EC |
1.2.1.88 |
Accepted name: |
L-glutamate γ-semialdehyde dehydrogenase |
Reaction: |
L-glutamate 5-semialdehyde + NAD+ + H2O = L-glutamate + NADH + H+ |
|
For diagram of reaction, click here |
Glossary: |
L-glutamate 5-semialdehyde = L-glutamate γ-semialdehyde = (S)-2-amino-5-oxopentanoate |
Other name(s): |
1-pyrroline-5-carboxylate dehydrogenase; Δ1-pyrroline-5-carboxylate dehydrogenase; 1-pyrroline dehydrogenase; pyrroline-5-carboxylate dehydrogenase; pyrroline-5-carboxylic acid dehydrogenase; L-pyrroline-5-carboxylate-NAD+ oxidoreductase; 1-pyrroline-5-carboxylate:NAD+ oxidoreductase; Δ1-pyrroline-5-carboxylic acid dehydrogenase |
Systematic name: |
L-glutamate γ-semialdehyde:NAD+ oxidoreductase |
Comments: |
This enzyme catalyses the irreversible oxidation of glutamate-γ-semialdehyde to glutamate as part of the proline degradation pathway. (S)-1-pyrroline-5-carboxylate, the product of the first enzyme of the pathway (EC 1.5.5.2, proline dehydrogenase) is in spontaneous equilibrium with its tautomer L-glutamate γ-semialdehyde. In many bacterial species, both activities are carried out by a single bifunctional enzyme [3,4].The enzyme can also oxidize other 1-pyrrolines, e.g. 3-hydroxy-1-pyrroline-5-carboxylate is converted into 4-hydroxyglutamate and (R)-1-pyrroline-5-carboxylate is converted into D-glutamate. NADP+ can also act as acceptor, but with lower activity [5]. |
Links to other databases: |
BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB, CAS registry number: 9054-82-4 |
References: |
1. |
Adams, E. and Goldstone, A. Hydroxyproline metabolism. IV. Enzymatic synthesis of γ-hydroxyglutamate from Δ1-pyrroline-3-hydroxy-5-carboxylate. J. Biol. Chem. 235 (1960) 3504–3512. [PMID: 13681370] |
2. |
Strecker, H.J. The interconversion of glutamic acid and proline. III. Δ1-Pyrroline-5-carboxylic acid dehydrogenase. J. Biol. Chem. 235 (1960) 3218–3223. |
3. |
Forlani, G., Scainelli, D. and Nielsen, E. Δ1-Pyrroline-5-carboxylate dehydrogenase from cultured cells of potato (purification and properties). Plant Physiol. 113 (1997) 1413–1418. [PMID: 12223682] |
4. |
Brown, E.D. and Wood, J.M. Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J. Biol. Chem. 267 (1992) 13086–13092. [PMID: 1618807] |
5. |
Inagaki, E., Ohshima, N., Sakamoto, K., Babayeva, N.D., Kato, H., Yokoyama, S. and Tahirov, T.H. New insights into the binding mode of coenzymes: structure of Thermus thermophilus Δ1-pyrroline-5-carboxylate dehydrogenase complexed with NADP+. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63 (2007) 462–465. [DOI] [PMID: 17554163] |
|
[EC 1.2.1.88 created 1972 as EC 1.5.1.12, modified 2008, transferred 2013 to EC 1.2.1.88] |
|
|
|
|