The Enzyme Database

Displaying entries 1-50 of 127.

<< Previous | Next >>    printer_iconPrintable version

EC 4.2.3.179     Relevance: 100%
Accepted name: guaia-4,6-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = guaia-4,6-diene + diphosphate
Other name(s): XsTPS2
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, guaia-4,6-diene-forming)
Comments: Isolated from the plant Xanthium strumarium (rough cocklebur).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Li, Y., Chen, F., Li, Z., Li, C. and Zhang, Y. Identification and functional characterization of sesquiterpene synthases from Xanthium strumarium. Plant Cell Physiol. 57 (2016) 630–641. [DOI] [PMID: 26858282]
[EC 4.2.3.179 created 2017]
 
 
EC 4.2.3.165     Relevance: 95.6%
Accepted name: (1R,4R,5S)-(–)-guaia-6,10(14)-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (1R,4R,5S)-(–)-guaia-6,10(14)-diene + diphosphate
Glossary: (1R,4R,5S)-(–)-guaia-6,10(14)-diene = (1R)-1-methyl-4-methylidene-7-(propan-2-yl)-1,2,3,3a,4,5,6,8a-octahydroazulene = (1R)-7-isopropyl-1-methyl-4-methylene-1,2,3,3a,4,5,6,8a-octahydroazulene
Other name(s): STC5 (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (1R,4R,5S)-(–)-guaia-6,10(14)-diene-forming]
Comments: The original enzyme (STC5) from the fungus Fusarium fujikuroi is inactive because of a critically naturally occuring mutation that leads to an asparagine to lysine exchange in the NSE (Asn-Ser-Glu) triad, a highly conserved motif of type I terpene cyclases. Sequence correction by site-directed mutagenesis (K288N) restores activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Burkhardt, I., Siemon, T., Henrot, M., Studt, L., Rosler, S., Tudzynski, B., Christmann, M. and Dickschat, J.S. Mechanistic characterisation of two sesquiterpene cyclases from the plant pathogenic fungus Fusarium fujikuroi. Angew. Chem. Int. Ed. Engl. 55 (2016) 8748–8751. [DOI] [PMID: 27294564]
[EC 4.2.3.165 created 2017]
 
 
EC 4.2.3.24     Relevance: 40.5%
Accepted name: amorpha-4,11-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = amorpha-4,11-diene + diphosphate
Other name(s): amorphadiene synthase
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (amorpha-4,11-diene-forming)
Comments: Requires Mg2+ and Mn2+ for activity. This is a key enzyme in the biosynthesis of the antimalarial endoperoxide artemisinin [3]. Catalyses the formation of both olefinic [e.g. amorpha-4,11-diene, amorpha-4,7(11)-diene, γ-humulene and β-sesquiphellandrene] and oxygenated (e.g. amorpha-4-en-7-ol) sesquiterpenes, with amorpha-4,11-diene being the major product. When geranyl diphosphate is used as a substrate, no monoterpenes are produced [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 259213-60-0
References:
1.  Wallaart, T.E., Bouwmeester, H.J., Hille, J., Poppinga, L. and Maijers, N.C. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212 (2001) 460–465. [DOI] [PMID: 11289612]
2.  Mercke, P., Bengtsson, M., Bouwmeester, H.J., Posthumus, M.A. and Brodelius, P.E. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381 (2000) 173–180. [DOI] [PMID: 11032404]
3.  Bouwmeester, H.J., Wallaart, T.E., Janssen, M.H., van Loo, B., Jansen, B.J., Posthumus, M.A., Schmidt, C.O., De Kraker, J.W., König, W.A. and Franssen, M.C. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52 (1999) 843–854. [DOI] [PMID: 10626375]
4.  Chang, Y.J., Song, S.H., Park, S.H. and Kim, S.U. Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch. Biochem. Biophys. 383 (2000) 178–184. [DOI] [PMID: 11185551]
5.  Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. and Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21 (2003) 796–802. [DOI] [PMID: 12778056]
6.  Picaud, S., Mercke, P., He, X., Sterner, O., Brodelius, M., Cane, D.E. and Brodelius, P.E. Amorpha-4,11-diene synthase: Mechanism and stereochemistry of the enzymatic cyclization of farnesyl diphosphate. Arch. Biochem. Biophys. 448 (2006) 150–155. [DOI] [PMID: 16143293]
[EC 4.2.3.24 created 2006]
 
 
EC 4.2.3.44     Relevance: 40.1%
Accepted name: isopimara-7,15-diene synthase
Reaction: (+)-copalyl diphosphate = isopimara-7,15-diene + diphosphate
For diagram of abietadiene, abietate, isopimaradiene, labdadienol and sclareol biosynthesis, click here and for diagram of abietadiene, levopimaradiene and isopimara-7,15-diene biosynthesis, click here
Glossary: isopimara-7,15-diene = 13α-pimara-7,15-diene
Other name(s): PaTPS-Iso; copalyl diphosphate-lyase (isopimara-7,15-diene-forming)
Systematic name: (+)-copalyl diphosphate-lyase (isopimara-7,15-diene-forming)
Comments: The enzyme only gave isopimara-7,15-diene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Martin, D.M., Faldt, J. and Bohlmann, J. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 135 (2004) 1908–1927. [DOI] [PMID: 15310829]
[EC 4.2.3.44 created 2009]
 
 
EC 4.2.3.139     Relevance: 40%
Accepted name: valerena-4,7(11)-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = valerena-4,7(11)-diene + diphosphate
For mechanism, click here
Glossary: valerena-4,7(11)-diene = (4S,7R,7aR)-3,7-dimethyl-4-(2-methylprop-1-en-1-yl)-2,4,5,6,7,7a-hexahydro-1H-indene
Other name(s): VoTPS2; VoTPS7
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, valerena-4,7(11)-diene-forming)
Comments: Isolated from the plant Valeriana officinalis (valerian). Note that due to a different numbering system the product is also known as valerena-1,10-diene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pyle, B.W., Tran, H.T., Pickel, B., Haslam, T.M., Gao, Z., Macnevin, G., Vederas, J.C., Kim, S.U. and Ro, D.K. Enzymatic synthesis of valerena-4,7(11)-diene by a unique sesquiterpene synthase from the valerian plant (Valeriana officinalis). FEBS J. 279 (2012) 3136–3146. [DOI] [PMID: 22776156]
2.  Yeo, Y.S., Nybo, S.E., Chittiboyina, A.G., Weerasooriya, A.D., Wang, Y.H., Gongora-Castillo, E., Vaillancourt, B., Buell, C.R., DellaPenna, D., Celiz, M.D., Jones, A.D., Wurtele, E.S., Ransom, N., Dudareva, N., Shaaban, K.A., Tibrewal, N., Chandra, S., Smillie, T., Khan, I.A., Coates, R.M., Watt, D.S. and Chappell, J. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis. J. Biol. Chem. 288 (2013) 3163–3173. [DOI] [PMID: 23243312]
[EC 4.2.3.139 created 2012]
 
 
EC 1.3.1.53     Relevance: 39.6%
Accepted name: (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate dehydrogenase
Reaction: (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate + NAD+ = 3,4-dihydroxybenzoate + CO2 + NADH
Glossary: (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate = cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,4-dicarboxylate
Other name(s): (1R,2S)-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; terephthalate 1,2-cis-dihydrodiol dehydrogenase; cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,4-dicarboxylate:NAD+ oxidoreductase (decarboxylating)
Systematic name: (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate:NAD+ oxidoreductase
Comments: Requires FeII. Involved in the terephthalate degradation pathway in bacteria [2].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 162032-77-1
References:
1.  Saller, E., Laue, H.R., Schläfli Oppenberg, H.R. and Cook, A.M. Purification and some properties of (1R,2S)-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase from Comamonas testosteroni T-2. FEMS Microbiol. Lett. 130 (1996) 97–102.
2.  Wang, Y.Z., Zhou, Y. and Zylstra, G.J. Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ. Health Perspect. 103, Suppl. 5 (1995) 9–12. [PMID: 8565920]
[EC 1.3.1.53 created 1999 (EC 1.3.1.61 created 2000, incorporated 2007)]
 
 
EC 4.2.3.30     Relevance: 39.3%
Accepted name: ent-pimara-8(14),15-diene synthase
Reaction: ent-copalyl diphosphate = ent-pimara-8(14),15-diene + diphosphate
For diagram of the biosynthesis of diterpenoids from ent-copalyl diphosphate, click here
Other name(s): OsKS5
Systematic name: ent-copalyl-diphosphate diphosphate-lyase [ent-pimara-8(14),15-diene-forming]
Comments: Unlike EC 4.2.3.29, ent-sandaracopimaradiene synthase, which can produce both ent-sandaracopimaradiene and ent-pimara-8(14),15-diene, this diterpene cyclase produces only ent-pimara-8(14),15-diene. ent-Pimara-8(14),15-diene is not a precursor in the biosynthesis of either gibberellins or phytoalexins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kanno, Y., Otomo, K., Kenmoku, H., Mitsuhashi, W., Yamane, H., Oikawa, H., Toshima, H., Matsuoka, M., Sassa, T. and Toyomasu, T. Characterization of a rice gene family encoding type-A diterpene cyclases. Biosci. Biotechnol. Biochem. 70 (2006) 1702–1710. [DOI] [PMID: 16861806]
[EC 4.2.3.30 created 2008]
 
 
EC 4.2.3.161     Relevance: 38.5%
Accepted name: (3S)-(+)-asterisca-2(9),6-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (3S)-(+)-asterisca-2(9),6-diene + diphosphate
For diagram of bicyclic and tricyclic sesquiterpenoids derived from humuladienyl cation, click here
Glossary: (3S)-(+)-asterisca-2(9),6-diene = (4S,7Z)-2,2,4,7-tetramethyl-2,3,4,5,6,9-hexahydro-1H-cyclopenta[8]annulene
Other name(s): TPS2 (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (3S)-(+)-asterisca-2(9),6-diene-forming]
Comments: The sequiterpene (3S)-(+)-asterisca-2(9),6-diene has been shown to be synthezised in the slime-mould Dictyostelium discoideum. The enzyme is specific for (2E,6E)-farnesyl diphosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chen, X., Kollner, T.G., Jia, Q., Norris, A., Santhanam, B., Rabe, P., Dickschat, J.S., Shaulsky, G., Gershenzon, J. and Chen, F. Terpene synthase genes in eukaryotes beyond plants and fungi: occurrence in social amoebae. Proc. Natl. Acad. Sci. USA 113 (2016) 12132–12137. [DOI] [PMID: 27790999]
2.  Rabe, P., Rinkel, J., Nubbemeyer, B., Kollner, T.G., Chen, F. and Dickschat, J.S. Terpene cyclases from social Amoebae. Angew. Chem. Int. Ed. Engl. 55 (2016) 15420–15423. [DOI] [PMID: 27862766]
[EC 4.2.3.161 created 2017]
 
 
EC 1.14.14.68     Relevance: 37.9%
Accepted name: syn-pimaradiene 3-monooxygenase
Reaction: 9β-pimara-7,15-diene + [reduced NADPH—hemoprotein reductase] + O2 = 9β-pimara-7,15-diene-3β-ol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of momilactone A biosynthesis, click here
Glossary: syn-pimara-7,15-diene = 9β-pimara-7,15-diene
Other name(s): CYP701A8
Systematic name: 9β-pimara7,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (9β-pimara-7,15-diene-3β-ol-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from rice, Oryza sativa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kitaoka, N., Wu, Y., Xu, M. and Peters, R.J. Optimization of recombinant expression enables discovery of novel cytochrome P450 activity in rice diterpenoid biosynthesis. Appl. Microbiol. Biotechnol. 99 (2015) 7549–7558. [DOI] [PMID: 25758958]
[EC 1.14.14.68 created 2018]
 
 
EC 1.14.13.145      
Transferred entry: ent-cassa-12,15-diene 11-hydroxylase. Now EC 1.14.14.112, ent-cassa-12,15-diene 11-hydroxylase.
[EC 1.14.13.145 created 2012, deleted 2018]
 
 
EC 4.2.3.206     Relevance: 36.6%
Accepted name: (–)-cyatha-3,12-diene synthase
Reaction: geranylgeranyl diphosphate = (–)-cyatha-3,12-diene + diphosphate
For diagram of related fungal and bacterial diterpenoids, click here
Glossary: (–)-cyatha-3,12-diene = (3aS,5aS,10aS)-3a,5a,8-trimethyl-1-(propan-2-yl)-2,3,4,5,6,9,10,10a-octahydrocyclohepta[e]indene
Other name(s): eriG (gene name); CyaTC
Systematic name: geranylgeranyl diphosphate-lyase [(–)-cyatha-3,12-diene-forming]
Comments: The enzyme, characterized from the fungi Hericium erinaceus and Cyathus africanus, requires Mg2+ for activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yang, Y.L., Zhang, S., Ma, K., Xu, Y., Tao, Q., Chen, Y., Chen, J., Guo, S., Ren, J., Wang, W., Tao, Y., Yin, W.B. and Liu, H. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi. Angew. Chem. Int. Ed. Engl. 56 (2017) 4749–4752. [DOI] [PMID: 28371074]
[EC 4.2.3.206 created 2022]
 
 
EC 4.2.3.214     Relevance: 36.2%
Accepted name: dolasta-1(15),8-diene synthase
Reaction: geranylgeranyl diphosphate = (5R,12R,14S)-dolasta-1(15),8-diene + diphosphate
For diagram of dolastadiene and δ-araneosene biosynthesis, click here
Glossary: (5R,12R,14S)-dolasta-1(15),8-diene = (3aR,4aS,8aR)-3a,8a-dimethyl-5-methylene-1-(propan-2-yl)-2,3,3a,4,4a,5,6,7,8,8a,9,10-dodecahydrobenzo[f]azulene
Other name(s): Cg113742 (gene name); CgDS
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, dolasta-1(15),8-diene-forming]
Comments: Isolated from Colletotrichum gloeosporioides, a pathogenic fungus that causes bitter rot in variety of crops.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bian, G., Rinkel, J., Wang, Z., Lauterbach, L., Hou, A., Yuan, Y., Deng, Z., Liu, T. and Dickschat, J.S. A clade II-D fungal chimeric diterpene synthase from Colletotrichum gloeosporioides produces dolasta-1(15),8-diene. Angew. Chem. Int. Ed. Engl. 57 (2018) 15887–15890. [DOI] [PMID: 30277637]
[EC 4.2.3.214 created 2023]
 
 
EC 4.2.3.35     Relevance: 36%
Accepted name: syn-pimara-7,15-diene synthase
Reaction: 9α-copalyl diphosphate = 9β-pimara-7,15-diene + diphosphate
For diagram of the biosynthesis of diterpenoids from 9alpha-copalyl diphosphate, click here
Glossary: syn-copalyl diphosphate = 9α-copalyl diphosphate
syn-pimara-7,15-diene = 9β-pimara-7,15-diene
Other name(s): 9β-pimara-7,15-diene synthase; OsDTS2; OsKS4
Systematic name: 9α-copalyl-diphosphate diphosphate-lyase (9β-pimara-7,15-diene-forming)
Comments: This enzyme is a class I terpene synthase [1]. 9β-Pimara-7,15-diene is a precursor of momilactones A and B, rice diterpenoid phytoalexins that are produced in response to attack (by a pathogen, elicitor or UV irradiation) and are involved in the defense mechanism of the plant. Momilactone B can also act as an allochemical, being constitutively produced in the root of the plant and secreted to the rhizosphere where it suppresses the growth of neighbouring plants and soil microorganisms [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wilderman, P.R., Xu, M., Jin, Y., Coates, R.M. and Peters, R.J. Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol. 135 (2004) 2098–2105. [DOI] [PMID: 15299118]
2.  Otomo, K., Kanno, Y., Motegi, A., Kenmoku, H., Yamane, H., Mitsuhashi, W., Oikawa, H., Toshima, H., Itoh, H., Matsuoka, M., Sassa, T. and Toyomasu, T. Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci. Biotechnol. Biochem. 68 (2004) 2001–2006. [DOI] [PMID: 15388982]
[EC 4.2.3.35 created 2008]
 
 
EC 1.3.1.25     Relevance: 35.4%
Accepted name: 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase
Reaction: (1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate + NAD+ = catechol + CO2 + NADH + H+
For diagram of benzoate metabolism, click here
Other name(s): 3,5-cyclohexadiene-1,2-diol-1-carboxylate dehydrogenase; 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid dehydrogenase; dihydrodihydroxybenzoate dehydrogenase; DHBDH; cis-1,2-dihydroxycyclohexa-3,5-diene-1-carboxylate dehydrogenase; 2-hydro-1,2-dihydroxybenzoate dehydrogenase; cis-1,2-dihydroxycyclohexa-3,5-diene-1-carboxylate:NAD+ oxidoreductase; dihydrodihydroxybenzoate dehydrogenase; (1R,6R)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate:NAD+ oxidoreductase (decarboxylating)
Systematic name: (1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate:NAD+ oxidoreductase (decarboxylating)
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 60496-16-4
References:
1.  Reiner, A.M. Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (NAD+) oxidoreductase (decarboxylating). J. Biol. Chem. 247 (1972) 4960–4965. [PMID: 4341530]
2.  Neidle, E., Hartnett, C., Ornston, L.N., Bairoch, A., Rekik, M. and Harayama, S. cis-Diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur. J. Biochem. 204 (1992) 113–120. [DOI] [PMID: 1740120]
[EC 1.3.1.25 created 1976, modified 2004 (EC 1.3.1.55 created 1999, incorporated 2004)]
 
 
EC 4.2.3.29     Relevance: 35.3%
Accepted name: ent-sandaracopimaradiene synthase
Reaction: ent-copalyl diphosphate = ent-sandaracopimara-8(14),15-diene + diphosphate
For diagram of the biosynthesis of diterpenoids from ent-copalyl diphosphate, click here
Other name(s): OsKS10; ent-sandaracopimara-8(14),15-diene synthase
Systematic name: ent-copalyl-diphosphate diphosphate-lyase [ent-sandaracopimara-8(14),15-diene-forming]
Comments: ent-Sandaracopimaradiene is a precursor of the rice oryzalexins A-F. Phytoalexins are diterpenoid secondary metabolites that are involved in the defense mechanism of the plant, and are produced in response to pathogen attack through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation. As a minor product, this enzyme also forms ent-pimara-8(14),15-diene, which is the sole product of EC 4.2.3.30, ent-pimara-8(14),15-diene synthase. ent-Pimara-8(14),15-diene is not a precursor in the biosynthesis of either gibberellins or phytoalexins [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Otomo, K., Kanno, Y., Motegi, A., Kenmoku, H., Yamane, H., Mitsuhashi, W., Oikawa, H., Toshima, H., Itoh, H., Matsuoka, M., Sassa, T. and Toyomasu, T. Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci. Biotechnol. Biochem. 68 (2004) 2001–2006. [DOI] [PMID: 15388982]
2.  Kanno, Y., Otomo, K., Kenmoku, H., Mitsuhashi, W., Yamane, H., Oikawa, H., Toshima, H., Matsuoka, M., Sassa, T. and Toyomasu, T. Characterization of a rice gene family encoding type-A diterpene cyclases. Biosci. Biotechnol. Biochem. 70 (2006) 1702–1710. [DOI] [PMID: 16861806]
[EC 4.2.3.29 created 2008]
 
 
EC 1.14.13.144      
Transferred entry: 9β-pimara-7,15-diene oxidase. Now EC 1.14.14.111, 9β-pimara-7,15-diene oxidase.
[EC 1.14.13.144 created 2012, deleted 2018]
 
 
EC 4.2.3.181     Relevance: 33.9%
Accepted name: selina-4(15),7(11)-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = selina-4(15),7(11)-diene + diphosphate
For diagram of eudesmol and selinene biosynthesis, click here
Other name(s): SdS
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, selina-4(15),7(11)-diene-forming)
Comments: Isolated from the bacteria Streptomyces pristinaespiralis and S. somaliensis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rabe, P. and Dickschat, J.S. Rapid chemical characterization of bacterial terpene synthases. Angew. Chem. Int. Ed. Engl. 52 (2013) 1810–1812. [DOI] [PMID: 23307484]
2.  Baer, P., Rabe, P., Fischer, K., Citron, C.A., Klapschinski, T.A., Groll, M. and Dickschat, J.S. Induced-fit mechanism in class I terpene cyclases. Angew. Chem. Int. Ed. Engl. 53 (2014) 7652–7656. [DOI] [PMID: 24890698]
[EC 4.2.3.181 created 2017]
 
 
EC 1.3.1.67     Relevance: 33.7%
Accepted name: cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate dehydrogenase
Reaction: cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate + NAD(P)+ = 4-methylcatechol + NAD(P)H + CO2
Systematic name: cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate:NAD(P)+ oxidoreductase (decarboxylating)
Comments: Involved in the p-xylene degradation pathway in bacteria.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Whited, G.M., McCombie, W.R., Kwart, L.D. and Gibson, D.T. Identification of cis-diols as intermediates in the oxidation of aromatic acids by a strain of Pseudomonas putida that contains a TOL plasmid. J. Bacteriol. 166 (1986) 1028–1039. [DOI] [PMID: 3711022]
[EC 1.3.1.67 created 2000]
 
 
EC 4.2.3.28     Relevance: 33.6%
Accepted name: ent-cassa-12,15-diene synthase
Reaction: ent-copalyl diphosphate = ent-cassa-12,15-diene + diphosphate
For diagram of the biosynthesis of diterpenoids from ent-copalyl diphosphate, click here
Other name(s): OsDTC1; OsKS7
Systematic name: ent-copalyl-diphosphate diphosphate-lyase (ent-cassa-12,15-diene-forming)
Comments: This class I diterpene cyclase produces ent-cassa-12,15-diene, a precursor of the rice phytoalexins (-)-phytocassanes A-E. Phytoalexins are diterpenoid secondary metabolites that are involved in the defense mechanism of the plant, and are produced in response to pathogen attack through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cho, E.M., Okada, A., Kenmoku, H., Otomo, K., Toyomasu, T., Mitsuhashi, W., Sassa, T., Yajima, A., Yabuta, G., Mori, K., Oikawa, H., Toshima, H., Shibuya, N., Nojiri, H., Omori, T., Nishiyama, M. and Yamane, H. Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J. 37 (2004) 1–8. [DOI] [PMID: 14675427]
[EC 4.2.3.28 created 2008]
 
 
EC 1.14.14.112     Relevance: 33.5%
Accepted name: ent-cassa-12,15-diene 11-hydroxylase
Reaction: ent-cassa-12,15-diene + O2 + [reduced NADPH—hemoprotein reductase] = ent-11β-hydroxycassa-12,15-diene + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of biosynthesis of diterpenoids from ent-copalyl diphosphate, click here
Other name(s): ent-cassadiene C11α-hydroxylase; CYP76M7
Systematic name: ent-cassa-12,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen 11-oxidoreductase
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from rice (Oryza sativa) is involved in the biosynthesis of the antifungal phytocassanes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Swaminathan, S., Morrone, D., Wang, Q., Fulton, D.B. and Peters, R.J. CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21 (2009) 3315–3325. [DOI] [PMID: 19825834]
[EC 1.14.14.112 created 2012 as EC 1.14.13.145, transferred 2018 to EC 1.14.14.112]
 
 
EC 4.2.3.67     Relevance: 33.1%
Accepted name: cis-muuroladiene synthase
Reaction: (1) (2E,6E)-farnesyl diphosphate = cis-muurola-3,5-diene + diphosphate
(2) (2E,6E)-farnesyl diphosphate = cis-muurola-4(14),5-diene + diphosphate
For diagram of cadinane sesquiterpenoid biosynthesis, click here and for diagram of cadinene, cubebol and muuroladiene biosynthesis, click here
Other name(s): MxpSS1
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cis-muuroladiene-forming)
Comments: The recombinant enzyme from black peppermint (Mentha x piperita) gave a mixture of cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Prosser, I.M., Adams, R.J., Beale, M.H., Hawkins, N.D., Phillips, A.L., Pickett, J.A. and Field, L.M. Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha × piperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry 67 (2006) 1564–1571. [DOI] [PMID: 16083926]
[EC 4.2.3.67 created 2011]
 
 
EC 4.2.3.43     Relevance: 32.4%
Accepted name: fusicocca-2,10(14)-diene synthase
Reaction: geranylgeranyl diphosphate = fusicocca-2,10(14)-diene + diphosphate
For diagram of diterpenoid biosynthesis, click here and for reaction mechanism, click here
Other name(s): fusicoccadiene synthase; PaFS; PaDC4
Systematic name: geranylgeranyl diphosphate-lyase (fusicocca-2,10(14)-diene-forming)
Comments: A multifunctional enzyme with EC 2.5.1.29 farnesyltranstransferase activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Toyomasu, T., Tsukahara, M., Kaneko, A., Niida, R., Mitsuhashi, W., Dairi, T., Kato, N. and Sassa, T. Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Proc. Natl. Acad. Sci. USA 104 (2007) 3084–3088. [DOI] [PMID: 17360612]
[EC 4.2.3.43 created 2009]
 
 
EC 1.14.14.111     Relevance: 32.1%
Accepted name: 9β-pimara-7,15-diene oxidase
Reaction: 9β-pimara-7,15-diene + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-dien-19-oate + 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) 9β-pimara-7,15-diene + O2 + [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-dien-19-ol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 9β-pimara-7,15-dien-19-ol + O2 + [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-dien-19-al + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) 9β-pimara-7,15-dien-19-al + O2 + [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-dien-19-oate + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of momilactone A biosynthesis, click here
Glossary: syn-pimara-7,15-diene = 9β-pimara-7,15-diene
Other name(s): CYP99A3; 9β-pimara-7,15-diene monooxygenase
Systematic name: 9β-pimara-7,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen 19-oxidoreductase
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from rice (Oryza sativa) is involved in the biosynthesis of the phytoalexin momilactone. It also acts similarly on 9β-stemod-13(17)-ene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wang, Q., Hillwig, M.L. and Peters, R.J. CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J. 65 (2011) 87–95. [DOI] [PMID: 21175892]
[EC 1.14.14.111 created 2012 as EC 1.14.13.144, transferred 2018 to EC 1.14.14.111]
 
 
EC 1.14.13.158      
Transferred entry: amorpha-4,11-diene 12-monooxygenase. Now EC 1.14.14.114, amorpha-4,11-diene 12-monooxygenase.
[EC 1.14.13.158 created 2012, deleted 2018]
 
 
EC 4.2.3.32     Relevance: 31.9%
Accepted name: levopimaradiene synthase
Reaction: (+)-copalyl diphosphate = abieta-8(14),12-diene + diphosphate
For diagram of abietadiene, abietate, isopimaradiene, labdadienol and sclareol biosynthesis, click here and for diagram of abietadiene, levopimaradiene and isopimara-7,15-diene biosynthesis, click here
Glossary: levopimaradiene = abieta-8(14),12-diene
Other name(s): PtTPS-LAS; LPS; copalyl-diphosphate diphosphate-lyase [abieta-8(14),12-diene-forming]
Systematic name: (+)-copalyl-diphosphate diphosphate-lyase [abieta-8(14),12-diene-forming]
Comments: In Ginkgo, the enzyme catalyses the initial cyclization step in the biosynthesis of ginkgolides, a structurally unique family of diterpenoids that are highly specific platelet-activating-factor receptor antagonists [1]. Levopimaradiene is widely distributed in higher plants. In some species the enzyme also forms abietadiene, palustradiene, and neoabietadiene [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schepmann, H.G., Pang, J. and Matsuda, S.P. Cloning and characterization of Ginkgo biloba levopimaradiene synthase which catalyzes the first committed step in ginkgolide biosynthesis. Arch. Biochem. Biophys. 392 (2001) 263–269. [DOI] [PMID: 11488601]
2.  Ro, D.K. and Bohlmann, J. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67 (2006) 1572–1578. [DOI] [PMID: 16497345]
[EC 4.2.3.32 created 2008, modified 2012]
 
 
EC 5.3.3.17     Relevance: 31.5%
Accepted name: trans-2,3-dihydro-3-hydroxyanthranilate isomerase
Reaction: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxyate = (1R,6S)-6-amino-5-oxocyclohex-2-ene-1-carboxylate
For diagram of enediyne antitumour antibiotic biosynthesis and pyocyanin biosynthesis, click here
Glossary: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate = trans-2,3-dihydro-3-hydroxyanthranilate
Other name(s): phzF (gene name); (5S,6S)-6-amino-5-hydroxycyclohexane-1,3-diene-1-carboxyate isomerase (incorrect)
Systematic name: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxyate isomerase
Comments: The enzyme is involved in phenazine biosynthesis. The product probably spontaneously dimerises to 1,4,5a,6,9,10a-hexahydrophenazine-1,6-dicarboxylate
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Parsons, J.F., Song, F., Parsons, L., Calabrese, K., Eisenstein, E. and Ladner, J.E. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry 43 (2004) 12427–12435. [DOI] [PMID: 15449932]
2.  Blankenfeldt, W., Kuzin, A.P., Skarina, T., Korniyenko, Y., Tong, L., Bayer, P., Janning, P., Thomashow, L.S. and Mavrodi, D.V. Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc. Natl. Acad. Sci. USA 101 (2004) 16431–16436. [DOI] [PMID: 15545603]
3.  Parsons, J.F., Calabrese, K., Eisenstein, E. and Ladner, J.E. Structure of the phenazine biosynthesis enzyme PhzG. Acta Crystallogr. D Biol. Crystallogr. 60 (2004) 2110–2113. [DOI] [PMID: 15502343]
4.  Mavrodi, D.V., Bleimling, N., Thomashow, L.S. and Blankenfeldt, W. The purification, crystallization and preliminary structural characterization of PhzF, a key enzyme in the phenazine-biosynthesis pathway from Pseudomonas fluorescens 2-79. Acta Crystallogr. D Biol. Crystallogr. 60 (2004) 184–186. [PMID: 14684924]
5.  Ahuja, E.G., Janning, P., Mentel, M., Graebsch, A., Breinbauer, R., Hiller, W., Costisella, B., Thomashow, L.S., Mavrodi, D.V. and Blankenfeldt, W. PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. J. Am. Chem. Soc. 130 (2008) 17053–17061. [DOI] [PMID: 19053436]
[EC 5.3.3.17 created 2011]
 
 
EC 4.2.3.31     Relevance: 31.4%
Accepted name: ent-pimara-9(11),15-diene synthase
Reaction: ent-copalyl diphosphate = ent-pimara-9(11),15-diene + diphosphate
For diagram of the biosynthesis of diterpenoids from ent-copalyl diphosphate, click here
Other name(s): PMD synthase
Systematic name: ent-copalyl-diphosphate diphosphate-lyase [ent-pimara-9(11),15-diene-forming]
Comments: This enzyme is involved in the biosynthesis of the diterpenoid viguiepinol and requires Mg2+, Co2+, Zn2+ or Ni2+ for activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ikeda, C., Hayashi, Y., Itoh, N., Seto, H. and Dairi, T. Functional analysis of eubacterial ent-copalyl diphosphate synthase and pimara-9(11),15-diene synthase with unique primary sequences. J. Biochem. 141 (2007) 37–45. [DOI] [PMID: 17148547]
[EC 4.2.3.31 created 2008]
 
 
EC 5.4.99.37     Relevance: 29.5%
Accepted name: dammaradiene synthase
Reaction: squalene = dammara-20,24-diene
For diagram of hopene biosynthesis, click here
Systematic name: squalene mutase (cyclizing, dammara-20,24-diene-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shinozaki, J., Shibuya, M., Masuda, K. and Ebizuka, Y. Dammaradiene synthase, a squalene cyclase, from Dryopteris crassirhizoma Nakai. Phytochemistry 69 (2008) 2559–2564. [DOI] [PMID: 18790509]
[EC 5.4.99.37 created 2011]
 
 
EC 1.3.1.64     Relevance: 29.4%
Accepted name: phthalate 4,5-cis-dihydrodiol dehydrogenase
Reaction: cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,2-dicarboxylate + NAD+ = 4,5-dihydroxyphthalate + NADH + H+
Systematic name: cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,2-dicarboxylate:NAD+ oxidoreductase
Comments: Involved in the phthalate degradation pathway in bacteria.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Batie, C.J., LaHaie, E. and Ballou, D.P. Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J. Biol. Chem. 262 (1987) 1510–1518. [PMID: 3805038]
[EC 1.3.1.64 created 2000]
 
 
EC 4.2.3.18     Relevance: 29.4%
Accepted name: abieta-7,13-diene synthase
Reaction: (+)-copalyl diphosphate = abieta-7,13-diene + diphosphate
For diagram of abietadiene, abietate, isopimaradiene, phyllocladan-16alpha-ol and sclareol biosynthesis, click here and for diagram of reaction, click here
Glossary: (+)-copalyl diphosphate = (2E)-3-methyl-5-[(1S,4aS,8aS)-5,5,8a-trimethyl-2-methylidenedecahydronaphthalen-1-yl]pent-2-en-1-yl trihydrogen diphosphate
abieta-7,13-diene = (4aS,4bR,10aS)-7-isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene
Other name(s): copalyl-diphosphate diphosphate-lyase (cyclizing) (ambiguous); abietadiene synthase (ambiguous)
Systematic name: (+)-copalyl-diphosphate diphosphate-lyase [cyclizing, abieta-7,13-diene-forming]
Comments: Part of a bifunctional enzyme involved in the biosynthesis of abietadiene. See also EC 5.5.1.12, copalyl diphosphate synthase. Requires Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 157972-08-2
References:
1.  Peters, R.J., Flory, J.E., Jetter, R., Ravn, M.M., Lee, H.J., Coates, R.M. and Croteau, R.B. Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the "pseudomature" recombinant enzyme. Biochemistry 39 (2000) 15592–15602. [DOI] [PMID: 11112547]
2.  Peters, R.J., Ravn, M.M., Coates, R.M. and Croteau, R.B. Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. J. Am. Chem. Soc. 123 (2001) 8974–8978. [DOI] [PMID: 11552804]
3.  Peters, R.J. and Croteau, R.B. Abietadiene synthase catalysis: mutational analysis of a prenyl diphosphate ionization-initiated cyclization and rearrangement. Proc. Natl. Acad. Sci. USA 99 (2002) 580–584. [DOI] [PMID: 11805316]
4.  Peters, R.J. and Croteau, R.B. Abietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. Biochemistry 41 (2002) 1836–1842. [DOI] [PMID: 11827528]
5.  Ravn, M.M., Peters, R.J., Coates, R.M. and Croteau, R. Mechanism of abietadiene synthase catalysis: stereochemistry and stabilization of the cryptic pimarenyl carbocation intermediates. J. Am. Chem. Soc. 124 (2002) 6998–7006. [DOI] [PMID: 12059223]
[EC 4.2.3.18 created 2002, modified 2012]
 
 
EC 1.3.1.61      
Deleted entry: terephthalate 1,2-cis-dihydrodiol dehydrogenase. Enzyme is identical to EC 1.3.1.53, (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate dehydrogenase
[EC 1.3.1.61 created 2000, deleted 2007]
 
 
EC 1.14.14.144     Relevance: 28.8%
Accepted name: abieta-7,13-diene hydroxylase
Reaction: abieta-7,13-diene + [reduced NADPH—hemoprotein reductase] + O2 = abieta-7,13-dien-18-ol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of abietadiene, abietate, isopimaradiene, labdadienol and sclareol biosynthesis, click here
Glossary: abieta-7,13-diene = (4aS,4bR,10aS)-7-isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene
abieta-7,13-dien-18-ol = ((1R,4aR,4bR,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthren-1-yl)methanol
Other name(s): abietadiene hydroxylase (ambiguous)
Systematic name: abieta-7,13-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (18-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. This enzyme catalyses a step in the pathway of abietic acid biosynthesis. The activity has been demonstrated in cell-free stem extracts of Abies grandis (grand fir) and Pinus contorta (lodgepole pine). Activity is induced by wounding of the plant tissue [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Funk, C. and Croteau, R. Diterpenoid resin acid biosynthesis in conifers: characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis. Arch. Biochem. Biophys. 308 (1994) 258–266. [DOI] [PMID: 8311462]
2.  Funk, C., Lewinsohn, E., Vogel, B.S., Steele, C.L. and Croteau, R. Regulation of oleoresinosis in grand fir (Abies grandis) (coordinate induction of monoterpene and diterpene cyclases and two cytochrome P450-dependent diterpenoid hydroxylases by stem wounding). Plant Physiol. 106 (1994) 999–1005. [PMID: 12232380]
[EC 1.14.14.144 created 2009 as EC 1.14.13.108, modified 2012, transferred 2018 to EC 1.14.14.144]
 
 
EC 1.14.14.69     Relevance: 28.6%
Accepted name: ent-cassadiene hydroxylase
Reaction: ent-cassa-12,15-diene + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = ent-3β-hydroxycassa-12,15-dien-2-one + 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) ent-cassa-12,15-diene + [reduced NADPH—hemoprotein reductase] + O2 = ent-cassa-12,15-dien-2β-ol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) ent-cassa-12,15-dien-2β-ol + [reduced NADPH—hemoprotein reductase] + O2 = ent-cassa-12,15-dien-2-one + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1b′) ent-cassa-12,15-dien-2β-ol + [reduced NADPH—hemoprotein reductase] + O2 = ent-cassa-12,15-diene-2β,3β-diol + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) ent-cassa-12,15-dien-2-one + [reduced NADPH—hemoprotein reductase] + O2 = ent-3β-hydroxycassa-12,15-dien-2-one + [oxidized NADPH—hemoprotein reductase] + H2O
(1c′) ent-cassa-12,15-diene-2β,3β-diol + [reduced NADPH—hemoprotein reductase] + O2 = ent-3β-hydroxycassa-12,15-dien-2-one + [oxidized NADPH—hemoprotein reductase] + 2 H2O
For diagram of ent-hydroxycassadiene biosynthesis, click here
Other name(s): CYP71Z7
Systematic name: ent-cassa-12,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ent-3β-hydroxycassa-12,15-dien-2-one-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Oryza sativa (rice) that is involved in phytocassanes biosynthesis. Depending on the order of activities, the enzyme may form either ent-cassa-12,15-dien-2-one or ent-cassa-12,15-diene-2β,3β-diol as an intermediate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kitaoka, N., Wu, Y., Xu, M. and Peters, R.J. Optimization of recombinant expression enables discovery of novel cytochrome P450 activity in rice diterpenoid biosynthesis. Appl. Microbiol. Biotechnol. 99 (2015) 7549–7558. [DOI] [PMID: 25758958]
[EC 1.14.14.69 created 2018]
 
 
EC 4.2.1.62     Relevance: 28.4%
Accepted name: 5α-hydroxysteroid dehydratase
Reaction: 5α-ergosta-7,22-diene-3β,5-diol = ergosterol + H2O
Other name(s): 5α-ergosta-7,22-diene-3β,5-diol 5,6-hydro-lyase
Systematic name: 5α-ergosta-7,22-diene-3β,5-diol 5,6-hydro-lyase (ergosterol-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-27-8
References:
1.  Topham, R.W. and Gaylor, J.L. Isolation and purification of a 5α-hydroxysterol dehydrase of yeast. J. Biol. Chem. 245 (1970) 2319–2327. [PMID: 5442273]
[EC 4.2.1.62 created 1972]
 
 
EC 1.14.14.114     Relevance: 28%
Accepted name: amorpha-4,11-diene 12-monooxygenase
Reaction: amorpha-4,11-diene + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = artemisinate + 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) amorpha-4,11-diene + O2 + [reduced NADPH—hemoprotein reductase] = artemisinic alcohol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) artemisinic alcohol + O2 + [reduced NADPH—hemoprotein reductase] = artemisinic aldehyde + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) artemisinic aldehyde + O2 + [reduced NADPH—hemoprotein reductase] = artemisinate + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of artemisinin biosynthesis, click here
Other name(s): CYP71AV1
Systematic name: amorpha-4,11-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Cloned from the plant Artemisia annua (sweet wormwood). Part of the biosynthetic pathway of artemisinin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Teoh, K.H., Polichuk, D.R., Reed, D.W., Nowak, G. and Covello, P.S. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580 (2006) 1411–1416. [DOI] [PMID: 16458889]
[EC 1.14.14.114 created 2012 as EC 1.14.13.158, transferred 2018 to EC 1.14.14.114]
 
 
EC 1.3.1.56     Relevance: 27.6%
Accepted name: cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase
Reaction: cis-3-phenylcyclohexa-3,5-diene-1,2-diol + NAD+ = biphenyl-2,3-diol + NADH + H+
Other name(s): 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase
Systematic name: cis-3-phenylcyclohexa-3,5-diene-1,2-diol:NAD+ oxidoreductase
Comments: Catalyses the second step in the biphenyl degradation pathway in bacteria.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sylvestre, M., Hurtubise, Y., Barriault, D., Bergeron, J. and Ahmad, D. Characterization of active recombinant 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase from Comamonas testosteroni B-356 and sequence of the encoding gene (bphB). Appl. Environ. Microbiol. 62 (1996) 2710–2715. [PMID: 8702262]
2.  Fukuda, M., Yasukochi, Y., Kikuchi, Y., Nagata, Y., Kimbara, K., Horiuchi, H., Takagi, M. and Yano, K. Identification of the bphA and bphB genes of Pseudomonas sp. strains KKS102 involved in degradation of biphenyl and polychlorinated biphenyls. Biochem. Biophys. Res. Commun. 202 (1994) 850–856. [DOI] [PMID: 8048958]
3.  Hofer, B., Eltis, L.D., Dowling, D.N. and Timmis, K.N. Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130 (1993) 47–55. [DOI] [PMID: 8344527]
[EC 1.3.1.56 created 2000]
 
 
EC 4.2.1.100     Relevance: 27.3%
Accepted name: cyclohexa-1,5-dienecarbonyl-CoA hydratase
Reaction: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA = cyclohexa-1,5-diene-1-carbonyl-CoA + H2O
For diagram of Benzoyl-CoA catabolism, click here
Other name(s): cyclohexa-1,5-diene-1-carbonyl-CoA hydratase; dienoyl-CoA hydratase; cyclohexa-1,5-dienecarbonyl-CoA hydro-lyase (incorrect); 6-hydroxycyclohex-1-enecarbonyl-CoA hydro-lyase (cyclohexa-1,5-dienecarbonyl-CoA-forming)
Systematic name: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA hydro-lyase (cyclohexa-1,5-diene-1-carbonyl-CoA-forming)
Comments: Forms part of the anaerobic benzoate degradation pathway, which also includes EC 1.3.8.6 [glutaryl-CoA dehydrogenase (ETF)], EC 1.3.7.8 (benzoyl-CoA reductase) and EC 4.2.1.55 (3-hydroyxbutyryl-CoA dehydratase).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 214355-79-0
References:
1.  Laempe, D., Eisenreich, W., Bacher, A. and Fuchs, G. Cyclohexa-1,5-diene-1-carboxyl-CoA hydratase, an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Eur. J. Biochem. 255 (1998) 618–627. [DOI] [PMID: 9738901]
2.  Harwood, C.S. and Gibson, J. Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J. Bacteriol. 179 (1997) 301–309. [DOI] [PMID: 8990279]
3.  Koch, J., Eisenreich, W., Bacher, A. and Fuchs, G. Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur. J. Biochem. 211 (1993) 649–661. [DOI] [PMID: 8436125]
[EC 4.2.1.100 created 2000, modified 2001]
 
 
EC 1.14.13.108      
Transferred entry: abieta-7,13-diene hydroxylase. Now EC 1.14.14.144, abieta-7,13-diene hydroxylase
[EC 1.14.13.108 created 2009, modified 2012, deleted 2018]
 
 
EC 1.14.15.30     Relevance: 26.4%
Accepted name: 3-ketosteroid 9α-monooxygenase
Reaction: androsta-1,4-diene-3,17-dione + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 9α-hydroxyandrosta-1,4-diene-3,17-dione + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
Other name(s): KshA; 3-ketosteroid 9α-hydroxylase
Systematic name: androsta-1,4-diene-3,17-dione,[reduced ferredoxin]:oxygen oxidoreductase (9α-hydroxylating)
Comments: The enzyme is involved in the cholesterol degradation pathway of several bacterial pathogens, such as Mycobacterium tuberculosis. It forms a two-component system with a ferredoxin reductase (KshB). The enzyme contains a Rieske-type iron-sulfur center and non-heme iron. The product of the enzyme is unstable, and spontaneously converts to 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Petrusma, M., Dijkhuizen, L. and van der Geize, R. Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9α-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl. Environ. Microbiol. 75 (2009) 5300–5307. [DOI] [PMID: 19561185]
2.  Capyk, J.K., D'Angelo, I., Strynadka, N.C. and Eltis, L.D. Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J. Biol. Chem. 284 (2009) 9937–9946. [DOI] [PMID: 19234303]
3.  Capyk, J.K., Casabon, I., Gruninger, R., Strynadka, N.C. and Eltis, L.D. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J. Biol. Chem. 286 (2011) 40717–40724. [DOI] [PMID: 21987574]
[EC 1.14.15.30 created 2012 as EC 1.14.13.142, transferred 2018 to EC 1.14.15.30]
 
 
EC 4.2.3.147     Relevance: 26.2%
Accepted name: pimaradiene synthase
Reaction: (+)-copalyl diphosphate = pimara-8(14),15-diene + diphosphate
For diagram of pimarane diterpenoids biosynthesis, click here
Other name(s): PbmPIM1; PcmPIM1
Systematic name: (+)-copalyl diphosphate-lyase (pimara-8(14),15-diene-forming)
Comments: Isolated from the plants Pinus banksiana (jack pine) and Pinus contorta (lodgepole pine).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hall, D.E., Zerbe, P., Jancsik, S., Quesada, A.L., Dullat, H., Madilao, L.L., Yuen, M. and Bohlmann, J. Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiol. 161 (2013) 600–616. [DOI] [PMID: 23370714]
[EC 4.2.3.147 created 2014]
 
 
EC 1.3.1.119     Relevance: 26.1%
Accepted name: chlorobenzene dihydrodiol dehydrogenase
Reaction: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol + NAD+ = 3-chlorocatechol + NADH + H+
Other name(s): tecB (gene name)
Systematic name: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol:NAD+ oxidoreductase
Comments: This bacterial enzyme can transform various dihydrodiols of chlorobenzenes into the respective catechols, including the dihydrodiols of mono-, di-, tri-, and tetra-chlorinated benzenes. It also accepts the dihydrodiols of various chlorotoluenes. Substrates for the enzyme are generated by the broad spectrum EC 1.14.12.26, chlorobenzene dioxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Spiess, E. and Gorisch, H. Purification and characterization of chlorobenzene cis-dihydrodiol dehydrogenase from Xanthobacter flavus 14p1. Arch. Microbiol. 165 (1996) 201–205. [PMID: 8599538]
2.  Pollmann, K., Beil, S. and Pieper, D.H. Transformation of chlorinated benzenes and toluenes by Ralstonia sp. strain PS12 tecA (tetrachlorobenzene dioxygenase) and tecB (chlorobenzene dihydrodiol dehydrogenase) gene products. Appl. Environ. Microbiol. 67 (2001) 4057–4063. [PMID: 11526005]
3.  Pollmann, K., Wray, V. and Pieper, D.H. Chloromethylmuconolactones as critical metabolites in the degradation of chloromethylcatechols: recalcitrance of 2-chlorotoluene. J. Bacteriol. 187 (2005) 2332–2340. [PMID: 15774876]
[EC 1.3.1.119 created 2018]
 
 
EC 1.14.13.142      
Transferred entry: 3-ketosteroid 9α-monooxygenase. Now EC 1.14.15.30, 3-ketosteroid 9α-monooxygenase
[EC 1.14.13.142 created 2012, deleted 2018]
 
 
EC 3.3.2.13     Relevance: 25.6%
Accepted name: chorismatase
Reaction: chorismate + H2O = (4R,5R)-4,5-dihydroxycyclohexa-1(6),2-diene-1-carboxylate + pyruvate
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: chorismate = (3R,4R)-3-[(1-carboxyethenyl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylate
Other name(s): chorismate/3,4-dihydroxycyclohexa-1,5-dienoate synthase; fkbO (gene name); rapK (gene name)
Systematic name: chorismate pyruvate-hydrolase
Comments: The enzyme found in several bacterial species is involved in the biosynthesis of macrocyclic polyketides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Andexer, J.N., Kendrew, S.G., Nur-e-Alam, M., Lazos, O., Foster, T.A., Zimmermann, A.S., Warneck, T.D., Suthar, D., Coates, N.J., Koehn, F.E., Skotnicki, J.S., Carter, G.T., Gregory, M.A., Martin, C.J., Moss, S.J., Leadlay, P.F. and Wilkinson, B. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA 108 (2011) 4776–4781. [DOI] [PMID: 21383123]
2.  Juneja, P., Hubrich, F., Diederichs, K., Welte, W. and Andexer, J.N. Mechanistic implications for the chorismatase FkbO based on the crystal structure. J. Mol. Biol. 426 (2014) 105–115. [DOI] [PMID: 24036425]
[EC 3.3.2.13 created 2013]
 
 
EC 1.14.99.37      
Transferred entry: taxadiene 5α-hydroxylase. Now EC 1.14.14.176, taxadiene 5α-hydroxylase
[EC 1.14.99.37 created 2002, deleted 2020]
 
 
EC 1.3.1.59      
Deleted entry: 1,2-dihydroxy-3-methyl-1,2-dihydrobenzoate dehydrogenase. No evidence in the paper cited that the enzyme exists
[EC 1.3.1.59 created 2000, deleted 2006]
 
 
EC 5.3.3.11     Relevance: 24.4%
Accepted name: isopiperitenone Δ-isomerase
Reaction: isopiperitenone = piperitenone
For diagram of (–)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Systematic name: isopiperitenone Δ84-isomerase
Comments: Involved in the biosynthesis of menthol and related monoterpenes in peppermint (Mentha piperita) leaves.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 96595-07-2
References:
1.  Kjonaas, R.B., Venkatachalam, K.V. and Croteau, R. Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha piperita) leaves. Arch. Biochem. Biophys. 238 (1985) 49–60. [DOI] [PMID: 3885858]
[EC 5.3.3.11 created 1989]
 
 
EC 4.2.1.113     Relevance: 24.1%
Accepted name: o-succinylbenzoate synthase
Reaction: (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate = 2-succinylbenzoate + H2O
For diagram of vitamin K biosynthesis, click here
Glossary: 2-succinylbenzoate = o-succinylbenzoate = 4-(2-carboxyphenyl)-4-oxobutanoate
Other name(s): o-succinylbenzoic acid synthase; OSB synthase; OSBS; 2-succinylbenzoate synthase; MenC
Systematic name: (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate hydro-lyase (2-succinylbenzoate-forming)
Comments: Belongs to the enolase superfamily and requires divalent cations, preferably Mg2+ or Mn2+, for activity. Forms part of the vitamin-K-biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 97089-83-3
References:
1.  Sharma, V., Meganathan, R. and Hudspeth, M.E. Menaquinone (vitamin K2) biosynthesis: cloning, nucleotide sequence, and expression of the menC gene from Escherichia coli. J. Bacteriol. 175 (1993) 4917–4921. [DOI] [PMID: 8335646]
2.  Klenchin, V.A., Taylor Ringia, E.A., Gerlt, J.A. and Rayment, I. Evolution of enzymatic activity in the enolase superfamily: structural and mutagenic studies of the mechanism of the reaction catalyzed by o-succinylbenzoate synthase from Escherichia coli. Biochemistry 42 (2003) 14427–14433. [DOI] [PMID: 14661953]
3.  Palmer, D.R., Garrett, J.B., Sharma, V., Meganathan, R., Babbitt, P.C. and Gerlt, J.A. Unexpected divergence of enzyme function and sequence: "N-acylamino acid racemase" is o-succinylbenzoate synthase. Biochemistry 38 (1999) 4252–4258. [DOI] [PMID: 10194342]
4.  Thompson, T.B., Garrett, J.B., Taylor, E.A., Meganathan, R., Gerlt, J.A. and Rayment, I. Evolution of enzymatic activity in the enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate. Biochemistry 39 (2000) 10662–10676. [DOI] [PMID: 10978150]
5.  Taylor Ringia, E.A., Garrett, J.B., Thoden, J.B., Holden, H.M., Rayment, I. and Gerlt, J.A. Evolution of enzymatic activity in the enolase superfamily: functional studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis. Biochemistry 43 (2004) 224–229. [DOI] [PMID: 14705949]
[EC 4.2.1.113 created 2007]
 
 
EC 3.3.2.15     Relevance: 23.9%
Accepted name: trans-2,3-dihydro-3-hydroxyanthranilic acid synthase
Reaction: (2S)-2-amino-4-deoxychorismate + H2O = (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate + pyruvate
For diagram of enediyne antitumour antibiotic biosynthesis and pyocyanin biosynthesis, click here
Glossary: (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate = trans-2,3-dihydro-3-hydroxyanthranilate
Other name(s): isochorismatase (ambiguous); phzD (gene name)
Systematic name: (2S)-2-amino-4-deoxychorismate pyruvate-hydrolase
Comments: Isolated from the bacterium Pseudomonas aeruginosa. Involved in phenazine biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mavrodi, D.V., Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G. and Thomashow, L.S. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183 (2001) 6454–6465. [DOI] [PMID: 11591691]
2.  Parsons, J.F., Calabrese, K., Eisenstein, E. and Ladner, J.E. Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry 42 (2003) 5684–5693. [DOI] [PMID: 12741825]
[EC 3.3.2.15 created 2016]
 
 
EC 4.2.3.17     Relevance: 23.8%
Accepted name: taxadiene synthase
Reaction: geranylgeranyl diphosphate = taxa-4,11-diene + diphosphate
For diagram of taxadiene biosynthesis, click here
Other name(s): geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, taxadiene-forming)
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing; taxa-4,11-diene-forming)
Comments: This is the committed step in the biosynthesis of the diterpenoid antineoplastic drug Taxol (paclitaxel). The cyclization involves a 1,5-hydride shift.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 169277-52-5
References:
1.  Koepp, A.E., Hezari, M., Zajicek, J., Vogel, B.S., LaFever, R.E., Lewis, N.G. and Croteau, R. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. J. Biol. Chem. 270 (1995) 8686–8690. [DOI] [PMID: 7721772]
2.  Hezari, M., Lewis, N.G. and Croteau, R. Purification and characterization of taxa-4(5),11(12)-diene synthase from Pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Arch. Biochem. Biophys. 322 (1995) 437–444. [DOI] [PMID: 7574719]
3.  Lin, X., Hezari, M., Koepp, A.E., Floss, H.G. and Croteau, R. Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol biosynthesis in Pacific yew. Biochemistry 35 (1996) 2968–2977. [DOI] [PMID: 8608134]
4.  Hezari, M., Ketchum, R.E., Gibson, D.M. and Croteau, R. Taxol production and taxadiene synthase activity in Taxus canadensis cell suspension cultures. Arch. Biochem. Biophys. 337 (1997) 185. [DOI] [PMID: 9016812]
5.  Williams, D.C., Carroll, B.J., Jin, Q., Rithner, C.D., Lenger, S.R., Floss, H.G., Coates, R.M., Williams, R.M. and Croteau, R. Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem. Biol. 7 (2000) 969–977. [DOI] [PMID: 11137819]
[EC 4.2.3.17 created 2002]
 
 
EC 5.3.2.8     Relevance: 23.8%
Accepted name: 4-oxalomesaconate tautomerase
Reaction: (1E)-4-oxobut-1-ene-1,2,4-tricarboxylate = (1E,3E)-4-hydroxybuta-1,3-diene-1,2,4-tricarboxylate
For diagram of the protocatechuate 3,4-cleavage pathway, click here
Glossary: (1E)-4-oxobut-1-ene-1,2,4-tricarboxylate = keto tautomer of 4-oxalomesaconate
(1E,3E)-4-hydroxybuta-1,3-diene-1,2,4-tricarboxylate = one of the enol tautomers of 4-oxalomesaconate
Other name(s): GalD
Systematic name: 4-oxalomesaconate ketoenol-isomerase
Comments: This enzyme has been characterized from the bacterium Pseudomonas putida KT2440 and is involved in the degradation pathway of syringate and 3,4,5-trihydroxybenzoate. It catalyses the interconversion of two of the tautomers of 4-oxalomesaconate, a reaction that can also occur spontaneously.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nogales, J., Canales, A., Jiménez-Barbero, J., Serra B., Pingarrón, J. M., García, J. L. and Díaz, E. Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol. Microbiol. 79 (2011) 359–374. [DOI] [PMID: 21219457]
[EC 5.3.2.8 created 2011 as EC 5.3.3.16, modified 2011, transferred 2012 to EC 5.3.2.8]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald