The Enzyme Database

Displaying entries 51-100 of 109.

<< Previous | Next >>    printer_iconPrintable version

EC 2.4.1.339     
Accepted name: β-1,2-mannobiose phosphorylase
Reaction: β-D-mannopyranosyl-(1→2)-D-mannopyranose + phosphate = D-mannopyranose + α-D-mannose 1-phosphate
Systematic name: β-D-mannopyranosyl-(1→2)-D-mannopyranose:phosphate α-D-mannosyltransferase
Comments: The enzyme, originally characterized from the thermophilic anaerobic bacterium Thermoanaerobacter sp. X514, catalyses a reversible reaction. cf. EC 2.4.1.340, 1,2-β-oligomannan phosphorylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Chiku, K., Nihira, T., Suzuki, E., Nishimoto, M., Kitaoka, M., Ohtsubo, K. and Nakai, H. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. PLoS One 9:e114882 (2014). [DOI] [PMID: 25500577]
2.  Tsuda, T., Nihira, T., Chiku, K., Suzuki, E., Arakawa, T., Nishimoto, M., Kitaoka, M., Nakai, H. and Fushinobu, S. Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. FEBS Lett. 589 (2015) 3816–3821. [DOI] [PMID: 26632508]
[EC 2.4.1.339 created 2016]
 
 
EC 2.4.1.340     
Accepted name: 1,2-β-oligomannan phosphorylase
Reaction: [(1→2)-β-D-mannosyl]n + phosphate = [(1→2)-β-D-mannosyl]n-1 + α-D-mannose 1-phosphate
Systematic name: (1→2)-β-D-mannan:phosphate β-D-mannosyl transferase (configuration-inverting)
Comments: The enzyme, originally characterized from the thermophilic anaerobic bacterium Thermoanaerobacter sp. X514, catalyses a reversible reaction. In the synthetic direction it produces oligosaccharides with a degree of polymerization (DP) of 3, 4 and 5. The phosphorolysis reaction proceeds to completion, although activity is highest when the substrate has at least three residues. cf. EC 2.4.1.339, β-1,2-mannobiose phosphorylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chiku, K., Nihira, T., Suzuki, E., Nishimoto, M., Kitaoka, M., Ohtsubo, K. and Nakai, H. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. PLoS One 9:e114882 (2014). [DOI] [PMID: 25500577]
[EC 2.4.1.340 created 2016]
 
 
EC 2.4.1.341     
Accepted name: α-1,2-colitosyltransferase
Reaction: GDP-β-L-colitose + β-D-galactopyranosyl-(1→3)-N-acetyl-D-glucosamine = GDP + α-L-colitosyl-(1→2)-β-D-galactosyl-(1→3)-N-acetyl-D-glucosamine
Glossary: β-D-galactopyranosyl-(1→3)-N-acetyl-D-glucosamine = lacto-N-biose
Other name(s): wbgN (gene name)
Systematic name: GDP-β-L-colitose:β-D-galactopyranosyl-(1→3)-N-acetyl-D-glucosamine L-colitosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the bacterium Escherichia coli O55:H7, participates in the biosynthesis of an O-antigen. The reaction involves anomeric inversion, and does not require any metal ions. The enzyme is highly specific towards the acceptor, exclusively recognizing lacto-N-biose, but can accept GDP-L-fucose as the donor with almost the same activity as with GDP-β-L-colitose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wu, Z., Zhao, G., Li, T., Qu, J., Guan, W., Wang, J., Ma, C., Li, X., Zhao, W., Wang, P.G. and Li, L. Biochemical characterization of an α1,2-colitosyltransferase from Escherichia coli O55:H7. Glycobiology (2015) . [DOI] [PMID: 26703456]
[EC 2.4.1.341 created 2016]
 
 
EC 2.4.1.342     
Accepted name: α-maltose-1-phosphate synthase
Reaction: ADP-α-D-glucose + α-D-glucose-1-phosphate = ADP + α-maltose-1-phosphate
Glossary: maltose = α-D-glucopyranosyl-(1→4)-D-glucose
Other name(s): glgM (gene name)
Systematic name: ADP-α-D-glucose:α-D-glucose-1-phosphate 4-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme, found in Mycobacteria, can also use UDP-α-D-glucose with much lower catalytic efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Koliwer-Brandl, H., Syson, K., van de Weerd, R., Chandra, G., Appelmelk, B., Alber, M., Ioerger, T.R., Jacobs, W.R., Jr., Geurtsen, J., Bornemann, S. and Kalscheuer, R. Metabolic network for the biosynthesis of intra- and extracellular α-glucans required for virulence of Mycobacterium tuberculosis. PLoS Pathog. 12 (2016) e1005768. [DOI] [PMID: 27513637]
[EC 2.4.1.342 created 2016]
 
 
EC 2.4.1.343     
Accepted name: UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol α-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-Gal-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): wclR (gene name)
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-galactosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the the biosynthesis of the O-antigen repeating unit of Escherichia coli O3. Requires a divalent metal ion (Mn2+, Mg2+ or Fe2+). cf. EC 2.4.1.303, UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol β-1,3-galactosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chen, C., Liu, B., Xu, Y., Utkina, N., Zhou, D., Danilov, L., Torgov, V., Veselovsky, V. and Feng, L. Biochemical characterization of the novel α-1, 3-galactosyltransferase WclR from Escherichia coli O3. Carbohydr. Res. 430 (2016) 36–43. [DOI] [PMID: 27196310]
[EC 2.4.1.343 created 2017]
 
 
EC 2.4.1.344     
Accepted name: type 2 galactoside α-(1,2)-fucosyltransferase
Reaction: GDP-β-L-fucose + β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R = GDP + α-L-fucosyl-(1→2)-β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R
Other name(s): blood group H α-2-fucosyltransferase (ambiguous); guanosine diphosphofucose-galactoside 2-L-fucosyltransferase (ambiguous); α-(1→2)-L-fucosyltransferase (ambiguous); α-2-fucosyltransferase (ambiguous); α-2-L-fucosyltransferase (ambiguous); blood-group substance H-dependent fucosyltransferase (ambiguous); guanosine diphosphofucose-glycoprotein 2-α-fucosyltransferase (ambiguous); guanosine diphosphofucose-lactose fucosyltransferase; GDP fucose-lactose fucosyltransferase; guanosine diphospho-L-fucose-lactose fucosyltransferase; guanosine diphosphofucose-β-D-galactosyl-α-2-L-fucosyltransferase (ambiguous); guanosine diphosphofucose-galactosylacetylglucosaminylgalactosylglucosylceramide α-L-fucosyltransferase (ambiguous); guanosine diphosphofucose-glycoprotein 2-α-L-fucosyltransferase (ambiguous); H-gene-encoded β-galactoside α(1→2)fucosyltransferase; β-galactoside α(1→2)fucosyltransferase (ambiguous); GDP-L-fucose:lactose fucosyltransferase; GDP-β-L-fucose:β-D-galactosyl-R 2-α-L-fucosyltransferase (ambiguous); FUT1 (gene name); FUT2 (gene name)
Systematic name: GDP-β-L-fucose:β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R α-(1,2)-L-fucosyltransferase (configuration-inverting)
Comments: The enzyme acts on a glycoconjugates where R (see reaction) is a glycoprotein or glycosphingolipid. The recognized moiety of the substrate is known as a type 2 histo-blood group antigen precursor disaccharide, and the action of the enzyme produces an H type 2 antigen. Humans possess two enzymes able to catalyse this reaction, encoded by the FUT1 and FUT2 genes (also known as the H and Secretor genes, respectively), but only FUT1 is expressed in red blood cells. cf. EC 2.4.1.69, type 1 galactoside α-(1,2)-fucosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Basu, S., Basu, M. and Chien, J.L. Enzymatic synthesis of a blood group H-related glycosphingolipid by an α-fucosyltransferase from bovine spleen. J. Biol. Chem. 250 (1975) 2956–2962. [PMID: 804484]
2.  Grollman, A.P. GDP-L-fucose:lactose fucosyltransferase from mammary gland. Methods Enzymol. 8 (1966) 351–353.
3.  Ernst, L.K., Rajan, V.P., Larsen, R.D., Ruff, M.M. and Lowe, J.B. Stable expression of blood group H determinants and GDP-L-fucose: β-D-galactoside 2-α-L-fucosyltransferase in mouse cells after transfection with human DNA. J. Biol. Chem. 264 (1989) 3436–3447. [PMID: 2464598]
4.  Larsen, R.D., Ernst, L.K., Nair, R.P. and Lowe, J.B. Molecular cloning, sequence, and expression of a human GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc. Natl. Acad. Sci. USA 87 (1990) 6674–6678. [DOI] [PMID: 2118655]
[EC 2.4.1.344 created 2017]
 
 
EC 2.4.1.345     
Accepted name: phosphatidyl-myo-inositol α-mannosyltransferase
Reaction: GDP-α-D-mannose + 1-phosphatidyl-1D-myo-inositol = GDP + 2-O-(α-D-mannosyl)-1-phosphatidyl-1D-myo-inositol
Glossary: 1-phosphatidyl-1D-myo-inositol = PtdIns
Other name(s): mannosyltransferase PimA; PimA; guanosine diphosphomannose-phosphatidyl-inositol α-mannosyltransferase (ambiguous)
Systematic name: GDP-α-D-mannose:1-phosphatidyl-1D-myo-inositol 2-α-D-mannosyltransferase (configuration-retaining)
Comments: Requires Mg2+. The enzyme, found in Corynebacteriales, is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kordulakova, J., Gilleron, M., Mikusova, K., Puzo, G., Brennan, P.J., Gicquel, B. and Jackson, M. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J. Biol. Chem. 277 (2002) 31335–31344. [DOI] [PMID: 12068013]
2.  Gu, X., Chen, M., Wang, Q., Zhang, M., Wang, B. and Wang, H. Expression and purification of a functionally active recombinant GDP-mannosyltransferase (PimA) from Mycobacterium tuberculosis H37Rv. Protein Expr. Purif. 42 (2005) 47–53. [DOI] [PMID: 15939292]
3.  Giganti, D., Albesa-Jove, D., Urresti, S., Rodrigo-Unzueta, A., Martinez, M.A., Comino, N., Barilone, N., Bellinzoni, M., Chenal, A., Guerin, M.E. and Alzari, P.M. Secondary structure reshuffling modulates glycosyltransferase function at the membrane. Nat. Chem. Biol. 11 (2015) 16–18. [DOI] [PMID: 25402770]
4.  Rodrigo-Unzueta, A., Martinez, M.A., Comino, N., Alzari, P.M., Chenal, A. and Guerin, M.E. Molecular basis of membrane association by the phosphatidylinositol mannosyltransferase PimA enzyme from Mycobacteria. J. Biol. Chem. 291 (2016) 13955–13963. [DOI] [PMID: 27189944]
[EC 2.4.1.345 created 2017]
 
 
EC 2.4.1.346     
Accepted name: phosphatidyl-myo-inositol dimannoside synthase
Reaction: (1) GDP-α-D-mannose + 2-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol = GDP + 2,6-di-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol
(2) GDP-α-D-mannose + 2-O-(6-O-acyl-α-D-mannosyl)-1-phosphatidyl-1D-myo-inositol = GDP + 2-O-(6-O-acyl-α-D-mannosyl)-6-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol
Glossary: 1-phosphatidyl-1D-myo-inositol = PtdIns
Other name(s): mannosyltransferase PimB; PimB; guanosine diphosphomannose-phosphatidyl-inositol α-mannosyltransferase (ambiguous)
Systematic name: GDP-α-D-mannose:2-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol 6-α-D-mannosyltransferase (configuration-retaining)
Comments: Requires Mg2+. The enzyme, found in Corynebacteriales, is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Guerin, M.E., Kaur, D., Somashekar, B.S., Gibbs, S., Gest, P., Chatterjee, D., Brennan, P.J. and Jackson, M. New insights into the early steps of phosphatidylinositol mannoside biosynthesis in mycobacteria: PimB′ is an essential enzyme of Mycobacterium smegmatis. J. Biol. Chem. 284 (2009) 25687–25696. [DOI] [PMID: 19638342]
2.  Mishra, A.K., Batt, S., Krumbach, K., Eggeling, L. and Besra, G.S. Characterization of the Corynebacterium glutamicum Δ pimB′ Δ mgtA double deletion mutant and the role of Mycobacterium tuberculosis orthologues Rv2188c and Rv0557 in glycolipid biosynthesis. J. Bacteriol. 191 (2009) 4465–4472. [DOI] [PMID: 19395496]
3.  Batt, S.M., Jabeen, T., Mishra, A.K., Veerapen, N., Krumbach, K., Eggeling, L., Besra, G.S. and Futterer, K. Acceptor substrate discrimination in phosphatidyl-myo-inositol mannoside synthesis: structural and mutational analysis of mannosyltransferase Corynebacterium glutamicum PimB′. J. Biol. Chem. 285 (2010) 37741–37752. [DOI] [PMID: 20843801]
[EC 2.4.1.346 created 2017]
 
 
EC 2.4.1.347     
Accepted name: α,α-trehalose-phosphate synthase (ADP-forming)
Reaction: ADP-α-D-glucose + D-glucose 6-phosphate = ADP + α,α-trehalose 6-phosphate
Other name(s): otsA (gene name); ADP-glucose—glucose-phosphate glucosyltransferase
Systematic name: ADP-α-D-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme has been reported from the yeast Saccharomyces cerevisiae and from mycobacteria. The enzyme from Mycobacterium tuberculosis can also use UDP-α-D-glucose, but the activity with ADP-α-D-glucose, which is considered the main substrate in vivo, is higher.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-07-3
References:
1.  Ferreira, J.C., Thevelein, J.M., Hohmann, S., Paschoalin, V.M., Trugo, L.C. and Panek, A.D. Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim. Biophys. Acta 1335 (1997) 40–50. [DOI] [PMID: 9133641]
2.  Pan, Y.T., Carroll, J.D. and Elbein, A.D. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur. J. Biochem. 269 (2002) 6091–6100. [DOI] [PMID: 12473104]
3.  Asencion Diez, M.D., Demonte, A.M., Syson, K., Arias, D.G., Gorelik, A., Guerrero, S.A., Bornemann, S. and Iglesias, A.A. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim. Biophys. Acta 1850 (2015) 13–21. [DOI] [PMID: 25277548]
[EC 2.4.1.347 created 2017]
 
 
EC 2.4.1.348     
Accepted name: N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase
Reaction: GDP-α-D-mannose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = GDP + α-D-mannosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdC
Systematic name: GDP-α-D-mannose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the biosynthesis of the linker region of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotypes O8, O9 and O9a.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Greenfield, L.K., Richards, M.R., Li, J., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. J. Biol. Chem. 287 (2012) 35078–35091. [DOI] [PMID: 22875852]
[EC 2.4.1.348 created 2017]
 
 
EC 2.4.1.349     
Accepted name: mannosyl-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase
Reaction: 2 GDP-α-D-mannose + α-D-mannosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = 2 GDP + α-D-mannosyl-(1→3)-α-D-mannosyl-(1→3)-α-D-mannosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdB
Systematic name: GDP-α-D-mannose:α-D-mannosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the biosynthesis of the linker region of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotypes O8, O9 and O9a. It has no activity with N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol (cf. EC 2.4.1.348, N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Greenfield, L.K., Richards, M.R., Li, J., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. J. Biol. Chem. 287 (2012) 35078–35091. [DOI] [PMID: 22875852]
[EC 2.4.1.349 created 2017]
 
 
EC 2.4.1.350     
Accepted name: mogroside IE synthase
Reaction: UDP-α-D-glucose + mogrol = mogroside IE + UDP
Glossary: mogrol = (23R)-cucurbit-5-ene-3β,11α,23,25-tetraol
Other name(s): UGT74AC1; mogrol C-3 hydroxyl glycosyltransferase
Systematic name: UDP-α-D-glucose:mogrol 3-O-glucosyltransferase
Comments: Isolated from the plant Siraitia grosvenorii (monk fruit).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Dai, L., Liu, C., Zhu, Y., Zhang, J., Men, Y., Zeng, Y. and Sun, Y. Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 56 (2015) 1172–1182. [DOI] [PMID: 25759326]
[EC 2.4.1.350 created 2017]
 
 
EC 2.4.1.351     
Accepted name: rhamnogalacturonan I rhamnosyltransferase
Reaction: UDP-β-L-rhamnose + α-D-galacturonosyl-[(1→2)-α-L-rhamnosyl-(1→4)-α-D-galacturonosyl]n = UDP + [(1→2)-α-L-rhamnosyl-(1→4)-α-D-galacturonosyl]n+1
Other name(s): RRT; RG I rhamnosyltransferase
Systematic name: UDP-β-L-rhamnose:rhamnogalacturonan I 4-rhamnosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from Vigna angularis (azuki beans), participates in the biosynthesis of rhamnogalacturonan type I. It does not require any metal ions, and prefers substrates with a degree of polymerization larger than 7.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Uehara, Y., Tamura, S., Maki, Y., Yagyu, K., Mizoguchi, T., Tamiaki, H., Imai, T., Ishii, T., Ohashi, T., Fujiyama, K. and Ishimizu, T. Biochemical characterization of rhamnosyltransferase involved in biosynthesis of pectic rhamnogalacturonan I in plant cell wall. Biochem. Biophys. Res. Commun. 486 (2017) 130–136. [DOI] [PMID: 28283389]
[EC 2.4.1.351 created 2018]
 
 
EC 2.4.1.352     
Accepted name: glucosylglycerate phosphorylase
Reaction: 2-O-(α-D-glucopyranosyl)-D-glycerate + phosphate = α-D-glucopyranose 1-phosphate + D-glycerate
Systematic name: 2-O-(α-D-glucopyranosyl)-D-glycerate:phosphate α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme has been characterized from the bacterium Meiothermus silvanus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Franceus, J., Pinel, D. and Desmet, T. Glucosylglycerate phosphorylase, an enzyme with novel specificity involved in compatible solute metabolism. Appl. Environ. Microbiol. 83 (2017) . [DOI] [PMID: 28754708]
[EC 2.4.1.352 created 2018]
 
 
EC 2.4.1.353     
Accepted name: sordaricin 6-deoxyaltrosyltransferase
Reaction: GDP-6-deoxy-α-D-altrose + sordaricin = 4′-O-demethylsordarin + GDP
For diagram of sordarin biosynthesis, click here
Glossary: sordaricin = (1R,3aR,4S,4aR,7R,7aR,8aR)-4-formyl-8a-(hydroxymethyl)-7-methyl-3-(propan-2-yl)-1,3a,4,4a,5,6,7,7a,8,8-decahydro-1,4-methanocyclopenta[f]indene-3a-carboxylic acid
Other name(s): SdnJ
Systematic name: GDP-6-deoxy-α-D-altrose:sordaricin 6-deoxy-D-altrosyltransferase
Comments: The enzyme, isolated from the fungus Sordaria araneosa, is involved in the biosynthesis of the glycoside antibiotic sordarin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kudo, F., Matsuura, Y., Hayashi, T., Fukushima, M. and Eguchi, T. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J. Antibiot. (Tokyo) 69 (2016) 541–548. [DOI] [PMID: 27072286]
[EC 2.4.1.353 created 2018]
 
 
EC 2.4.1.354     
Accepted name: (R)-mandelonitrile β-glucosyltransferase
Reaction: UDP-α-D-glucose + (R)-mandelonitrile = UDP + (R)-prunasin
Glossary: (R)-mandelonitrile = (2R)-hydroxy(phenyl)acetonitrile
(R)-prunasin = (2R)-(β-D-glucosyloxy)(phenyl)acetonitrile
Other name(s): UGT85A19 (gene name)
Systematic name: UDP-α-D-glucose:(R)-mandelonitrile β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from Prunus dulcis (almond), is involved in the biosynthesis of the cyanogenic glycosides (R)-prunasin and (R)-amygdalin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Franks, T. K., Yadollahi, A., Wirthensohn, M. G., Guerin, J. R., Kaiser, B. N., Sedgley, M. and Ford, C. M. A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels. Funct. Plant Biol. 35 (2008) 236–246.
[EC 2.4.1.354 created 2018]
 
 
EC 2.4.1.355     
Accepted name: poly(ribitol-phosphate) β-N-acetylglucosaminyltransferase
Reaction: n UDP-N-acetyl-α-D-glucosamine + 4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-(2-N-acetyl-β-D-glucosaminyl-D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarS
Systematic name: UDP-N-acetyl-α-D-glucosamine:4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of poly(ribitol-phosphate) teichoic acids in the cell wall of the bacterium Staphylococcus aureus. This enzyme adds an N-acetyl-β-D-glucosamine to the OH group at the 2 position of the ribitol phosphate units. cf. EC 2.4.1.70 [poly(ribitol-phosphate) α-N-acetylglucosaminyltransferase].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nathenson, S. G., Strominger, J. L. Enzymatic synthesis of N-acetylglucosaminylribitol linkages in teichoic acid from Staphylococcus aureus, strain Copenhagen. J. Biol. Chem. 238 (1963) 3161–3169. [PMID: 14085356]
2.  Brown, S., Xia, G., Luhachack, L.G., Campbell, J., Meredith, T.C., Chen, C., Winstel, V., Gekeler, C., Irazoqui, J.E., Peschel, A. and Walker, S. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl. Acad. Sci. USA 109 (2012) 18909–18914. [DOI] [PMID: 23027967]
3.  Sobhanifar, S., Worrall, L.J., King, D.T., Wasney, G.A., Baumann, L., Gale, R.T., Nosella, M., Brown, E.D., Withers, S.G. and Strynadka, N.C. Structure and mechanism of Staphylococcus aureus TarS, the wall teichoic acid β-glycosyltransferase involved in methicillin resistance. PLoS Pathog. 12:e1006067 (2016). [DOI] [PMID: 27973583]
[EC 2.4.1.355 created 2018]
 
 
EC 2.4.1.356     
Accepted name: glucosyl-dolichyl phosphate glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + an archaeal dolichyl α-D-glucosyl phosphate = UDP + an archaeal dolichyl β-D-glucuronosyl-(1→4)-α-D-glucosyl phosphate
Other name(s): aglG (gene name)
Systematic name: UDP-α-D-glucuronate:dolichyl phosphate glucuronosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the halophilic archaeon Haloferax volcanii, participates in the protein N-glycosylation pathway. Dolichol used by archaea is different from that used by eukaryotes. It is much shorter (C55-C60) and is α,ω-saturated. However, in vitro the enzyme was also able to act on a substrate with an unsaturated end.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yurist-Doutsch, S., Abu-Qarn, M., Battaglia, F., Morris, H.R., Hitchen, P.G., Dell, A. and Eichler, J. aglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol. Microbiol. 69 (2008) 1234–1245. [DOI] [PMID: 18631242]
2.  Elharar, Y., Podilapu, A.R., Guan, Z., Kulkarni, S.S. and Eichler, J. Assembling glycan-charged dolichol phosphates: chemoenzymatic synthesis of a Haloferax volcanii N-glycosylation pathway intermediate. Bioconjugate Chem. 28 (2017) 2461–2470. [DOI] [PMID: 28809486]
[EC 2.4.1.356 created 2018]
 
 
EC 2.4.1.357     
Accepted name: phlorizin synthase
Reaction: UDP-α-D-glucose + phloretin = UDP + phlorizin
For diagram of phloretin biosynthesis, click here
Glossary: phloretin = 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one
phlorizin = 3-(4-hydroxyphenyl)-1-[2-(β-D-glucopyranosyloxy)-4,6-dihydroxyphenyl]propan-1-one
Other name(s): MdPGT1: P2’GT
Systematic name: UDP-α-D-glucose:phloretin 2′-O-D-glucosyltransferase
Comments: Isolated from Malus X domestica (apple). Phlorizin inhibits sodium-linked glucose transporters. It gives the characteristic flavour of apples and cider.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jugdé, H., Nguy, D., Moller, I., Cooney, J.M. and Atkinson, R.G. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS J. 275 (2008) 3804–3814. [DOI] [PMID: 18573104]
2.  Yahyaa, M., Davidovich-Rikanati, R., Eyal, Y., Sheachter, A., Marzouk, S., Lewinsohn, E. and Ibdah, M. Identification and characterization of UDP-glucose:Phloretin 4′-O-glycosyltransferase from Malus x domestica Borkh. Phytochemistry 130 (2016) 47–55. [DOI] [PMID: 27316677]
[EC 2.4.1.357 created 2018]
 
 
EC 2.4.1.358     
Accepted name: acylphloroglucinol glucosyltransferase
Reaction: UDP-α-D-glucose + 2-acylphloroglucinol = UDP + 2-acylphloroglucinol 1-O-β-D-glucoside
Glossary: phlorisobutyrophenone = 2-methyl-1-(2,4,6-trihydroxyphenyl)propan-1-one
phlorisovalerophenone = 3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one
Other name(s): UGT71K3
Systematic name: UDP-α-D-glucose:2-acylphloroglucinol 1-O-β-glucosyltransferase
Comments: Isolated from strawberries (Fragaria X ananassa). Acts best on phloroisovalerophenone and phlorobutyrophenone but will also glycosylate many other phenolic compounds. A minor product of the reaction is the 5-O-β-D-glucoside.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Song, C., Zhao, S., Hong, X., Liu, J., Schulenburg, K. and Schwab, W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria x ananassa). Plant J. 85 (2016) 730–742. [PMID: 26859691]
[EC 2.4.1.358 created 2018]
 
 
EC 2.4.1.359     
Accepted name: glucosylglycerol phosphorylase (configuration-retaining)
Reaction: 2-O-α-D-glucopyranosyl-glycerol + phosphate = α-D-glucose 1-phosphate + glycerol
Other name(s): 2-O-α-D-glucosylglycerol phosphorylase (retaining)
Systematic name: 2-O-α-D-glucopyranosyl-glycerol:phosphate α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme, characterized from the halotolerant bacterium Marinobacter adhaerens, is likely responsible for degradation of the compatible solute 2-O-α-D-glucopyranosyl-glycerol when the environmental salt concentration decreases. cf. EC 2.4.1.332, 1,2-α-glucosylglycerol phosphorylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Franceus, J., Decuyper, L., D'hooghe, M. and Desmet, T. Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Appl. Microbiol. Biotechnol. (2018) . [PMID: 29470619]
[EC 2.4.1.359 created 2018]
 
 
EC 2.4.1.360     
Accepted name: 2-hydroxyflavanone C-glucosyltransferase
Reaction: UDP-α-D-glucose + a 2′-hydroxy-β-oxodihydrochalcone = UDP + a 3′-(β-D-glucopyranosyl)-2′-hydroxy-β-oxodihydrochalcone
Glossary: 2′-hydroxy-β-oxodihydrochalcone = 1-(2-hydroxyphenyl)-3-phenypropan-1,3-dione
3′-(β-D-glucopyranosyl)-2′-hydroxy-β-oxodihydrochalcone = 1-(3-(β-D-glucopyranosyl)-2-hydroxyphenyl)-3-phenylpropan-1,3-dione
Other name(s): OsCGT
Systematic name: UDP-α-D-glucose:2′-hydroxy-β-oxodihydrochalcone C6/8-β-D-glucosyltransferase
Comments: The enzyme has been characterized in Oryza sativa (rice), various Citrus spp., Glycine max (soybean), and Fagopyrum esculentum (buckwheat). Flavanone substrates require a 2-hydroxy group. The meta-stable flavanone substrates such as 2-hydroxynaringenin exist in an equilibrium with open forms such as 1-(4-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione, which are the actual substrates for the glucosyl-transfer reaction (see EC 1.14.14.162, flavanone 2-hydroxylase). The enzyme can also act on dihydrochalcones. The enzymes from citrus plants can catalyse a second C-glycosylation reaction at position 5.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Brazier-Hicks, M., Evans, K.M., Gershater, M.C., Puschmann, H., Steel, P.G. and Edwards, R. The C-glycosylation of flavonoids in cereals. J. Biol. Chem. 284 (2009) 17926–17934. [PMID: 19411659]
2.  Nagatomo, Y., Usui, S., Ito, T., Kato, A., Shimosaka, M. and Taguchi, G. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J. 80 (2014) 437–448. [PMID: 25142187]
3.  Hirade, Y., Kotoku, N., Terasaka, K., Saijo-Hamano, Y., Fukumoto, A. and Mizukami, H. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). FEBS Lett. 589 (2015) 1778–1786. [PMID: 25979175]
4.  Ito, T., Fujimoto, S., Suito, F., Shimosaka, M. and Taguchi, G. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. Plant J. 91 (2017) 187–198. [DOI] [PMID: 28370711]
[EC 2.4.1.360 created 2018]
 
 
EC 2.4.1.361     
Accepted name: GDP-mannose:di-myo-inositol-1,3′-phosphate β-1,2-mannosyltransferase
Reaction: 2 GDP-α-D-mannose + bis(myo-inositol) 1,3′-phosphate = 2 GDP + 2-O-(β-D-mannosyl-(1→2)-β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate (overall reaction)
(1a) GDP-α-D-mannose + bis(myo-inositol) 1,3′-phosphate = GDP + 2-O-(β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate
(1b) GDP-α-D-mannose + 2-O-(β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate = GDP + 2-O-(β-D-mannosyl-(1→2)-β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate
Other name(s): MDIP synthase
Systematic name: GDP-α-D-mannose:bis(myo-inositol)-1,3′-phosphate 2-β-D-mannosyltransferase
Comments: The enzyme from the hyperthermophilic bacterium Thermotoga maritima is involved in the synthesis of the solutes 2-O-(β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate and 2-O-(β-D-mannosyl-(1→2)-β-D-mannosyl)-bis(myo-inositol) 1,3′-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rodrigues, M.V., Borges, N., Almeida, C.P., Lamosa, P. and Santos, H. A unique β-1,2-mannosyltransferase of Thermotoga maritima that uses di-myo-inositol phosphate as the mannosyl acceptor. J. Bacteriol. 191 (2009) 6105–6115. [PMID: 19648237]
[EC 2.4.1.361 created 2019]
 
 
EC 2.4.1.362     
Accepted name: α-(1→3) branching sucrase
Reaction: sucrose + a (1→6)-α-D-glucan = D-fructose + a (1→6)-α-D-glucan containing a (1→3)-α-D-glucose branch
Other name(s): branching sucrase A; BRS-A; brsA (gene name)
Systematic name: sucrose:(1→6)-α-D-glucan 3-α-D-[(1→3)-α-D-glucosyl]-transferase
Comments: The enzyme from Leuconostoc spp. is responsible for producing α-(1→3) branches in α-(1→6) glucans by transferring the glucose residue from fructose to a 3-hydroxyl group of a glucan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vuillemin, M., Claverie, M., Brison, Y., Severac, E., Bondy, P., Morel, S., Monsan, P., Moulis, C. and Remaud-Simeon, M. Characterization of the first α-(1→3) branching sucrases of the GH70 family. J. Biol. Chem. 291 (2016) 7687–7702. [PMID: 26763236]
2.  Moulis, C., Andre, I. and Remaud-Simeon, M. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell. Mol. Life Sci. 73 (2016) 2661–2679. [PMID: 27141938]
[EC 2.4.1.362 created 2019]
 
 
EC 2.4.1.363     
Accepted name: ginsenoside 20-O-glucosyltransferase
Reaction: UDP-α-D-glucose + (20S)-protopanaxadiol = UDP + ginsenoside C-K
Glossary: (20S)-protopanaxadiol = (3β,12β)-dammar-24-ene-3,12,20-triol
ginsenoside C-K = (3β,12β)-3,12-dihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGT71A27 (gene name)
Systematic name: UDP-α-D-glucose:(20S)-protopanaxadiol 20-O-glucosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the free C20(S)-OH group of dammarane derivative substrates, including protopanaxatriol, dammarenediol II, (20S)-ginsenoside Rh2, and (20S)-ginsenoside Rg3. It does not act on the 20R epimer of protopanaxadiol, or on ginsenosides that are glucosylated at the C-6 position, such as ginsenoside Rh1 or ginsenoside Rg2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yan, X., Fan, Y., Wei, W., Wang, P., Liu, Q., Wei, Y., Zhang, L., Zhao, G., Yue, J. and Zhou, Z. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res. 24 (2014) 770–773. [PMID: 24603359]
2.  Wei, W., Wang, P., Wei, Y., Liu, Q., Yang, C., Zhao, G., Yue, J., Yan, X. and Zhou, Z. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol. Plant 8 (2015) 1412–1424. [PMID: 26032089]
[EC 2.4.1.363 created 2019]
 
 
EC 2.4.1.364     
Accepted name: protopanaxadiol-type ginsenoside 3-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (20S)-protopanaxadiol = UDP + (20S)-ginsenoside Rh2
(2) UDP-α-D-glucose + ginsenoside C-K = UDP + ginsenoside F2
Glossary: (20S)-protopanaxadiol = (3β,12β)-dammar-24-ene-3,12,20-triol
ginsenoside C-K = (3β,12β)-3,12-dihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGT74AE2 (gene name)
Systematic name: UDP-α-D-glucose:protopanaxadiol-type ginsenoside 3-O-glucosyltransferase (configuration-retaining)
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the free C-3-OH group of (20S)-protopanaxadiol and ginsenoside C-K.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jung, S.C., Kim, W., Park, S.C., Jeong, J., Park, M.K., Lim, S., Lee, Y., Im, W.T., Lee, J.H., Choi, G. and Kim, S.C. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol. 55 (2014) 2177–2188. [PMID: 25320211]
[EC 2.4.1.364 created 2019]
 
 
EC 2.4.1.365     
Accepted name: protopanaxadiol-type ginsenoside-3-O-glucoside 2′′-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (20S)-ginsenoside Rh2 = UDP + (20S)-ginsenoside Rg3
(2) UDP-α-D-glucose + ginsenoside F2 = UDP + ginsenoside Rd
Glossary: (20S)-ginsenoside Rh2 = (3β,12β)-12,20-dihydroxydammar-24-en-3-yl β-D-glucopyranoside
ginsenoside F2 = (3β,12β)-20-(β-D-glucopyranosyloxy)-12-hydroxydammar-24-en-3-yl β-D-glucopyranoside
Other name(s): UGT94Q2 (gene name)
Systematic name: UDP-α-D-glucose:3-O-glucosyl-protopanaxadiol-type ginsenoside 2′′-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the 2′′ position of the glucose moiety in the protopanaxadiol-type ginsenoside-3-O-glucosides (20S)-ginsenoside Rh2 and ginsenoside F2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jung, S.C., Kim, W., Park, S.C., Jeong, J., Park, M.K., Lim, S., Lee, Y., Im, W.T., Lee, J.H., Choi, G. and Kim, S.C. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol. 55 (2014) 2177–2188. [PMID: 25320211]
[EC 2.4.1.365 created 2019]
 
 
EC 2.4.1.366     
Accepted name: ginsenoside F1 6-O-glucosyltransferase
Reaction: UDP-α-D-glucose + ginsenoside F1 = UDP + (20S)-ginsenoside Rg1
Glossary: ginsenoside F1 = 3β,6α,12β-trihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGTPg101 (gene name)
Systematic name: UDP-α-D-glucose:ginsenoside F1 6-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, glucosylates the C-6 position of ginsenoside F1. The enzyme also glucosylates the C-20 position of protopanaxatriol, which forms ginsenoside F1 (cf. EC 2.4.1.363, ginsenoside 20-O-glucosyltransferase). However, unlike EC 2.4.1.367, ginsenoside 6-O-glucosyltransferase, it is not able to glucosylate the C-6 position of protopanaxatriol when position C-20 is not glucosylated.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wei, W., Wang, P., Wei, Y., Liu, Q., Yang, C., Zhao, G., Yue, J., Yan, X. and Zhou, Z. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol. Plant 8 (2015) 1412–1424. [PMID: 26032089]
[EC 2.4.1.366 created 2019]
 
 
EC 2.4.1.367     
Accepted name: ginsenoside 6-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + protopanaxatriol = UDP + ginsenoside Rh1
(2) UDP-α-D-glucose + ginsenoside F1 = UDP + (20S)-ginsenoside Rg1
Glossary: protopanaxatriol = (3β,6α,12β)-dammar-24-ene-3,6,12,20-tetrol
ginsenoside F1 = (3β,6α,12β)-trihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGTPg100 (gene name)
Systematic name: UDP-α-D-glucose:ginsenoside 6-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, glucosylates the C-6 position of protopanaxatriol and ginsenoside F1.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wei, W., Wang, P., Wei, Y., Liu, Q., Yang, C., Zhao, G., Yue, J., Yan, X. and Zhou, Z. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol. Plant 8 (2015) 1412–1424. [PMID: 26032089]
[EC 2.4.1.367 created 2019]
 
 
EC 2.4.1.368     
Accepted name: oleanolate 3-O-glucosyltransferase
Reaction: UDP-α-D-glucose + oleanolate = UDP + oleanolate 3-O-β-D-glucoside
Glossary: oleanolate = 3β-hydroxyolean-12-en-28-oate
Other name(s): UGT73C10 (gene name); UGT73C11 (gene name)
Systematic name: UDP-α-D-glucose:oleanolate 3-O-glucosyltransferase
Comments: The enzyme has been characterized from the saponin-producing crucifer plant Barbarea vulgaris.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Augustin, J.M., Drok, S., Shinoda, T., Sanmiya, K., Nielsen, J.K., Khakimov, B., Olsen, C.E., Hansen, E.H., Kuzina, V., Ekstrom, C.T., Hauser, T. and Bak, S. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol. 160 (2012) 1881–1895. [PMID: 23027665]
[EC 2.4.1.368 created 2019]
 
 
EC 2.4.1.369     
Accepted name: enterobactin C-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + enterobactin = UDP + monoglucosyl-enterobactin
(2) UDP-α-D-glucose + monoglucosyl-enterobactin = UDP + diglucosyl-enterobactin
(3) UDP-α-D-glucose + diglucosyl-enterobactin = UDP + triglucosyl-enterobactin
Glossary: enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-3→1(3)-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
triglucosyl-enterobactin = N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = tri-C-glucosyl-enterobactin = salmochelin TGE
Other name(s): iroB (gene name)
Systematic name: UDP-α-D-glucose:enterobactin 5′-C-β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme, found in pathogenic strains of the bacteria Escherichia coli and Salmonella enterica, catalyses the transfer of glucosyl groups to C-5 of one, two, or three of the 2,3-hydroxybenzoyl units of the siderophore enterobactin, forming C-glucosylated derivatives known as salmochelins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fischbach, M.A., Lin, H., Liu, D.R. and Walsh, C.T. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl. Acad. Sci. USA 102 (2005) 571–576. [PMID: 15598734]
[EC 2.4.1.369 created 2019]
 
 
EC 2.4.1.370     
Accepted name: inositol phosphorylceramide mannosyltransferase
Reaction: GDP-α-D-mannose + a (4R)-4-hydroxy-N-[(2R)-2-hydroxy-very-long-chain-acyl]-1-O-[(1D-myo-inositol-1-O-yl)hydroxyphosphoryl]sphinganine = a (4R)-4-hydroxy-N-[(2R)-2-hydroxy-very-long-chain-acyl]-1-O-{[6-O-(α-D-mannosyl)-1D-myo-inositol-1-O-yl]hydroxyphosphoryl}sphinganine + GDP
Glossary: a (4R)-4-hydroxy-N-[(2R)-2-hydroxy-very-long-chain-acyl]-1-O-[(1D-myo-inositol-1-O-yl)hydroxyphosphoryl]sphinganine = a very-long-chain inositol phospho-α hydroxyphytoceramide = IPC
a (4R)-4-hydroxy-N-[(2R)-2-hydroxy-very-long-chain-acyl]-1-O-{[6-O-(α-D-mannosyl)-1D-myo-inositol-1-O-yl]hydroxyphosphoryl}sphinganine = a very-long-chain mannosylinositol phospho-α-hydroxyphytoceramide = MIPC
Other name(s): SUR1 (gene name); CSH1 (gene name)
Systematic name: GDP-α-D-mannose:(4R)-4-hydroxy-N-[(2R)-2-hydroxy-very-long-chain-acyl]-1-O-[(1D-myo-inositol-1-O-yl)hydroxyphosphoryl]sphinganine mannosyltransferase (configuration-retaining)
Comments: The simplest complex sphingolipid of yeast, inositol-phospho-α-hydroxyphytoceramide (IPC), is usually mannosylated to yield mannosyl-inositol-phospho-α hydroxyphytoceramide (MIPC). The enzyme is located in the Golgi apparatus, and utilizes GDP-mannose as the mannosyl group donor. It consists of a catalytic subunit (SUR1 or CSH1) and a regulatory subunit (CSG2).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Beeler, T.J., Fu, D., Rivera, J., Monaghan, E., Gable, K. and Dunn, T.M. SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide. Mol. Gen. Genet. 255 (1997) 570–579. [DOI] [PMID: 9323360]
2.  Dean, N., Zhang, Y.B. and Poster, J.B. The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 272 (1997) 31908–31914. [DOI] [PMID: 9395539]
3.  Uemura, S., Kihara, A., Inokuchi, J. and Igarashi, Y. Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p. J. Biol. Chem. 278 (2003) 45049–45055. [DOI] [PMID: 12954640]
[EC 2.4.1.370 created 2019]
 
 
EC 2.4.1.371     
Accepted name: polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol 2,3-α-mannosylpolymerase
Reaction: (1) 2 GDP-α-D-mannose + [α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = 2 GDP + α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
(2) 2 GDP-α-D-mannose + α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = 2 GDP + [α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n+1-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdA
Systematic name: GDP-α-D-mannose:α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 2,3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the biosynthesis of polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotype O9a. The enzymes consists of two domains that are responsible for the 1→2 and 1→3 linkages, respectively.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Greenfield, L.K., Richards, M.R., Li, J., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. J. Biol. Chem. 287 (2012) 35078–35091. [DOI] [PMID: 22875852]
2.  Greenfield, L.K., Richards, M.R., Vinogradov, E., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Domain organization of the polymerizing mannosyltransferases involved in synthesis of the Escherichia coli O8 and O9a lipopolysaccharide O-antigens. J. Biol. Chem. 287 (2012) 38135–38149. [PMID: 22989876]
3.  Liston, S.D., Clarke, B.R., Greenfield, L.K., Richards, M.R., Lowary, T.L. and Whitfield, C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J. Biol. Chem. 290 (2015) 1075–1085. [DOI] [PMID: 25422321]
[EC 2.4.1.371 created 2019]
 
 
EC 2.4.1.372     
Accepted name: mutansucrase
Reaction: sucrose + [(1→3)-α-D-glucosyl]n = D-fructose + [(1→3)-α-D-glucosyl]n+1
Other name(s): gtfJ (gene name)
Systematic name: sucrose:(1→3)-α-D-glucan 3-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme extends the glucan chain by an α(1→3) linkage.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Simpson, C.L., Cheetham, N.W., Giffard, P.M. and Jacques, N.A. Four glucosyltransferases, GtfJ, GtfK, GtfL and GtfM, from Streptococcus salivarius ATCC 25975. Microbiology 141 (1995) 1451–1460. [PMID: 7545511]
2.  Puanglek, S., Kimura, S., Enomoto-Rogers, Y., Kabe, T., Yoshida, M., Wada, M. and Iwata, T. In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Sci. Rep. 6:30479 (2016). [PMID: 27469976]
[EC 2.4.1.372 created 2019]
 
 
EC 2.4.1.373     
Accepted name: α-(1→2) branching sucrase
Reaction: sucrose + a (1→6)-α-D-glucan = D-fructose + a (1→6)-α-D-glucan containing a (1→2)-α-D-glucose branch
Systematic name: sucrose:(1→6)-α-D-glucan 2-α-D-glucosyl-transferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme introduces α(1→2) branches into (1→6)-α-D-glucans.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fabre, E., Bozonnet, S., Arcache, A., Willemot, R.M., Vignon, M., Monsan, P. and Remaud-Simeon, M. Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly α-1,2 branched dextran. J. Bacteriol. 187 (2005) 296–303. [PMID: 15601714]
2.  Brison, Y., Laguerre, S., Lefoulon, F., Morel, S., Monties, N., Potocki-Veronese, G., Monsan, P. and Remaud-Simeon, M. Branching pattern of gluco-oligosaccharides and 1.5kDa dextran grafted by the α-1,2 branching sucrase GBD-CD2. Carbohydr. Polym. 94 (2013) 567–576. [PMID: 23544576]
3.  Passerini, D., Vuillemin, M., Ufarte, L., Morel, S., Loux, V., Fontagne-Faucher, C., Monsan, P., Remaud-Simeon, M. and Moulis, C. Inventory of the GH70 enzymes encoded by Leuconostoc citreum NRRL B-1299 - identification of three novel α-transglucosylases. FEBS J. 282 (2015) 2115–2130. [PMID: 25756290]
[EC 2.4.1.373 created 2019]
 
 
EC 2.4.1.374     
Accepted name: β-1,2-mannooligosaccharide synthase
Reaction: GDP-α-D-mannose + [(1→2)-β-D-mannosyl]n = GDP + [(1→2)-β-D-mannosyl]n+1
Other name(s): MTP1 (gene name); MTP2 (gene name)
Systematic name: GDP-α-D-mannose:(1→2)-β-D-mannan mannosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from Leishmania parasites, is involved in synthesis of mannogen, a β-(1→2)-mannan oligosaccharide used by the organisms as a carbohydrate reserve.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sernee, M.F., Ralton, J.E., Nero, T.L., Sobala, L.F., Kloehn, J., Vieira-Lara, M.A., Cobbold, S.A., Stanton, L., Pires, D.EV., Hanssen, E., Males, A., Ward, T., Bastidas, L.M., van der Peet, P.L., Parker, M.W., Ascher, D.B., Williams, S.J., Davies, G.J. and McConville, M.J. A family of dual-activity glycosyltransferase-phosphorylases mediates mannogen turnover and virulence in Leishmania parasites. Cell Host Microbe 26 (2019) 385–399.e9. [PMID: 31513773]
[EC 2.4.1.374 created 2019]
 
 
EC 2.4.1.375     
Accepted name: rhamnogalacturonan I galactosyltransferase
Reaction: Transfer of a β-galactosyl residue in a β-(1→4) linkage from UDP-α-D-galactose to rhamnosyl residues within the rhamnogalacturonan I backbone.
Glossary: rhamnogalacturonan I backbone = [(1→2)-α-L-rhamnosyl-(1→4)-α-D-galacturonosyl]n
Systematic name: UDP-α-D-galactose:[rhamnogalacturonan I]-α-L-rhamnosyl β-1,4-galactosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the plant Vigna angularis (azuki beans), participates in the biosynthesis of rhamnogalacturonan I, one of the components of pectin in plant cell wall. It does not require any metal ions, and prefers substrates with a degree of polymerization larger than 9.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Matsumoto, N., Takenaka, Y., Wachananawat, B., Kajiura, H., Imai, T. and Ishimizu, T. Rhamnogalacturonan I galactosyltransferase: Detection of enzyme activity and its hyperactivation. Plant Physiol. Biochem. 142 (2019) 173–178. [DOI] [PMID: 31299599]
[EC 2.4.1.375 created 2020]
 
 
EC 2.4.1.376     
Accepted name: EGF-domain serine glucosyltransferase
Reaction: UDP-α-D-glucose + [protein with EGF-like domain]-L-serine = UDP + [protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine
Other name(s): POGLUT1 (gene name) (ambiguous); rumi (gene name) (ambiguous)
Systematic name: UDP-α-D-glucose:[protein with EGF-like domain]-L-serine O-β-glucosyltransferase (configuration-inverting)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains. Glycosylation takes place at the serine in the C-X-S-X-P-C motif. The enzyme is bifunctional also being active with UDP-α-xylose as donor (EC 2.4.2.63, EGF-domain serine xylosyltransferase). When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Li, Z., Fischer, M., Satkunarajah, M., Zhou, D., Withers, S.G. and Rini, J.M. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat. Commun. 8:185 (2017). [PMID: 28775322]
[EC 2.4.1.376 created 2020]
 
 
EC 2.4.1.377     
Accepted name: dTDP-Rha:α-D-Gal-diphosphoundecaprenol α-1,3-rhamnosyltransferase
Reaction: dTDP-β-L-rhamnose + α-D-galactosyl-diphospho-ditrans,octacis-undecaprenol = dTDP + α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaN (gene name); rfbN (gene name)
Systematic name: dTDP-β-L-rhamnose:α-D-galactosyl-diphospho-ditrans,octacis-undecaprenol 3-α-rhamnosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from several Salmonella strains, participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B, D and E groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
[EC 2.4.1.377 created 2021]
 
 
EC 2.4.1.378     
Accepted name: GDP-mannose:α-L-Rha-(1→3)-α-D-Gal-PP-Und α-1,4-mannosyltransferase
Reaction: GDP-α-D-mannose + α-L-Rha-(1→3)-α-D-Gal-PP-Und = GDP + α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaU (gene name); rfbU (gene name)
Systematic name: GDP-α-D-mannose:α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 4II-α-rhamnosyltransferase (configuration-retaining)
Comments: The enzyme from Salmonella participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B, and D1 groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
[EC 2.4.1.378 created 2021]
 
 
EC 2.4.1.379     
Accepted name: GDP-Man:α-D-Gal-diphosphoundecaprenol α-1,3-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-galactosyl-diphospho-ditrans-octacis-undecaprenol = GDP + α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaZ (gene name); rfbZ (gene name)
Systematic name: GDP-α-D-mannose:α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.379 created 2021]
 
 
EC 2.4.1.380     
Accepted name: GDP-Man:α-D-Man-(1→3)-α-D-Gal diphosphoundecaprenol α-1,2-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-Man-(1→3)-α-D-Gal-PP-Und = GDP + α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaW (gene name); rfbW (gene name)
Systematic name: GDP-α-D-mannose:α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 2II-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.380 created 2021]
 
 
EC 2.4.1.381     
Accepted name: dTDP-Rha:α-D-Man-(1→3)-α-D-Gal diphosphoundecaprenol α-1,2-rhamnosyltransferase
Reaction: dTDP-β-L-rhamnose + α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = dTDP + α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaQ (gene name); rfbQ (gene name)
Systematic name: dTDP-β-L-rhamnose:α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 2III-α-rhamnosyltransferase (configuration-inverting)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.381 created 2021]
 
 
EC 2.4.1.382     
Accepted name: CDP-abequose:α-L-Rha2OAc-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und α-1,3-abequosyltransferase
Reaction: CDP-α-D-abequose + 2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = CDP + α-D-Abe-(1→3)-2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha2OAc-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = 2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Abe-(1→3)-2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-abequosyl-(1→3)-2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaR (gene name); rfbR (gene name)
Systematic name: CDP-α-D-abequose:2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3IV-α-abequosyltransferase (configuration retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
2.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.382 created 2021]
 
 
EC 2.4.1.383     
Accepted name: GDP-Man:α-L-Rha-(1→3)-α-D-Gal-PP-Und β-1,4-mannosyltransferase
Reaction: GDP-α-D-mannose + α-L-Rha-(1→3)-α-D-Gal-PP-Und = GDP + β-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
β-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = β-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaO (gene name); rfbO (gene name)
Systematic name: GDP-α-D-mannose:α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 4II-β-mannosyltransferase (configuration inverting)
Comments: The enzyme participates in the biosynthesis of the O antigens produced by group E and D2 strains of the pathogenic bacterium Salmonella enterica.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xiang, S.H., Hobbs, M. and Reeves, P.R. Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J. Bacteriol. 176 (1994) 4357–4365. [DOI] [PMID: 8021222]
2.  Zhao, Y., Biggins, J. B. and Thorson, J. S. Acceptor specificity of Salmonella GDP-Man:α-L-Rha-(1→3)-α-D- Gal- PP-Und β(1→4)-mannosyltransferase: A simplified assay based on unnatural acceptors. J. Am. Chem. Soc. 120 (1998) 12986–12987. [DOI]
3.  Zhao, Y. and Thorson, J.S. Chemoenzymatic synthesis of the Salmonella group E1 core trisaccharide using a recombinant β-(1-→4)-mannosyltransferase. Carbohydr. Res. 319 (1999) 184–191. [DOI] [PMID: 10520265]
[EC 2.4.1.383 created 2021]
 
 
EC 2.4.1.384     
Accepted name: NDP-glycosyltransferase
Reaction: an NDP-glycose + an acceptor = a glycosylated acceptor + NDP
Other name(s): yjiC (gene name)
Systematic name: NDP-glycose:acceptor glycosyltransferase
Comments: The enzyme, characterized from the bacterium Bacillus licheniformis DSM-13, is an extremely promiscuous glycosyltransferase. It can accept ADP-, GDP-, CDP-, TDP-, or UDP-activated glycose molecules as donors, and can glycosylate a large number of substrates, catalysing O-, N-, or S-glycosylation. While D-glucose is the primarily reported sugar being transferred, the enzyme has been shown to transfer D-galactose, 2-deoxy-D-glucose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, L-fucose, L-rhamnose, D-glucuronate, and D-viosamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pandey, R.P., Parajuli, P., Koirala, N., Park, J.W. and Sohng, J.K. Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl. Environ. Microbiol. 79 (2013) 6833–6838. [DOI] [PMID: 23974133]
2.  Pandey, R.P., Gurung, R.B., Parajuli, P., Koirala, N., Tuoi le, T. and Sohng, J.K. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393 (2014) 26–31. [DOI] [PMID: 24893262]
3.  Pandey, R.P., Parajuli, P., Shin, J.Y., Lee, J., Lee, S., Hong, Y.S., Park, Y.I., Kim, J.S. and Sohng, J.K. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl. Environ. Microbiol. 80 (2014) 7235–7243. [DOI] [PMID: 25239890]
4.  Parajuli, P., Pandey, R.P., Koirala, N., Yoon, Y.J., Kim, B.G. and Sohng, J.K. Enzymatic synthesis of epothilone A glycosides. AMB Express 4:31 (2014). [DOI] [PMID: 24949266]
5.  Pandey, R.P., Parajuli, P., Gurung, R.B. and Sohng, J.K. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions. Enzyme Microb. Technol. 91 (2016) 26–33. [DOI] [PMID: 27444326]
6.  Bashyal, P., Thapa, S.B., Kim, T.S., Pandey, R.P. and Sohng, J.K. Exploring the nucleophilic N- and S-glycosylation capacity of Bacillus licheniformis YjiC enzyme. J. Microbiol. Biotechnol. 30 (2020) 1092–1096. [DOI] [PMID: 32238768]
[EC 2.4.1.384 created 2021]
 
 
EC 2.4.1.385     
Accepted name: sterol 27-β-glucosyltransferase
Reaction: UDP-α-D-glucose + a 27-hydroxysteroid = UDP + a sterol 27-β-D-glucoside
For diagram of all-cis-polyprenyl diphosphate, click here
Systematic name: UDP-α-D-glucose:sterol 27-O-β-D-glucosyltransferase
Comments: The enzyme, isolated from the plant Withania somnifera (ashwagandha), transfers D-glucose to a β-hydroxyl group present at the C-27 position in sterols/withanolides, provided the substrate possesses a 17α-OH group. Natural substrates are 17α-hydroxywithaferin A, 27β-hydroxywithanone, and 5α,6β,17α,27β-tetrahydroxywithanolide. The enzyme's activity with withanolide A and withanolide U, which lack a 17α-hydroxyl group, suggests it may also be able to glucosylate the C-20 β-OH position, although this has not been verified yet. The enzyme does not glucosylate sterols at the C-3 position.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Madina, B.R., Sharma, L.K., Chaturvedi, P., Sangwan, R.S. and Tuli, R. Purification and characterization of a novel glucosyltransferase specific to 27β-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochim. Biophys. Acta 1774 (2007) 1199–1207. [DOI] [PMID: 17704015]
[EC 2.4.1.385 created 2021]
 
 
EC 2.4.1.386     
Accepted name: GlcNAc-β-1,3-Gal β-1,6-N-acetylglucosaminyltransferase (distally acting)
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-GlcNAc-R = UDP + β-D-GlcNAc-(1→3)-[β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-β-D-GlcNAc-R
Other name(s): UDP-GlcNAc:GlcNAcβ1-3Gal(-R) β1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase; dIGnT; C2GnT2 (misleading)
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminide 6-β-N-acetylglucosaminyltransferase (configuration-inverting)
Comments: Involved in the production of milk oligosaccharides in the lacto-N-triose (LNT) series. Cf. EC 2.4.1.150 (N-acetyllactosaminide β-1,6-N-acetylglucosaminyltransferase; cIGnT) and EC 2.4.1.148 (acetylgalactosaminyl-O-glycosyl-glycoprotein β-1,6-N-acetylglucosaminyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 85638-40-0
References:
1.  Piller, F., Cartron, J.P., Maranduba, A., Veyrieres, A., Leroy, Y. and Fournet, B. Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc β1-3Gal(-R) β1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J. Biol. Chem. 259 (1984) 13385–13390. [PMID: 6490658]
2.  Yeh, J.C., Ong, E. and Fukuda, M. Molecular cloning and expression of a novel β-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274 (1999) 3215–3221. [DOI] [PMID: 9915862]
[EC 2.4.1.386 created 2021]
 
 
EC 2.4.1.387     
Accepted name: isomaltosyltransferase
Reaction: (1) 2 α-isomaltosyl-(1→4)-maltotriose = α-isomaltosyl-(1→3)-α-isomaltosyl-(1→4)-maltotriose + maltotriose
(2) α-isomaltosyl-(1→3)-α-isomaltosyl-(1→4)-maltotriose = cyclobis-(1→6)-α-nigerosyl + maltotriose
Systematic name: α-isomaltosyl-(1→3)-1,4-α-D-glucan:1,4-α-D-glucan 3-α-isomaltosyltransferase
Comments: The enzyme, found in bacteria that produce cyclobis-(1→6)-α-nigerosyl, acts on the products of EC 2.4.1.24, 1,4-α-glucan 6-α;-glucosyltransferase. It catalyses the α-(1→3) transfer of the isomaltosyl moiety of one substrate to another, resulting in α-isomaltosyl-(1→3)-α-isomaltosyl-α-(1→4)-glucan formation. In addition, the enzyme catalyses the intramolecular cyclization of the product, eventually generating cyclobis-(1→6)-α-nigerosyl.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Aga, H., Maruta, K., Yamamoto, T., Kubota, M., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Cloning and sequencing of the genes encoding cyclic tetrasaccharide-synthesizing enzymes from Bacillus globisporus C11. Biosci. Biotechnol. Biochem. 66 (2002) 1057–1068. [DOI] [PMID: 12092816]
2.  Nishimoto, T., Aga, H., Mukai, K., Hashimoto, T., Watanabe, H., Kubota, M., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Purification and characterization of glucosyltransferase and glucanotransferase involved in the production of cyclic tetrasaccharide in Bacillus globisporus C11. Biosci. Biotechnol. Biochem. 66 (2002) 1806–1818. [DOI] [PMID: 12400677]
3.  Kim, Y.K., Kitaoka, M., Hayashi, K., Kim, C.H. and Cote, G.L. A synergistic reaction mechanism of a cycloalternan-forming enzyme and a D-glucosyltransferase for the production of cycloalternan in Bacillus sp. NRRL B-21195. Carbohydr. Res. 338 (2003) 2213–2220. [DOI] [PMID: 14553982]
[EC 2.4.1.387 created 2022]
 
 
EC 2.4.1.388     
Accepted name: glucosylgalactose phosphorylase
Reaction: β-D-glucosyl-(1→4)-D-galactose + phosphate = α-D-glucopyranose 1-phosphate + D-galactopyranose
Other name(s): 4-O-β-D-glucosyl-D-galactose phosphorylase
Systematic name: β-D-glucosyl-(1→4)-D-galactose:phosphate α-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme from the bacterium Paenibacillus polymyxa belongs to glycoside hydrolase family 94. It has a much lower activity with 4-O-β-D-glucosyl-L-arabinose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  De Doncker, M., De Graeve, C., Franceus, J., Beerens, K., Kren, V., Pelantova, H., Vercauteren, R. and Desmet, T. Exploration of GH94 sequence space for enzyme discovery reveals a novel glucosylgalactose phosphorylase specificity. ChemBioChem (2021) . [DOI] [PMID: 34541742]
[EC 2.4.1.388 created 2022]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald