The Enzyme Database

Your query returned 24 entries.    printer_iconPrintable version

EC 1.2.1.8     
Accepted name: betaine-aldehyde dehydrogenase
Reaction: betaine aldehyde + NAD+ + H2O = betaine + NADH + 2 H+
Glossary: betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
betaine aldehyde = N,N,N-trimethyl-2-oxoethylammonium
Other name(s): betaine aldehyde oxidase; BADH; betaine aldehyde dehydrogenase; BetB
Systematic name: betaine-aldehyde:NAD+ oxidoreductase
Comments: In many bacteria, plants and animals, the osmoprotectant betaine is synthesized in two steps: (1) choline to betaine aldehyde and (2) betaine aldehyde to betaine. This enzyme is involved in the second step and appears to be the same in plants, animals and bacteria. In contrast, different enzymes are involved in the first reaction. In plants, this reaction is catalysed by EC 1.14.15.7 (choline monooxygenase), whereas in animals and many bacteria it is catalysed by either membrane-bound EC 1.1.99.1 (choline dehydrogenase) or soluble EC 1.1.3.17 (choline oxidase) [5]. In some bacteria, betaine is synthesized from glycine through the actions of EC 2.1.1.156 (glycine/sarcosine N-methyltransferase) and EC 2.1.1.157 (sarcosine/dimethylglycine N-methyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-90-4
References:
1.  Rothschild, H.A. and Barron, E.S.G. The oxidation of betaine aldehyde by betaine aldehyde dehydrogenase. J. Biol. Chem. 209 (1954) 511–523. [PMID: 13192104]
2.  Livingstone, J.R., Maruo, T., Yoshida, I., Tarui, Y., Hirooka, K., Yamamoto, Y., Tsutui, N. and Hirasawa, E. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. J. Plant Res. 116 (2003) 133–140. [DOI] [PMID: 12736784]
3.  Muñoz-Clares, R.A., González-Segura, L., Mújica-Jiménez, C. and Contreras-Diaz, L. Ligand-induced conformational changes of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa and Amaranthus hypochondriacus L. leaves affecting the reactivity of the catalytic thiol. Chem. Biol. Interact. (2003) 129–137. [DOI] [PMID: 12604197]
4.  Johansson, K., El-Ahmad, M., Ramaswamy, S., Hjelmqvist, L., Jornvall, H. and Eklund, H. Structure of betaine aldehyde dehydrogenase at 2.1 Å resolution. Protein Sci. 7 (1998) 2106–2117. [DOI] [PMID: 9792097]
5.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
[EC 1.2.1.8 created 1961, modified 2005, modified 2011]
 
 
EC 1.4.3.19     
Accepted name: glycine oxidase
Reaction: glycine + H2O + O2 = glyoxylate + NH3 + H2O2 (overall reaction)
(1a) glycine + O2 = 2-iminoacetate + H2O2
(1b) 2-iminoacetate + H2O = glyoxylate + NH3
For diagram of thiamine diphosphate biosynthesis, click here
Systematic name: glycine:oxygen oxidoreductase (deaminating)
Comments: A flavoenzyme containing non-covalently bound FAD. The enzyme from Bacillus subtilis is active with glycine, sarcosine, N-ethylglycine, D-alanine, D-α-aminobutyrate, D-proline, D-pipecolate and N-methyl-D-alanine. It differs from EC 1.4.3.3, D-amino-acid oxidase, due to its activity on sarcosine and D-pipecolate. The intermediate 2-iminoacetate is used directly by EC 2.8.1.10, thiazole synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 39307-16-9
References:
1.  Job, V., Marcone, G.L., Pilone, M.S. and Pollegioni, L. Glycine oxidase from Bacillus subtilis. Characterization of a new flavoprotein. J. Biol. Chem. 277 (2002) 6985–6993. [DOI] [PMID: 11744710]
2.  Nishiya, Y. and Imanaka, T. Purification and characterization of a novel glycine oxidase from Bacillus subtilis. FEBS Lett. 438 (1998) 263–266. [DOI] [PMID: 9827558]
[EC 1.4.3.19 created 2002, modified 2012]
 
 
EC 1.5.3.1     
Accepted name: sarcosine oxidase (formaldehyde-forming)
Reaction: sarcosine + H2O + O2 = glycine + formaldehyde + H2O2
Other name(s): MSOX; monomeric sarcosine oxidase; sarcosine oxidase (ambiguous)
Systematic name: sarcosine:oxygen oxidoreductase (demethylating)
Comments: The enzyme, reported from bacteria and fungi, catalyses the oxidative demethylation of sarcosine. It contains a FAD cofactor bound to an L-cysteine residue. cf. EC 1.5.3.24, sarcosine oxidase (5,10-methylenetetrahydrofolate-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-22-5
References:
1.  Mori, N., Sano, M., Tani, Y. and Yamada, H. Purification and propertie of sarcosine oxidase from Cylindrocarpon didymum M-1. Agric. Biol. Chem. 44 (1980) 1391–1397.
2.  Nishiya, Y. and Imanaka, T. Cloning and sequencing of the sarcosine oxidase gene from Arthrobacter sp. TE1826. J. Ferment. Bioeng. 75 (1993) 239–244. [DOI]
3.  Nishiya, Y. and Imanaka, T. Alteration of substrate specificity and optimum pH of sarcosine oxidase by random and site-directed mutagenesis. Appl. Environ. Microbiol. 60 (1994) 4213–4215. [DOI] [PMID: 16349451]
4.  Trickey, P., Wagner, M.A., Jorns, M.S. and Mathews, F.S. Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 7 (1999) 331–345. [DOI] [PMID: 10368302]
5.  Wagner, M.A., Trickey, P., Chen, Z.W., Mathews, F.S. and Jorns, M.S. Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants. Biochemistry 39 (2000) 8813–8824. [DOI] [PMID: 10913292]
6.  Zhao, G., Bruckner, R.C. and Jorns, M.S. Identification of the oxygen activation site in monomeric sarcosine oxidase: role of Lys265 in catalysis. Biochemistry 47 (2008) 9124–9135. [DOI] [PMID: 18693755]
7.  Jorns, M.S., Chen, Z.W. and Mathews, F.S. Structural characterization of mutations at the oxygen activation site in monomeric sarcosine oxidase. Biochemistry 49 (2010) 3631–3639. [DOI] [PMID: 20353187]
8.  Bucci, A., Yu, T.Q., Vanden-Eijnden, E. and Abrams, C.F. Kinetics of O2 entry and exit in monomeric sarcosine oxidase via Markovian milestoning molecular dynamics. J Chem Theory Comput 12 (2016) 2964–2972. [DOI] [PMID: 27168219]
[EC 1.5.3.1 created 1961, modified 2022]
 
 
EC 1.5.3.10     
Accepted name: dimethylglycine oxidase
Reaction: N,N-dimethylglycine + 5,6,7,8-tetrahydrofolate + O2 = sarcosine + 5,10-methylenetetrahydrofolate + H2O2
Other name(s): dmg (gene name); N,N-dimethylglycine:oxygen oxidoreductase (demethylating)
Systematic name: N,N-dimethylglycine,5,6,7,8-tetrahydrofolate:oxygen oxidoreductase (demethylating,5,10-methylenetetrahydrofolate-forming)
Comments: A flavoprotein (FAD). The enzyme, characterized from the bacterium Arthrobacter globiformis, contains two active sites connected by a large "reaction chamber". An imine intermediate is transferred between the sites, eliminating the production of toxic formaldehyde. In the absence of folate the enzyme does form formaldehyde. Does not oxidize sarcosine. cf. EC 1.5.8.4, dimethylglycine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-30-7
References:
1.  Mori, N., Kawakami, B., Tani, Y. and Yamada, H. Purification and properties of dimethylglycine oxidase from Cylindrocarpon didymum M-1. Agric. Biol. Chem. 44 (1980) 1383–1389.
2.  Meskys, R., Harris, R.J., Casaite, V., Basran, J. and Scrutton, N.S. Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism. Eur. J. Biochem. 268 (2001) 3390–3398. [DOI] [PMID: 11422368]
3.  Basran, J., Bhanji, N., Basran, A., Nietlispach, D., Mistry, S., Meskys, R. and Scrutton, N.S. Mechanistic aspects of the covalent flavoprotein dimethylglycine oxidase of Arthrobacter globiformis studied by stopped-flow spectrophotometry. Biochemistry 41 (2002) 4733–4743. [DOI] [PMID: 11926836]
4.  Leys, D., Basran, J. and Scrutton, N.S. Channelling and formation of ‘active’ formaldehyde in dimethylglycine oxidase. EMBO J. 22 (2003) 4038–4048. [DOI] [PMID: 12912903]
5.  Basran, J., Fullerton, S., Leys, D. and Scrutton, N.S. Mechanism of FAD reduction and role of active site residues His-225 and Tyr-259 in Arthrobacter globiformis dimethylglycine oxidase: analysis of mutant structure and catalytic function. Biochemistry 45 (2006) 11151–11161. [DOI] [PMID: 16964976]
6.  Tralau, T., Lafite, P., Levy, C., Combe, J.P., Scrutton, N.S. and Leys, D. An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J. Biol. Chem. 284 (2009) 17826–17834. [DOI] [PMID: 19369258]
7.  Casaite, V., Poviloniene, S., Meskiene, R., Rutkiene, R. and Meskys, R. Studies of dimethylglycine oxidase isoenzymes in Arthrobacter globiformis cells. Curr. Microbiol. 62 (2011) 1267–1273. [DOI] [PMID: 21188587]
[EC 1.5.3.10 created 1992, modified 2022]
 
 
EC 1.5.3.20     
Accepted name: N-alkylglycine oxidase
Reaction: N-alkylglycine + H2O + O2 = alkylamine + glyoxalate + H2O2
Other name(s): N-carboxymethylalkylamine:oxygen oxidoreductase (decarboxymethylating)
Systematic name: N-alkylglycine:oxygen oxidoreductase (alkylamine-forming)
Comments: Isolated from the mold Cladosporium sp. G-10. Acts on N6-(carboxymethyl)lysine, 6-[(carboxymethy)amino]hexanoic acid, sarcosine and N-ethylglycine. It has negligible action on glycine (cf. EC 1.4.3.19 glycine oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gomi, K. and Horiuchi, T. Purification and characterization of a new enzyme, N-alkylglycine oxidase from Cladosporium sp. G-10. Biochim. Biophys. Acta 1429 (1999) 439–445. [DOI] [PMID: 9989229]
[EC 1.5.3.20 created 2012]
 
 
EC 1.5.3.24     
Accepted name: sarcosine oxidase (5,10-methylenetetrahydrofolate-forming)
Reaction: sarcosine + 5,6,7,8-tetrahydrofolate + O2 = glycine + 5,10-methylenetetrahydrofolate + H2O2
Other name(s): TSOX; sarcosine oxidase (ambigious); heterotetrameric sarcosine oxidase
Systematic name: sarcosine, 5,6,7,8-tetrahydrofolate:O2 oxidoreductase (demethylating,5,10-methylenetetrahydrofolate-forming)
Comments: The enzyme, found in some bacterial species, is composed of four different subunits and two active sites connected by a large "reaction chamber". An imine intermediate is transferred between the sites, eliminating the production of toxic formaldehyde. The enzyme contains three cofactors: noncovalently bound FAD and NAD+, and FMN that is covalently bound to a histidine residue. In the absence of folate the enzyme catalyses the reaction of EC 1.5.3.1, sarcosine oxidase (formaldehyde-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-22-5
References:
1.  Hayashi, S., Nakamura, S. and Suzuki, M. Corynebacterium sarcosine oxidase: a unique enzyme having covalently-bound and noncovalently-bound flavins. Biochem. Biophys. Res. Commun. 96 (1980) 924–930. [DOI] [PMID: 6158947]
2.  Suzuki, M. Purification and some properties of sarcosine oxidase from Corynebacterium sp. U-96. J. Biochem. (Tokyo) 89 (1981) 599–607. [DOI] [PMID: 7240129]
3.  Chlumsky, L.J., Zhang, L., Ramsey, A.J. and Jorns, M.S. Preparation and properties of recombinant corynebacterial sarcosine oxidase: evidence for posttranslational modification during turnover with sarcosine. Biochemistry 32 (1993) 11132–11142. [DOI] [PMID: 7692961]
4.  Chlumsky, L.J., Sturgess, A.W., Nieves, E. and Jorns, M.S. Identification of the covalent flavin attachment site in sarcosine oxidase. Biochemistry 37 (1998) 2089–2095. [DOI] [PMID: 9485355]
5.  Eschenbrenner, M., Chlumsky, L.J., Khanna, P., Strasser, F. and Jorns, M.S. Organization of the multiple coenzymes and subunits and role of the covalent flavin link in the complex heterotetrameric sarcosine oxidase. Biochemistry 40 (2001) 5352–5367. [DOI] [PMID: 11330998]
[EC 1.5.3.24 created 2022]
 
 
EC 1.5.7.3     
Accepted name: N,N-dimethylglycine/sarcosine dehydrogenase (ferredoxin)
Reaction: (1) N,N-dimethylglycine + 2 oxidized ferredoxin + H2O = sarcosine + formaldehyde + 2 reduced ferredoxin + 2 H+
(2) sarcosine + 2 oxidized ferredoxin + H2O = glycine + formaldehyde + 2 reduced ferredoxin + 2 H+
Other name(s): ddhC (gene name); dgcA (gene name)
Systematic name: N,N-dimethylglycine/sarcosine:ferredoxin oxidoreductase (demethylating)
Comments: This bacterial enzyme is involved in degradation of glycine betaine. The enzyme contains non-covalently bound FAD and NAD(P) cofactors, and catalyses the demethylation of both N,N-dimethylglycine and sarcosine, releasing formaldehyde and forming glycine as the final product. The enzyme can utilize both NAD+ and NADP+, but the catalytic efficiency with NAD+ is ~5-fold higher. The native electron acceptor of the enzyme is a membrane-bound clostridial-type ferredoxin, which transfers the electrons to an electron-transfer flavoprotein (ETF).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wargo, M.J., Szwergold, B.S. and Hogan, D.A. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J. Bacteriol. 190 (2008) 2690–2699. [DOI] [PMID: 17951379]
2.  Yang, T., Shao, Y.H., Guo, L.Z., Meng, X.L., Yu, H. and Lu, W.D. Role of N,N-dimethylglycine and its catabolism to sarcosine in Chromohalobacter salexigens DSM 3043. Appl. Environ. Microbiol. 86 (2020) . [DOI] [PMID: 32631860]
[EC 1.5.7.3 created 2022]
 
 
EC 1.5.8.3     
Accepted name: sarcosine dehydrogenase
Reaction: sarcosine + 5,6,7,8-tetrahydrofolate + oxidized [electron-transfer flavoprotein] = glycine + 5,10-methylenetetrahydrofolate + reduced [electron-transfer flavoprotein]
Other name(s): sarcosine N-demethylase; monomethylglycine dehydrogenase; sarcosine:(acceptor) oxidoreductase (demethylating); sarcosine:electron-transfer flavoprotein oxidoreductase (demethylating)
Systematic name: sarcosine, 5,6,7,8-tetrahydrofolate:electron-transferflavoprotein oxidoreductase (demethylating,5,10-methylenetetrahydrofolate-forming)
Comments: A flavoprotein (FMN) found in eukaryotes. In the absence of tetrahydrofolate the enzyme produces formaldehyde. cf. EC 1.5.3.1, sarcosine oxidase (formaldehyde-forming), and EC 1.5.3.24, sarcosine oxidase (5,10-methylenetetrahydrofolate-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37228-65-2, 93389-49-2
References:
1.  Hoskins, D.D. and MacKenzie, C.G. Solubilization and electron transfer flavoprotein requirement of mitochondrial sarcosine dehydrogenase and dimethylglycine dehydrogenase. J. Biol. Chem. 236 (1961) 177–183. [DOI] [PMID: 13716069]
2.  Frisell, W.R. and MacKenzie, C.G. Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase. J. Biol. Chem. 237 (1962) 94–98. [DOI] [PMID: 13895406]
3.  Wittwer, A.J. and Wagner, C. Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. Flavoprotein nature and enzymatic properties of the purified proteins. J. Biol. Chem. 256 (1981) 4109–4115. [DOI] [PMID: 6163778]
4.  Steenkamp, D.J. and Husain, M. The effect of tetrahydrofolate on the reduction of electron transfer flavoprotein by sarcosine and dimethylglycine dehydrogenases. Biochem. J. 203 (1982) 707–715. [DOI] [PMID: 6180732]
[EC 1.5.8.3 created 1972 as EC 1.5.99.1, transferred 2012 to EC 1.5.8.3, modified 2022]
 
 
EC 1.5.8.4     
Accepted name: dimethylglycine dehydrogenase
Reaction: N,N-dimethylglycine + 5,6,7,8-tetrahydrofolate + electron-transfer flavoprotein = sarcosine + 5,10-methylenetetrahydrofolate + reduced electron-transfer flavoprotein
Glossary: sarcosine = N-methylglycine
Other name(s): N,N-dimethylglycine oxidase; N,N-dimethylglycine:(acceptor) oxidoreductase (demethylating); Me2GlyDH; N,N-dimethylglycine:electron-transfer flavoprotein oxidoreductase (demethylating)
Systematic name: N,N-dimethylglycine,5,6,7,8-tetrahydrofolate:electron-transferflavoprotein oxidoreductase (demethylating,5,10-methylenetetrahydrofolate-forming)
Comments: A flavoprotein, containing a histidyl(Nπ)-(8α)FAD linkage at position 91 in the human protein. An imine intermediate is channeled from the FAD binding site to the 5,6,7,8-tetrahydrofolate binding site through a 40 Å tunnel [5,8,9]. In the absence of 5,6,7,8-tetrahydrofolate the enzyme forms formaldehyde [5,9].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-30-7
References:
1.  Frisell, W.R. and MacKenzie, C.G. Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase. J. Biol. Chem. 237 (1962) 94–98. [DOI] [PMID: 13895406]
2.  Hoskins, D.D. and MacKenzie, C.G. Solubilization and electron transfer flavoprotein requirement of mitochondrial sarcosine dehydrogenase and dimethylglycine dehydrogenase. J. Biol. Chem. 236 (1961) 177–183. [DOI] [PMID: 13716069]
3.  Wittwer, A.J. and Wagner, C. Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. Purification and folate-binding characteristics. J. Biol. Chem. 256 (1981) 4102–4108. [PMID: 6163777]
4.  Wittwer, A.J. and Wagner, C. Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. Flavoprotein nature and enzymatic properties of the purified proteins. J. Biol. Chem. 256 (1981) 4109–4115. [DOI] [PMID: 6163778]
5.  Porter, D.H., Cook, R.J. and Wagner, C. Enzymatic properties of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver. Arch. Biochem. Biophys. 243 (1985) 396–407. [DOI] [PMID: 2417560]
6.  Brizio, C., Brandsch, R., Bufano, D., Pochini, L., Indiveri, C. and Barile, M. Over-expression in Escherichia coli, functional characterization and refolding of rat dimethylglycine dehydrogenase. Protein Expr. Purif. 37 (2004) 434–442. [DOI] [PMID: 15358367]
7.  Brizio, C., Brandsch, R., Douka, M., Wait, R. and Barile, M. The purified recombinant precursor of rat mitochondrial dimethylglycine dehydrogenase binds FAD via an autocatalytic reaction. Int. J. Biol. Macromol. 42 (2008) 455–462. [DOI] [PMID: 18423846]
8.  Luka, Z., Pakhomova, S., Loukachevitch, L.V., Newcomer, M.E. and Wagner, C. Folate in demethylation: the crystal structure of the rat dimethylglycine dehydrogenase complexed with tetrahydrofolate. Biochem. Biophys. Res. Commun. 449 (2014) 392–398. [DOI] [PMID: 24858690]
9.  Augustin, P., Hromic, A., Pavkov-Keller, T., Gruber, K. and Macheroux, P. Structure and biochemical properties of recombinant human dimethylglycine dehydrogenase and comparison to the disease-related H109R variant. FEBS J. 283 (2016) 3587–3603. [DOI] [PMID: 27486859]
[EC 1.5.8.4 created 1972 as EC 1.5.99.2, transferred 2012 to EC 1.5.8.4, modified 2017]
 
 
EC 1.5.99.1      
Transferred entry: sarcosine dehydrogenase. Now EC 1.5.8.3, sarcosine dehydrogenase
[EC 1.5.99.1 created 1972, deleted 2012]
 
 
EC 1.5.99.2      
Transferred entry: dimethylglycine dehydrogenase. Now EC 1.5.8.4, dimethylglycine dehydrogenase
[EC 1.5.99.2 created 1972, deleted 2012]
 
 
EC 1.14.15.7     
Accepted name: choline monooxygenase
Reaction: choline + O2 + 2 reduced ferredoxin + 2 H+ = betaine aldehyde hydrate + H2O + 2 oxidized ferredoxin
Glossary: betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
betaine aldehyde = N,N,N-trimethyl-2-oxoethylammonium
choline = (2-hydroxyethyl)trimethylammonium
Systematic name: choline,reduced-ferredoxin:oxygen oxidoreductase
Comments: The spinach enzyme, which is located in the chloroplast, contains a Rieske-type [2Fe-2S] cluster, and probably also a mononuclear Fe centre. Requires Mg2+. Catalyses the first step of glycine betaine synthesis. In many bacteria, plants and animals, betaine is synthesized in two steps: (1) choline to betaine aldehyde and (2) betaine aldehyde to betaine. Different enzymes are involved in the first reaction. In plants, the reaction is catalysed by this enzyme whereas in animals and many bacteria it is catalysed by either membrane-bound EC 1.1.99.1 (choline dehydrogenase) or soluble EC 1.1.3.17 (choline oxidase) [7]. The enzyme involved in the second step, EC 1.2.1.8 (betaine-aldehyde dehydrogenase), appears to be the same in plants, animals and bacteria. In some bacteria, betaine is synthesized from glycine through the actions of EC 2.1.1.156 (glycine/sarcosine N-methyltransferase) and EC 2.1.1.157 (sarcosine/dimethylglycine N-methyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 118390-76-4
References:
1.  Brouquisse, R., Weigel, P., Rhodes, D., Yocum, C.F. and Hanson, A.D. Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol. 90 (1989) 322–329. [PMID: 16666757]
2.  Burnet, M., Lafontaine, P.J. and Hanson, A.D. Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol. 108 (1995) 581–588. [PMID: 12228495]
3.  Rathinasabapathi, B., Burnet, M., Russell, B.L., Gage, D.A., Liao, P., Nye, G.J., Scott, P., Golbeck, J.H. and Hanson, A.D. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: Prosthetic group characterization and cDNA cloning. Proc. Natl. Acad. Sci. USA 94 (1997) 3454–3458. [DOI] [PMID: 9096415]
4.  Russell, B.L., Rathinasabapathi, B. and Hanson, A.D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol. 116 (1998) 859–865. [PMID: 9489025]
5.  Nuccio, M.L., Russell, B.L., Nolte, K.D., Rathinasabapathi, B., Gage, D.A. and Hanson, A.D. Glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase is limited by the endogenous choline supply. Plant J. 16 (1998) 101–110.
6.  Nuccio, M.L., Russell, B.L., Nolte, K.D., Rathinasabapathi, B., Gage, D.A. and Hanson, A.D. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline. Plant J. 16 (1998) 487–496. [DOI] [PMID: 9881168]
7.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
[EC 1.14.15.7 created 2001, modified 2002 (EC 1.14.14.4 created 2000, incorporated 2002), modified 2005, modified 2011]
 
 
EC 1.21.4.2     
Accepted name: glycine reductase
Reaction: acetyl phosphate + NH3 + thioredoxin disulfide + H2O = glycine + phosphate + thioredoxin
For diagram of possible mechanism, click here
Systematic name: acetyl-phosphate ammonia:thioredoxin disulfide oxidoreductase (glycine-forming)
Comments: The reaction is observed only in the direction of glycine reduction. The enzyme from Eubacterium acidaminophilum consists of subunits A, B and C. Subunit B contains selenocysteine and a pyruvoyl group, and is responsible for glycine binding and ammonia release. Subunit A, which also contains selenocysteine, is reduced by thioredoxin, and is needed to convert the carboxymethyl group into a ketene equivalent, in turn used by subunit C to produce acetyl phosphate. Only subunit B distinguishes this enzyme from EC 1.21.4.3 (sarcosine reductase) and EC 1.21.4.4 (betaine reductase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 39307-24-9
References:
1.  Wagner, M., Sonntag, D., Grimm, R., Pich, A. Eckerskorn, C., Söhling, B. and Andreesen, J.R. Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Eur. J. Biochem. 260 (1999) 38–49. [DOI] [PMID: 10091582]
2.  Bednarski, B., Andreesen, J.R. and Pich, A. In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue. Eur. J. Biochem. 268 (2001) 3538–3544. [DOI] [PMID: 11422384]
[EC 1.21.4.2 created 2003]
 
 
EC 1.21.4.3     
Accepted name: sarcosine reductase
Reaction: acetyl phosphate + methylamine + thioredoxin disulfide + H2O = N-methylglycine + phosphate + thioredoxin
For diagram of possible reaction mechanism, click here
Glossary: sarcosine = N-methylglycine
Systematic name: acetyl-phosphate methylamine:thioredoxin disulfide oxidoreductase (N-methylglycine-forming)
Comments: The reaction is observed only in the direction of sarcosine reduction. The enzyme from Eubacterium acidaminophilum consists of subunits A, B and C. Subunit B contains selenocysteine and a pyruvoyl group, and is responsible for sarcosine binding and methylamine release. Subunit A, which also contains selenocysteine, is reduced by thioredoxin, and is needed to convert the carboxymethyl group into a ketene equivalent, in turn used by subunit C to produce acetyl phosphate. Only subunit B distinguishes this enzyme from EC 1.21.4.2 (glycine reductase) and EC 1.21.4.4 (betaine reductase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 125752-88-7
References:
1.  Wagner, M., Sonntag, D., Grimm, R., Pich, A. Eckerskorn, C., Söhling, B. and Andreesen, J.R. Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Eur. J. Biochem. 260 (1999) 38–49. [DOI] [PMID: 10091582]
2.  Hormann, K. and Andreesen, J.R. Reductive cleavage of sarcosine and betaine by Eubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch. Microbiol. 153 (1989) 50–59.
[EC 1.21.4.3 created 2003]
 
 
EC 1.21.4.4     
Accepted name: betaine reductase
Reaction: acetyl phosphate + trimethylamine + thioredoxin disulfide + H2O = betaine + phosphate + thioredoxin
For diagram of possible mechanism, click here
Glossary: betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
Other name(s): acetyl-phosphate trimethylamine:thioredoxin disulfide oxidoreductase (N,N,N-trimethylglycine-forming)
Systematic name: acetyl-phosphate trimethylamine:thioredoxin disulfide oxidoreductase (betaine-forming)
Comments: The reaction is observed only in the direction of betaine reduction. The enzyme from Eubacterium acidaminophilum consists of subunits A, B and C. Subunit B contains selenocysteine and a pyruvoyl group, and is responsible for betaine binding and trimethylamine release. Subunit A, which also contains selenocysteine, is reduced by thioredoxin, and is needed to convert the carboxymethyl group into a ketene equivalent, in turn used by subunit C to produce acetyl phosphate. Only subunit B distinguishes this enzyme from EC 1.21.4.2 (glycine reductase) and EC 1.21.4.3 (sarcosine reductase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 125752-87-6
References:
1.  Wagner, M., Sonntag, D., Grimm, R., Pich, A. Eckerskorn, C., Söhling, B. and Andreesen, J.R. Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Eur. J. Biochem. 260 (1999) 38–49. [DOI] [PMID: 10091582]
2.  Bednarski, B., Andreesen, J.R. and Pich, A. In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue. Eur. J. Biochem. 268 (2001) 3538–3544. [DOI] [PMID: 11422384]
[EC 1.21.4.4 created 2003, modified 2010]
 
 
EC 2.1.1.20     
Accepted name: glycine N-methyltransferase
Reaction: S-adenosyl-L-methionine + glycine = S-adenosyl-L-homocysteine + sarcosine
Glossary: sarcosine = N-methylglycine
Other name(s): glycine methyltransferase; S-adenosyl-L-methionine:glycine methyltransferase; GNMT
Systematic name: S-adenosyl-L-methionine:glycine N-methyltransferase
Comments: This enzyme is thought to play an important role in the regulation of methyl group metabolism in the liver and pancreas by regulating the ratio between S-adenosyl-L-methionine and S-adenosyl-L-homocysteine. It is inhibited by 5-methyltetrahydrofolate pentaglutamate [4]. Sarcosine, which has no physiological role, is converted back into glycine by the action of EC 1.5.8.3, sarcosine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37228-72-1
References:
1.  Blumenstein, J. and Williams, G.R. Glycine methyltransferase. Can. J. Biochem. Physiol. 41 (1963) 201–210. [PMID: 13971907]
2.  Ogawa, H., Gomi, T., Takusagawa, F. and Fujioka, M. Structure, function and physiological role of glycine N-methyltransferase. Int. J. Biochem. Cell Biol. 30 (1998) 13–26. [DOI] [PMID: 9597750]
3.  Yeo, E.J., Briggs, W.T. and Wagner, C. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. J. Biol. Chem. 274 (1999) 37559–37564. [DOI] [PMID: 10608809]
4.  Martinov, M.V., Vitvitsky, V.M., Mosharov, E.V., Banerjee, R. and Ataullakhanov, F.I. A substrate switch: a new mode of regulation in the methionine metabolic pathway. J. Theor. Biol. 204 (2000) 521–532. [DOI] [PMID: 10833353]
5.  Takata, Y., Huang, Y., Komoto, J., Yamada, T., Konishi, K., Ogawa, H., Gomi, T., Fujioka, M. and Takusagawa, F. Catalytic mechanism of glycine N-methyltransferase. Biochemistry 42 (2003) 8394–8402. [DOI] [PMID: 12859184]
6.  Pakhomova, S., Luka, Z., Grohmann, S., Wagner, C. and Newcomer, M.E. Glycine N-methyltransferases: a comparison of the crystal structures and kinetic properties of recombinant human, mouse and rat enzymes. Proteins 57 (2004) 331–337. [DOI] [PMID: 15340920]
[EC 2.1.1.20 created 1972, modified 2005]
 
 
EC 2.1.1.156     
Accepted name: glycine/sarcosine N-methyltransferase
Reaction: 2 S-adenosyl-L-methionine + glycine = 2 S-adenosyl-L-homocysteine + N,N-dimethylglycine (overall reaction)
(1a) S-adenosyl-L-methionine + glycine = S-adenosyl-L-homocysteine + sarcosine
(1b) S-adenosyl-L-methionine + sarcosine = S-adenosyl-L-homocysteine + N,N-dimethylglycine
Glossary: sarcosine = N-methylglycine
Other name(s): ApGSMT; glycine-sarcosine methyltransferase; GSMT; GMT; glycine sarcosine N-methyltransferase; S-adenosyl-L-methionine:sarcosine N-methyltransferase
Systematic name: S-adenosyl-L-methionine:glycine(or sarcosine) N-methyltransferase [sarcosine(or N,N-dimethylglycine)-forming]
Comments: Cells of the oxygen-evolving halotolerant cyanobacterium Aphanocthece halophytica synthesize betaine from glycine by a three-step methylation process. This is the first enzyme and it leads to the formation of either sarcosine or N,N-dimethylglycine, which is further methylated to yield betaine (N,N,N-trimethylglycine) by the action of EC 2.1.1.157, sarcosine/dimethylglycine N-methyltransferase. Differs from EC 2.1.1.20, glycine N-methyltransferase, as it can further methylate the product of the first reaction. Acetate, dimethylglycine and S-adenosyl-L-homocysteine can inhibit the reaction [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 294210-82-5
References:
1.  Nyyssölä, A., Kerovuo, J., Kaukinen, P., von Weymarn, N. and Reinikainen, T. Extreme halophiles synthesize betaine from glycine by methylation. J. Biol. Chem. 275 (2000) 22196–22201. [DOI] [PMID: 10896953]
2.  Nyyssölä, A., Reinikainen, T. and Leisola, M. Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl. Environ. Microbiol. 67 (2001) 2044–2050. [DOI] [PMID: 11319079]
3.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
[EC 2.1.1.156 created 2005]
 
 
EC 2.1.1.157     
Accepted name: sarcosine/dimethylglycine N-methyltransferase
Reaction: 2 S-adenosyl-L-methionine + sarcosine = 2 S-adenosyl-L-homocysteine + betaine (overall reaction)
(1a) S-adenosyl-L-methionine + sarcosine = S-adenosyl-L-homocysteine + N,N-dimethylglycine
(1b) S-adenosyl-L-methionine + N,N-dimethylglycine = S-adenosyl-L-homocysteine + betaine
Glossary: sarcosine = N-methylglycine
betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
Other name(s): ApDMT; sarcosine-dimethylglycine methyltransferase; SDMT; sarcosine dimethylglycine N-methyltransferase; S-adenosyl-L-methionine:N,N-dimethylglycine N-methyltransferase
Systematic name: S-adenosyl-L-methionine:sarcosine(or N,N-dimethylglycine) N-methyltransferase [N,N-dimethylglycine(or betaine)-forming]
Comments: Cells of the oxygen-evolving halotolerant cyanobacterium Aphanocthece halophytica synthesize betaine from glycine by a three-step methylation process. The first enzyme, EC 2.1.1.156, glycine/sarcosine N-methyltransferase, leads to the formation of either sarcosine or N,N-dimethylglycine, which is further methylated to yield betaine (N,N,N-trimethylglycine) by the action of this enzyme. Both of these enzymes can catalyse the formation of N,N-dimethylglycine from sarcosine [3]. The reactions are strongly inhibited by S-adenosyl-L-homocysteine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nyyssölä, A., Kerovuo, J., Kaukinen, P., von Weymarn, N. and Reinikainen, T. Extreme halophiles synthesize betaine from glycine by methylation. J. Biol. Chem. 275 (2000) 22196–22201. [DOI] [PMID: 10896953]
2.  Nyyssölä, A., Reinikainen, T. and Leisola, M. Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl. Environ. Microbiol. 67 (2001) 2044–2050. [DOI] [PMID: 11319079]
3.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
[EC 2.1.1.157 created 2005, modified 2010]
 
 
EC 2.1.1.161     
Accepted name: dimethylglycine N-methyltransferase
Reaction: S-adenosyl-L-methionine + N,N-dimethylglycine = S-adenosyl-L-homocysteine + betaine
Glossary: betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
Other name(s): BsmB; DMT
Systematic name: S-adenosyl-L-methionine:N,N-dimethylglycine N-methyltransferase (betaine-forming)
Comments: This enzyme, from the marine cyanobacterium Synechococcus sp. WH8102, differs from EC 2.1.1.157, sarcosine/dimethylglycine N-methyltransferase in that it cannot use sarcosine as an alternative substrate [1]. Betaine is a ’compatible solute’ that enables cyanobacteria to cope with osmotic stress by maintaining a positive cellular turgor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lu, W.D., Chi, Z.M. and Su, C.D. Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Arch. Microbiol. 186 (2006) 495–506. [DOI] [PMID: 17019606]
[EC 2.1.1.161 created 2007]
 
 
EC 2.1.1.162     
Accepted name: glycine/sarcosine/dimethylglycine N-methyltransferase
Reaction: 3 S-adenosyl-L-methionine + glycine = 3 S-adenosyl-L-homocysteine + betaine (overall reaction)
(1a) S-adenosyl-L-methionine + glycine = S-adenosyl-L-homocysteine + sarcosine
(1b) S-adenosyl-L-methionine + sarcosine = S-adenosyl-L-homocysteine + N,N-dimethylglycine
(1c) S-adenosyl-L-methionine + N,N-dimethylglycine = S-adenosyl-L-homocysteine + betaine
Glossary: sarcosine = N-methylglycine
betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
Other name(s): GSDMT; glycine sarcosine dimethylglycine N-methyltransferase
Systematic name: S-adenosyl-L-methionine:glycine(or sarcosine or N,N-dimethylglycine) N-methyltransferase [sarcosine(or N,N-dimethylglycine or betaine)-forming]
Comments: Unlike EC 2.1.1.156 (glycine/sarcosine N-methyltransferase), EC 2.1.1.157 (sarcosine/dimethylglycine N-methyltransferase) and EC 2.1.1.161 (dimethylglycine N-methyltransferase), this enzyme, from the halophilic methanoarchaeon Methanohalophilus portucalensis, can methylate glycine and all of its intermediates to form the compatible solute betaine [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lai, M.C., Wang, C.C., Chuang, M.J., Wu, Y.C. and Lee, Y.C. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res. Microbiol. 157 (2006) 948–955. [DOI] [PMID: 17098399]
[EC 2.1.1.162 created 2007]
 
 
EC 3.5.1.59     
Accepted name: N-carbamoylsarcosine amidase
Reaction: N-carbamoylsarcosine + H2O = sarcosine + CO2 + NH3
For diagram of creatine biosynthesis, click here
Other name(s): carbamoylsarcosine amidase
Systematic name: N-carbamoylsarcosine amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 92767-52-7
References:
1.  Deeg, R., Roeder, A., Siedel, J., Gauhl, H. and Ziegenhorn, J. Process and reagent for the determination of N-carbamoylsarcosine with the use of a new enzyme. Patent DE3248145, Chem. Abstr. (1984), 101, 18751.
[EC 3.5.1.59 created 1989]
 
 
EC 3.5.1.77     
Accepted name: N-carbamoyl-D-amino-acid hydrolase
Reaction: an N-carbamoyl-D-amino acid + H2O = a D-amino acid + NH3 + CO2
Other name(s): D-N-carbamoylase; N-carbamoylase (ambiguous); N-carbamoyl-D-amino acid hydrolase
Systematic name: N-carbamoyl-D-amino-acid amidohydrolase
Comments: This enzyme, along with EC 3.5.1.87 (N-carbamoyl-L-amino-acid hydrolase), EC 5.1.99.5 (hydantoin racemase) and hydantoinase, forms part of the reaction cascade known as the "hydantoinase process", which allows the total conversion of D,L-5-monosubstituted hydantoins into optically pure D- or L-amino acids [2]. It has strict stereospecificity for N-carbamoyl-D-amino acids and does not act upon the corresponding L-amino acids or on the N-formyl amino acids, N-carbamoyl-sarcosine, -citrulline, -allantoin and -ureidopropanoate, which are substrates for other amidohydrolases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 71768-08-6
References:
1.  Ogawa, J., Shimizu, S., Yamada, H. N-Carbamoyl-D-amino acid amidohydrolase from Comamonas sp. E222c; purification and characterization. Eur. J. Biochem. 212 (1993) 685–691. [DOI] [PMID: 8462543]
2.  Altenbuchner, J., Siemann-Herzberg, M. and Syldatk, C. Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr. Opin. Biotechnol. 12 (2001) 559–563. [DOI] [PMID: 11849938]
[EC 3.5.1.77 created 1999, modified 2008]
 
 
EC 3.5.2.14     
Accepted name: N-methylhydantoinase (ATP-hydrolysing)
Reaction: ATP + N-methylhydantoin + 2 H2O = ADP + phosphate + N-carbamoylsarcosine
For diagram of creatine biosynthesis, click here
Glossary: N-methylhydantoin = N-methylimidazolidine-2,4-dione
Other name(s): N-methylhydantoin amidohydrolase; methylhydantoin amidase; N-methylhydantoin hydrolase; N-methylhydantoinase; N-methylimidazolidine-2,4-dione amidohydrolase (ATP-hydrolysing)
Systematic name: N-methylhydantoin amidohydrolase (ATP-hydrolysing)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 100785-00-0
References:
1.  Kim, J.M., Shimizu, S. and Yamada, H. Amidohydrolysis of N-methylhydantoin coupled with ATP hydrolysis. Biochem. Biophys. Res. Commun. 142 (1987) 1006–1012. [DOI] [PMID: 3827889]
[EC 3.5.2.14 created 1989]
 
 
EC 3.5.3.3     
Accepted name: creatinase
Reaction: creatine + H2O = sarcosine + urea
For diagram of creatine biosynthesis, click here
Systematic name: creatine amidinohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37340-58-2
References:
1.  Roche, J., Lacombe, G. and Girard, H. Sur la spécificité de certaines déguanidases bactériennes génératrices d’urée et sur l’argininedihydrolase. Biochim. Biophys. Acta 6 (1950) 210–216. [PMID: 14791411]
2.  Yoshimoto, T., Oka, I. and Tsuru, D. Purification, crystallization, and some properties of creatine amidinohydrolase from Pseudomonas putida. J. Biochem. (Tokyo) 79 (1976) 1381–1383. [PMID: 8443]
[EC 3.5.3.3 created 1961]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald