The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.8.3.7     
Accepted name: formylglycine-generating enzyme
Reaction: a [sulfatase]-L-cysteine + O2 + 2 a thiol = a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
Glossary: 3-oxo-L-alanine = formylglycine = Cα-formylglycine = FGly
Other name(s): sulfatase-modifying factor 1; Cα-formylglycine-generating enzyme 1; SUMF1 (gene name)
Systematic name: [sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)
Comments: Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dierks, T., Schmidt, B. and von Figura, K. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94 (1997) 11963–11968. [PMID: 9342345]
2.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [PMID: 9748219]
3.  Preusser-Kunze, A., Mariappan, M., Schmidt, B., Gande, S.L., Mutenda, K., Wenzel, D., von Figura, K. and Dierks, T. Molecular characterization of the human Cα-formylglycine-generating enzyme. J. Biol. Chem. 280 (2005) 14900–14910. [PMID: 15657036]
4.  Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K. and Rudolph, M.G. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc. Natl. Acad. Sci. USA 103 (2006) 81–86. [PMID: 16368756]
5.  Carlson, B.L., Ballister, E.R., Skordalakes, E., King, D.S., Breidenbach, M.A., Gilmore, S.A., Berger, J.M. and Bertozzi, C.R. Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283 (2008) 20117–20125. [PMID: 18390551]
6.  Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Banas, S., de Hart, G.W., Baker, J. and Rabuka, D. Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J. Biol. Chem. 290 (2015) 15730–15745. [PMID: 25931126]
7.  Knop, M., Engi, P., Lemnaru, R. and Seebeck, F.P. In vitro reconstitution of formylglycine-generating enzymes requires copper(I). Chembiochem 16 (2015) 2147–2150. [PMID: 26403223]
8.  Knop, M., Dang, T.Q., Jeschke, G. and Seebeck, F.P. Copper is a cofactor of the formylglycine-generating enzyme. Chembiochem 18 (2017) 161–165. [PMID: 27862795]
9.  Meury, M., Knop, M. and Seebeck, F.P. Structural basis for copper-oxygen mediated C-H bond activation by the formylglycine-generating enzyme. Angew. Chem. Int. Ed. Engl. (2017) . [PMID: 28544744]
[EC 1.8.3.7 created 2014]
 
 


Data © 2001–2017 IUBMB
Web site © 2005–2017 Andrew McDonald