The Enzyme Database

Displaying entries 151-200 of 226.

<< Previous | Next >>    printer_iconPrintable version

EC 3.2.1.151     
Accepted name: xyloglucan-specific endo-β-1,4-glucanase
Reaction: xyloglucan + H2O = xyloglucan oligosaccharides
Other name(s): XEG; xyloglucan endo-β-1,4-glucanase; xyloglucanase; xyloglucanendohydrolase; XH; 1,4-β-D-glucan glucanohydrolase
Systematic name: [(1→6)-α-D-xylo]-(1→4)-β-D-glucan glucanohydrolase
Comments: The enzyme from Aspergillus aculeatus is specific for xyloglucan and does not hydrolyse other cell-wall components. The reaction involves endohydrolysis of 1,4-β-D-glucosidic linkages in xyloglucan with retention of the β-configuration of the glycosyl residues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 76901-10-5
References:
1.  Pauly, M., Andersen, L.N., Kaupinnen, S., Kofod, L.V., York, W.S., Albersheim, P. and Darvill, A. A xyloglucan specific endo-β-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9 (1999) 93–100. [DOI] [PMID: 9884411]
2.  Grishutin, S.G., Gusakov, A.V., Markov, A.V., Ustinov, B.B., Semenova, M.V. and Sinitsyn, A.P. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim. Biophys. Acta 1674 (2004) 268–281. [DOI] [PMID: 15541296]
[EC 3.2.1.151 created 2003]
 
 
EC 3.2.1.152     
Accepted name: mannosylglycoprotein endo-β-mannosidase
Reaction: Hydrolysis of the α-D-mannosyl-(1→6)-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl sequence of glycoprotein to α-D-mannosyl-(1→6)-D-mannose and N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl sequences
Other name(s): endo-β-mannosidase
Comments: The substrate group is a substituent on N-4 of an asparagine residue in the glycoprotein. The mannose residue at the non-reducing end of the sequence may carry further α-D-mannosyl groups on O-3 or O-6, but such a substituent on O-3 of the β-D-mannosyl group prevents the action of the enzyme. The enzyme was obtained from the lily, Lilium longiflorum.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 141176-95-6
References:
1.  Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M. and Hase, S. Endo-β-mannosidase, a plant enzyme acting on N-glycan. Purification, molecular cloning, and characterization. J. Biol. Chem. 279 (2004) 38555–38562. [DOI] [PMID: 15247239]
2.  Sasaki, A., Yamagishi, M., Mega, T., Norioka, S., Natsuka, S. and Hase, S. Partial purification and characterization of a novel endo-β-mannosidase acting on N-linked sugar chains from Lilium longiflorum thumb. J. Biochem. (Tokyo) 125 (1999) 363–367. [PMID: 9990135]
[EC 3.2.1.152 created 2005]
 
 
EC 3.2.1.153     
Accepted name: fructan β-(2,1)-fructosidase
Reaction: Hydrolysis of terminal, non-reducing (2→1)-linked β-D-fructofuranose residues in fructans
For diagram of reaction, click here
Other name(s): β-(2-1)-D-fructan fructohydrolase; β-(2-1)fructan exohydrolase; inulinase; 1-FEH II; 1-fructan exohydrolase; 1-FEH w1; 1-FEH w2; β-(2-1)-linkage-specific fructan-β-fructosidase; β-(2,1)-D-fructan fructohydrolase
Systematic name: β-(2→1)-D-fructan fructohydrolase
Comments: Possesses one of the activities of EC 3.2.1.80, fructan β-fructosidase. While the best substrates are the inulin-type fructans, such as 1-kestose [β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl α-D-glucopyranoside] and 1,1-nystose [β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl α-D-glucopyranoside], some (but not all) levan-type fructans can also be hydrolysed, but more slowly [see EC 3.2.1.154, fructan β-(2,6)-fructosidase]. Sucrose, while being a very poor substrate, can substantially inhibit enzyme activity in some cases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 1000593-08-7
References:
1.  De Roover, J., Van Laere, A., De Winter, M., Timmermans, J.W. and Van den Ende, W. Purification and properties of a second fructan exohydrolase from the roots of Cichorium intybus. Physiol. Plant. 106 (1999) 28–34.
2.  Van den Ende, W., Clerens, S., Vergauwen, R., Van Riet, L., Van Laere, A., Yoshida, M. and Kawakami, A. Fructan 1-exohydrolases. β-(2,1)-Trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms. Plant Physiol. 131 (2003) 621–631. [DOI] [PMID: 12586886]
[EC 3.2.1.153 created 2005]
 
 
EC 3.2.1.154     
Accepted name: fructan β-(2,6)-fructosidase
Reaction: Hydrolysis of terminal, non-reducing (2→6)-linked β-D-fructofuranose residues in fructans
For diagram of reaction, click here
Other name(s): β-(2-6)-fructan exohydrolase; levanase; 6-FEH; β-(2,6)-D-fructan fructohydrolase
Systematic name: (2→6)-β-D-fructan fructohydrolase
Comments: Possesses one of the activities of EC 3.2.1.80, fructan β-fructosidase. While the best substrates are the levan-type fructans such as 6-kestotriose [β-D-fructofuranosyl-(2→6)-β-D-fructofuranosyl α-D-glucopyranoside] and 6,6-kestotetraose [β-D-fructofuranosyl-(2→6)-β-D-fructofuranosyl-(2→6)-β-D-fructofuranosyl α-D-glucopyranoside], some (but not all) inulin-type fructans can also be hydrolysed, but more slowly [cf. EC 3.2.1.153, fructan β-(2,1)-fructosidase]. Sucrose, while being a very poor substrate, can substantially inhibit enzyme activity in some cases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 1000597-62-5
References:
1.  Marx, S.P., Nösberger, J. and Frehner, M. Hydrolysis of fructan in grasses: A β-(2-6)-linkage specific fructan-β-fructosidase from stubble of Lolium perenne. New Phytol. 135 (1997) 279–290.
2.  Van den Ende, W., De Coninck, B., Clerens, S., Vergauwen, R. and Van Laere, A. Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel 'cell-wall invertase-like' specific 6-FEH from sugar beet (Beta vulgaris L.). Plant J. 36 (2003) 697–710. [DOI] [PMID: 14617070]
3.  Henson, C.A. and Livingston, D.P. , III. Purification and characterization of an oat fructan exohydrolase that preferentially hydrolyzes β-2,6-fructans. Plant Physiol. 110 (1996) 639–644. [PMID: 8742337]
[EC 3.2.1.154 created 2005]
 
 
EC 3.2.1.155     
Accepted name: xyloglucan-specific endo-processive β-1,4-glucanase
Reaction: Hydrolysis of (1→4)-D-glucosidic linkages in xyloglucans so as to successively remove oligosaccharides from the newly-formed chain end after endo-initiation on a polymer molecule
Other name(s): Cel74A; [(1→6)-α-D-xylo]-(1→4)-β-D-glucan exo-glucohydrolase (ambiguous); xyloglucan-specific exo-β-1,4-glucanase (ambiguous)
Systematic name: [(1→6)-α-D-xylo]-(1→4)-β-D-glucan endo-processive glucohydrolase
Comments: The enzyme removes branched oligosaccharides, containing preferentially four glucoside residues in the main chain, from xyloglucan molecules in a processive manner after the initial endo-type attack on a polysaccharide [1-5]. Hydrolysis occurs at either the unsubstituted D-glucopyranose residue in the main backbone and/or the D-glucopyranose residue bearing a xylosyl group [1-5]. The enzyme does not display activity, or shows very low activity, towards other β-D-glucans [1,2,4,5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 1000598-79-7
References:
1.  Grishutin, S.G., Gusakov, A.V., Markov, A.V., Ustinov, B.B., Semenova, M.V. and Sinitsyn, A.P. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim. Biophys. Acta 1674 (2004) 268–281. [DOI] [PMID: 15541296]
2.  Ichinose, H., Araki, Y., Michikawa, M., Harazono, K., Yaoi, K., Karita, S. and Kaneko, S. Characterization of an endo-processive-type xyloglucanase having a β-1,4-glucan-binding module and an endo-type xyloglucanase from Streptomyces avermitilis. Appl. Environ. Microbiol. 78 (2012) 7939–7945. [PMID: 22941084]
3.  Matsuzawa, T., Saito, Y. and Yaoi, K. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase. FEBS Lett. 588 (2014) 1731–1738. [PMID: 24657616]
4.  Arnal, G., Stogios, P.J., Asohan, J., Skarina, T., Savchenko, A. and Brumer, H. Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo-xyloglucanase. Biochem. J. 475 (2018) 3963–3978. [PMID: 30463871]
5.  Arnal, G., Stogios, P.J., Asohan, J., Attia, M.A., Skarina, T., Viborg, A.H., Henrissat, B., Savchenko, A. and Brumer, H. Substrate specificity, regiospecificity, and processivity in glycoside hydrolase family 74. J. Biol. Chem. 294 (2019) 13233–13247. [PMID: 31324716]
6.  Gusakov, A.V. Additional sequence and structural characterization of an endo-processive GH74 xyloglucanase from Myceliophthora thermophila and the revision of the EC 3.2.1.155 entry. Biochim. Biophys. Acta. 1864:129511 (2020). [PMID: 31911243]
[EC 3.2.1.155 created 2005, withdrawn at public-review stage, modified and reinstated 2006, modified 2020]
 
 
EC 3.2.1.156     
Accepted name: oligosaccharide reducing-end xylanase
Reaction: Hydrolysis of (1→4)-β-D-xylose residues from the reducing end of oligosaccharides
Other name(s): Rex; reducing end xylose-releasing exo-oligoxylanase
Systematic name: β-D-xylopyranosyl-(1→4)-β-D-xylopyranose reducing-end xylanase
Comments: The enzyme, originally isolated from the bacterium Bacillus halodurans C-125, releases the xylose unit at the reducing end of oligosaccharides ending with the structure β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose, leaving the new reducing end in the α configuration. It is specific for the β anomers of xylooligosaccharides whose degree of polymerization is equal to or greater than 3. The penultimate residue must be β-D-xylopyranose, but replacing either of the flanking residues with glucose merely slows the rate greatly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 879497-03-7
References:
1.  Honda, Y. and Kitaoka, M. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J. Biol. Chem. 279 (2004) 55097–55103. [DOI] [PMID: 15491996]
2.  Fushinobu, S., Hidaka, M., Honda, Y., Wakagi, T., Shoun, H. and Kitaoka, M. Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125. J. Biol. Chem. 280 (2005) 17180–17186. [DOI] [PMID: 15718242]
[EC 3.2.1.156 created 2005]
 
 
EC 3.2.1.157     
Accepted name: ι-carrageenase
Reaction: Endohydrolysis of (1→4)-β-D-linkages between D-galactose 4-sulfate and 3,6-anhydro-D-galactose-2-sulfate in ι-carrageenans
For diagram of reaction, click here
Glossary: In the field of oligosaccharides derived from agarose, carrageenans, etc., in which alternate residues are 3,6-anhydro sugars, the prefix ’neo’ designates an oligosaccharide whose non-reducing end is the anhydro sugar, and the absence of this prefix means that it is not.
For example:
ι-neocarrabiose = 3,6-anhydro-2-O-sulfo-α-D-galactopyranosyl-(1→3)-4-O-sulfo-D-galactose
ι-carrabiose = 4-O-sulfo-β-D-galactopyranosyl-(1→4)-3,6-anhydro-2-O-sulfo-D-galactose
Systematic name: ι-carrageenan 4-β-D-glycanohydrolase (configuration-inverting)
Comments: The main products of hydrolysis are ι-neocarratetraose sulfate and ι-neocarrahexaose sulfate. ι-Neocarraoctaose is the shortest substrate oligomer that can be cleaved. Unlike EC 3.2.1.81, β-agarase and EC 3.2.1.83, κ-carrageenase, this enzyme proceeds with inversion of the anomeric configuration. ι-Carrageenan differs from κ-carrageenan by possessing a sulfo group on O-2 of the 3,6-anhydro-D-galactose residues, in addition to that present in the κ-compound on O-4 of the D-galactose residues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 50936-37-3
References:
1.  Barbeyron, T., Michel, G., Potin, P., Henrissat, B. and Kloareg, B. ι-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of κ-carrageenases. J. Biol. Chem. 275 (2000) 35499–35505. [DOI] [PMID: 10934194]
2.  Michel, G., Chantalat, L., Fanchon, E., Henrissat, B., Kloareg, B. and Dideberg, O. The ι-carrageenase of Alteromonas fortis. A β-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J. Biol. Chem. 276 (2001) 40202–40209. [DOI] [PMID: 11493601]
3.  Michel, G., Helbert, W., Kahn, R., Dideberg, O. and Kloareg, B. The structural bases of the processive degradation of ι-carrageenan, a main cell wall polysaccharide of red algae. J. Mol. Biol. 334 (2003) 421–433. [DOI] [PMID: 14623184]
[EC 3.2.1.157 created 2006]
 
 
EC 3.2.1.158     
Accepted name: α-agarase
Reaction: Endohydrolysis of (1→3)-α-L-galactosidic linkages in agarose, yielding agarotetraose as the major product
Glossary: agarose = a linear polysaccharide produced by some members of the Rhodophyta (red algae) made up from alternating D-galactose and 3,6-anhydro-α-L-galactopyranose residues joined by α-(1→3)- and β-(1→4)-linkages. In the field of oligosaccharides derived from agarose, carrageenans, etc., in which alternate residues are 3,6-anhydro sugars, the prefix ’neo’ designates an oligosaccharide whose non-reducing end is the anhydro sugar, and the absence of this prefix means that it is not.
For example:
neoagarobiose = 3,6-anhydro-α-L-galactopyranosyl-(1→3)-D-galactose
agarobiose = β-D-galactopyranosyl-(1→4)-3,6-anhydro-L-galactose
Other name(s): agarase (ambiguous); agaraseA33
Systematic name: agarose 3-glycanohydrolase
Comments: Requires Ca2+. The enzyme from Thalassomonas sp. can use agarose, agarohexaose and neoagarohexaose as substrate. The products of agarohexaose hydrolysis are dimers and tetramers, with agarotetraose being the predominant product, whereas hydrolysis of neoagarohexaose gives rise to two types of trimer. While the enzyme can also hydrolyse the highly sulfated agarose porphyran very efficiently, it cannot hydrolyse the related compounds κ-carrageenan (see EC 3.2.1.83) and ι-carrageenan (see EC 3.2.1.157) [2]. See also EC 3.2.1.81, β-agarase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 63952-00-1
References:
1.  Potin, P., Richard, C., Rochas, C. and Kloareg, B. Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur. J. Biochem. 214 (1993) 599–607. [DOI] [PMID: 8513809]
2.  Ohta, Y., Hatada, Y., Miyazaki, M., Nogi, Y., Ito, S. and Horikoshi, K. Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr. Microbiol. 50 (2005) 212–216. [DOI] [PMID: 15902469]
[EC 3.2.1.158 created 2006]
 
 
EC 3.2.1.159     
Accepted name: α-neoagaro-oligosaccharide hydrolase
Reaction: Hydrolysis of the (1→3)-α-L-galactosidic linkages of neoagaro-oligosaccharides that are smaller than a hexamer, yielding 3,6-anhydro-L-galactose and D-galactose
Glossary: In the field of oligosaccharides derived from agarose, carrageenans, etc., in which alternate residues are 3,6-anhydro sugars, the prefix ’neo’ designates an oligosaccharide whose non-reducing end is the anhydro sugar, and the absence of this prefix means that it is not.
For example:
neoagarobiose = 3,6-anhydro-α-L-galactopyranosyl-(1→3)-D-galactose
agarobiose = β-D-galactopyranosyl-(1→4)-3,6-anhydro-L-galactose
Other name(s): α-neoagarooligosaccharide hydrolase; α-NAOS hydrolase
Systematic name: α-neoagaro-oligosaccharide 3-glycohydrolase
Comments: When neoagarohexaose is used as a substrate, the oligosaccharide is cleaved at the non-reducing end to produce 3,6-anhydro-L-galactose and agaropentaose, which is further hydrolysed to agarobiose and agarotriose. With neoagarotetraose as substrate, the products are predominantly agarotriose and 3,6-anhydro-L-galactose. In Vibrio sp. the actions of EC 3.2.1.81, β-agarase and EC 3.2.1.159 can be used to degrade agarose to 3,6-anhydro-L-galactose and D-galactose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60063-77-6
References:
1.  Sugano, Y., Kodama, H., Terada, I., Yamazaki, Y. and Noma, M. Purification and characterization of a novel enzyme, α-neoagarooligosaccharide hydrolase (α-NAOS hydrolase), from a marine bacterium, Vibrio sp. strain JT0107. J. Bacteriol. 176 (1994) 6812–6818. [DOI] [PMID: 7961439]
[EC 3.2.1.159 created 2006]
 
 
EC 3.2.1.160      
Deleted entry: xyloglucan-specific exo-β-1,4-glucanase. The enzyme was shown to be identical to EC 3.2.1.155, xyloglucan-specific exo-β-1,4-glucanase, during the public-review process so was withdrawn before being made official
[EC 3.2.1.160 created 2006, deleted 2006]
 
 
EC 3.2.1.161     
Accepted name: β-apiosyl-β-glucosidase
Reaction: 7-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranosyloxy]isoflavonoid + H2O = a 7-hydroxyisoflavonoid + β-D-apiofuranosyl-(1→6)-D-glucose
Other name(s): isoflavonoid-7-O-β[D-apiosyl-(1→6)-β-D-glucoside] disaccharidase; isoflavonoid 7-O-β-apiosyl-glucoside β-glucosidase; furcatin hydrolase
Systematic name: 7-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranosyloxy]isoflavonoid β-D-apiofuranosyl-(1→6)-D-glucohydrolase
Comments: The enzyme from the tropical tree Dalbergia nigrescens Kurz belongs in glycosyl hydrolase family 1. The enzyme removes disaccharides from the natural substrates dalpatein 7-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside and 7-hydroxy-2′,4′,5′,6-tetramethoxy-7-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (dalnigrein 7-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside) although it can also remove a single glucose residue from isoflavonoid 7-O-glucosides [2]. Daidzin and genistin are also substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 1000598-83-3
References:
1.  Hosel, W. and Barz, W. β-Glucosidases from Cicer arietinum L. Purification and Properties of isoflavone-7-O-glucoside-specific β-glucosidases. Eur. J. Biochem. 57 (1975) 607–616. [DOI] [PMID: 240725]
2.  Chuankhayan, P., Hua, Y., Svasti, J., Sakdarat, S., Sullivan, P.A. and Ketudat Cairns, J.R. Purification of an isoflavonoid 7-O-β-apiosyl-glucoside β-glycosidase and its substrates from Dalbergia nigrescens Kurz. Phytochemistry 66 (2005) 1880–1889. [DOI] [PMID: 16098548]
3.  Ahn, Y.O., Mizutani, M., Saino, H. and Sakata, K. Furcatin hydrolase from Viburnum furcatum Blume is a novel disaccharide-specific acuminosidase in glycosyl hydrolase family 1. J. Biol. Chem. 279 (2004) 23405–23414. [DOI] [PMID: 14976214]
[EC 3.2.1.161 created 2006]
 
 
EC 3.2.1.162     
Accepted name: λ-carrageenase
Reaction: Endohydrolysis of (1→4)-β-linkages in the backbone of λ-carrageenan, resulting in the tetrasaccharide α-D-Galp2,6S2-(1→3)-β-D-Galp2S-(1→4)-α-D-Galp2,6S2-(1→3)-D-Galp2S
For diagram of reaction, click here
Glossary: For diagram of the structures of carrageenans, click here
Other name(s): endo-β-1,4-carrageenose 2,6,2′-trisulfate-hydrolase
Systematic name: endo-(1→4)-β-carrageenose 2,6,2′-trisulfate-hydrolase
Comments: The enzyme from Pseudoalteromonas sp. is specific for λ-carrageenan. ι-Carrageenan (see EC 3.2.1.157, ι-carrageenase), κ-carrageenan (see EC 3.2.1.83, κ-carrageenase), agarose and porphyran are not substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ohta, Y. and Hatada, Y. A novel enzyme, λ-carrageenase, isolated from a deep-sea bacterium. J. Biochem. (Tokyo) 140 (2006) 475–481. [DOI] [PMID: 16926183]
[EC 3.2.1.162 created 2007]
 
 
EC 3.2.1.163     
Accepted name: 1,6-α-D-mannosidase
Reaction: Hydrolysis of the (1→6)-linked α-D-mannose residues in α-D-Manp-(1→6)-D-Manp
Systematic name: (1→6)-α-mannosyl α-D-mannohydrolase
Comments: The enzyme is specific for (1→6)-linked mannobiose and has no activity towards any other linkages, or towards p-nitrophenyl-α-D-mannopyranoside or baker’s yeast mannan. It is strongly inhibited by Mn2+ but does not require Ca2+ or any other metal cofactor for activity.
Links to other databases: BRENDA, EXPASY
References:
1.  Athanasopoulos, V.I., Niranjan, K. and Rastall, R.A. The production, purification and characterisation of two novel α-D-mannosidases from Aspergillus phoenicis. Carbohydr. Res. 340 (2005) 609–617. [DOI] [PMID: 15721331]
[EC 3.2.1.163 created 2007]
 
 
EC 3.2.1.164     
Accepted name: galactan endo-1,6-β-galactosidase
Reaction: Endohydrolysis of (1→6)-β-D-galactosidic linkages in arabinogalactan proteins and (1→3):(1→6)-β-galactans to yield galactose and (1→6)-β-galactobiose as the final products
Other name(s): endo-1,6-β-galactanase
Systematic name: endo-β-(1→6)-galactanase
Comments: The enzyme specifically hydrolyses 1,6-β-D-galactooligosaccharides with a degree of polymerization (DP) higher than 3, and their acidic derivatives with 4-O-methylglucosyluronate or glucosyluronate groups at the non-reducing terminals [2]. 1,3-β-D- and 1,4-β-D-galactosyl residues cannot act as substrates. The enzyme can also hydrolyse α-L-arabinofuranosidase-treated arabinogalactan protein (AGP) extracted from radish roots [2,3]. AGPs are thought to be involved in many physiological events, such as cell division, cell expansion and cell death [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brillouet, J.-M., Williams, P. and Moutounet, M. Purification and some properties of a novel endo-β-(1→6)-D-galactanase from Aspergillus niger. Agric. Biol. Chem. 55 (1991) 1565–1571.
2.  Okemoto, K., Uekita, T., Tsumuraya, Y., Hashimoto, Y. and Kasama, T. Purification and characterization of an endo-β-(1→6)-galactanase from Trichoderma viride. Carbohydr. Res. 338 (2003) 219–230. [DOI] [PMID: 12543554]
3.  Kotake, T., Kaneko, S., Kubomoto, A., Haque, M.A., Kobayashi, H. and Tsumuraya, Y. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-β-(1→6)-galactanase gene. Biochem. J. 377 (2004) 749–755. [DOI] [PMID: 14565843]
[EC 3.2.1.164 created 2007]
 
 
EC 3.2.1.165     
Accepted name: exo-1,4-β-D-glucosaminidase
Reaction: Hydrolysis of chitosan or chitosan oligosaccharides to remove successive D-glucosamine residues from the non-reducing termini
Glossary: GlcN = D-glucosamine = 2-amino-2-deoxy-D-glucopyranose
GlcNAc = N-acetyl-D-glucosamine
Other name(s): CsxA; GlcNase; exochitosanase; GlmA; exo-β-D-glucosaminidase; chitosan exo-1,4-β-D-glucosaminidase
Systematic name: chitosan exo-(1→4)-β-D-glucosaminidase
Comments: Chitosan is a partially or totally N-deacetylated chitin derivative that is found in the cell walls of some phytopathogenic fungi and comprises D-glucosamine residues with a variable content of GlcNAc residues [4]. Acts specifically on chitooligosaccharides and chitosan, having maximal activity on chitotetraose, chitopentaose and their corresponding alcohols [1]. The enzyme can degrade GlcN-GlcNAc but not GlcNAc-GlcNAc [3]. A member of the glycoside hydrolase family 2 (GH-2) [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nanjo, F., Katsumi, R. and Sakai, K. Purification and characterization of an exo-β-D-glucosaminidase, a novel type of enzyme, from Nocardia orientalis. J. Biol. Chem. 265 (1990) 10088–10094. [PMID: 2351651]
2.  Nogawa, M., Takahashi, H., Kashiwagi, A., Ohshima, K., Okada, H. and Morikawa, Y. Purification and characterization of exo-β-D-glucosaminidase from a cellulolytic fungus, Trichoderma reesei PC-3-7. Appl. Environ. Microbiol. 64 (1998) 890–895. [PMID: 16349528]
3.  Fukamizo, T., Fleury, A., Côté, N., Mitsutomi, M. and Brzezinski, R. Exo-β-D-glucosaminidase from Amycolatopsis orientalis: catalytic residues, sugar recognition specificity, kinetics, and synergism. Glycobiology 16 (2006) 1064–1072. [DOI] [PMID: 16877749]
4.  Côté, N., Fleury, A., Dumont-Blanchette, E., Fukamizo, T., Mitsutomi, M. and Brzezinski, R. Two exo-β-D-glucosaminidases/exochitosanases from actinomycetes define a new subfamily within family 2 of glycoside hydrolases. Biochem. J. 394 (2006) 675–686. [DOI] [PMID: 16316314]
5.  Ike, M., Isami, K., Tanabe, Y., Nogawa, M., Ogasawara, W., Okada, H. and Morikawa, Y. Cloning and heterologous expression of the exo-β-D-glucosaminidase-encoding gene (gls93) from a filamentous fungus, Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 72 (2006) 687–695. [DOI] [PMID: 16636831]
[EC 3.2.1.165 created 2008]
 
 
EC 3.2.1.166     
Accepted name: heparanase
Reaction: endohydrolysis of (1→4)-β-D-glycosidic bonds of heparan sulfate chains in heparan sulfate proteoglycan
Other name(s): Hpa1 heparanase; Hpa1; heparanase 1; heparanase-1; C1A heparanase; HPSE
Systematic name: heparan sulfate N-sulfo-D-glucosamine endoglucanase
Comments: Heparanase cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group [2]. Heparanase-1 cuts macromolecular heparin into fragments of 5000–20000 Da [5]. The enzyme cleaves the heparan sulfate glycosaminoglycans from proteoglycan core proteins and degrades them to small oligosaccharides. Inside cells, the enzyme is important for the normal catabolism of heparan sulfate proteoglycans, generating glycosaminoglycan fragments that are then transported to lysosomes and completely degraded. When secreted, heparanase degrades basement membrane heparan sulfate glycosaminoglycans at sites of injury or inflammation, allowing extravasion of immune cells into nonvascular spaces and releasing factors that regulate cell proliferation and angiogenesis [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bame, K.J. Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology 11 (2001) 91R–98R. [DOI] [PMID: 11445547]
2.  Peterson, S.B. and Liu, J. Unraveling the specificity of heparanase utilizing synthetic substrates. J. Biol. Chem. 285 (2010) 14504–14513. [DOI] [PMID: 20181948]
3.  Pikas, D.S., Li, J.P., Vlodavsky, I. and Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273 (1998) 18770–18777. [DOI] [PMID: 9668050]
4.  Okada, Y., Yamada, S., Toyoshima, M., Dong, J., Nakajima, M. and Sugahara, K. Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. J. Biol. Chem. 277 (2002) 42488–42495. [DOI] [PMID: 12213822]
5.  Vreys, V. and David, G. Mammalian heparanase: what is the message. J. Cell. Mol. Med. 11 (2007) 427–452. [DOI] [PMID: 17635638]
6.  Gong, F., Jemth, P., Escobar Galvis, M.L., Vlodavsky, I., Horner, A., Lindahl, U. and Li, J.P. Processing of macromolecular heparin by heparanase. J. Biol. Chem. 278 (2003) 35152–35158. [DOI] [PMID: 12837765]
7.  Toyoshima, M. and Nakajima, M. Human heparanase. Purification, characterization, cloning, and expression. J. Biol. Chem. 274 (1999) 24153–24160. [DOI] [PMID: 10446189]
8.  Miao, H.Q., Navarro, E., Patel, S., Sargent, D., Koo, H., Wan, H., Plata, A., Zhou, Q., Ludwig, D., Bohlen, P. and Kussie, P. Cloning, expression, and purification of mouse heparanase. Protein Expr. Purif. 26 (2002) 425–431. [DOI] [PMID: 12460766]
9.  Hammond, E., Li, C.P. and Ferro, V. Development of a colorimetric assay for heparanase activity suitable for kinetic analysis and inhibitor screening. Anal. Biochem. 396 (2010) 112–116. [DOI] [PMID: 19748475]
[EC 3.2.1.166 created 2010]
 
 
EC 3.2.1.167     
Accepted name: baicalin-β-D-glucuronidase
Reaction: baicalin + H2O = baicalein + D-glucuronate
Glossary: baicalin = 5,6,7-trihydroxyflavone-7-O-β-D-glucuronate = 5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl β-D-glucupyranosiduronic acid
baicalein = 5,6,7-trihydroxyflavone = 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one
wogonin = 5,7-dihydroxy-8-methoxyflavone = 5,7-dihydroxy-8-methoxy-2-phenyl-4H-chromen-4-one
oroxylin = 5,7-dihydroxy-6-methoxyflavone = 5,7-dihydroxy-6-methoxy-2-phenyl-4H-1-benzopyran-4-one
Other name(s): baicalinase
Systematic name: 5,6,7-trihydroxyflavone-7-O-β-D-glucupyranosiduronate glucuronosylhydrolase
Comments: The enzyme also hydrolyses wogonin 7-O-β-D-glucuronide and oroxylin 7-O-β-D-glucuronide with lower efficiency [4]. Neglegible activity with p-nitrophenyl-β-D-glucuronide [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ikegami, F., Matsunae, K., Hisamitsu, M., Kurihara, T., Yamamoto, T. and Murakoshi, I. Purification and properties of a plant β-D-glucuronidase form Scutellaria root. Biol. Pharm. Bull. 18 (1995) 1531–1534. [PMID: 8593473]
2.  Zhang, C., Zhang, Y., Chen, J. and Liang, X. Purification and characterization of baicalin-β-D-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scutellaria viscidula Bge. Proc. Biochem. 40 (2005) 1911–1915.
3.  Sasaki, K., Taura, F., Shoyama, Y. and Morimoto, S. Molecular characterization of a novel β-glucuronidase from Scutellaria baicalensis Georgi. J. Biol. Chem. 275 (2000) 27466–27472. [DOI] [PMID: 10858442]
4.  Morimoto, S., Harioka, T. and Shoyama, Y. Purification and characterization of flavone-specific β-glucuronidase from callus cultures of Scutellaria baicalensis Georgi. Planta 195 (1995) 535–540.
[EC 3.2.1.167 created 2011]
 
 
EC 3.2.1.168     
Accepted name: hesperidin 6-O-α-L-rhamnosyl-β-D-glucosidase
Reaction: hesperidin + H2O = hesperetin + rutinose
Glossary: hesperetin = 5,7,3′-trihydroxy-4′-methoxyflavanone
hesperidin = hesperetin 7-(6-O-α-L-rhamnopyranosyl-β-D-glucopyranoside)
rutinose = 6-O-α-L-rhamnopyranosyl-D-glucose
Other name(s): AnRut; rutinosidase
Systematic name: hesperetin 7-(6-O-α-L-rhamnopyranosyl-β-D-glucopyranoside) 6-O-α-rhamnopyranosyl-β-glucohydrolase
Comments: The enzyme exhibits high specificity towards 7-O-linked flavonoid β-rutinosides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mazzaferro, L., Piñuel, L., Minig, M. and Breccia, J.D. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch. Microbiol. 192 (2010) 383–393. [DOI] [PMID: 20358178]
2.  Mazzaferro, L., Piñuel, L., Minig, M. and Breccia, J.D. Erratum to: Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch. Microbiol. 193 (2011) 461.
[EC 3.2.1.168 created 2011]
 
 
EC 3.2.1.169     
Accepted name: protein O-GlcNAcase
Reaction: (1) [protein]-3-O-(N-acetyl-β-D-glucosaminyl)-L-serine + H2O = [protein]-L-serine + N-acetyl-D-glucosamine
(2) [protein]-3-O-(N-acetyl-β-D-glucosaminyl)-L-theronine + H2O = [protein]-L-threonine + N-acetyl-D-glucosamine
Other name(s): OGA; glycoside hydrolase O-GlcNAcase; O-GlcNAcase; BtGH84; O-GlcNAc hydrolase
Systematic name: [protein]-3-O-(N-acetyl-β-D-glucosaminyl)-L-serine/threonine N-acetylglucosaminyl hydrolase
Comments: Within higher eukaryotes post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. EC 2.4.1.255 (protein O-GlcNAc transferase) transfers GlcNAc onto substrate proteins and EC 3.2.1.169 (protein O-GlcNAcase) cleaves GlcNAc from the modified proteins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gao, Y., Wells, L., Comer, F.I., Parker, G.J. and Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276 (2001) 9838–9845. [DOI] [PMID: 11148210]
2.  Wells, L., Gao, Y., Mahoney, J.A., Vosseller, K., Chen, C., Rosen, A. and Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic β-N-acetylglucosaminidase, O-GlcNAcase. J. Biol. Chem. 277 (2002) 1755–1761. [PMID: 11788610]
3.  Cetinbas, N., Macauley, M.S., Stubbs, K.A., Drapala, R. and Vocadlo, D.J. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants. Biochemistry 45 (2006) 3835–3844. [DOI] [PMID: 16533067]
4.  Dennis, R.J., Taylor, E.J., Macauley, M.S., Stubbs, K.A., Turkenburg, J.P., Hart, S.J., Black, G.N., Vocadlo, D.J. and Davies, G.J. Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity. Nat. Struct. Mol. Biol. 13 (2006) 365–371. [DOI] [PMID: 16565725]
5.  Kim, E.J., Kang, D.O., Love, D.C. and Hanover, J.A. Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate. Carbohydr. Res. 341 (2006) 971–982. [DOI] [PMID: 16584714]
6.  Dong, D.L. and Hart, G.W. Purification and characterization of an O-GlcNAc selective N-acetyl-β-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269 (1994) 19321–19330. [PMID: 8034696]
[EC 3.2.1.169 created 2011]
 
 
EC 3.2.1.170     
Accepted name: mannosylglycerate hydrolase
Reaction: 2-O-(α-D-mannopyranosyl)-D-glycerate + H2O = D-mannopyranose + D-glycerate
Other name(s): MgH
Systematic name: 2-O-(α-D-mannopyranosyl)-D-glycerate D-mannohydrolase
Comments: The enzyme occurs in thermophilic bacteria and has been characterized in Thermus thermophilus and Rubrobacter radiotolerans. It also has been identified in the moss Selaginella moellendorffii.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Alarico, S., Empadinhas, N. and da Costa, M.S. A new bacterial hydrolase specific for the compatible solutes α-D-mannopyranosyl-(1→2)-D-glycerate and α-D-glucopyranosyl-(1→2)-D-glycerate. Enzyme Microb. Technol. 52 (2013) 77–83. [DOI] [PMID: 23273275]
2.  Nobre, A., Empadinhas, N., Nobre, M.F., Lourenco, E.C., Maycock, C., Ventura, M.R., Mingote, A. and da Costa, M.S. The plant Selaginella moellendorffii possesses enzymes for synthesis and hydrolysis of the compatible solutes mannosylglycerate and glucosylglycerate. Planta 237 (2013) 891–901. [DOI] [PMID: 23179444]
[EC 3.2.1.170 created 2011, modified 2018]
 
 
EC 3.2.1.171     
Accepted name: rhamnogalacturonan hydrolase
Reaction: Endohydrolysis of α-D-GalA-(1→2)-α-L-Rha glycosidic bond in the rhamnogalacturonan I backbone with initial inversion of anomeric configuration releasing oligosaccharides with β-D-GalA at the reducing end.
Other name(s): rhamnogalacturonase A; RGase A; RG-hydrolase
Systematic name: rhamnogalacturonan α-D-GalA-(1→2)-α-L-Rha hydrolase
Comments: The enzyme is part of the degradation system for rhamnogalacturonan I in Aspergillus aculeatus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Petersen, T.N., Kauppinen, S. and Larsen, S. The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel β helix. Structure 5 (1997) 533–544. [DOI] [PMID: 9115442]
2.  Kofod, L.V., Kauppinen, S., Christgau, S., Andersen, L.N., Heldt-Hansen, H.P., Dorreich, K. and Dalboge, H. Cloning and characterization of two structurally and functionally divergent rhamnogalacturonases from Aspergillus aculeatus. J. Biol. Chem. 269 (1994) 29182–29189. [PMID: 7961884]
3.  Azadi, P., O'Neill, M.A., Bergmann, C., Darvill, A.G. and Albersheim, P. The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase. Glycobiology 5 (1995) 783–789. [DOI] [PMID: 8720076]
4.  Petersen, T.N., Christgau, S., Kofod, L.V., Kauppinen, S., Johnson, A.H. and Larsen, S. Crystallization and preliminary X-ray studies of rhamnogalacturonase A from Aspergillus aculeatus. Acta Crystallogr. D Biol. Crystallogr. 53 (1997) 105–107. [DOI] [PMID: 15299976]
5.  Pitson, S.M., Mutter, M., van den Broek, L.A., Voragen, A.G. and Beldman, G. Stereochemical course of hydrolysis catalysed by α-L-rhamnosyl and α-D-galacturonosyl hydrolases from Aspergillus aculeatus. Biochem. Biophys. Res. Commun. 242 (1998) 552–559. [DOI] [PMID: 9464254]
[EC 3.2.1.171 created 2011]
 
 
EC 3.2.1.172     
Accepted name: unsaturated rhamnogalacturonyl hydrolase
Reaction: 2-O-(4-deoxy-β-L-threo-hex-4-enopyranuronosyl)-α-L-rhamnopyranose + H2O = 5-dehydro-4-deoxy-D-glucuronate + L-rhamnopyranose
For diagram of ramnosylgalacturan degradation, click here
Glossary: 6-deoxy-2-O-(4-deoxy-β-L-threo-hex-4-enopyranuronosyl)-α-L-mannopyranose = 2-O-(4-deoxy-β-L-threo-hex-4-enopyranuronosyl)-α-L-rhamnopyranose
5-dehydro-4-deoxy-D-glucuronate = (4S,5R)-4,5-dihydroxy-2,6-dioxohexanoate
Other name(s): YteR; YesR
Systematic name: 2-O-(4-deoxy-β-L-threo-hex-4-enopyranuronosyl)-α-L-rhamnopyranose hydrolase
Comments: The enzyme is part of the degradation system for rhamnogalacturonan I in Bacillus subtilis strain 168.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Itoh, T., Ochiai, A., Mikami, B., Hashimoto, W. and Murata, K. A novel glycoside hydrolase family 105: the structure of family 105 unsaturated rhamnogalacturonyl hydrolase complexed with a disaccharide in comparison with family 88 enzyme complexed with the disaccharide. J. Mol. Biol. 360 (2006) 573–585. [DOI] [PMID: 16781735]
2.  Zhang, R., Minh, T., Lezondra, L., Korolev, S., Moy, S.F., Collart, F. and Joachimiak, A. 1.6 Å crystal structure of YteR protein from Bacillus subtilis, a predicted lyase. Proteins 60 (2005) 561–565. [DOI] [PMID: 15906318]
3.  Itoh, T., Ochiai, A., Mikami, B., Hashimoto, W. and Murata, K. Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate. Biochem. Biophys. Res. Commun. 347 (2006) 1021–1029. [DOI] [PMID: 16870154]
[EC 3.2.1.172 created 2011, modified 2012]
 
 
EC 3.2.1.173     
Accepted name: rhamnogalacturonan galacturonohydrolase
Reaction: Exohydrolysis of the α-D-GalA-(1→2)-α-L-Rha bond in rhamnogalacturonan oligosaccharides with initial inversion of configuration releasing D-galacturonic acid from the non-reducing end of rhamnogalacturonan oligosaccharides.
Other name(s): RG-galacturonohydrolase
Systematic name: rhamnogalacturonan oligosaccharide α-D-GalA-(1→2)-α-L-Rha galacturonohydrolase
Comments: The enzyme is part of the degradation system for rhamnogalacturonan I in Aspergillus aculeatus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mutter, M., Beldman, G., Pitson, S.M., Schols, H.A. and Voragen, A.G. Rhamnogalacturonan α-D-galactopyranosyluronohydrolase. An enzyme that specifically removes the terminal nonreducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol. 117 (1998) 153–163. [PMID: 9576784]
[EC 3.2.1.173 created 2011]
 
 
EC 3.2.1.174     
Accepted name: rhamnogalacturonan rhamnohydrolase
Reaction: Exohydrolysis of the α-L-Rha-(1→4)-α-D-GalA bond in rhamnogalacturonan oligosaccharides with initial inversion of configuration releasing β-L-rhamnose from the non-reducing end of rhamnogalacturonan oligosaccharides.
Other name(s): RG-rhamnohydrolase; RG α-L-rhamnopyranohydrolase
Systematic name: rhamnogalacturonan oligosaccharide α-L-Rha-(1→4)-α-D-GalA rhamnohydrolase
Comments: The enzyme is part of the degradation system for rhamnogalacturonan I in Aspergillus aculeatus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pitson, S.M., Mutter, M., van den Broek, L.A., Voragen, A.G. and Beldman, G. Stereochemical course of hydrolysis catalysed by α-L-rhamnosyl and α-D-galacturonosyl hydrolases from Aspergillus aculeatus. Biochem. Biophys. Res. Commun. 242 (1998) 552–559. [DOI] [PMID: 9464254]
2.  Mutter, M., Beldman, G., Schols, H.A. and Voragen, A.G. Rhamnogalacturonan α-L-rhamnopyranohydrolase. A novel enzyme specific for the terminal nonreducing rhamnosyl unit in rhamnogalacturonan regions of pectin. Plant Physiol. 106 (1994) 241–250. [PMID: 7972516]
[EC 3.2.1.174 created 2011]
 
 
EC 3.2.1.175     
Accepted name: β-D-glucopyranosyl abscisate β-glucosidase
Reaction: D-glucopyranosyl abscisate + H2O = D-glucose + abscisate
For diagram of abscisic-acid biosynthesis, click here
Other name(s): AtBG1; ABA-β-D-glucosidase; ABA-specific β-glucosidase; ABA-GE hydrolase; β-D-glucopyranosyl abscisate hydrolase
Systematic name: β-D-glucopyranosyl abscisate glucohydrolase
Comments: The enzyme hydrolzes the biologically inactive β-D-glucopyranosyl ester of abscisic acid to produce active abscisate. Abscisate is a phytohormone critical for plant growth, development and adaption to various stress conditions. The enzyme does not hydrolyse β-D-glucopyranosyl zeatin [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, K.H., Piao, H.L., Kim, H.Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I.J. and Hwang, I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126 (2006) 1109–1120. [DOI] [PMID: 16990135]
2.  Kato-Noguchi, H. and Tanaka, Y. Effect of ABA-β-D-glucopyranosyl ester and activity of ABA-β-D-glucosidase in Arabidopsis thaliana. J. Plant Physiol. 165 (2008) 788–790. [DOI] [PMID: 17923167]
3.  Dietz, K.J., Sauter, A., Wichert, K., Messdaghi, D. and Hartung, W. Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J. Exp. Bot. 51 (2000) 937–944. [DOI] [PMID: 10948220]
[EC 3.2.1.175 created 2011]
 
 
EC 3.2.1.176     
Accepted name: cellulose 1,4-β-cellobiosidase (reducing end)
Reaction: Hydrolysis of (1→4)-β-D-glucosidic linkages in cellulose and similar substrates, releasing cellobiose from the reducing ends of the chains.
Other name(s): CelS; CelSS; endoglucanase SS; cellulase SS; cellobiohydrolase CelS; Cel48A
Systematic name: 4-β-D-glucan cellobiohydrolase (reducing end)
Comments: Some exocellulases, most of which belong to the glycoside hydrolase family 48 (GH48, formerly known as cellulase family L), act at the reducing ends of cellulose and similar substrates. The CelS enzyme from Clostridium thermocellum is the most abundant subunit of the cellulosome formed by the organism. It liberates cellobiose units from the reducing end by hydrolysis of the glycosidic bond, employing an inverting reaction mechanism [2]. Different from EC 3.2.1.91, which attacks cellulose from the non-reducing end.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Barr, B.K., Hsieh, Y.L., Ganem, B. and Wilson, D.B. Identification of two functionally different classes of exocellulases. Biochemistry 35 (1996) 586–592. [DOI] [PMID: 8555231]
2.  Saharay, M., Guo, H. and Smith, J.C. Catalytic mechanism of cellulose degradation by a cellobiohydrolase, CelS. PLoS One 5:e1294 (2010). [DOI] [PMID: 20967294]
[EC 3.2.1.176 created 2011]
 
 
EC 3.2.1.177     
Accepted name: α-D-xyloside xylohydrolase
Reaction: Hydrolysis of terminal, non-reducing α-D-xylose residues with release of α-D-xylose.
Other name(s): α-xylosidase
Systematic name: α-D-xyloside xylohydrolase
Comments: The enzyme catalyses hydrolysis of a terminal, unsubstituted xyloside at the extreme reducing end of a xylogluco-oligosaccharide. Representative α-xylosidases from glycoside hydrolase family 31 utilize a two-step (double-displacement) mechanism involving a covalent glycosyl-enzyme intermediate, and retain the anomeric configuration of the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Moracci, M., Cobucci Ponzano, B., Trincone, A., Fusco, S., De Rosa, M., van Der Oost, J., Sensen, C.W., Charlebois, R.L. and Rossi, M. Identification and molecular characterization of the first α -xylosidase from an archaeon. J. Biol. Chem. 275 (2000) 22082–22089. [DOI] [PMID: 10801892]
2.  Sampedro, J., Sieiro, C., Revilla, G., Gonzalez-Villa, T. and Zarra, I. Cloning and expression pattern of a gene encoding an α-xylosidase active against xyloglucan oligosaccharides from Arabidopsis. Plant Physiol. 126 (2001) 910–920. [PMID: 11402218]
3.  Crombie, H.J., Chengappa, S., Jarman, C., Sidebottom, C. and Reid, J.S. Molecular characterisation of a xyloglucan oligosaccharide-acting α-D-xylosidase from nasturtium (Tropaeolum majus L.) cotyledons that resembles plant ’apoplastic’ α-D-glucosidases. Planta 214 (2002) 406–413. [PMID: 11859845]
4.  Lovering, A.L., Lee, S.S., Kim, Y.W., Withers, S.G. and Strynadka, N.C. Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. J. Biol. Chem. 280 (2005) 2105–2115. [DOI] [PMID: 15501829]
5.  Iglesias, N., Abelenda, J.A., Rodino, M., Sampedro, J., Revilla, G. and Zarra, I. Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant Cell Physiol. 47 (2006) 55–63. [DOI] [PMID: 16267099]
6.  Okuyama, M., Kaneko, A., Mori, H., Chiba, S. and Kimura, A. Structural elements to convert Escherichia coli α-xylosidase (YicI) into α-glucosidase. FEBS Lett. 580 (2006) 2707–2711. [DOI] [PMID: 16631751]
7.  Larsbrink, J., Izumi, A., Ibatullin, F., Nakhai, A., Gilbert, H.J., Davies, G.J. and Brumer, H. Structural and enzymatic characterisation of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem. J. 436 (2011) 567–580. [DOI] [PMID: 21426303]
[EC 3.2.1.177 created 2011]
 
 
EC 3.2.1.178     
Accepted name: β-porphyranase
Reaction: Hydrolysis of β-D-galactopyranose-(1→4)-α-L-galactopyranose-6-sulfate linkages in porphyran
Other name(s): porphyranase; PorA; PorB; endo-β-porphyranase
Systematic name: porphyran β-D-galactopyranose-(1→4)-α-L-galactopyranose-6-sulfate 4-glycanohydrolase
Comments: The backbone of porphyran consists largely (~70%) of (1→3)-linked β-D-galactopyranose followed by (1→4)-linked α-L-galactopyranose-6-sulfate [the other 30% are mostly agarobiose repeating units of (1→3)-linked β-D-galactopyranose followed by (1→4)-linked 3,6-anhydro-α-L-galactopyranose] [2]. This enzyme cleaves the (1→4) linkages between β-D-galactopyranose and α-L-galactopyranose-6-sulfate, forming mostly the disaccharide α-L-galactopyranose-6-sulfate-(1→3)-β-D-galactose, although some longer oligosaccharides of even number of residues are also observed. Since the enzyme is inactive on the non-sulfated agarose portion of the porphyran backbone, some agarose fragments are also included in the products [1]. Methylation of the D-galactose prevents the enzyme from Zobellia galactanivorans, but not that from Wenyingzhuangia fucanilytica, from binding at subsite -1 [2,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hehemann, J.H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M. and Michel, G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464 (2010) 908–912. [DOI] [PMID: 20376150]
2.  Correc, G., Hehemann, J.H., Czjzek, M. and Helbert, W. Structural analysis of the degradation products of porphyran digested by Zobellia galactanivorans β-porphyranase A. Carbohydrate Polymers 83 (2011) 277–283.
3.  Zhang, Y., Chang, Y., Shen, J., Mei, X. and Xue, C. Characterization of a novel porphyranase accommodating methyl-galactoses at its subsites. J. Agr. Food Chem. 68 (2020) 7032–7039. [PMID: 32520542]
[EC 3.2.1.178 created 2011]
 
 
EC 3.2.1.179     
Accepted name: gellan tetrasaccharide unsaturated glucuronosyl hydrolase
Reaction: β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp + H2O = 5-dehydro-4-deoxy-D-glucuronate + β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp
Glossary: 5-dehydro-4-deoxy-D-glucuronate = (4S,5R)-4,5-dihydroxy-2,6-dioxohexanoate
β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GalNAc = 3-(4-deoxy-β-D-gluc-4-enuronosyl)-N-acetyl-D-galactosamine = 3-(4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid)-2-acetamido-2-deoxy-D-galactose
Other name(s): UGL (ambiguous); unsaturated glucuronyl hydrolase (ambiguous); gellan tetrasaccharide unsaturated glucuronyl hydrolase
Systematic name: β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp β-D-4-deoxy-Δ4-GlcAp hydrolase
Comments: The enzyme releases 4-deoxy-4(5)-unsaturated D-glucuronic acid from oligosaccharides produced by polysaccharide lyases, e.g. the tetrasaccharide β-D-4-deoxy-Δ4-GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-D-Glcp produced by EC 4.2.2.25, gellan lyase. The enzyme can also hydrolyse unsaturated chondroitin and hyaluronate disaccharides (β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GalNAc, β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GalNAc6S, β-D-4-deoxy-Δ4-GlcAp2S-(1→3)-D-GalNAc, β-D-4-deoxy-Δ4-GlcAp-(1→3)-D-GlcNAc), preferring the unsulfated disaccharides to the sulfated disaccharides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Itoh, T., Akao, S., Hashimoto, W., Mikami, B. and Murata, K. Crystal structure of unsaturated glucuronyl hydrolase, responsible for the degradation of glycosaminoglycan, from Bacillus sp. GL1 at 1.8 Å resolution. J. Biol. Chem. 279 (2004) 31804–31812. [DOI] [PMID: 15148314]
2.  Hashimoto, W., Kobayashi, E., Nankai, H., Sato, N., Miya, T., Kawai, S. and Murata, K. Unsaturated glucuronyl hydrolase of Bacillus sp. GL1: novel enzyme prerequisite for metabolism of unsaturated oligosaccharides produced by polysaccharide lyases. Arch. Biochem. Biophys. 368 (1999) 367–374. [DOI] [PMID: 10441389]
3.  Itoh, T., Hashimoto, W., Mikami, B. and Murata, K. Substrate recognition by unsaturated glucuronyl hydrolase from Bacillus sp. GL1. Biochem. Biophys. Res. Commun. 344 (2006) 253–262. [DOI] [PMID: 16630576]
[EC 3.2.1.179 created 2011, modified 2016]
 
 
EC 3.2.1.180     
Accepted name: unsaturated chondroitin disaccharide hydrolase
Reaction: β-D-4-deoxy-Δ4-GlcAp-(1→3)-β-D-GalNAc6S + H2O = 5-dehydro-4-deoxy-D-glucuronate + N-acetyl-β-D-galactosamine-6-O-sulfate
Glossary: 5-dehydro-4-deoxy-D-glucuronate = (4S,5R)-4,5-dihydroxy-2,6-dioxohexanoate
Other name(s): UGL (ambiguous); unsaturated glucuronyl hydrolase (ambiguous)
Systematic name: β-D-4-deoxy-Δ4-GlcAp-(1→3)-β-D-GalNAc6S hydrolase
Comments: The enzyme releases 4-deoxy-4,5-didehydro D-glucuronic acid or 4-deoxy-4,5-didehydro L-iduronic acid from chondroitin disaccharides, hyaluronan disaccharides and heparin disaccharides and cleaves both glycosidic (1→3) and (1→4) bonds. It prefers the sulfated disaccharides to the unsulfated disaccharides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Maruyama, Y., Nakamichi, Y., Itoh, T., Mikami, B., Hashimoto, W. and Murata, K. Substrate specificity of streptococcal unsaturated glucuronyl hydrolases for sulfated glycosaminoglycan. J. Biol. Chem. 284 (2009) 18059–18069. [DOI] [PMID: 19416976]
2.  Nakamichi, Y., Maruyama, Y., Mikami, B., Hashimoto, W. and Murata, K. Structural determinants in streptococcal unsaturated glucuronyl hydrolase for recognition of glycosaminoglycan sulfate groups. J. Biol. Chem. 286 (2011) 6262–6271. [DOI] [PMID: 21147778]
[EC 3.2.1.180 created 2011]
 
 
EC 3.2.1.181     
Accepted name: galactan endo-β-1,3-galactanase
Reaction: The enzyme specifically hydrolyses β-1,3-galactan and β-1,3-galactooligosaccharides
Other name(s): endo-β-1,3-galactanase
Systematic name: arabinogalactan 3-β-D-galactanohydrolase
Comments: The enzyme from the fungus Flammulina velutipes (winter mushroom) hydrolyses the β(1→3) bonds found in type II plant arabinogalactans, which occur in cell walls of dicots and cereals. The enzyme is an endohydrolase, and requires at least 3 contiguous β-1,3-residues. cf. EC 3.2.1.89, arabinogalactan endo-β-1,4-galactanase and EC 3.2.1.145, galactan 1,3-β-galactosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kotake, T., Hirata, N., Degi, Y., Ishiguro, M., Kitazawa, K., Takata, R., Ichinose, H., Kaneko, S., Igarashi, K., Samejima, M. and Tsumuraya, Y. Endo-β-1,3-galactanase from winter mushroom Flammulina velutipes. J. Biol. Chem. 286 (2011) 27848–27854. [DOI] [PMID: 21653698]
[EC 3.2.1.181 created 2012]
 
 
EC 3.2.1.182     
Accepted name: 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside β-D-glucosidase
Reaction: (1) (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + H2O = 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one + D-glucose
(2) (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + H2O = 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one + D-glucose
Glossary: DIMBOA glucoside = (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
DIBOA glucoside = (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
Other name(s): DIMBOAGlc hydrolase; DIMBOA glucosidase
Systematic name: (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside β-D-glucosidase
Comments: The enzyme from Triticum aestivum (wheat) has a higher affinity for DIMBOA glucoside than DIBOA glucoside. With Secale cereale (rye) the preference is reversed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sue, M., Ishihara, A. and Iwamura, H. Purification and characterization of a hydroxamic acid glucoside β-glucosidase from wheat (Triticum aestivum L.) seedlings. Planta 210 (2000) 432–438. [PMID: 10750901]
2.  Sue, M., Ishihara, A. and Iwamura, H. Purification and characterization of a β-glucosidase from rye (Secale cereale L.) seedlings. Plant Sci. 155 (2000) 67–74. [DOI] [PMID: 10773341]
3.  Czjzek, M., Cicek, M., Zamboni, V., Bevan, D.R., Henrissat, B. and Esen, A. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. USA 97 (2000) 13555–13560. [DOI] [PMID: 11106394]
4.  Nikus, J., Esen, A. and Jonsson, L.M.V. Cloning of a plastidic rye (Secale cereale) β-glucosidase cDNA and its expression in Escherichia coli. Physiol. Plantarum 118 (2003) 337–348.
5.  Sue, M., Yamazaki, K., Yajima, S., Nomura, T., Matsukawa, T., Iwamura, H. and Miyamoto, T. Molecular and structural characterization of hexameric β-D-glucosidases in wheat and rye. Plant Physiol. 141 (2006) 1237–1247. [DOI] [PMID: 16751439]
6.  Sue, M., Nakamura, C., Miyamoto, T. and Yajima, S. Active-site architecture of benzoxazinone-glucoside β-D-glucosidases in Triticeae. Plant Sci. 180 (2011) 268–275. [DOI] [PMID: 21421370]
[EC 3.2.1.182 created 2012]
 
 
EC 3.2.1.183     
Accepted name: UDP-N-acetylglucosamine 2-epimerase (hydrolysing)
Reaction: UDP-N-acetyl-α-D-glucosamine + H2O = N-acetyl-D-mannosamine + UDP
For diagram of N-acetylneuraminic acid biosynthesis, click here, and for mechanism, click here
Other name(s): UDP-N-acetylglucosamine 2-epimerase (ambiguous); GNE (gene name); siaA (gene name); neuC (gene name)
Systematic name: UDP-N-acetyl-α-D-glucosamine hydrolase (2-epimerising)
Comments: The enzyme is found in mammalian liver, as well as in some pathogenic bacteria including Neisseria meningitidis and Staphylococcus aureus. It catalyses the first step of sialic acid (N-acetylneuraminic acid) biosynthesis. The initial product formed is the α anomer, which rapidly mutarotates to a mixture of anomers [2]. The mammalian enzyme is bifunctional and also catalyses EC 2.7.1.60, N-acetylmannosamine kinase. cf. EC 5.1.3.14, UDP-N-acetylglucosamine 2-epimerase (non-hydrolysing).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Stasche, R., Hinderlich, S., Weise, C., Effertz, K., Lucka, L., Moormann, P. and Reutter, W. A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272 (1997) 24319–24324. [DOI] [PMID: 9305888]
2.  Chou, W.K., Hinderlich, S., Reutter, W. and Tanner, M.E. Sialic acid biosynthesis: stereochemistry and mechanism of the reaction catalyzed by the mammalian UDP-N-acetylglucosamine 2-epimerase. J. Am. Chem. Soc. 125 (2003) 2455–2461. [DOI] [PMID: 12603133]
3.  Blume, A., Ghaderi, D., Liebich, V., Hinderlich, S., Donner, P., Reutter, W. and Lucka, L. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, functionally expressed in and purified from Escherichia coli, yeast, and insect cells. Protein Expr. Purif. 35 (2004) 387–396. [DOI] [PMID: 15135418]
4.  Murkin, A.S., Chou, W.K., Wakarchuk, W.W. and Tanner, M.E. Identification and mechanism of a bacterial hydrolyzing UDP-N-acetylglucosamine 2-epimerase. Biochemistry 43 (2004) 14290–14298. [DOI] [PMID: 15518580]
[EC 3.2.1.183 created 2012]
 
 
EC 3.2.1.184     
Accepted name: UDP-N,N′-diacetylbacillosamine 2-epimerase (hydrolysing)
Reaction: UDP-N,N′-diacetylbacillosamine + H2O = UDP + 2,4-diacetamido-2,4,6-trideoxy-D-mannopyranose
For diagram of legionaminic acid biosynthesis, click here, and for mechanism, click here
Glossary: UDP-N,N′-diacetylbacillosamine = UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose
Other name(s): UDP-Bac2Ac4Ac 2-epimerase; NeuC
Systematic name: UDP-N,N′-diacetylbacillosamine hydrolase (2-epimerising)
Comments: Requires Mg2+. Involved in biosynthesis of legionaminic acid, a nonulosonate derivative that is incorporated by some bacteria into assorted virulence-associated cell surface glycoconjugates. The initial product formed by the enzyme from Legionella pneumophila, which incorporates legionaminic acid into the O-antigen moiety of its lipopolysaccharide, is 2,4-diacetamido-2,4,6-trideoxy-α-D-mannopyranose, which rapidly mutarotates to a mixture of anomers [1]. The enzyme from Campylobacter jejuni, which incorporates legionaminic acid into flagellin, prefers GDP-N,N′-diacetylbacillosamine [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Glaze, P.A., Watson, D.C., Young, N.M. and Tanner, M.E. Biosynthesis of CMP-N,N′-diacetyllegionaminic acid from UDP-N,N′-diacetylbacillosamine in Legionella pneumophila. Biochemistry 47 (2008) 3272–3282. [DOI] [PMID: 18275154]
2.  Schoenhofen, I.C., Vinogradov, E., Whitfield, D.M., Brisson, J.R. and Logan, S.M. The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19 (2009) 715–725. [DOI] [PMID: 19282391]
[EC 3.2.1.184 created 2012]
 
 
EC 3.2.1.185     
Accepted name: non-reducing end β-L-arabinofuranosidase
Reaction: β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranose + H2O = 2 β-L-arabinofuranose
Other name(s): HypBA1
Systematic name: β-L-arabinofuranoside non-reducing end β-L-arabinofuranosidase
Comments: The enzyme, which was identified in the bacterium Bifidobacterium longum JCM1217, removes the β-L-arabinofuranose residue from the non-reducing end of multiple substrates, including β-L-arabinofuranosyl-hydroxyproline (Ara-Hyp), Ara2-Hyp, Ara3-Hyp, and β-L-arabinofuranosyl-(1→2)-1-O-methyl-β-L-arabinofuranose.In the presence of 1-alkanols, the enzyme demonstrates transglycosylation activity, retaining the anomeric configuration of the arabinofuranose residue. cf. EC 3.2.1.55, non-reducing end α-L-arabinofuranosidase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fujita, K., Takashi, Y., Obuchi, E., Kitahara, K. and Suganuma, T. Characterization of a novel β-L-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J. Biol. Chem. 289 (2014) 5240–5249. [DOI] [PMID: 24385433]
[EC 3.2.1.185 created 2013]
 
 
EC 3.2.1.186     
Accepted name: protodioscin 26-O-β-D-glucosidase
Reaction: protodioscin + H2O = 26-deglucoprotodioscin + D-glucose
Other name(s): F26G; torvosidase; CSF26G1; furostanol glycoside 26-O-β-D-glucosidase; furostanol 26-O-β-D-glucoside glucohydrolase
Systematic name: protodioscin glucohydrolase
Comments: The enzyme has been characterized from the plants Cheilocostus speciosus and Solanum torvum. It also hydrolyses the 26-β-D-glucose group from related steroid glucosides such as protogracillin, torvoside A and torvoside H.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Inoue, K. and Ebizuka, Y. Purification and characterization of furostanol glycoside 26-O-β-glucosidase from Costus speciosus rhizomes. FEBS Lett. 378 (1996) 157–160. [DOI] [PMID: 8549824]
2.  Arthan, D., Kittakoop, P., Esen, A. and Svasti, J. Furostanol glycoside 26-O-β-glucosidase from the leaves of Solanum torvum. Phytochemistry 67 (2006) 27–33. [DOI] [PMID: 16289258]
[EC 3.2.1.186 created 2013]
 
 
EC 3.2.1.187     
Accepted name: (Ara-f)3-Hyp β-L-arabinobiosidase
Reaction: 4-O-(β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline + H2O = 4-O-(β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline + β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranose
Glossary: 4-O-(β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline = (Ara-f)3-Hyp
Other name(s): hypBA2 (gene name); β-L-arabinobiosidase
Systematic name: 4-O-(β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranose hydrolase
Comments: The enzyme, which was identified in the bacterium Bifidobacterium longum JCM1217, is specific for (Ara-f)3-Hyp, a sugar chain found in hydroxyproline-rich glyoproteins such as extensin and lectin. The enzyme was not able to accept (Ara-f)2-Hyp or (Ara-f)4-Hyp as substrates. In the presence of 1-alkanols, the enzyme demonstrates transglycosylation activity, retaining the anomeric configuration of the arabinofuranose residue.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fujita, K., Sakamoto, S., Ono, Y., Wakao, M., Suda, Y., Kitahara, K. and Suganuma, T. Molecular cloning and characterization of a β-L-Arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family. J. Biol. Chem. 286 (2011) 5143–5150. [DOI] [PMID: 21149454]
[EC 3.2.1.187 created 2013]
 
 
EC 3.2.1.188     
Accepted name: avenacosidase
Reaction: avenacoside B + H2O = 26-desgluco-avenacoside B + D-glucose
Glossary: avenacoside B = (22S,25S)-3β-{β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyloxy}-26-(β-D-glucopyranosyloxy)-22,25-epoxyfurost-5-ene
26-desgluco-avenacoside B = (22S,25S)-3β-{β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyloxy}-22,25-epoxyfurost-5-en-26-ol
Other name(s): As-P60
Systematic name: avenacoside B 26-β-D-glucohydrolase
Comments: Isolated from oat (Avena sativa) seedlings. The product acts as a defense system against fungal infection. Also acts on avenacoside A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H.A. and Rudiger, W. Avenacosidase from oat: purification, sequence analysis and biochemical characterization of a new member of the BGA family of β-glucosidases. Plant Mol. Biol. 26 (1994) 909–921. [PMID: 8000004]
2.  Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H.A., Lottspeich, F., Eckerskorn, C., Grimm, R. and Rudiger, W. The amino acid sequence previously attributed to a protein kinase or a TCP1-related molecular chaperone and co-purified with phytochrome is a β-glucosidase. FEBS Lett. 347 (1994) 51–54. [DOI] [PMID: 8013661]
[EC 3.2.1.188 created 2013]
 
 
EC 3.2.1.189     
Accepted name: dioscin glycosidase (diosgenin-forming)
Reaction: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin + 3 H2O = D-glucose + 2 L-rhamnose + diosgenin
For diagram of diosgenin catabolism, click here
Glossary: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin = (3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L-mannopyranosyl-(1→4)]-β-D-glucopyranoside = dioscin
diosgenin = (3β,25R)-spirost-5-en-3-ol
Other name(s): dioscin glycosidase (aglycone-forming)
Systematic name: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin hydrolase (diosgenin-forming)
Comments: The enzyme is involved in degradation of the steroid saponin dioscin by some fungi of the Absidia genus. The enzyme can also hydrolyse 3-O-[α-L-Ara-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin into diosgenin and free sugars as the final products. cf. EC 3.2.1.190, dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fu, Y., Yu, H., Tang, S.H., Hu, X., Wang, Y., Liu, B., Yu, C. and Jin, F. New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain. J. Microbiol. Biotechnol. 20 (2010) 1011–1017. [PMID: 20622501]
[EC 3.2.1.189 created 2013]
 
 
EC 3.2.1.190     
Accepted name: dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming)
Reaction: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin + 2 H2O = 2 L-rhamnopyranose + diosgenin 3-O-β-D-glucopyranoside
For diagram of diosgenin catabolism, click here
Glossary: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin = (3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L-mannopyranosyl-(1→4)]-β-D-glucopyranoside = dioscin
diosgenin = (3β,25R)-spirost-5-en-3-ol
Other name(s): dioscin-α-L-rhamnosidase
Systematic name: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin (3-O-β-D-Glc-diosgenin-forming)
Comments: The enzyme is involved in the hydrolysis of the steroid saponin dioscin by the digestive system of Sus scrofa (pig). cf. EC 3.2.1.189, dioscin glycosidase (diosgenin-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Qian, S., Yu, H., Zhang, C., Lu, M., Wang, H. and Jin, F. Purification and characterization of dioscin-α-L-rhamnosidase from pig liver. Chem Pharm Bull (Tokyo) 53 (2005) 911–914. [PMID: 16079518]
[EC 3.2.1.190 created 2013]
 
 
EC 3.2.1.191     
Accepted name: ginsenosidase type III
Reaction: a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + 2 H2O = a protopanaxadiol-type ginsenoside with no glycosidic modification at position 3 + 2 D-glucopyranose (overall reaction)
(1a) a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + H2O a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + D-glucopyranose
(1b) a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + H2O = a protopanaxadiol-type ginsenoside with no glycosidic modification at position 3 + D-glucopyranose
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
gypenoside XVII = 3β-(β-D-glucopyranosyloxy)-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
gypenoside LXXV = 20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-ene-3β,12β-diol
Systematic name: protopanaxadiol-type ginsenoside 3-β-D-hydrolase
Comments: Ginsenosidase type III catalyses the sequential hydrolysis of the 3-O-β-D-(1→2)-glucopyranosyl bond followed by hydrolysis of the 3-O-β-D-glucopyranosyl bond of protopanaxadiol ginsenosides. When acting for example on ginsenoside Rb1 the enzyme first generates ginsenoside XVII, and subsequently ginsenoside LXXV.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jin, X.F., Yu, H.S., Wang, D.M., Liu, T.Q., Liu, C.Y., An, D.S., Im, W.T., Kim, S.G. and Jin, F.X. Kinetics of a cloned special ginsenosidase hydrolyzing 3-O-glucoside of multi-protopanaxadiol-type ginsenosides, named ginsenosidase type III. J. Microbiol. Biotechnol. 22 (2012) 343–351. [PMID: 22450790]
2.  An, D.S., Cui, C.H., Lee, H.G., Wang, L., Kim, S.C., Lee, S.T., Jin, F., Yu, H., Chin, Y.W., Lee, H.K., Im, W.T. and Kim, S.G. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76 (2010) 5827–5836. [DOI] [PMID: 20622122]
3.  Hong, H., Cui, C.H., Kim, J.K., Jin, F.X., Kim, S.C. and Im, W.T. Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae. J Ginseng Res 36 (2012) 418–424. [DOI] [PMID: 23717145]
[EC 3.2.1.191 created 2014]
 
 
EC 3.2.1.192     
Accepted name: ginsenoside Rb1 β-glucosidase
Reaction: ginsenoside Rb1 + 2 H2O = ginsenoside Rg3 + 2 D-glucopyranose (overall reaction)
(1a) ginsenoside Rb1 + H2O = ginsenoside Rd + D-glucopyranose
(1b) ginsenoside Rd + H2O = ginsenoside Rg3 + D-glucopyranose
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
Systematic name: ginsenoside Rb1 glucohydrolase
Comments: Ginsenosidases catalyse the hydrolysis of glycosyl moieties attached to the C-3, C-6 or C-20 position of ginsenosides. They are specific with respect to the nature of the glycosidic linkage, the position and the order in which the linkages are cleaved. Ginsenoside Rb1 β-glucosidase specifically and sequentially hydrolyses the 20-[β-D-glucopyranosyl-(1→6)-β-D glucopyranosyloxy] residues attached to position 20 by first hydrolysing the (1→6)-glucosidic bond to generate ginsenoside Rd as an intermediate, followed by hydrolysis of the remaining 20-O-β-D-glucosidic bond.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yan, Q., Zhou, W., Li, X., Feng, M. and Zhou, P. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing β-glucosidase from Paecilomyces Bainier sp. 229. Biosci. Biotechnol. Biochem. 72 (2008) 352–359. [DOI] [PMID: 18256474]
[EC 3.2.1.192 created 2014]
 
 
EC 3.2.1.193     
Accepted name: ginsenosidase type I
Reaction: (1) a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + H2O = a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + D-glucopyranose
(2) a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + H2O = a protopanaxadiol-type ginsenoside with no glycosidic modifications at position 3 + D-glucopyranose
(3) a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside C-K = 20β-(β-D-glucopyranosyloxy)dammar-24-ene-3β,12β-diol
ginsenoside Rh2 = 3β-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Systematic name: ginsenoside glucohydrolase
Comments: Ginsenosidase type I is slightly activated by Mg2+ or Ca2+ [1]. The enzyme hydrolyses the 3-O-β-D-(1→2)-glucosidic bond, the 3-O-β-D-glucopyranosyl bond and the 20-O-β-D-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. It usually leaves a single glucosyl residue attached at position 20 and one or no glucosyl residues at position 3. Starting with a ginsenoside that is glycosylated at both positions (e.g. ginsenoside Rb1, Rb2, Rb3, Rc or Rd), the most common products are ginsenoside F2 and ginsenoside C-K, with low amounts of ginsenoside Rh2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, H., Zhang, C., Lu, M., Sun, F., Fu, Y. and Jin, F. Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem Pharm Bull (Tokyo) 55 (2007) 231–235. [PMID: 17268094]
[EC 3.2.1.193 created 2014]
 
 
EC 3.2.1.194     
Accepted name: ginsenosidase type IV
Reaction: a protopanaxatriol-type ginsenoside with two glycosyl residues at position 6 + 2 H2O = a protopanaxatriol-type ginsenoside with no glycosidic modification at position 6 + D-glucopyranose + a monosaccharide (overall reaction)
(1a) a protopanaxatriol-type ginsenoside with two glycosyl residues at position 6 + H2O = a protopanaxatriol-type ginsenoside with a single glucosyl at position 6 + a monosaccharide
(1b) a protopanaxatriol-type ginsenoside with a single glucosyl at position 6 + H2O = a protopanaxatriol-type ginsenoside with no glycosidic modification at position 6 + D-glucopyranose
For diagram of protopanaxatriol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Re = 20-(β-D-glucopyranosyl)oxy-6α-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyloxy]dammar-24-en-3β,12β-diol
ginsenoside Rg1 = 6α,20-bis(β-D-glucopyranosyl)oxy-dammar-24-en-3β,12β-diol
ginsenoside F1 = 20-(β-D-glucopyranosyloxy)dammar-24-en-3β,6α,12β-triol
Systematic name: protopanaxatriol-type ginsenoside 6-β-D-glucohydrolase
Comments: Ginsenosidase type IV catalyses the sequential hydrolysis of the 6-O-β-D-(1→2)-glycosidic bond or the 6-O-α-D-(1→2)-glycosidic bond in protopanaxatriol-type ginsenosides with a disacchride attached to the C6 position, followed by the hydrolysis of the remaining 6-O-β-D-glycosidic bond (e.g. ginsenoside Re → ginsenoside Rg1 → ginsenoside F1).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wang, D.M., Yu, H.S., Song, J.G., Xu, Y.F., Liu, C.Y. and Jin, F.X. A novel ginsenosidase from an Aspergillus strain hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides, named ginsenosidase type IV. J. Microbiol. Biotechnol. 21 (2011) 1057–1063. [PMID: 22031031]
2.  Wang, D, Yu, H., Song, J., Xu, Y., Jin, F. Enzyme kinetics of ginsenosidase type IV hydrolyzing 6-O-multi-glycosides of protopanaxatriol type ginsenosides. Process Biochem. 47 (2012) 133–138.
[EC 3.2.1.194 created 2014]
 
 
EC 3.2.1.195     
Accepted name: 20-O-multi-glycoside ginsenosidase
Reaction: a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside Rg3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Other name(s): ginsenosidase type II (erroneous)
Systematic name: protopanaxadiol-type ginsenoside 20-β-D-glucohydrolase
Comments: The 20-O-multi-glycoside ginsenosidase catalyses the hydrolysis of the 20-O-α-(1→6)-glycosidic bond and the 20-O-β-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. The enzyme usually leaves a single glucosyl residue attached at position 20, although it can cleave the remaining glucosyl residue with a lower efficiency. Starting with a ginsenoside that is glycosylated at positions 3 and 20, such as ginsenosides Rb1, Rb2, Rb3 and Rc, the most common product is ginsenoside Rd, with a low amount of ginsenoside Rg3 also formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, H., Liu, Q., Zhang, C., Lu, M., Fu, Y., Im, W.-T., Lee, S.-T. and Jin, F. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44 (2009) 772–775.
[EC 3.2.1.195 created 2014]
 
 
EC 3.2.1.196     
Accepted name: limit dextrin α-1,6-maltotetraose-hydrolase
Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages to branches with degrees of polymerization of three or four glucose residues in limit dextrin.
Other name(s): glgX (gene name); glycogen debranching enzyme (ambiguous)
Systematic name: glycogen phosphorylase-limit dextrin maltotetraose-hydrolase
Comments: This bacterial enzyme catalyses a reaction similar to EC 3.2.1.33, amylo-α-1,6-glucosidase (one of the activities of the eukaryotic glycogen debranching enzyme). However, while EC 3.2.1.33 removes single glucose residues linked by 1,6-α-linkage, and thus requires the additional activity of 4-α-glucanotransferase (EC 2.4.1.25) to act on limit dextrins formed by glycogen phosphorylase (EC 2.4.1.1), this enzyme removes maltotriose and maltotetraose chains that are attached by 1,6-α-linkage to the limit dextrin main chain, generating a debranched limit dextrin without a need for another enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jeanningros, R., Creuzet-Sigal, N., Frixon, C. and Cattaneo, J. Purification and properties of a debranching enzyme from Escherichia coli. Biochim. Biophys. Acta 438 (1976) 186–199. [DOI] [PMID: 779849]
2.  Dauvillee, D., Kinderf, I.S., Li, Z., Kosar-Hashemi, B., Samuel, M.S., Rampling, L., Ball, S. and Morell, M.K. Role of the Escherichia coli glgX gene in glycogen metabolism. J. Bacteriol. 187 (2005) 1465–1473. [DOI] [PMID: 15687211]
3.  Song, H.N., Jung, T.Y., Park, J.T., Park, B.C., Myung, P.K., Boos, W., Woo, E.J. and Park, K.H. Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX. Proteins 78 (2010) 1847–1855. [DOI] [PMID: 20187119]
[EC 3.2.1.196 created 2016]
 
 
EC 3.2.1.197     
Accepted name: β-1,2-mannosidase
Reaction: β-D-mannopyranosyl-(1→2)-β-D-mannopyranosyl-(1→2)-D-mannopyranose + H2O = β-D-mannopyranosyl-(1→2)-D-mannopyranose + α-D-mannopyranose
Systematic name: β-1,2-D-mannoside mannohydrolase
Comments: The enzyme, characterized from multiple bacterial species, catalyses the hydrolysis of terminal, non-reducing D-mannose residues from β-1,2-mannotriose and β-1,2-mannobiose. The mechanism involves anomeric inversion, resulting in the release of α-D-mannopyranose. Activity with β-1,2-mannotriose or higher oligosaccharides is higher than that with β-1,2-mannobiose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cuskin, F., Basle, A., Ladeveze, S., Day, A.M., Gilbert, H.J., Davies, G.J., Potocki-Veronese, G. and Lowe, E.C. The GH130 family of mannoside phosphorylases contains glycoside hydrolases that target β-1,2-mannosidic linkages in Candida mannan. J. Biol. Chem. 290 (2015) 25023–25033. [DOI] [PMID: 26286752]
2.  Nihira, T., Chiku, K., Suzuki, E., Nishimoto, M., Fushinobu, S., Kitaoka, M., Ohtsubo, K. and Nakai, H. An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans. FEBS Lett. 589 (2015) 3604–3610. [DOI] [PMID: 26476324]
[EC 3.2.1.197 created 2016]
 
 
EC 3.2.1.198     
Accepted name: α-mannan endo-1,2-α-mannanase
Reaction: Hydrolysis of the terminal α-D-mannosyl-(1→3)-α-D-mannose disaccharide from α-D-mannosyl-(1→3)-α-D-mannosyl-(1→2)-α-D-mannosyl-(1→2)-α-D-mannosyl side chains in fungal cell wall α-mannans.
Systematic name: α-mannan 1,2-[α-D-mannosyl-(1→3)-α-D-mannose] hydrolase
Comments: The enzyme, characterized from the gut bacteria Bacteroides thetaiotaomicron and Bacteroides xylanisolvens, can also catalyse the reaction of EC 3.2.1.130, glycoprotein endo-α-1,2-mannosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hakki, Z., Thompson, A.J., Bellmaine, S., Speciale, G., Davies, G.J. and Williams, S.J. Structural and kinetic dissection of the endo-α-1,2-mannanase activity of bacterial GH99 glycoside hydrolases from Bacteroides spp. Chemistry 21 (2015) 1966–1977. [DOI] [PMID: 25487964]
2.  Cuskin, F., Lowe, E.C., Temple, M.J., Zhu, Y., Cameron, E.A., Pudlo, N.A., Porter, N.T., Urs, K., Thompson, A.J., Cartmell, A., Rogowski, A., Hamilton, B.S., Chen, R., Tolbert, T.J., Piens, K., Bracke, D., Vervecken, W., Hakki, Z., Speciale, G., Munoz-Munoz, J.L., Day, A., Pena, M.J., McLean, R., Suits, M.D., Boraston, A.B., Atherly, T., Ziemer, C.J., Williams, S.J., Davies, G.J., Abbott, D.W., Martens, E.C. and Gilbert, H.J. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517 (2015) 165–169. [DOI] [PMID: 25567280]
[EC 3.2.1.198 created 2016]
 
 
EC 3.2.1.199     
Accepted name: sulfoquinovosidase
Reaction: a 6-sulfo-α-D-quinovosyl diacylglycerol + H2O = 6-sulfo-α-D-quinovose + a 1,2-diacylglycerol
Glossary: quinovose = 6-deoxy-D-glucopyranose
Other name(s): yihQ (gene name); 6-sulfo-α-D-quinovosyl diacylglycerol 6-sulfo-D-quinovohydrolase
Systematic name: 6-sulfo-α-D-quinovosyl diacylglycerol 6-sulfo-D-quinovohydrolase (configuration-retaining)
Comments: The enzyme, characterized from the bacteria Escherichia coli and Pseudomonas putida, hydrolyses terminal non-reducing α-sulfoquinovoside residues in α-sulfoquinovosyl diacylglycerides and α-sulfoquinovosyl glycerol using a retaining mechanism. The enzyme belongs to the glycosyl hydrolase GH31 family.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shibuya, I. and Benson, A. A. Hydrolysis of α-sulphoquinovosides by β-galactosidase. Nature 192 (1961) 1186–1187. [DOI]
2.  Speciale, G., Jin, Y., Davies, G.J., Williams, S.J. and Goddard-Borger, E.D. YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat. Chem. Biol. 12 (2016) 215–217. [DOI] [PMID: 26878550]
[EC 3.2.1.199 created 2016]
 
 
EC 3.2.1.200     
Accepted name: exo-chitinase (non-reducing end)
Reaction: Hydrolysis of N,N′-diacetylchitobiose from the non-reducing end of chitin and chitodextrins.
Other name(s): chiB (gene name)
Systematic name: (1→4)-2-acetamido-2-deoxy-β-D-glucan diacetylchitobiohydrolase (non-reducing end)
Comments: The enzyme hydrolyses the second glycosidic (1→4) linkage from non-reducing ends of chitin and chitodextrin molecules, liberating N,N′-diacetylchitobiose disaccharides. cf. EC 3.2.1.201, exo-chitinase (reducing end).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Tanaka, T., Fukui, T. and Imanaka, T. Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 276 (2001) 35629–35635. [DOI] [PMID: 11468293]
2.  Hult, E.L., Katouno, F., Uchiyama, T., Watanabe, T. and Sugiyama, J. Molecular directionality in crystalline β-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem. J. 388 (2005) 851–856. [DOI] [PMID: 15717865]
3.  Ohnuma, T., Numata, T., Osawa, T., Mizuhara, M., Lampela, O., Juffer, A.H., Skriver, K. and Fukamizo, T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 234 (2011) 123–137. [DOI] [PMID: 21390509]
4.  Gutierrez-Roman, M.I., Dunn, M.F., Tinoco-Valencia, R., Holguin-Melendez, F., Huerta-Palacios, G. and Guillen-Navarro, K. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). World J Microbiol Biotechnol 30 (2014) 33–42. [DOI] [PMID: 23824666]
[EC 3.2.1.200 created 2017]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald