The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 3.2.1.166     
Accepted name: heparanase
Reaction: endohydrolysis of (1→4)-β-D-glycosidic bonds of heparan sulfate chains in heparan sulfate proteoglycan
Other name(s): Hpa1 heparanase; Hpa1; heparanase 1; heparanase-1; C1A heparanase; HPSE
Systematic name: heparan sulfate N-sulfo-D-glucosamine endoglucanase
Comments: Heparanase cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group [2]. Heparanase-1 cuts macromolecular heparin into fragments of 5000–20000 Da [5]. The enzyme cleaves the heparan sulfate glycosaminoglycans from proteoglycan core proteins and degrades them to small oligosaccharides. Inside cells, the enzyme is important for the normal catabolism of heparan sulfate proteoglycans, generating glycosaminoglycan fragments that are then transported to lysosomes and completely degraded. When secreted, heparanase degrades basement membrane heparan sulfate glycosaminoglycans at sites of injury or inflammation, allowing extravasion of immune cells into nonvascular spaces and releasing factors that regulate cell proliferation and angiogenesis [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bame, K.J. Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology 11 (2001) 91R–98R. [PMID: 11445547]
2.  Peterson, S.B. and Liu, J. Unraveling the specificity of heparanase utilizing synthetic substrates. J. Biol. Chem. 285 (2010) 14504–14513. [PMID: 20181948]
3.  Pikas, D.S., Li, J.P., Vlodavsky, I. and Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273 (1998) 18770–18777. [PMID: 9668050]
4.  Okada, Y., Yamada, S., Toyoshima, M., Dong, J., Nakajima, M. and Sugahara, K. Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. J. Biol. Chem. 277 (2002) 42488–42495. [PMID: 12213822]
5.  Vreys, V. and David, G. Mammalian heparanase: what is the message. J. Cell. Mol. Med. 11 (2007) 427–452. [PMID: 17635638]
6.  Gong, F., Jemth, P., Escobar Galvis, M.L., Vlodavsky, I., Horner, A., Lindahl, U. and Li, J.P. Processing of macromolecular heparin by heparanase. J. Biol. Chem. 278 (2003) 35152–35158. [PMID: 12837765]
7.  Toyoshima, M. and Nakajima, M. Human heparanase. Purification, characterization, cloning, and expression. J. Biol. Chem. 274 (1999) 24153–24160. [PMID: 10446189]
8.  Miao, H.Q., Navarro, E., Patel, S., Sargent, D., Koo, H., Wan, H., Plata, A., Zhou, Q., Ludwig, D., Bohlen, P. and Kussie, P. Cloning, expression, and purification of mouse heparanase. Protein Expr. Purif. 26 (2002) 425–431. [PMID: 12460766]
9.  Hammond, E., Li, C.P. and Ferro, V. Development of a colorimetric assay for heparanase activity suitable for kinetic analysis and inhibitor screening. Anal. Biochem. 396 (2010) 112–116. [PMID: 19748475]
[EC 3.2.1.166 created 2010]
 
 


Data © 2001–2016 IUBMB
Web site © 2005–2016 Andrew McDonald