The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: dTDP-4-dehydro-6-deoxyglucose reductase
Reaction: dTDP-α-D-fucopyranose + NAD(P)+ = dTDP-4-dehydro-6-deoxy-α-D-glucose + NAD(P)H + H+
For diagram of dTDP-6-deoxyhexose biosynthesis, click here
Glossary: dTDP-4-dehydro-6-deoxy-α-D-glucose = dTDP-6-deoxy-α-D-xylo-hexopyranos-4-ulose = thymidine 5′-[3-(6-deoxy--D-xylo-hexopyranosyl-4-ulose) diphosphate]
Other name(s): dTDP-4-keto-6-deoxyglucose reductase; dTDP-D-fucose:NADP+ oxidoreductase; Fcf1; dTDP-6-deoxy-D-xylo-hex-4-ulopyranose reductase
Systematic name: dTDP-α-D-fucopyranose:NAD(P)+ oxidoreductase
Comments: The enzymes from the Gram-negative bacteria Aggregatibacter actinomycetemcomitans and Escherichia coli O52 are involved in activation of fucose for incorporation into capsular polysaccharide O-antigens [1,3]. The enzyme from the Gram-positive bacterium Anoxybacillus tepidamans (Geobacillus tepidamans) is involved in activation of fucose for incorporation into the organism’s S-layer [2]. The enzyme from Escherichia coli O52 has a higher catalytic efficiency with NADH than with NADPH [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Yoshida, Y., Nakano, Y., Nezu, T., Yamashita, Y. and Koga, T. A novel NDP-6-deoxyhexosyl-4-ulose reductase in the pathway for the synthesis of thymidine diphosphate-D-fucose. J. Biol. Chem. 274 (1999) 16933–16939. [PMID: 10358040]
2.  Zayni, S., Steiner, K., Pfostl, A., Hofinger, A., Kosma, P., Schaffer, C. and Messner, P. The dTDP-4-dehydro-6-deoxyglucose reductase encoding fcd gene is part of the surface layer glycoprotein glycosylation gene cluster of Geobacillus tepidamans GS5-97T. Glycobiology 17 (2007) 433–443. [PMID: 17202151]
3.  Wang, Q., Ding, P., Perepelov, A.V., Xu, Y., Wang, Y., Knirel, Y.A., Wang, L. and Feng, L. Characterization of the dTDP-D-fucofuranose biosynthetic pathway in Escherichia coli O52. Mol. Microbiol. 70 (2008) 1358–1367. [PMID: 19019146]
[EC created 2001, modified 2013]

Data © 2001–2016 IUBMB
Web site © 2005–2016 Andrew McDonald