-O-α-D-glucopyranosyl-D-glucopyranose) is not phosphorylyzed but can serve as substrate in the reverse direction (cf. EC 2.4.1.279, nigerose phosphorylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nihira, T., Nishimoto, M., Nakai, H., Ohtsubo, K., and Kitaoka, M. Characterization of two phosphorylases for α-1,3-oligoglucans from Clostridium phytofermentans. J. Appl. Glycosci. 61 (2014) 59–66.
[EC 2.4.1.334 created 2014]
 
 
EC 2.4.1.123     Relevance: 93.5%
Accepted name: inositol 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + myo-inositol = UDP + O-α-D-galactosyl-(1→3)-1D-myo-inositol
For diagram of stachyose biosynthesis, click here
Glossary: O-α-D-galactosyl-(1→3)-1D-myo-inositol = galactinol
Other name(s): UDP-D-galactose:inositol galactosyltransferase; UDP-galactose:myo-inositol 1-α-D-galactosyltransferase; UDPgalactose:myo-inositol 1-α-D-galactosyltransferase; galactinol synthase; inositol 1-α-galactosyltransferase; uridine diphosphogalactose-inositol galactosyltransferase; GolS; UDP-galactose:myo-inositol 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:myo-inositol 3-α-D-galactosyltransferase
Comments: An enzyme from plants involved in the formation of raffinose and stachyose [cf. EC 2.4.1.67 (galactinol—raffinose galactosyltransferase) and EC 2.4.1.82 (galactinol—sucrose galactosyltransferase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 79955-89-8
References:
1.  Pharr, D.M., Sox, H.N., Locy, R.D. and Huber, S.C. Partial characterization of the galactinol forming enzyme from leaves of Cucumis sativus L. Plant Sci. Lett. 23 (1981) 25–33.
[EC 2.4.1.123 created 1984, modified 2003]
 
 
EC 1.14.99.56     Relevance: 93.4%
Accepted name: lytic cellulose monooxygenase (C4-dehydrogenating)
Reaction: [(1→4)-β-D-glucosyl]n+m + reduced acceptor + O2 = 4-dehydro-β-D-glucosyl-[(1→4)-β-D-glucosyl]n-1 + [(1→4)-β-D-glucosyl]m + acceptor + H2O
Systematic name: cellulose, hydrogen-donor:oxygen oxidoreductase (D-glucosyl 4-dehydrogenating)
Comments: This copper-containing enzyme, found in fungi and bacteria, cleaves cellulose in an oxidative manner. The cellulose fragments that are formed contain a 4-dehydro-D-glucose residue at the non-reducing end. Some enzymes also oxidize cellulose at the C-1 position of the reducing end forming a D-glucono-1,5-lactone residue [cf. EC 1.14.99.54, lytic cellulose monooxygenase (C1-hydroxylating)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Beeson, W.T., Phillips, C.M., Cate, J.H. and Marletta, M.A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134 (2012) 890–892. [DOI] [PMID: 22188218]
2.  Li, X., Beeson, W.T., 4th, Phillips, C.M., Marletta, M.A. and Cate, J.H. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20 (2012) 1051–1061. [DOI] [PMID: 22578542]
3.  Forsberg, Z., Mackenzie, A.K., Sorlie, M., Rohr, A.K., Helland, R., Arvai, A.S., Vaaje-Kolstad, G. and Eijsink, V.G. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA 111 (2014) 8446–8451. [DOI] [PMID: 24912171]
4.  Borisova, A.S., Isaksen, T., Dimarogona, M., Kognole, A.A., Mathiesen, G., Varnai, A., Rohr, A.K., Payne, C.M., Sorlie, M., Sandgren, M. and Eijsink, V.G. Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J. Biol. Chem. 290 (2015) 22955–22969. [DOI] [PMID: 26178376]
5.  Patel, I., Kracher, D., Ma, S., Garajova, S., Haon, M., Faulds, C.B., Berrin, J.G., Ludwig, R. and Record, E. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol Biofuels 9:108 (2016). [DOI] [PMID: 27213015]
[EC 1.14.99.56 created 2017]
 
 
EC 2.4.1.369     Relevance: 93.3%
Accepted name: enterobactin C-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + enterobactin = UDP + monoglucosyl-enterobactin
(2) UDP-α-D-glucose + monoglucosyl-enterobactin = UDP + diglucosyl-enterobactin
(3) UDP-α-D-glucose + diglucosyl-enterobactin = UDP + triglucosyl-enterobactin
Glossary: enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-3→1(3)-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
triglucosyl-enterobactin = N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = tri-C-glucosyl-enterobactin = salmochelin TGE
Other name(s): iroB (gene name)
Systematic name: UDP-α-D-glucose:enterobactin 5′-C-β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme, found in pathogenic strains of the bacteria Escherichia coli and Salmonella enterica, catalyses the transfer of glucosyl groups to C-5 of one, two, or three of the 2,3-hydroxybenzoyl units of the siderophore enterobactin, forming C-glucosylated derivatives known as salmochelins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fischbach, M.A., Lin, H., Liu, D.R. and Walsh, C.T. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl. Acad. Sci. USA 102 (2005) 571–576. [PMID: 15598734]
[EC 2.4.1.369 created 2019]
 
 
EC 2.4.1.224     Relevance: 93.1%
Accepted name: glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-D-glucosamine + β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan = UDP + N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan
For diagram of heparan biosynthesis (later stages), click here
Other name(s): α-N-acetylglucosaminyltransferase II glucuronyl-N-acetylglucosaminylproteoglycan α-1,4-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Comments: Involved in the biosynthesis of heparin and heparan sulfate. Some forms of the enzyme from human (particularly the enzyme complex encoded by the EXT1 and EXT2 genes) act as bifunctional glycosyltransferases, which also have the 4-β-glucuronosyltransferase (EC 2.4.1.225, N-acetylglucosaminyl-proteoglycan 4-β-glucuronosyltransferase) activity required for the synthesis of the heparan sulfate disaccharide repeats. Other human forms of this enzyme (e.g. the product of the EXTL1 gene) have only the 4-α-N-acetylglucosaminyltransferase activity. In Caenorhabditis elegans, the product of the rib-2 gene displays the activities of this enzyme as well as EC 2.4.1.223, glucuronosyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 336193-98-7
References:
1.  Kim, B.T., Kitagawa, H., Tamura, J., Saito, T., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α1,4-N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc. Natl. Acad. Sci. USA 98 (2001) 7176–7181. [DOI] [PMID: 11390981]
2.  Kitagawa, H., Egusa, N., Tamura, J.I., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel α1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J. Biol. Chem. 276 (2001) 4834–4838. [DOI] [PMID: 11121397]
3.  Senay, C., Lind, T., Muguruma, K., Tone, Y., Kitagawa, H., Sugahara, K., Lidholt, K., Lindahl, U. and Kusche-Gullberg, M. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1 (2000) 282–286. [DOI] [PMID: 11256613]
4.  Lind, T., Tufaro, F., McCormick, C., Lindahl, U. and Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273 (1998) 26265–26268. [DOI] [PMID: 9756849]
[EC 2.4.1.224 created 2002]
 
 
EC 2.4.1.29     Relevance: 92.8%
Accepted name: cellulose synthase (GDP-forming)
Reaction: GDP-α-D-glucose + [(1→4)-β-D-glucosyl]n = GDP + [(1→4)-β-D-glucosyl]n+1
Other name(s): cellulose synthase (guanosine diphosphate-forming); cellulose synthetase; guanosine diphosphoglucose-1,4-β-glucan glucosyltransferase; guanosine diphosphoglucose-cellulose glucosyltransferase; GDP-glucose:1,4-β-D-glucan 4-β-D-glucosyltransferase
Systematic name: GDP-α-D-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of cellulose. A similar enzyme [EC 2.4.1.12, cellulose synthase (UDP-forming)] utilizes UDP-α-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9027-18-3
References:
1.  Chambers, J.C. and Elbein, A.D. Biosynthesis of glucans in mung bean seedlings. Formation of β-(1,4)-glucans from GDP-glucose and β-(1,3)-glucans from UDP-glucose. Arch. Biochem. Biophys. 138 (1970) 620–631. [DOI] [PMID: 4317490]
2.  Flowers, H.M., Batra, K.K., Kemp, J. and Hassid, W.Z. Biosynthesis of cellulose in vitro from guanosine diphosphate D-glucose with enzymic preparations from Phaseolus aureus and Lupinus albus. J. Biol. Chem. 244 (1969) 4969. [PMID: 5824571]
[EC 2.4.1.29 created 1965]
 
 
EC 3.2.1.86     Relevance: 92.7%
Accepted name: 6-phospho-β-glucosidase
Reaction: 6-phospho-β-D-glucosyl-(1→4)-D-glucose + H2O = D-glucose + D-glucose 6-phosphate
Other name(s): phospho-β-glucosidase A; phospho-β-glucosidase; phosphocellobiase; 6-phospho-β-D-glucosyl-(1,4)-D-glucose glucohydrolase
Systematic name: 6-phospho-β-D-glucosyl-(1→4)-D-glucose glucohydrolase
Comments: Also hydrolyses several other phospho-β-D-glucosides, but not their non-phosphorylated forms.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-51-9
References:
1.  Palmer, R.E. and Anderson, R.L. Cellobiose metabolism in Aerobacter aerogenes. 3. Cleavage of cellobiose monophosphate by a phospho-β-glucosidase. J. Biol. Chem. 247 (1972) 3420–3423. [PMID: 4624114]
[EC 3.2.1.86 created 1976]
 
 
EC 3.2.1.214     Relevance: 92.6%
Accepted name: exo β-1,2-glucooligosaccharide sophorohydrolase (non-reducing end)
Reaction: [(1→2)-β-D-glucosyl]n + H2O = sophorose + [(1→2)-β-D-glucosyl]n-2
Glossary: sophorose = β-D-glucopyranosyl-(1→2)-D-glucopyranose
Systematic name: exo (1→2)-β-D-glucooligosaccharide sophorohydrolase (non-reducing end)
Comments: The enzyme, characterized from the bacterium Parabacteroides distasonis, specifically hydrolyses (1→2)-β-D-glucooligosaccharides to sophorose. The best substrates are the tetra- and pentasaccharides. The enzyme is not able to cleave the trisaccharide, and activity with longer linear (1→2)-β-D-glucans is quite low. This enzyme acts in exo mode and is not able to hydrolyse cyclic (1→2)-β-D-glucans.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shimizu, H., Nakajima, M., Miyanaga, A., Takahashi, Y., Tanaka, N., Kobayashi, K., Sugimoto, N., Nakai, H. and Taguchi, H. Characterization and structural analysis of a novel exo-type enzyme acting on β-1,2-glucooligosaccharides from Parabacteroides distasonis. Biochemistry 57 (2018) 3849–3860. [PMID: 29763309]
[EC 3.2.1.214 created 2020]
 
 
EC 2.4.1.47     Relevance: 91.5%
Accepted name: N-acylsphingosine galactosyltransferase
Reaction: UDP-α-D-galactose + a ceramide = UDP + a β-D-galactosylceramide
Glossary: a ceramide = an N-acylsphingosine
Other name(s): UGT8 (gene name); CGT (gene name); UDP galactose-N-acylsphingosine galactosyltransferase; uridine diphosphogalactose-acylsphingosine galactosyltransferase; UDP-galactose:N-acylsphingosine D-galactosyltransferase; UDP-α-D-galactose:N-acylsphingosine D-galactosyltransferase; 2-hydroxyacylsphingosine 1-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acylsphingosine β-D-galactosyltransferase (configuration-inverting)
Comments: This membrane-bound, endoplasmic reticulum-located enzyme catalyses the last step in the synthesis of galactocerebrosides, which are abundant sphingolipids of the myelin membrane of the central nervous system and peripheral nervous system. It has a strong preference for ceramides that contain hydroxylated fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-56-8
References:
1.  Fujino, Y. and Nakano, M. Enzymic synthesis of cerebroside from ceramide and uridine diphosphate galactose. Biochem. J. 113 (1969) 573–575. [PMID: 5807218]
2.  Morell, P. and Radin, N.S. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8 (1969) 506–512. [PMID: 5793706]
3.  Morell, P., Costantino-Ceccarini, E. and Radin, N.S. The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids. Arch. Biochem. Biophys. 141 (1970) 738–748. [DOI] [PMID: 5497154]
4.  Basu, S., Schultz, A., Basu, M. and Roseman, S. Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain. J. Biol. Chem. 243 (1971) 4272–4279. [PMID: 5090043]
5.  Akanuma, H. and Kishimoto, Y. Synthesis of ceramides and cerebrosides containing both α-hydroxy and nonhydroxy fatty acids from lignoceroyl-CoA by rat brain microsomes. J. Biol. Chem. 254 (1979) 1050–1060. [PMID: 762114]
6.  Koul, O. and Jungalwala, F.B. UDP-galactose:ceramide galactosyltransferase of rat central-nervous-system myelin. Biochem. J. 194 (1981) 633–637. [PMID: 7306007]
7.  Schulte, S. and Stoffel, W. Ceramide UDP-galactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc. Natl. Acad. Sci. USA 90 (1993) 10265–10269. [DOI] [PMID: 7694285]
8.  Sprong, H., Kruithof, B., Leijendekker, R., Slot, J.W., van Meer, G. and van der Sluijs, P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 273 (1998) 25880–25888. [DOI] [PMID: 9748263]
9.  Fewou, S.N., Bussow, H., Schaeren-Wiemers, N., Vanier, M.T., Macklin, W.B., Gieselmann, V. and Eckhardt, M. Reversal of non-hydroxy:α-hydroxy galactosylceramide ratio and unstable myelin in transgenic mice overexpressing UDP-galactose:ceramide galactosyltransferase. J. Neurochem. 94 (2005) 469–481. [DOI] [PMID: 15998297]
[EC 2.4.1.47 created 1972]
 
 
EC 2.4.1.53     Relevance: 89.8%
Accepted name: poly(ribitol-phosphate) β-glucosyltransferase
Reaction: n UDP-α-D-glucose + 4-O-[(1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-[(2-β-D-glucosyl-1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarQ; UDP glucose-poly(ribitol-phosphate) β-glucosyltransferase; uridine diphosphoglucose-poly(ribitol-phosphate) β-glucosyltransferase; UDP-D-glucose polyribitol phosphate glucosyl transferase; UDP-D-glucose:polyribitol phosphate glucosyl transferase; UDP-glucose:poly(ribitol-phosphate) β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:4-O-[(1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of poly ribitol phosphate teichoic acids in the cell wall of the bacterium Bacillus subtilis W23. This enzyme adds a β-D-glucose to the hydroxyl group at the 2 position of the ribitol phosphate units.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-61-5
References:
1.  Chin, T., Burger, M.M. and Glaser, L. Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W-23. Arch. Biochem. Biophys. 116 (1966) 358–367. [PMID: 4960203]
2.  Brown, S., Xia, G., Luhachack, L.G., Campbell, J., Meredith, T.C., Chen, C., Winstel, V., Gekeler, C., Irazoqui, J.E., Peschel, A. and Walker, S. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl. Acad. Sci. USA 109 (2012) 18909–18914. [DOI] [PMID: 23027967]
[EC 2.4.1.53 created 1972, modified 2018]
 
 
EC 2.4.1.230     Relevance: 89.5%
Accepted name: kojibiose phosphorylase
Reaction: 2-α-D-glucosyl-D-glucose + phosphate = D-glucose + β-D-glucose 1-phosphate
Systematic name: 2-α-D-glucosyl-D-glucose:phosphate β-D-glucosyltransferase
Comments: The enzyme from Thermoanaerobacter brockii can act with α-1,2-oligoglucans, such as selaginose, as substrate, but more slowly. The enzyme is inactive when dissaccharides with linkages other than α-1,2 linkages, such as sophorose, trehalose, neotrehalose, nigerose, laminaribiose, maltose, cellobiose, isomaltose, gentiobiose, sucrose and lactose, are used as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 206566-36-1
References:
1.  Chaen, H., Yamamoto, T., Nishimoto, T., Nakada, T., Fukuda, S., Sugimoto, T., Kurimoto, M. and Tsujisaka, Y. Purification and characterization of a novel phosphorylase, kojibiose phosphorylase, from Thermoanaerobium brockii. J. Appl. Glycosci. 46 (1999) 423–429.
2.  Chaen, H., Nishimoto, T., Nakada, T., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Enzymatic synthesis of kojioligosaccharides using kojibiose phosphorylase. J. Biosci. Bioeng. 92 (2001) 177–182. [DOI] [PMID: 16233080]
[EC 2.4.1.230 created 2003]
 
 
EC 2.7.8.6     Relevance: 86%
Accepted name: undecaprenyl-phosphate galactose phosphotransferase
Reaction: UDP-α-D-galactose + undecaprenyl phosphate = UMP + α-D-galactosyl-diphosphoundecaprenol
Other name(s): poly(isoprenol)-phosphate galactose phosphotransferase; poly(isoprenyl)phosphate galactosephosphatetransferase; undecaprenyl phosphate galactosyl-1-phosphate transferase; UDP-galactose:undecaprenyl-phosphate galactose phosphotransferase
Systematic name: UDP-α-D-galactose:undecaprenyl-phosphate galactose phosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37278-29-8
References:
1.  Osborn, M.J. and Yuan Tze-Yuen, R. Biosynthesis of bacterial lipopolysaccharide. VII. Enzymatic formation of the first intermediate in biosynthesis of the O-antigen of Salmonella typhimurium. J. Biol. Chem. 243 (1968) 5145–5152. [PMID: 4878433]
2.  Wright, A., Dankert, M., Fennessen, P. and Robbins, P.W. Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis. Proc. Natl. Acad. Sci. USA 57 (1967) 1798–1803. [DOI] [PMID: 4291948]
[EC 2.7.8.6 created 1972]
 
 
EC 3.2.1.149     Relevance: 86%
Accepted name: β-primeverosidase
Reaction: a 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside + H2O = 6-O-(β-D-xylopyranosyl)-β-D-glucopyranose + an alcohol
Glossary: primeverose = 6-O-(β-D-xylopyranosyl)-D-glucose
vicianose = 6-O-(α-L-arabinopyranosyl)-D-glucose
Systematic name: 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside 6-O-(β-D-xylosyl)-β-D-glucohydrolase
Comments: The enzyme is responsible for the formation of the alcoholic aroma in oolong and black tea. In addition to β-primeverosides [i.e. 6-O-(β-D-xylopyranosyl)-β-D-glucopyranosides], it also hydrolyses 6-O-(β-D-apiofuranosyl)-β-D-glucopyranosides and, less rapidly, β-vicianosides and 6-O-(α-L-arabinofuranosyl)-β-D-glucopyranosides, but not β-glucosides. Geranyl-, linaloyl-, benzyl- and p-nitrophenol glycosides are all hydrolysed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 884593-92-4
References:
1.  Ijima, Y., Ogawa, K., Watanabe, N., Usui, T., Ohnishi-Kameyama, M., Nagata, T. and Sakata, K. Characterization of β-primeverosidase, being concerned with alcoholic aroma formation in tea leaves to be processed into black tea, and preliminary observations on its substrate specificity. J. Agric. Food Chem. 46 (1998) 1712–1718.
2.  Ogawa, K., Ijima, Y., Guo, W., Watanabe, N., Usui, T., Dong, S., Tong, Q. and Sakata, K. Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves (cv. Shuxian) to be processed to oolong tea. J. Agric. Food Chem. 45 (1997) 877–882.
[EC 3.2.1.149 created 2001]
 
 
EC 2.4.2.25     Relevance: 85.9%
Accepted name: flavone apiosyltransferase
Reaction: UDP-α-D-apiose + apigenin 7-O-β-D-glucoside = UDP + apigenin 7-O-[β-D-apiosyl-(1→2)-β-D-glucoside]
For diagram of apigenin derivatives biosynthesis, click here
Glossary: apigenin = 4′,5,7-trihydroxyflavone
β-D-apiose = (2R,3R,4R)-4-(hydroxymethyl)tetrahydrofuran-2,3,4-triol
Other name(s): uridine diphosphoapiose-flavone apiosyltransferase; UDP-apiose:7-O-(β-D-glucosyl)-flavone apiosyltransferase
Systematic name: UDP-apiose:5,4′-dihydroxyflavone 7-O-β-D-glucoside 2′′-O-β-D-apiofuranosyltransferase
Comments: 7-O-β-D-Glucosides of a number of flavonoids and of 4-substituted phenols can act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37332-49-3
References:
1.  Ortmann, R., Sutter, A. and Grisebach, H. Purification and properties of UDPapiose: 7-O-(β-D-glucosyl)-flavone apiosyltransferase from cell suspension cultures of parsley. Biochim. Biophys. Acta 289 (1972) 293–302. [DOI] [PMID: 4650134]
[EC 2.4.2.25 created 1976]
 
 
EC 2.4.1.239     Relevance: 84.9%
Accepted name: flavonol-3-O-glucoside glucosyltransferase
Reaction: UDP-glucose + a flavonol 3-O-β-D-glucoside = UDP + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucoside
For diagram of kaempferol-glycoside biosynthesis, click here and for diagram of the biosynthesis of quercetin 3-O-triglucoside, click here
Other name(s): UDP-glucose:flavonol-3-O-glucoside 2′′-O-β-D-glucosyltransferase
Systematic name: UDP-glucose:flavonol-3-O-β-D-glucoside 2′′-O-β-D-glucosyltransferase
Comments: One of three specific glucosyltransferases in pea (Pisum sativum) that successively add a β-D-glucosyl group first to O-3 of kaempferol, and then to O-2 of the previously added glucosyl group giving the 3-O-sophoroside and then the 3-O-sophorotrioside (see also EC 2.4.1.91, flavonol 3-O-glucosyltransferase and EC 2.4.1.240, flavonol-3-O-glycoside glucosyltransferase). TDP-glucose can replace UDP-glucose as the glucose donor but the reaction proceeds more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jourdan, P.S. and Mansell, R.L. Isolation and partial characterization of three glucosyl transferases involved in the biosynthesis of flavonol triglucosides in Pisum sativum L. Arch. Biochem. Biophys. 213 (1982) 434–443. [DOI] [PMID: 6462109]
[EC 2.4.1.239 created 2004]
 
 
EC 2.4.1.376     Relevance: 84.4%
Accepted name: EGF-domain serine glucosyltransferase
Reaction: UDP-α-D-glucose + [protein with EGF-like domain]-L-serine = UDP + [protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine
Other name(s): POGLUT1 (gene name) (ambiguous); rumi (gene name) (ambiguous)
Systematic name: UDP-α-D-glucose:[protein with EGF-like domain]-L-serine O-β-glucosyltransferase (configuration-inverting)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains. Glycosylation takes place at the serine in the C-X-S-X-P-C motif. The enzyme is bifunctional also being active with UDP-α-xylose as donor (EC 2.4.2.63, EGF-domain serine xylosyltransferase). When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Li, Z., Fischer, M., Satkunarajah, M., Zhou, D., Withers, S.G. and Rini, J.M. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat. Commun. 8:185 (2017). [PMID: 28775322]
[EC 2.4.1.376 created 2020]
 
 
EC 2.4.1.315     Relevance: 84.2%
Accepted name: diglucosyl diacylglycerol synthase (1,6-linking)
Reaction: (1) UDP-α-D-glucose + 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol = 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol + UDP
(2) UDP-α-D-glucose + 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol = 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol + UDP
Other name(s): monoglucosyl diacylglycerol (1→6) glucosyltransferase; MGlcDAG (1→6) glucosyltransferase; DGlcDAG synthase (ambiguous); UGT106B1; ypfP (gene name)
Systematic name: UDP-α-D-glucose:1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol 6-glucosyltransferase
Comments: The enzyme is found in several bacterial species. The enzyme from Bacillus subtilis is specific for glucose [1]. The enzyme from Mycoplasma genitalium can incoporate galactose with similar efficiency, but forms mainly 1,2-diacyl-diglucopyranosyl-sn-glycerol in vivo [3]. The enzyme from Staphylococcus aureus can also form glucosyl-glycero-3-phospho-(1′-sn-glycerol) [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jorasch, P., Wolter, F.P., Zahringer, U. and Heinz, E. A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol. Microbiol. 29 (1998) 419–430. [DOI] [PMID: 9720862]
2.  Jorasch, P., Warnecke, D.C., Lindner, B., Zahringer, U. and Heinz, E. Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. Eur. J. Biochem. 267 (2000) 3770–3783. [DOI] [PMID: 10848996]
3.  Andres, E., Martinez, N. and Planas, A. Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections. J. Biol. Chem. 286 (2011) 35367–35379. [DOI] [PMID: 21835921]
[EC 2.4.1.315 created 2014]
 
 
EC 2.4.1.137     Relevance: 84%
Accepted name: sn-glycerol-3-phosphate 2-α-galactosyltransferase
Reaction: UDP-α-D-galactose + sn-glycerol 3-phosphate = UDP + 2-(α-D-galactosyl)-sn-glycerol 3-phosphate
Other name(s): floridoside-phosphate synthase; UDP-galactose:sn-glycerol-3-phosphate-2-D-galactosyl transferase; FPS; UDP-galactose,sn-3-glycerol phosphate:1→2′ galactosyltransferase; floridoside phosphate synthetase; floridoside phosphate synthase; UDP-galactose:sn-glycerol-3-phosphate 2-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sn-glycerol-3-phosphate 2-α-D-galactosyltransferase
Comments: The product is hydrolysed by a phosphatase to floridoside (cf. EC 2.4.1.96 sn-glycerol-3-phosphate 1-galactosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 80747-34-8
References:
1.  Gray, N.C.C. and Strickland, K.P. The purification and characterization of a phospholipase A2 activity from the 106,000 x g pellet (microsomal fraction) of bovine brain acting on phosphatidylinositol. Can. J. Biochem. 60 (1982) 108–117. [PMID: 7083039]
[EC 2.4.1.137 created 1984]
 
 
EC 2.4.1.50     Relevance: 83.4%
Accepted name: procollagen galactosyltransferase
Reaction: UDP-α-D-galactose + [procollagen]-(5R)-5-hydroxy-L-lysine = UDP + [procollagen]-(5R)-5-O-(β-D-galactosyl)-5-hydroxy-L-lysine
Other name(s): hydroxylysine galactosyltransferase; collagen galactosyltransferase; collagen hydroxylysyl galactosyltransferase; UDP galactose-collagen galactosyltransferase; uridine diphosphogalactose-collagen galactosyltransferase; UDPgalactose:5-hydroxylysine-collagen galactosyltransferase; UDP-galactose:procollagen-5-hydroxy-L-lysine D-galactosyltransferase; UDP-α-D-galactose:procollagen-5-hydroxy-L-lysine D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[procollagen]-(5R)-5-hydroxy-L-lysine 5-β-D-galactosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of carbohydrate units in the complement system (cf. EC 2.4.1.66 procollagen glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-07-3
References:
1.  Bosmann, H.B. and Eylar, E.H. Glycoprotein biosynthesis: the biosynthesis of the hydroxylysine-galactose linkage in collagen. Biochem. Biophys. Res. Commun. 33 (1968) 340–346. [DOI] [PMID: 5722225]
2.  Kivirikko, K.I. and Myllyla, R. In: Hall, D.A. and Jackson, D.S. (Ed.), International Review of Connective Tissue Research, vol. 8, Academic Press, New York, 1979, p. 23.
3.  Schegg, B., Hulsmeier, A.J., Rutschmann, C., Maag, C. and Hennet, T. Core glycosylation of collagen is initiated by two β(1-O)galactosyltransferases. Mol. Cell Biol. 29 (2009) 943–952. [DOI] [PMID: 19075007]
[EC 2.4.1.50 created 1972, modified 1983]
 
 
EC 2.4.1.356     Relevance: 83.3%
Accepted name: glucosyl-dolichyl phosphate glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + an archaeal dolichyl α-D-glucosyl phosphate = UDP + an archaeal dolichyl β-D-glucuronosyl-(1→4)-α-D-glucosyl phosphate
Other name(s): aglG (gene name)
Systematic name: UDP-α-D-glucuronate:dolichyl phosphate glucuronosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the halophilic archaeon Haloferax volcanii, participates in the protein N-glycosylation pathway. Dolichol used by archaea is different from that used by eukaryotes. It is much shorter (C55-C60) and is α,ω-saturated. However, in vitro the enzyme was also able to act on a substrate with an unsaturated end.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yurist-Doutsch, S., Abu-Qarn, M., Battaglia, F., Morris, H.R., Hitchen, P.G., Dell, A. and Eichler, J. aglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol. Microbiol. 69 (2008) 1234–1245. [DOI] [PMID: 18631242]
2.  Elharar, Y., Podilapu, A.R., Guan, Z., Kulkarni, S.S. and Eichler, J. Assembling glycan-charged dolichol phosphates: chemoenzymatic synthesis of a Haloferax volcanii N-glycosylation pathway intermediate. Bioconjugate Chem. 28 (2017) 2461–2470. [DOI] [PMID: 28809486]
[EC 2.4.1.356 created 2018]
 
 
EC 2.4.1.226     Relevance: 83.1%
Accepted name: N-acetylgalactosaminyl-proteoglycan 3-β-glucuronosyltransferase
Reaction: (1) UDP-α-D-glucuronate + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
(2) UDP-α-D-glucuronate + [protein]-3-O-([β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of chondroitin biosynthesis (later stages), click here
Other name(s): chondroitin glucuronyltransferase II; α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase; UDP-α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:[protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 3-β-glucuronosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of chondroitin and dermatan sulfate. The human chondroitin synthetase is a bifunctional glycosyltransferase, which has the 3-β-glucuronosyltransferase and 4-β-N-acetylgalactosaminyltransferase (EC 2.4.1.175) activities required for the synthesis of the chondroitin sulfate disaccharide repeats. Similar chondroitin synthase ’co-polymerases’ can be found in Pasteurella multocida and Escherichia coli. There is also another human protein with apparently only the 3-β-glucuronosyltransferase activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 269077-98-7
References:
1.  Kitagawa, H., Uyama, T. and Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276 (2001) 38721–38726. [DOI] [PMID: 11514575]
2.  DeAngelis, P.L. and Padgett-McCue, A.J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J. Biol. Chem. 275 (2000) 24124–24129. [DOI] [PMID: 10818104]
3.  Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H. and Kimata, K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277 (2002) 21567–21575. [DOI] [PMID: 11943778]
4.  Gotoh, M., Yada, T., Sato, T., Akashima, T., Iwasaki, H., Mochizuki, H., Inaba, N., Togayachi, A., Kudo, T., Watanabe, H., Kimata, K. and Narimatsu, H. Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase which transfers glucuronic acid to N-acetylgalactosamine. J. Biol. Chem. 277 (2002) 38179–38188. [DOI] [PMID: 12145278]
[EC 2.4.1.226 created 2002, modified 2018]
 
 
EC 3.2.1.207     Relevance: 83%
Accepted name: mannosyl-oligosaccharide α-1,3-glucosidase
Reaction: (1) Glc2Man9GlcNAc2-[protein] + H2O = GlcMan9GlcNAc2-[protein] + β-D-glucopyranose
(2) GlcMan9GlcNAc2-[protein] + H2O = Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc2Man9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
GlcMan9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Man9GlcNAc2-[protein] = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Other name(s): ER glucosidase II; α-glucosidase II; trimming glucosidase II; ROT2 (gene name); GTB1 (gene name); GANAB (gene name); PRKCSH (gene name)
Systematic name: Glc2Man9GlcNAc2-[protein] 3-α-glucohydrolase (configuration-inverting)
Comments: This eukaryotic enzyme cleaves off sequentially the two α-1,3-linked glucose residues from the Glc2Man9GlcNAc2 oligosaccharide precursor of immature N-glycosylated proteins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Trombetta, E.S., Simons, J.F. and Helenius, A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271 (1996) 27509–27516. [DOI] [PMID: 8910335]
2.  Ziak, M., Meier, M., Etter, K.S. and Roth, J. Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells. Biochem. Biophys. Res. Commun. 280 (2001) 363–367. [DOI] [PMID: 11162524]
3.  Wilkinson, B.M., Purswani, J. and Stirling, C.J. Yeast GTB1 encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum. J. Biol. Chem. 281 (2006) 6325–6333. [DOI] [PMID: 16373354]
4.  Mora-Montes, H.M., Bates, S., Netea, M.G., Diaz-Jimenez, D.F., Lopez-Romero, E., Zinker, S., Ponce-Noyola, P., Kullberg, B.J., Brown, A.J., Odds, F.C., Flores-Carreon, A. and Gow, N.A. Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6 (2007) 2184–2193. [DOI] [PMID: 17933909]
[EC 3.2.1.207 created 2018]
 
 
EC 2.4.1.282     Relevance: 83%
Accepted name: 3-O-α-D-glucosyl-L-rhamnose phosphorylase
Reaction: 3-O-α-D-glucopyranosyl-L-rhamnopyranose + phosphate = L-rhamnopyranose + β-D-glucose 1-phosphate
Other name(s): cphy1019 (gene name)
Systematic name: 3-O-α-D-glucopyranosyl-L-rhamnopyranose:phosphate β-D-glucosyltransferase
Comments: The enzyme does not phosphorylate α,α-trehalose, kojibiose, nigerose, or maltose. In the reverse phosphorolysis reaction the enzyme is specific for L-rhamnose as acceptor and β-D-glucose 1-phosphate as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nihira, T., Nakai, H. and Kitaoka, M. 3-O-α-D-glucopyranosyl-L-rhamnose phosphorylase from Clostridium phytofermentans. Carbohydr. Res. 350 (2012) 94–97. [DOI] [PMID: 22277537]
[EC 2.4.1.282 created 2012]
 
 
EC 2.4.1.365     Relevance: 82.9%
Accepted name: protopanaxadiol-type ginsenoside-3-O-glucoside 2′′-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (20S)-ginsenoside Rh2 = UDP + (20S)-ginsenoside Rg3
(2) UDP-α-D-glucose + ginsenoside F2 = UDP + ginsenoside Rd
Glossary: (20S)-ginsenoside Rh2 = (3β,12β)-12,20-dihydroxydammar-24-en-3-yl β-D-glucopyranoside
ginsenoside F2 = (3β,12β)-20-(β-D-glucopyranosyloxy)-12-hydroxydammar-24-en-3-yl β-D-glucopyranoside
Other name(s): UGT94Q2 (gene name)
Systematic name: UDP-α-D-glucose:3-O-glucosyl-protopanaxadiol-type ginsenoside 2′′-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the 2′′ position of the glucose moiety in the protopanaxadiol-type ginsenoside-3-O-glucosides (20S)-ginsenoside Rh2 and ginsenoside F2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jung, S.C., Kim, W., Park, S.C., Jeong, J., Park, M.K., Lim, S., Lee, Y., Im, W.T., Lee, J.H., Choi, G. and Kim, S.C. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol. 55 (2014) 2177–2188. [PMID: 25320211]
[EC 2.4.1.365 created 2019]
 
 
EC 2.4.1.260     Relevance: 82.1%
Accepted name: dolichyl-P-Man:Man7GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-α-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG12; ALG12 mannosyltransferase; ALG12 α1,6mannosyltransferase; dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase; dolichyl-P-Man:Man7GlcNAc2-PP-dolichyl α6-mannosyltransferase; EBS4; Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,6-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 6-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
2.  Hong, Z., Jin, H., Fitchette, A.C., Xia, Y., Monk, A.M., Faye, L. and Li, J. Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell 21 (2009) 3792–3802. [DOI] [PMID: 20023196]
3.  Cipollo, J.F. and Trimble, R.B. The Saccharomyces cerevisiae alg12δ mutant reveals a role for the middle-arm α1,2Man- and upper-arm α1,2Manα1,6Man- residues of Glc3Man9GlcNAc2-PP-Dol in regulating glycoprotein glycan processing in the endoplasmic reticulum and Golgi apparatus. Glycobiology 12 (2002) 749–762. [PMID: 12460943]
4.  Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M. and Hennet, T. ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum. Mol. Genet. 11 (2002) 2331–2339. [DOI] [PMID: 12217961]
[EC 2.4.1.260 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.160, modified 2012]
 
 
EC 2.4.1.155     Relevance: 82.1%
Accepted name: α-1,6-mannosyl-glycoprotein 6-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein n-acetylglucosaminyltransferases, click here
Other name(s): MGAT5 (gene name); N-acetylglucosaminyltransferase V; α-mannoside β-1,6-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-α-mannoside β1→6-acetylglucosaminyltransferase; UDP-N-acetylglucosamine:α-mannoside-β1,6 N-acetylglucosaminyltransferase; α-1,3(6)-mannosylglycoprotein β-1,6-N-acetylglucosaminyltransferase; GnTV; GlcNAc-T V; UDP-N-acetyl-D-glucosamine:6-[2-(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl]-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)-β-D-mannosyl-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires Mg2+. The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. It catalyses the addition of N-acetylglucosamine in β 1-6 linkage to the α-linked mannose of biantennary N-linked oligosaccharides, and thus enables the synthesis of tri- and tetra-antennary complexes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83588-90-3
References:
1.  Cummings, R.D., Trowbridge, I.S. and Kornfeld, S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: α-D-mannoside β1,6 N-acetylglucosaminyltransferase. J. Biol. Chem. 257 (1982) 13421–13427. [PMID: 6216250]
2.  Hindsgaul, O., Tahir, S.H., Srivastava, O.P. and Pierce, M. The trisaccharide β-D-GlcpNAc-(1→2)-α-D-Manp-(1→6)-β-D-Manp, as its 8-methoxycarbonyloctyl glycoside, is an acceptor selective for N-acetylglucosaminyltransferase V. Carbohydr. Res. 173 (1988) 263–272. [DOI] [PMID: 2834054]
3.  Shoreibah, M.G., Hindsgaul, O. and Pierce, M. Purification and characterization of rat kidney UDP-N-acetylglucosamine: α-6-D-mannoside β-1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 267 (1992) 2920–2927. [PMID: 1531335]
4.  Gu, J., Nishikawa, A., Tsuruoka, N., Ohno, M., Yamaguchi, N., Kangawa, K. and Taniguchi, N. Purification and characterization of UDP-N-acetylglucosamine: α-6-D-mannoside β 1-6N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. J. Biochem. 113 (1993) 614–619. [PMID: 8393437]
5.  Park, C., Jin, U.H., Lee, Y.C., Cho, T.J. and Kim, C.H. Characterization of UDP-N-acetylglucosamine:α-6-D-mannoside β-1,6-N-acetylglucosaminyltransferase V from a human hepatoma cell line Hep3B. Arch. Biochem. Biophys. 367 (1999) 281–288. [PMID: 10395745]
6.  Saito, T., Miyoshi, E., Sasai, K., Nakano, N., Eguchi, H., Honke, K. and Taniguchi, N. A secreted type of β 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J. Biol. Chem. 277 (2002) 17002–17008. [PMID: 11872751]
[EC 2.4.1.155 created 1986, modified 2001, modified 2018]
 
 
EC 2.4.1.332     Relevance: 81.6%
Accepted name: 1,2-α-glucosylglycerol phosphorylase
Reaction: 2-O-α-D-glucopyranosyl-glycerol + phosphate = β-D-glucose 1-phosphate + glycerol
Other name(s): 2-O-α-D-glucopyranosylglycerol phosphorylase
Systematic name: 2-O-α-D-glucopyranosyl-glycerol:phosphate β-D-glucosyltransferase
Comments: The enzyme has been isolated from the bacterium Bacillus selenitireducens. In the absence of glycerol the enzyme produces α-D-glucopyranose and phosphate from β-D-glucopyranose 1-phosphate. In this reaction the glucosyl residue is transferred to a water molecule with an inversion of the anomeric conformation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nihira, T., Saito, Y., Ohtsubo, K., Nakai, H. and Kitaoka, M. 2-O-α-D-glucosylglycerol phosphorylase from Bacillus selenitireducens MLS10 possessing hydrolytic activity on β-D-glucose 1-phosphate. PLoS One 9:e86548 (2014). [DOI] [PMID: 24466148]
2.  Touhara, K.K., Nihira, T., Kitaoka, M., Nakai, H. and Fushinobu, S. Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase. J. Biol. Chem. 289 (2014) 18067–18075. [DOI] [PMID: 24828502]
[EC 2.4.1.332 created 2014]
 
 
EC 2.4.1.201     Relevance: 81.5%
Accepted name: α-1,6-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein n-acetylglucosaminyltransferases, click here
Other name(s): MGAT4C (gene name); N-acetylglucosaminyltransferase VI; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase VI; uridine diphosphoacetylglucosamine-glycopeptide β-1→4-acetylglucosaminyltransferase VI; mannosyl-glycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTVI; GlcNAc-T VI; UDP-N-acetyl-D-glucosamine:2,6-bis(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→6)-[N-acetyl-β-D-glucosaminyl-(1→2)]-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires a high concentration of Mn2+ for maximal activity. The enzyme, characterized from hen oviduct membranes, participates in the processing of N-glycans in the Golgi apparatus. It transfers GlcNAc in β1-4 linkage to a D-mannose residue that already has GlcNAc residues attached at positions 2 and 6 by β linkages. No homologous enzyme appears to exist in mammals.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119699-68-2
References:
1.  Brockhausen, I., Hull, E., Hindsgaul, O., Schachter, H., Shah, R.N., Michnick, S.W. and Carver, J.P. Control of glycoprotein synthesis. Detection and characterization of a novel branching enzyme from hen oviduct, UDP-N-acetylglucosamine:GlcNAc β1-6 (GlcNAc β1-2)Man α-R (GlcNAc to Man) β-4-N-acetylglucosaminyltransferase VI. J. Biol. Chem. 264 (1989) 11211–11221. [PMID: 2525556]
2.  Taguchi, T., Ogawa, T., Inoue, S., Inoue, Y., Sakamoto, Y., Korekane, H. and Taniguchi, N. Purification and characterization of UDP-GlcNAc:GlcNAcβ1-6(GlcNAcβ1-2)Manα1-R [GlcNAc to Man]-β1,4-N-acetylglucosaminyltransferase VI from hen oviduct. J. Biol. Chem. 275 (2000) 32598–32602. [DOI] [PMID: 10903319]
3.  Sakamoto, Y., Taguchi, T., Honke, K., Korekane, H., Watanabe, H., Tano, Y., Dohmae, N., Takio, K., Horii, A. and Taniguchi, N. Molecular cloning and expression of cDNA encoding chicken UDP-N-acetyl-D-glucosamine (GlcNAc): GlcNAcβ 1-6(GlcNAcβ 1-2)- manα 1-R[GlcNAc to man]β 1,4N-acetylglucosaminyltransferase VI. J. Biol. Chem. 275 (2000) 36029–36034. [DOI] [PMID: 10962001]
[EC 2.4.1.201 created 1992, modified 2001, modified 2018]
 
 
EC 2.4.1.145     Relevance: 81.2%
Accepted name: α-1,3-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Other name(s): N-acetylglucosaminyltransferase IV; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase IV; β-acetylglucosaminyltransferase IV; uridine diphosphoacetylglucosamine-glycopeptide β4-acetylglucosaminyltransferase IV; α-1,3-mannosylglycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTIV; UDP-N-acetyl-D-glucosamine:3-[2-(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl]-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires Mn2+. The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. By adding a glucosaminyl residue to biantennary N-linked glycans, it enables the synthesis of tri- and tetra-antennary complexes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 86498-16-0
References:
1.  Gleeson, P.A. and Schachter, H. Control of glycoprotein synthesis. J. Biol. Chem. 258 (1983) 6162–6173. [PMID: 6222042]
2.  Oguri, S., Minowa, M.T., Ihara, Y., Taniguchi, N., Ikenaga, H. and Takeuchi, M. Purification and characterization of UDP-N-acetylglucosamine: α1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase-IV) from bovine small intestine. J. Biol. Chem. 272 (1997) 22721–22727. [DOI] [PMID: 9278430]
3.  Minowa, M.T., Oguri, S., Yoshida, A., Hara, T., Iwamatsu, A., Ikenaga, H. and Takeuchi, M. cDNA cloning and expression of bovine UDP-N-acetylglucosamine: α1, 3-D-mannoside β1,4-N-acetylglucosaminyltransferase IV. J. Biol. Chem. 273 (1998) 11556–11562. [DOI] [PMID: 9565571]
4.  Yoshida, A., Minowa, M.T., Takamatsu, S., Hara, T., Oguri, S., Ikenaga, H. and Takeuchi, M. Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: α1,3-d-mannoside β1, 4-N-acetylglucosaminyltransferase. Glycobiology 9 (1999) 303–310. [DOI] [PMID: 10024668]
5.  Yoshida, A., Minowa, M.T., Takamatsu, S., Hara, T., Ikenaga, H. and Takeuchi, M. A novel second isoenzyme of the human UDP-N-acetylglucosamine:α1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment. Glycoconj. J. 15 (1998) 1115–1123. [PMID: 10372966]
6.  Takamatsu, S., Antonopoulos, A., Ohtsubo, K., Ditto, D., Chiba, Y., Le, D.T., Morris, H.R., Haslam, S.M., Dell, A., Marth, J.D. and Taniguchi, N. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice. Glycobiology 20 (2010) 485–497. [DOI] [PMID: 20015870]
[EC 2.4.1.145 created 1984, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.1.325     Relevance: 80.6%
Accepted name: TDP-N-acetylfucosamine:lipid II N-acetylfucosaminyltransferase
Reaction: dTDP-4-acetamido-4,6-dideoxy-α-D-galactose + N-acetyl-β-D-mannosaminouronyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = dTDP + 4-acetamido-4,6-dideoxy-α-D-galactosyl-(1→4)-N-acetyl-β-D-mannosaminouronyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Glossary: dTDP-4-acetamido-4,6-dideoxy-α-D-galactose = dTDP-N-acetyl-α-D-fucosamine
a lipid II = an undecaprenyldiphospho-N-acetyl-(N-acetylglucosaminyl)muramoyl peptide; the peptide element refers to L-alanyl-D-γ-glutamyl-L-lysyl/meso-2,6-diaminopimelyl-D-alanyl-D-alanine or a modified version thereof = an undecaprenyldiphospho-4-O-(N-acetyl-β-D-glucosaminyl)-3-O-peptidyl-α-N-acetylmuramate; the peptide element refers to L-alanyl-D-γ-glutamyl-L-lysyl/meso-2,6-diaminopimelyl-D-alanyl-D-alanine or a modified version thereof
lipid III = N-acetyl-β-D-fucosyl-(1→4)-N-acetyl-β-D-mannosaminouronyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TDP-Fuc4NAc:lipid II Fuc4NAc-transferase; TDP-Fuc4NAc:lipid II Fuc4NAc transferase; wecF (gene name)
Systematic name: dTDP-N-acetyl-α-D-fucose:N-acetyl-β-D-mannosaminouronyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol N-acetylfucosaminyltransferase
Comments: Involved in the enterobacterial common antigen (ECA) biosynthesis in the bacterium Escherichia coli. The trisaccharide of the product (lipid III) is the repeat unit of ECA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rahman, A., Barr, K. and Rick, P.D. Identification of the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase involved in synthesis of enterobacterial common antigen in Escherichia coli K-12. J. Bacteriol. 183 (2001) 6509–6516. [DOI] [PMID: 11673418]
[EC 2.4.1.325 created 2014]
 
 
EC 1.14.99.54     Relevance: 80.2%
Accepted name: lytic cellulose monooxygenase (C1-hydroxylating)
Reaction: [(1→4)-β-D-glucosyl]n+m + reduced acceptor + O2 = [(1→4)-β-D-glucosyl]m-1-(1→4)-D-glucono-1,5-lactone + [(1→4)-β-D-glucosyl]n + acceptor + H2O
Other name(s): lytic polysaccharide monooxygenase (ambiguous); LPMO (ambiguous); LPMO9A
Systematic name: cellulose, hydrogen-donor:oxygen oxidoreductase (D-glucosyl C1-hydroxylating)
Comments: This copper-containing enzyme, found in fungi and bacteria, cleaves cellulose in an oxidative manner. The cellulose fragments that are formed contain a D-glucono-1,5-lactone residue at the reducing end, which hydrolyses quickly and spontaneously to the aldonic acid. The electrons are provided in vivo by the cytochrome b domain of EC 1.1.99.18, cellobiose dehydrogenase (acceptor) [1]. Ascorbate can serve as the electron donor in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Phillips, C.M., Beeson, W.T., Cate, J.H. and Marletta, M.A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6 (2011) 1399–1406. [DOI] [PMID: 22004347]
2.  Beeson, W.T., Phillips, C.M., Cate, J.H. and Marletta, M.A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134 (2012) 890–892. [DOI] [PMID: 22188218]
3.  Li, X., Beeson, W.T., 4th, Phillips, C.M., Marletta, M.A. and Cate, J.H. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20 (2012) 1051–1061. [DOI] [PMID: 22578542]
4.  Bey, M., Zhou, S., Poidevin, L., Henrissat, B., Coutinho, P.M., Berrin, J.G. and Sigoillot, J.C. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl. Environ. Microbiol. 79 (2013) 488–496. [DOI] [PMID: 23124232]
5.  Frommhagen, M., Sforza, S., Westphal, A.H., Visser, J., Hinz, S.W., Koetsier, M.J., van Berkel, W.J., Gruppen, H. and Kabel, M.A. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol. Biofuels 8:101 (2015). [DOI] [PMID: 26185526]
6.  Patel, I., Kracher, D., Ma, S., Garajova, S., Haon, M., Faulds, C.B., Berrin, J.G., Ludwig, R. and Record, E. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol Biofuels 9:108 (2016). [DOI] [PMID: 27213015]
7.  Courtade, G., Wimmer, R., Rohr, A.K., Preims, M., Felice, A.K., Dimarogona, M., Vaaje-Kolstad, G., Sorlie, M., Sandgren, M., Ludwig, R., Eijsink, V.G. and Aachmann, F.L. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proc. Natl. Acad. Sci. USA 113 (2016) 5922–5927. [DOI] [PMID: 27152023]
[EC 1.14.99.54 created 2017]
 
 
EC 2.4.2.38     Relevance: 80%
Accepted name: glycoprotein 2-β-D-xylosyltransferase
Reaction: UDP-α-D-xylose + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] = UDP + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-[β-D-Xyl-(1→2)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein]
For diagram of mannosyl-glycoprotein fucosyl and xylosyl transferases, click here
Other name(s): β1,2-xylosyltransferase; UDP-D-xylose:glycoprotein (D-xylose to the 3,6-disubstituted mannose of 4-N-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 2-β-D-xylosyltransferase; UDP-D-xylose:glycoprotein (D-xylose to the 3,6-disubstituted mannose of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 2-β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:N4-{β-D-GlcNAc-(1→2)-α-D-mannosyl-(1→3)-[β-D-GlcNAc-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] 2-β-D-xylosyltransferase (configuration-inverting)
Comments: Specific for N-linked oligosaccharides (N-glycans).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 141256-56-6
References:
1.  Zeng, Y., Bannon, G., Thomas, V.H., Rice, K., Drake, R. and Elbein, A. Purification and specificity of β1,2-xylosyltransferase, an enzyme that contributes to the allergenicity of some plant proteins. J. Biol. Chem. 272 (1997) 31340–31347. [DOI] [PMID: 9395463]
2.  Strasser, R., Mucha, J., Mach, L., Altmann, F., Wilson, I.B., Glössl, J. and Steinkellner, H. Molecular cloning and functional expression of β1,2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett. 472 (2000) 105–108. [DOI] [PMID: 10781814]
[EC 2.4.2.38 created 2001]
 
 
EC 2.4.1.314     Relevance: 79.9%
Accepted name: ginsenoside Rd glucosyltransferase
Reaction: UDP-α-D-glucose + ginsenoside Rd = UDP + ginsenoside Rb1
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rd = 20-(β-D-glucopyranosyl)oxy-3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
Other name(s): UDPG:ginsenoside Rd glucosyltransferase; UDP-glucose:ginsenoside Rd glucosyltransferase; UGRdGT
Systematic name: UDP-glucose:ginsenoside-Rd β-1,6-glucosyltransferase
Comments: The glucosyl group forms a 1→6 bond to the glucosyloxy moiety at C-20 of ginsenoside Rd. Isolated from sanchi ginseng (Panax notoginseng).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yue, C.-J. and Zhong J.-J. Purification and characterization of UDPG:ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem. 40 (2005) 3742–3748.
[EC 2.4.1.314 created 2013]
 
 
EC 2.4.1.34     Relevance: 79.9%
Accepted name: 1,3-β-glucan synthase
Reaction: UDP-glucose + [(1→3)-β-D-glucosyl]n = UDP + [(1→3)-β-D-glucosyl]n+1
Other name(s): 1,3-β-D-glucan—UDP glucosyltransferase; UDP-glucose—1,3-β-D-glucan glucosyltransferase; callose synthetase; 1,3-β-D-glucan-UDP glucosyltransferase; UDP-glucose-1,3-β-D-glucan glucosyltransferase; paramylon synthetase; UDP-glucose-β-glucan glucosyltransferase; GS-II; (1,3)-β-glucan (callose) synthase; β-1,3-glucan synthase; β-1,3-glucan synthetase; 1,3-β-D-glucan synthetase; 1,3-β-D-glucan synthase; 1,3-β-glucan-uridine diphosphoglucosyltransferase; callose synthase; UDP-glucose-1,3-β-glucan glucosyltransferase; UDP-glucose:(1,3)β-glucan synthase; uridine diphosphoglucose-1,3-β-glucan glucosyltransferase; UDP-glucose:1,3-β-D-glucan 3-β-D-glucosyltransferase
Systematic name: UDP-glucose:(1→3)-β-D-glucan 3-β-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9037-30-3
References:
1.  Maréchal, L.R. and Goldemberg, S.H. Uridine diphosphate glucose-β-1,3-glucan β-3-glucosyltransferase from Euglena gracilis. J. Biol. Chem. 239 (1964) 3163–3167. [PMID: 14245356]
[EC 2.4.1.34 created 1972]
 
 
EC 3.2.1.120     Relevance: 78.8%
Accepted name: oligoxyloglucan β-glycosidase
Reaction: Hydrolysis of (1→4)-β-D-glucosidic links in oligoxyloglucans so as to remove successive isoprimeverose [i.e. α-xylo-(1→6)-β-D-glucosyl-] residues from the non-reducing chain ends
Other name(s): isoprimeverose-producing oligoxyloglucan hydrolase; oligoxyloglucan hydrolase
Systematic name: oligoxyloglucan xyloglucohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 97162-80-6
References:
1.  Kato, Y., Matsushita, J., Kubodera, T. and Matsuda, K. A novel enzyme producing isoprimeverose from oligoxyloglucans of Aspergillus oryzae. J. Biochem. (Tokyo) 97 (1985) 801–810. [PMID: 4019436]
[EC 3.2.1.120 created 1989]
 
 
EC 2.4.1.360     Relevance: 78.7%
Accepted name: 2-hydroxyflavanone C-glucosyltransferase
Reaction: UDP-α-D-glucose + a 2′-hydroxy-β-oxodihydrochalcone = UDP + a 3′-(β-D-glucopyranosyl)-2′-hydroxy-β-oxodihydrochalcone
Glossary: 2′-hydroxy-β-oxodihydrochalcone = 1-(2-hydroxyphenyl)-3-phenypropan-1,3-dione
3′-(β-D-glucopyranosyl)-2′-hydroxy-β-oxodihydrochalcone = 1-(3-(β-D-glucopyranosyl)-2-hydroxyphenyl)-3-phenylpropan-1,3-dione
Other name(s): OsCGT
Systematic name: UDP-α-D-glucose:2′-hydroxy-β-oxodihydrochalcone C6/8-β-D-glucosyltransferase
Comments: The enzyme has been characterized in Oryza sativa (rice), various Citrus spp., Glycine max (soybean), and Fagopyrum esculentum (buckwheat). Flavanone substrates require a 2-hydroxy group. The meta-stable flavanone substrates such as 2-hydroxynaringenin exist in an equilibrium with open forms such as 1-(4-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione, which are the actual substrates for the glucosyl-transfer reaction (see EC 1.14.14.162, flavanone 2-hydroxylase). The enzyme can also act on dihydrochalcones. The enzymes from citrus plants can catalyse a second C-glycosylation reaction at position 5.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Brazier-Hicks, M., Evans, K.M., Gershater, M.C., Puschmann, H., Steel, P.G. and Edwards, R. The C-glycosylation of flavonoids in cereals. J. Biol. Chem. 284 (2009) 17926–17934. [PMID: 19411659]
2.  Nagatomo, Y., Usui, S., Ito, T., Kato, A., Shimosaka, M. and Taguchi, G. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J. 80 (2014) 437–448. [PMID: 25142187]
3.  Hirade, Y., Kotoku, N., Terasaka, K., Saijo-Hamano, Y., Fukumoto, A. and Mizukami, H. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). FEBS Lett. 589 (2015) 1778–1786. [PMID: 25979175]
4.  Ito, T., Fujimoto, S., Suito, F., Shimosaka, M. and Taguchi, G. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. Plant J. 91 (2017) 187–198. [DOI] [PMID: 28370711]
[EC 2.4.1.360 created 2018]
 
 
EC 2.4.1.264     Relevance: 78.4%
Accepted name: D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-GlcA-(1→2)-α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol
For diagram of xanthan biosynthesis, click here
Other name(s): GumK; UDP-glucuronate:D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronyltransferase; D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronyltransferase
Systematic name: UDP-α-D-glucuronate:α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme is involved in the biosynthesis of the exopolysaccharides xanthan (in the bacterium Xanthomonas campestris) and acetan (in the bacterium Gluconacetobacter xylinus).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A. and Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180 (1998) 1607–1617. [PMID: 9537354]
2.  Ielpi, L., Couso, R.O. and Dankert, M.A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175 (1993) 2490–2500. [DOI] [PMID: 7683019]
3.  Kim, S.Y., Kim, J.G., Lee, B.M. and Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 31 (2009) 265–270. [DOI] [PMID: 18854951]
4.  Barreras, M., Bianchet, M.A. and Ielpi, L. Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 (2006) 880–883. [DOI] [PMID: 16946469]
5.  Barreras, M., Salinas, S.R., Abdian, P.L., Kampel, M.A. and Ielpi, L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J. Biol. Chem. 283 (2008) 25027–25035. [DOI] [PMID: 18596046]
6.  Vojnov, A.A., Bassi, D.E., Daniels, M.J. and Dankert, M.A. Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonas campestris. Carbohydr. Res. 337 (2002) 315–326. [DOI] [PMID: 11841812]
7.  Barreras, M., Abdian, P.L. and Ielpi, L. Functional characterization of GumK, a membrane-associated β-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Glycobiology 14 (2004) 233–241. [DOI] [PMID: 14736729]
[EC 2.4.1.264 created 2011, modified 2016]
 
 
EC 3.2.1.191     Relevance: 78.3%
Accepted name: ginsenosidase type III
Reaction: a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + 2 H2O = a protopanaxadiol-type ginsenoside with no glycosidic modification at position 3 + 2 D-glucopyranose (overall reaction)
(1a) a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + H2O a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + D-glucopyranose
(1b) a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + H2O = a protopanaxadiol-type ginsenoside with no glycosidic modification at position 3 + D-glucopyranose
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
gypenoside XVII = 3β-(β-D-glucopyranosyloxy)-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
gypenoside LXXV = 20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-ene-3β,12β-diol
Systematic name: protopanaxadiol-type ginsenoside 3-β-D-hydrolase
Comments: Ginsenosidase type III catalyses the sequential hydrolysis of the 3-O-β-D-(1→2)-glucopyranosyl bond followed by hydrolysis of the 3-O-β-D-glucopyranosyl bond of protopanaxadiol ginsenosides. When acting for example on ginsenoside Rb1 the enzyme first generates ginsenoside XVII, and subsequently ginsenoside LXXV.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jin, X.F., Yu, H.S., Wang, D.M., Liu, T.Q., Liu, C.Y., An, D.S., Im, W.T., Kim, S.G. and Jin, F.X. Kinetics of a cloned special ginsenosidase hydrolyzing 3-O-glucoside of multi-protopanaxadiol-type ginsenosides, named ginsenosidase type III. J. Microbiol. Biotechnol. 22 (2012) 343–351. [PMID: 22450790]
2.  An, D.S., Cui, C.H., Lee, H.G., Wang, L., Kim, S.C., Lee, S.T., Jin, F., Yu, H., Chin, Y.W., Lee, H.K., Im, W.T. and Kim, S.G. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76 (2010) 5827–5836. [DOI] [PMID: 20622122]
3.  Hong, H., Cui, C.H., Kim, J.K., Jin, F.X., Kim, S.C. and Im, W.T. Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae. J Ginseng Res 36 (2012) 418–424. [DOI] [PMID: 23717145]
[EC 3.2.1.191 created 2014]
 
 
EC 2.4.1.261     Relevance: 78.3%
Accepted name: dolichyl-P-Man:Man8GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase; Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues: the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G. and Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (2009) 910–917. [DOI] [PMID: 19451548]
2.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
[EC 2.4.1.261 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.261, modified 2012]
 
 
EC 2.4.1.125     Relevance: 77.7%
Accepted name: sucrose—1,6-α-glucan 3(6)-α-glucosyltransferase
Reaction: (1) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + [(1→6)-α-D-glucosyl]n+1
(2) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + (1→3)-α-D-glucosyl-[(1→6)-α-D-glucosyl]n
Other name(s): water-soluble-glucan synthase (misleading); GTF-I; GTF-S; GTF-SI; sucrose-1,6-α-glucan 3(6)-α-glucosyltransferase; sucrose:1,6-α-D-glucan 3-α- and 6-α-glucosyltransferase; sucrose:1,6-, 1,3-α-D-glucan 3-α- and 6-α-D-glucosyltransferase; sucrose:1,6-α-D-glucan 3(6)-α-D-glucosyltransferase; gtfB (gene name); gtfC (gene name); gtfD (gene name)
Systematic name: sucrose:(1→6)-α-D-glucan 3(6)-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme extends (1→6)-α-D-glucans by both α(1→3) and α(1→6) linkages, with one of the linkage types being dominant. cf. EC 2.4.1.140, alternansucrase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81725-87-3
References:
1.  Mukasa, H., Shimamura, A. and Tsumori, H. Purification and characterization of basic glucosyltransferase from Streptococcus mutans serotype c. Biochim. Biophys. Acta 719 (1982) 81–89. [DOI] [PMID: 6216919]
2.  Shimamura, A., Tsumori, H. and Mukasa, H. Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim. Biophys. Acta 702 (1982) 72–80. [DOI] [PMID: 6461359]
3.  Tsumori, H., Shimamura, A. and Mukasa, H. Purification and properties of extracellular glucosyltransferase synthesizing 1,6-, 1,3-α-D-glucan from Streptococcus mutans serotype a. J. Gen. Microbiol. 131 (1985) 3347–3353. [DOI] [PMID: 2937877]
4.  Fujiwara, T., Tamesada, M., Bian, Z., Kawabata, S., Kimura, S. and Hamada, S. Deletion and reintroduction of glucosyltransferase genes of Streptococcus mutans and role of their gene products in sucrose dependent cellular adherence. Microb Pathog 20 (1996) 225–233. [DOI] [PMID: 8737492]
5.  Monchois, V., Willemot, R.M. and Monsan, P. Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23 (1999) 131–151. [DOI] [PMID: 10234842]
6.  Ito, K., Ito, S., Shimamura, T., Weyand, S., Kawarasaki, Y., Misaka, T., Abe, K., Kobayashi, T., Cameron, A.D. and Iwata, S. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408 (2011) 177–186. [DOI] [PMID: 21354427]
[EC 2.4.1.125 created 1984]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald