The Enzyme Database

Displaying entries 51-64 of 64.

<< Previous | Next >>    printer_iconPrintable version

EC 1.14.13.239     
Accepted name: carnitine monooxygenase
Reaction: L-carnitine + NAD(P)H + H+ + O2 = (3R)-3-hydroxy-4-oxobutanoate + trimethylamine + NAD(P)+ + H2O
Glossary: (3R)-3-hydroxy-4-oxobutanoate = L-malic semialdehyde
Other name(s): cntAB (gene names); yeaWX (gene names)
Systematic name: L-carnitine,NAD(P)H:oxygen oxidoreductase (trimethylamine-forming)
Comments: The bacterial enzyme is a complex consisting of a reductase and an oxygenase components. The reductase subunit contains a flavin and a plant-type ferredoxin [2Fe-2S] cluster, while the oxygenase subunit is a Rieske-type protein in which a [2Fe-2S] cluster is coordinated by two histidine and two cysteine residues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ditullio, D., Anderson, D., Chen, C.S. and Sih, C.J. L-Carnitine via enzyme-catalyzed oxidative kinetic resolution. Bioorg. Med. Chem. 2 (1994) 415–420. [DOI] [PMID: 8000862]
2.  Zhu, Y., Jameson, E., Crosatti, M., Schafer, H., Rajakumar, K., Bugg, T.D. and Chen, Y. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci. USA 111 (2014) 4268–4273. [DOI] [PMID: 24591617]
3.  Koeth, R.A., Levison, B.S., Culley, M.K., Buffa, J.A., Wang, Z., Gregory, J.C., Org, E., Wu, Y., Li, L., Smith, J.D., Tang, W.H., DiDonato, J.A., Lusis, A.J. and Hazen, S.L. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 20 (2014) 799–812. [DOI] [PMID: 25440057]
[EC 1.14.13.239 created 2017]
 
 
EC 1.14.13.240     
Accepted name: 2-polyprenylphenol 6-hydroxylase
Reaction: 2-(all-trans-polyprenyl)phenol + NADPH + H+ + O2 = 3-(all-trans-polyprenyl)benzene-1,2-diol + NADP+ + H2O
For diagram of ubiquinol biosynthesis, click here
Other name(s): ubiI (gene name); ubiM (gene name)
Systematic name: 2-(all-trans-polyprenyl)phenol,NADPH:oxygen oxidoreductase (6-hydroxylating)
Comments: Contains FAD. The enzyme from the bacterium Escherichia coli (UbiI) catalyses the first hydroxylation during the aerobic biosynthesis of ubiquinone. The enzyme from the bacterium Neisseria meningitidis (UbiM) can also catalyse the two additional hydroxylations that occur in the pathway (cf. EC 1.14.99.60, 3-demethoxyubiquinol 3-hydroxylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hajj Chehade, M., Loiseau, L., Lombard, M., Pecqueur, L., Ismail, A., Smadja, M., Golinelli-Pimpaneau, B., Mellot-Draznieks, C., Hamelin, O., Aussel, L., Kieffer-Jaquinod, S., Labessan, N., Barras, F., Fontecave, M. and Pierrel, F. ubiI, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation. J. Biol. Chem. 288 (2013) 20085–20092. [PMID: 23709220]
2.  Pelosi, L., Ducluzeau, A.L., Loiseau, L., Barras, F., Schneider, D., Junier, I. and Pierrel, F. Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions. mSystems 1 (2016) . [PMID: 27822549]
[EC 1.14.13.240 created 2018]
 
 
EC 1.14.13.241     
Accepted name: 5-pyridoxate monooxygenase
Reaction: 3-hydroxy-4-hydroxymethyl-2-methylpyridine-5-carboxylate + NADPH + H+ + O2 = 2-(acetamidomethylene)-3-(hydroxymethyl)succinate + NADP+
Glossary: 3-hydroxy-4-hydroxymethyl-2-methylpyridine-5-carboxylate = 5-pyridoxate
Other name(s): 5-pyridoxate,NADPH:oxygen oxidoreductase (decyclizing); 5-pyridoxate oxidase (misleading); 5-pyridoxate dioxygenase (incorrect)
Systematic name: 5-pyridoxate,NADPH:oxygen oxidoreductase (ring-opening)
Comments: Contains FAD. The enzyme, characterized from the bacterium Arthrobacter sp. Cr-7, participates in the degradation of pyridoxine (vitamin B6). Although the enzyme was initially thought to be a dioxygenase, oxygen-tracer experiments have suggested that it is a monooxygenase, incorporating only one oxygen atom from molecular oxygen into the product. The second oxygen atom originates from a water molecule, which is regenerated during the reaction and thus does not show up in the reaction equation.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-70-5
References:
1.  Sparrow, L.G., Ho, P.P.K., Sundaram, T.K., Zach, D., Nyns, E.J. and Snell, E.E. The bacterial oxidation of vitamin B6. VII. Purification, properties, and mechanism of action of an oxygenase which cleaves the 3-hydroxypyridine ring. J. Biol. Chem. 244 (1969) 2590–2600. [PMID: 4306031]
2.  Nelson, M.J. and Snell, E.E. Enzymes of vitamin B6 degradation. Purification and properties of 5-pyridoxic-acid oxygenase from Arthrobacter sp. J. Biol. Chem. 261 (1986) 15115–15120. [PMID: 3771566]
3.  Chaiyen, P. Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions. Arch. Biochem. Biophys. 493 (2010) 62–70. [DOI] [PMID: 19728986]
[EC 1.14.13.241 created 2018 (EC 1.14.12.5 created 1972, incorporated 2018)]
 
 
EC 1.14.13.242     
Accepted name: 3-hydroxy-2-methylpyridine-5-carboxylate monooxygenase
Reaction: 3-hydroxy-2-methylpyridine-5-carboxylate + NAD(P)H + H+ + O2 = 2-(acetamidomethylidene)succinate + NAD(P)+
For diagram of pyridoxal catabolism, click here
Other name(s): MHPCO; 3-hydroxy-2-methylpyridine-5-carboxylate,NAD(P)H:oxygen oxidoreductase (decyclizing); methylhydroxypyridinecarboxylate oxidase (misleading); 2-methyl-3-hydroxypyridine 5-carboxylic acid dioxygenase (incorrect); methylhydroxypyridine carboxylate dioxygenase (incorrect); 3-hydroxy-3-methylpyridinecarboxylate dioxygenase [incorrect]; 3-hydroxy-2-methylpyridinecarboxylate dioxygenase (incorrect)
Systematic name: 3-hydroxy-2-methylpyridine-5-carboxylate,NAD(P)H:oxygen oxidoreductase (ring-opening)
Comments: Contains FAD. The enzyme, characterized from the bacteria Pseudomonas sp. MA-1 and Mesorhizobium loti, participates in the degradation of pyridoxine (vitamin B6). Although the enzyme was initially thought to be a dioxygenase, oxygen-tracer experiments have shown that it is a monooxygenase, incorporating only one oxygen atom from molecular oxygen. The second oxygen atom that is incorporated into the product originates from a water molecule, which is regenerated during the reaction and thus does not show up in the reaction equation.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-69-2
References:
1.  Sparrow, L.G., Ho, P.P.K., Sundaram, T.K., Zach, D., Nyns, E.J. and Snell, E.E. The bacterial oxidation of vitamin B6. VII. Purification, properties, and mechanism of action of an oxygenase which cleaves the 3-hydroxypyridine ring. J. Biol. Chem. 244 (1969) 2590–2600. [PMID: 4306031]
2.  Chaiyen, P., Ballou, D.P. and Massey, V. Gene cloning, sequence analysis, and expression of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Proc. Natl. Acad. Sci. USA 94 (1997) 7233–7238. [PMID: 9207074]
3.  Oonanant, W., Sucharitakul, J., Yuvaniyama, J. and Chaiyen, P. Crystallization and preliminary X-ray crystallographic analysis of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase from Pseudomonas sp. MA-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 312–314. [PMID: 16511028]
4.  Yuan, B., Yokochi, N., Yoshikane, Y., Ohnishi, K. and Yagi, T. Molecular cloning, identification and characterization of 2-methyl-3-hydroxypyridine-5-carboxylic-acid-dioxygenase-coding gene from the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. J. Biosci. Bioeng. 102 (2006) 504–510. [PMID: 17270714]
5.  McCulloch, K.M., Mukherjee, T., Begley, T.P. and Ealick, S.E. Structure of the PLP degradative enzyme 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti MAFF303099 and its mechanistic implications. Biochemistry 48 (2009) 4139–4149. [DOI] [PMID: 19317437]
6.  Tian, B., Tu, Y., Strid, A. and Eriksson, L.A. Hydroxylation and ring-opening mechanism of an unusual flavoprotein monooxygenase, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase: a theoretical study. Chemistry 16 (2010) 2557–2566. [DOI] [PMID: 20066695]
7.  Tian, B., Strid, A. and Eriksson, L.A. Catalytic roles of active-site residues in 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase: an ONIOM/DFT study. J. Phys. Chem. B 115 (2011) 1918–1926. [DOI] [PMID: 21291225]
[EC 1.14.13.242 created 2018 (EC 1.14.12.4 created 1972, incorporated 2018)]
 
 
EC 1.14.13.243     
Accepted name: toluene 2-monooxygenase
Reaction: (1) toluene + NADH + H+ + O2 = 2-methylphenol + NAD+ + H2O
(2) 2-methylphenol + NADH + H+ + O2 = 3-methylcatechol + NAD+ + H2O
Other name(s): tomA1/2/3/4/5 (gene names); toluene ortho-monooxygenase
Systematic name: toluene,NADH:oxygen oxidoreductase (2,3-dihydroxylating)
Comments: The enzyme, characterized from the bacterium Burkholderia cepacia, belongs to a class of nonheme, oxygen-dependent diiron enzymes. It contains a hydroxylase component with two binuclear iron centers, an NADH-oxidoreductase component containing FAD and a [2Fe-2S] iron-sulfur cluster, and a third component involved in electron transfer between the hydroxylase and the reductase. The enzyme dihydroxylates its substrate in two sequential hydroxylations, initially forming 2-methylphenol, which is hydroxylated to 3-methylcatechol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Newman, L.M. and Wackett, L.P. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34 (1995) 14066–14076. [PMID: 7578004]
2.  Yeager, C.M., Bottomley, P.J., Arp, D.J. and Hyman, M.R. Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Appl. Environ. Microbiol. 65 (1999) 632–639. [PMID: 9925593]
3.  Canada, K.A., Iwashita, S., Shim, H. and Wood, T.K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J. Bacteriol. 184 (2002) 344–349. [PMID: 11751810]
[EC 1.14.13.243 created 2019]
 
 
EC 1.14.13.244     
Accepted name: phenol 2-monooxygenase (NADH)
Reaction: phenol + NADH + H+ + O2 = catechol + NAD+ + H2O
For diagram of catechol biosynthesis, click here
Other name(s): dmpLMNOP (gene names)
Systematic name: phenol,NADH:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme, characterized from the bacteria Pseudomonas sp. CF600 and Acinetobacter radioresistens, consists of a multisubunit oxygenease component that contains the active site and a dinuclear iron center, a reductase component that contains FAD and one iron-sulfur cluster, and a regulatory component. The reductase component is responsible for transferring electrons from NADH to the dinuclear iron center.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nordlund, I., Powlowski, J. and Shingler, V. Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 172 (1990) 6826–6833. [PMID: 2254258]
2.  Powlowski, J. and Shingler, V. In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 172 (1990) 6834–6840. [PMID: 2254259]
3.  Powlowski, J., Sealy, J., Shingler, V. and Cadieux, E. On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Biol. Chem. 272 (1997) 945–951. [PMID: 8995386]
4.  Qian, H., Edlund, U., Powlowski, J., Shingler, V. and Sethson, I. Solution structure of phenol hydroxylase protein component P2 determined by NMR spectroscopy. Biochemistry 36 (1997) 495–504. [PMID: 9012665]
5.  Cadieux, E., Vrajmasu, V., Achim, C., Powlowski, J. and Munck, E. Biochemical, Mossbauer, and EPR studies of the diiron cluster of phenol hydroxylase from Pseudomonas sp. strain CF 600. Biochemistry 41 (2002) 10680–10691. [PMID: 12186554]
[EC 1.14.13.244 created 2019]
 
 
EC 1.14.13.245     
Accepted name: assimilatory dimethylsulfide S-monooxygenase
Reaction: (1) dimethyl sulfide + NADH + H+ + O2 = dimethyl sulfoxide + NAD+ + H2O
(2) dimethyl sulfoxide + NADH + H+ + O2 = dimethyl sulfone + NAD+ + H2O
For diagram of dimethyl sulfide catabolism, click here
Other name(s): dsoBCDEF (gene names)
Systematic name: dimethyl sulfide,NADH:oxygen oxidoreductase (S-oxidizing)
Comments: The enzyme, studied from the bacterium Acinetobacter sp. strain 20B, is very similar to EC 1.14.13.244, phenol 2-monooxygenase (NADH). It consists of a multisubunit oxygenease component that contains the active site and a dinuclear iron center, a reductase component that contains FAD and one iron-sulfur cluster, and a regulatory component. The three components comprise five different polypeptides. The enzyme catalyses the first two steps of a dimethyl sulfide oxidation pathway in this organism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Horinouchi, M., Kasuga, K., Nojiri, H., Yamane, H. and Omori, T. Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol. Lett. 155 (1997) 99–105. [PMID: 9345770]
2.  Horinouchi, M., Yoshida, T., Nojiri, H., Yamane, H. and Omori, T. Polypeptide requirement of multicomponent monooxygenase DsoABCDEF for dimethyl sulfide oxidizing activity. Biosci. Biotechnol. Biochem. 63 (1999) 1765–1771. [PMID: 26300166]
[EC 1.14.13.245 created 2019]
 
 
EC 1.14.13.246     
Accepted name: 4β-methylsterol monooxygenase
Reaction: a 3β-hydroxy-4,4-dimethylsteroid + 3 NADH + 3 H+ + 3 O2 = a 3β-hydroxy-4α-methylsteroid-4β-carboxylate + 3 NAD+ + 4 H2O (overall reaction)
(1a) a 3β-hydroxy-4,4-dimethylsteroid + NADH + H+ + O2 = a 3β-hydroxy-4β-hydroxymethyl-4α-methylsteroid + NAD+ + H2O
(1b) a 3β-hydroxy-4β-hydroxymethyl-4α-methylsteroid + NADH + H+ + O2 = a 3β-hydroxy-4β-formyl-4α-methylsteroid + NAD+ + 2 H2O
(1c) a 3β-hydroxy-4β-formyl-4α-methylsteroid + NADH + H+ + O2 = a 3β-hydroxy-4α-methylsteroid-4β-carboxylate + NAD+ + H2O
Other name(s): sdmA (gene name)
Systematic name: 3β-hydroxy-4,4-dimethylsteroid,NADH:oxygen oxidoreductase (C-4mβ-hydroxylating)
Comments: Contains a Rieske [2Fe-2S] iron-sulfur cluster. This bacterial enzyme (SdmA) participates in the biosynthesis of bacterial sterols. Together with SdmB it forms an enzyme system that removes one methyl group from the C-4 position of 4,4-dimethylated steroid molecules. SdmA catalyses three successive oxidations of the C-4β methyl group, turning it into a carboxylate group; the second enzyme, SdmB, is a bifunctional enzyme that catalyses two different activities. As EC 1.1.1.417, 3β-hydroxysteroid-4β-carboxylate 3-dehydrogenase (decarboxylating), it catalyses an oxidative decarboxylation that results in reduction of the 3β-hydroxy group at the C-3 carbon to an oxo group. As EC 1.1.1.270, 3β-hydroxysteroid 3-dehydrogenase, it reduces the 3-oxo group back to a 3β-hydroxyl. Unlike the animal/fungal enzyme EC 1.14.18.9, 4α-methylsterol monooxygenase, and the plant enzymes EC 1.14.18.10, plant 4,4-dimethylsterol C-4α-methyl-monooxygenase, and EC 1.14.18.11, plant 4α-monomethylsterol monooxygenase, this enzyme acts preferentially on the 4β-methyl group. Since no epimerization of the remaining C-4α methyl group occurs, the enzyme can only remove one methyl group, leaving a 4α-monomethylated product. Known substrates include 4,4-dimethyl-5α-cholest-8-en-3β-ol and 14-demethyllanosterol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, A.K., Banta, A.B., Wei, J.H., Kiemle, D.J., Feng, J., Giner, J.L. and Welander, P.V. C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proc. Natl. Acad. Sci. USA 115 (2018) 5884–5889. [PMID: 29784781]
[EC 1.14.13.246 created 2019]
 
 
EC 1.14.13.247     
Accepted name: stachydrine N-demethylase
Reaction: L-proline betaine + NAD(P)H + H+ + O2 = N-methyl-L-proline + formaldehyde + NAD(P)+ + H2O
Other name(s): L-proline betaine N-demethylase; stc2 (gene name)
Systematic name: L-proline betaine,NAD(P)H:oxygen oxidoreductase (formaldehyde-forming)
Comments: The enzyme, characterized from the bacterium Sinorhizobium meliloti 1021, consists of three different types of subunits. The catalytic unit contains a Rieske [2Fe-2S] iron-sulfur cluster, and catalyses the monooxygenation of a methyl group. The resulting N-methoxyl group is unstable and decomposes spontaneously to form formaldehyde. The other subunits are involved in the transfer of electrons from NAD(P)H to the catalytic subunit.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Daughtry, K.D., Xiao, Y., Stoner-Ma, D., Cho, E., Orville, A.M., Liu, P. and Allen, K.N. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase. J. Am. Chem. Soc. 134 (2012) 2823–2834. [PMID: 22224443]
2.  Kumar, R., Zhao, S., Vetting, M.W., Wood, B.M., Sakai, A., Cho, K., Solbiati, J., Almo, S.C., Sweedler, J.V., Jacobson, M.P., Gerlt, J.A. and Cronan, J.E. Prediction and biochemical demonstration of a catabolic pathway for the osmoprotectant proline betaine. MBio 5 (2014) e00933. [DOI] [PMID: 24520058]
[EC 1.14.13.247 created 2017]
 
 
EC 1.14.13.248     
Accepted name: L-aspartate N-monooxygenase (nitrosuccinate-forming)
Reaction: L-aspartate + 3 NADPH + 3 H+ + 3 O2 = (2S)- 2-nitrobutanedioate + 3 NADP+ + 4 H2O
(1a) L-aspartate + NADPH + H+ + O2 = N-hydroxy-L-aspartate + NADP+ + H2O
(1b) N-hydroxy-L-aspartate + NADPH + H+ + O2 = N,N-dihydroxy-L-aspartate + NADP+ + H2O
(1c) N,N-dihydroxy-L-aspartate = (2S)-2-nitrosobutanedioate + H2O (spontaneous)
(1d) (2S)-2-nitrosobutanedioate + NADPH + H+ + O2 = (2S)-2-nitrobutanedioate + NADP+ + H2O
Glossary: 2-nitrobutanedioate = nitrosuccinate
Other name(s): creE (gene name)
Systematic name: L-aspartate,NADPH:oxygen oxidoreductase [(2S)-2-nitrobutanedioate-forming]
Comments: The enzyme, found in some Actinobacteria, is involved in a pathway that forms nitrite, which is subsequently used to generate a diazo group in some secondary metabolites. Requires an FAD cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sugai, Y., Katsuyama, Y. and Ohnishi, Y. A nitrous acid biosynthetic pathway for diazo group formation in bacteria. Nat. Chem. Biol. 12 (2016) 73–75. [DOI] [PMID: 26689788]
2.  Hagihara, R., Katsuyama, Y., Sugai, Y., Onaka, H. and Ohnishi, Y. Novel desferrioxamine derivatives synthesized using the secondary metabolism-specific nitrous acid biosynthetic pathway in Streptomyces davawensis. J. Antibiot. (Tokyo) 71 (2018) 911–919. [DOI] [PMID: 30120394]
[EC 1.14.13.248 created 2021]
 
 
EC 1.14.13.249     
Accepted name: 3-amino-4-hydroxybenzoate 2-monooxygenase
Reaction: 3-amino-4-hydroxybenzoate + NADPH + H+ + O2 = 3-amino-2,4-dihydroxybenzoate + NADP+ + H2O
For diagram of cremeomycin biosynthesis, click here
Other name(s): creL (gene name); ptmB3 (gene name); ptnB3 (gene name)
Systematic name: 3-amino-4-hydroxybenzoate,NADPH:oxygen oxidoreductase (2-hydroxylating)
Comments: Requires FAD. The CreL enzyme from the bacterium Streptomyces cremeus participates in the biosynthesis of cremeomycin. The PrmB3 and PtnB3 enzymes from Streptomyces platensis are involved in the biosynthesis of platensimycin and platencin, respectively.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Smanski, M.J., Yu, Z., Casper, J., Lin, S., Peterson, R.M., Chen, Y., Wendt-Pienkowski, E., Rajski, S.R. and Shen, B. Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis. Proc. Natl. Acad. Sci. USA 108 (2011) 13498–13503. [DOI] [PMID: 21825154]
2.  Waldman, A.J., Pechersky, Y., Wang, P., Wang, J.X. and Balskus, E.P. The cremeomycin biosynthetic gene cluster encodes a pathway for diazo formation. Chembiochem 16 (2015) 2172–2175. [DOI] [PMID: 26278892]
3.  Sugai, Y., Katsuyama, Y. and Ohnishi, Y. A nitrous acid biosynthetic pathway for diazo group formation in bacteria. Nat. Chem. Biol. 12 (2016) 73–75. [DOI] [PMID: 26689788]
4.  Dong, L.B., Rudolf, J.D., Kang, D., Wang, N., He, C.Q., Deng, Y., Huang, Y., Houk, K.N., Duan, Y. and Shen, B. Biosynthesis of thiocarboxylic acid-containing natural products. Nat. Commun. 9:2362 (2018). [DOI] [PMID: 29915173]
[EC 1.14.13.249 created 2021]
 
 
EC 1.14.13.250     
Accepted name: nitrosourea synthase
Reaction: Nω-methyl-L-arginine + 2 NADH + 2 H+ + 3 O2 = Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline + 2 NAD+ + 3 H2O (overall reaction)
(1a) Nω-methyl-L-arginine + NADH + H+ + O2 = Nδ-hydroxy-Nω-methyl-L-arginine + NAD+ + H2O
(1b) Nδ-hydroxy-Nω-methyl-L-arginine + NADH + H+ + O2 = Nδ,Nω′-dihydroxy-Nω-methyl-L-arginine + NAD+ + H2O
(1c) Nδ,Nω′-dihydroxy-Nω-methyl-L-arginine + O2 = Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline + H2O
Glossary: Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline = N5-hydroxy-N5-[methyl(nitroso)carbamoyl]-L-ornithine
Other name(s): sznF (gene name); StzF
Systematic name: Nω-methyl-L-arginine,NADH:oxygen oxidoreductase (Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline-forming)
Comments: The enzyme, characterized from the bacterium Streptomyces achromogenes subsp. streptozoticus, catalyses a complex multi-step reaction during the biosynthesis of the glucosamine-nitrosourea antibiotic streptozotocin. The overall reaction is an oxidative rearrangement of the guanidine group of Nω-methyl-L-arginine, generating an N-nitrosourea product. The enzyme hydroxylates its substrate at the Nδ position, followed by a second hydroxylation at the Nω′ position. It then catalyses an oxidative rearrangement to form Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline. This product is unstable, and degrades non-enzymically into nitric oxide and the denitrosated product Nδ-hydroxy-Nω-methyl-L-citrulline. The enzyme contains two active sites, each of which utilizes a different iron-containing cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ng, T.L., Rohac, R., Mitchell, A.J., Boal, A.K. and Balskus, E.P. An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin. Nature 566 (2019) 94–99. [DOI] [PMID: 30728519]
2.  He, H.Y., Henderson, A.C., Du, Y.L. and Ryan, K.S. Two-enzyme pathway links l-arginine to nitric oxide in N-nitroso biosynthesis. J. Am. Chem. Soc. 141 (2019) 4026–4033. [DOI] [PMID: 30763082]
3.  McBride, M.J., Sil, D., Ng, T.L., Crooke, A.M., Kenney, G.E., Tysoe, C.R., Zhang, B., Balskus, E.P., Boal, A.K., Krebs, C. and Bollinger, J.M., Jr. A peroxodiiron(III/III) intermediate mediating both N-hydroxylation steps in biosynthesis of the N-nitrosourea pharmacophore of streptozotocin by the multi-domain metalloenzyme SznF. J. Am. Chem. Soc. 142 (2020) 11818–11828. [DOI] [PMID: 32511919]
4.  McBride, M.J., Pope, S.R., Hu, K., Okafor, C.D., Balskus, E.P., Bollinger, J.M., Jr. and Boal, A.K. Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. Proc. Natl. Acad. Sci. USA 118 (2021) . [DOI] [PMID: 33468680]
5.  Wang, J., Wang, X., Ouyang, Q., Liu, W., Shan, J., Tan, H., Li, X. and Chen, G. N-nitrosation mechanism catalyzed by non-heme iron-containing enzyme SznF involving intramolecular oxidative rearrangement. Inorg. Chem. 60 (2021) 7719–7731. [DOI] [PMID: 34004115]
[EC 1.14.13.250 created 2021]
 
 
EC 1.14.13.251     
Accepted name: glycine betaine monooxygenase
Reaction: glycine betaine + NADH + H+ + O2 = N,N-dimethylglycine + formaldehyde + NAD+ + H2O
Other name(s): glycine betaine dioxygenase (incorrect); bmoAB (gene names); gbcAB (gene names)
Systematic name: glycine betaine,NADH:oxygen oxidoreductase (demethylating)
Comments: The enzyme, characterized from the bacteria Pseudomonas aeruginosa and Chromohalobacter salexigens, is involved in a degradation pathway of glycine betaine. It is composed of two subunits - a ferredoxin reductase component that contains FAD, and a terminal oxygenase component that contains a [2Fe-2S] Rieske-type iron-sulfur cluster and a nonheme iron centre.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wargo, M.J., Szwergold, B.S. and Hogan, D.A. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J. Bacteriol. 190 (2008) 2690–2699. [DOI] [PMID: 17951379]
2.  Li, S., Yu, X. and Beattie, G.A. Glycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis. J. Bacteriol. 195 (2013) 2415–2423. [DOI] [PMID: 23524610]
3.  Shao, Y.H., Guo, L.Z., Zhang, Y.Q., Yu, H., Zhao, B.S., Pang, H.Q. and Lu, W.D. Glycine betaine monooxygenase, an unusual Rieske-type oxygenase system, catalyzes the oxidative N-demethylation of glycine betaine in Chromohalobacter salexigens DSM 3043. Appl. Environ. Microbiol. 84 (2018) . [DOI] [PMID: 29703733]
[EC 1.14.13.251 created 2022]
 
 
EC 1.14.13.252     
Accepted name: putrescine N-hydroxylase
Reaction: putrescine + NADPH + H+ + O2 = N-hydroxyputrescine + NADP+ + H2O
Other name(s): alcA (gene name); pubA (gene name); fbsI (gene name)
Systematic name: putrescine,NADPH:oxygen oxidoreductase (N-hydroxylating)
Comments: Contains FAD. The enzyme, characterized from multiple bacterial species, participates in the biosynthesis of assorted siderophores.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kadi, N., Arbache, S., Song, L., Oves-Costales, D. and Challis, G.L. Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species: PubC catalyzes cyclodimerization of N-hydroxy-N-succinylputrescine. J. Am. Chem. Soc. 130 (2008) 10458–10459. [DOI] [PMID: 18630910]
2.  Li, B., Lowe-Power, T., Kurihara, S., Gonzales, S., Naidoo, J., MacMillan, J.B., Allen, C. and Michael, A.J. Functional identification of putrescine C- and N-hydroxylases. ACS Chem. Biol. 11 (2016) 2782–2789. [DOI] [PMID: 27541336]
3.  Lyons, N.S., Bogner, A.N., Tanner, J.J. and Sobrado, P. Kinetic and structural characterization of a flavin-dependent putrescine N-hydroxylase from Acinetobacter baumannii. Biochemistry 61 (2022) 2607–2620. [DOI] [PMID: 36314559]
[EC 1.14.13.252 created 2024]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald