The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 5.3.3.8     
Accepted name: Δ32-enoyl-CoA isomerase
Reaction: (1) a (3Z)-alk-3-enoyl-CoA = a (2E)-alk-2-enoyl-CoA
(2) a (3E)-alk-3-enoyl-CoA = a (2E)-alk-2-enoyl-CoA
For diagram of Benzoyl-CoA catabolism, click here
Other name(s): ECI (gene name); dodecenoyl-CoA isomerase; dodecenoyl-CoA Δ-isomerase; Δ3-cis2-trans-enoyl-CoA isomerase; acetylene-allene isomerase; dodecenoyl-CoA Δ3-cis2-trans-isomerase; dodecenoyl-CoA (3Z)-(2E)-isomerase
Systematic name: (3Z/3E)-alk-3-enoyl-CoA (2E)-isomerase
Comments: The enzyme participates in the β-oxidation of fatty acids with double bonds at an odd position. Processing of these substrates via the β-oxidation system results in intermediates with a cis- or trans-double bond at position C3, which cannot be processed further by the regular enzymes of the β-oxidation system. This enzyme isomerizes the bond to a trans bond at position C2, which can be processed further. The reaction rate is ten times higher for the (3Z) isomers than for (3E) isomers. The enzyme can also catalyse the isomerization of 3-acetylenic fatty acyl thioesters to 2,3-dienoyl fatty acyl thioesters.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 62213-29-0
References:
1.  Stoffel, W., Ditzer, R. and Caesar, H. Der Stoffwechsel der ungesättigten Fettsäuren. III. Zur β-Oxydation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an Δ3cis-Enoyl-CoA-Verbindungen. Hoppe-Seyler's Z. Physiol. Chem. 339 (1964) 167–181. [PMID: 5830064]
2.  Stoffel, W. and Ecker, W. Δ3-cis,-Δ2-trans-Enoyl-CoA isomerase from rat liver mitochondria. Methods Enzymol. 14 (1969) 99–105.
3.  Stoffel, W. and Grol, M. Purification and properties of 3-cis-2-trans-enoyl-CoA isomerase (dodecenoyl-CoA Δ-isomerase) from rat liver mitochondria. Hoppe-Seyler's Z. Physiol. Chem. 359 (1978) 1777–1782. [PMID: 738702]
4.  Miesowicz, F.M. and Bloch, K. Purification of hog liver isomerase. Mechanism of isomerization of 3-alkenyl and 3-alkynyl thioesters. J. Biol. Chem. 254 (1979) 5868–5877. [PMID: 376522]
5.  Engeland, K. and Kindl, H. Purification and characterization of a plant peroxisomal Δ23-enoyl-CoA isomerase acting on 3-cis-enoyl-CoA and 3-trans-enoyl-CoA. Eur. J. Biochem. 196 (1991) 699–705. [DOI] [PMID: 2013292]
6.  Geisbrecht, B.V., Zhang, D., Schulz, H. and Gould, S.J. Characterization of PECI, a novel monofunctional Δ3, Δ2-enoyl-CoA isomerase of mammalian peroxisomes. J. Biol. Chem. 274 (1999) 21797–21803. [DOI] [PMID: 10419495]
7.  Zhang, D., Yu, W., Geisbrecht, B.V., Gould, S.J., Sprecher, H. and Schulz, H. Functional characterization of Δ32-enoyl-CoA isomerases from rat liver. J. Biol. Chem. 277 (2002) 9127–9132. [DOI] [PMID: 11781327]
8.  Goepfert, S., Vidoudez, C., Tellgren-Roth, C., Delessert, S., Hiltunen, J.K. and Poirier, Y. Peroxisomal Δ32-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes. Plant J. 56 (2008) 728–742. [DOI] [PMID: 18657232]
[EC 5.3.3.8 created 1978, modified 1980, modified 2018]
 
 


Data © 2001–2018 IUBMB
Web site © 2005–2018 Andrew McDonald