The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: ribitol-5-phosphate 2-dehydrogenase (NADP+)
Reaction: D-ribitol 5-phosphate + NADP+ = D-ribulose 5-phosphate + NADPH + H+
Other name(s): acs1 (gene name); bcs1 (gene name); tarJ (gene name); ribulose-5-phosphate reductase; ribulose-5-P reductase; D-ribulose 5-phosphate reductase
Systematic name: D-ribitol-5-phosphate:NADP+ 2-oxidoreductase
Comments: Requires Zn2+. The enzyme, characterized in bacteria, is specific for NADP. It is part of the synthesis pathway of CDP-ribitol. In Haemophilus influenzae it is part of a multifunctional enzyme also catalysing EC, D-ribitol-5-phosphate cytidylyltransferase. cf. EC, ribitol-5-phosphate 2-dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
1.  Zolli, M., Kobric, D.J. and Brown, E.D. Reduction precedes cytidylyl transfer without substrate channeling in distinct active sites of the bifunctional CDP-ribitol synthase from Haemophilus influenzae. Biochemistry 40 (2001) 5041–5048. [DOI] [PMID: 11305920]
2.  Pereira, M.P. and Brown, E.D. Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry 43 (2004) 11802–11812. [DOI] [PMID: 15362865]
3.  Pereira, M.P., D'Elia, M.A., Troczynska, J. and Brown, E.D. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J. Bacteriol. 190 (2008) 5642–5649. [DOI] [PMID: 18556787]
4.  Baur, S., Marles-Wright, J., Buckenmaier, S., Lewis, R.J. and Vollmer, W. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae. J. Bacteriol. 191 (2009) 1200–1210. [DOI] [PMID: 19074383]
[EC created 2017]

Data © 2001–2023 IUBMB
Web site © 2005–2023 Andrew McDonald