The Enzyme Database

Your query returned 19 entries.    printer_iconPrintable version

EC 1.1.1.24     
Accepted name: quinate/shikimate dehydrogenase (NAD+)
Reaction: L-quinate + NAD+ = 3-dehydroquinate + NADH + H+
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: quinate = (1R,3R,4R,5R)-1,3,4,5-tetrahydroxycyclohexanecarboxylic acid and is a cyclitol carboxylate
The numbering system used for the 3-dehydroquinate is that of the recommendations on cyclitols, sections I-8 and I-9: and is shown in the reaction diagram. The use of the term '5-dehydroquinate' for this compound is based on an earlier system of numbering.
Other name(s): quinate dehydrogenase (ambiguous); quinic dehydrogenase (ambiguous); quinate:NAD oxidoreductase; quinate 5-dehydrogenase (ambiguous); quinate:NAD+ 5-oxidoreductase
Systematic name: L-quinate:NAD+ 3-oxidoreductase
Comments: The enzyme, found mostly in bacteria (mostly, but not exclusively in Gram-positive bacteria), fungi, and plants, participates in the degradation of quinate and shikimate with a strong preference for NAD+ as a cofactor. While the enzyme can act on both quinate and shikimate, activity is higher with the former. cf. EC 1.1.5.8, quinate/shikimate dehydrogenase (quinone), EC 1.1.1.282, quinate/shikimate dehydrogenase [NAD(P)+], and EC 1.1.1.25, shikimate dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-28-8
References:
1.  Mitsuhashi, S. and Davis, B.D. Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. Biophys. Acta 15 (1954) 268–280. [DOI] [PMID: 13208693]
2.  Gamborg, O.L. Aromatic metabolism in plants. III. Quinate dehydrogenase from mung bean cell suspension cultures. Biochim. Biophys. Acta 128 (1966) 483–491.
3.  Hawkins, A.R., Giles, N.H. and Kinghorn, J.R. Genetical and biochemical aspects of quinate breakdown in the filamentous fungus Aspergillus nidulans. Biochem. Genet. 20 (1982) 271–286. [PMID: 7049157]
4.  Singh, S., Stavrinides, J., Christendat, D. and Guttman, D.S. A phylogenomic analysis of the shikimate dehydrogenases reveals broadscale functional diversification and identifies one functionally distinct subclass. Mol. Biol. Evol. 25 (2008) 2221–2232. [DOI] [PMID: 18669580]
5.  Teramoto, H., Inui, M. and Yukawa, H. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75 (2009) 3461–3468. [DOI] [PMID: 19376919]
6.  Kubota, T., Tanaka, Y., Hiraga, K., Inui, M. and Yukawa, H. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 97 (2013) 8139–8149. [DOI] [PMID: 23306642]
7.  Peek, J. and Christendat, D. The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework. Arch. Biochem. Biophys. 566 (2015) 85–99. [DOI] [PMID: 25524738]
[EC 1.1.1.24 created 1961, modified 1976, modified 2004, modified 2021]
 
 
EC 1.1.1.25     
Accepted name: shikimate dehydrogenase (NADP+)
Reaction: shikimate + NADP+ = 3-dehydroshikimate + NADPH + H+
For diagram of shikimate and chorismate biosynthesis, click here
Other name(s): shikimate dehydrogenase; dehydroshikimic reductase; shikimate oxidoreductase; shikimate:NADP+ oxidoreductase; 5-dehydroshikimate reductase; shikimate 5-dehydrogenase; 5-dehydroshikimic reductase; DHS reductase; shikimate:NADP+ 5-oxidoreductase; AroE
Systematic name: shikimate:NADP+ 3-oxidoreductase
Comments: NAD+ cannot replace NADP+ [3]. In higher organisms, this enzyme forms part of a multienzyme complex with EC 4.2.1.10, 3-dehydroquinate dehydratase [4]. cf. EC 1.1.1.24, quinate/shikimate dehydrogenase (NAD+), EC 1.1.5.8, quinate/shikimate dehydrogenase (quinone), and EC 1.1.1.282, quinate/shikimate dehydrogenase [NAD(P)+].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-87-3
References:
1.  Mitsuhashi, S. and Davis, B.D. Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. Biophys. Acta 15 (1954) 268–280. [DOI] [PMID: 13208693]
2.  Yaniv, H. and Gilvarg, C. Aromatic biosynthesis. XIV. 5-Dehydroshikimic reductase. J. Biol. Chem. 213 (1955) 787–795. [PMID: 14367339]
3.  Balinsky, D. and Davies, D.D. Aromatic biosynthesis in higher plants. 1. Preparation and properties of dehydroshikimic reductase. Biochem. J. 80 (1961) 292–296. [PMID: 13686342]
4.  Chaudhuri, S. and Coggins, J.R. The purification of shikimate dehydrogenase from Escherichia coli. Biochem. J. 226 (1985) 217–223. [PMID: 3883995]
5.  Anton, I.A. and Coggins, J.R. Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Biochem. J. 249 (1988) 319–326. [PMID: 3277621]
6.  Ye, S., Von Delft, F., Brooun, A., Knuth, M.W., Swanson, R.V. and McRee, D.E. The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode. J. Bacteriol. 185 (2003) 4144–4151. [DOI] [PMID: 12837789]
[EC 1.1.1.25 created 1961, modified 1976, modified 2004, modified 2021]
 
 
EC 1.1.1.166     
Accepted name: hydroxycyclohexanecarboxylate dehydrogenase
Reaction: (1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate + NAD+ = (1S,4S)-4-hydroxy-3-oxocyclohexane-1-carboxylate + NADH + H+
Other name(s): dihydroxycyclohexanecarboxylate dehydrogenase; (-)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate-NAD+ oxidoreductase
Systematic name: (1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate:NAD+ 3-oxidoreductase
Comments: Acts on hydroxycyclohexanecarboxylates that have an equatorial carboxy group at C-1, an axial hydroxy group at C-3 and an equatorial hydroxy or carbonyl group at C-4, including (-)-quinate and (-)-shikimate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 55467-53-3
References:
1.  Whiting, G.C. and Coggins, R.A. A new nicotinamide-adenine dinucleotide-dependent hydroaromatic dehydrogenase of Lactobacillus plantarum and its role in formation of (-)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate. Biochem. J. 141 (1974) 35–42. [PMID: 4375976]
[EC 1.1.1.166 created 1976]
 
 
EC 1.1.1.282     
Accepted name: quinate/shikimate dehydrogenase [NAD(P)+]
Reaction: (1) L-quinate + NAD(P)+ = 3-dehydroquinate + NAD(P)H + H+
(2) shikimate + NAD(P)+ = 3-dehydroshikimate + NAD(P)H + H+
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: quinate = (1R,3R,4R,5R)-1,3,4,5-tetrahydroxycyclohexanecarboxylic acid and is a cyclitol carboxylate
The numbering system used for the 3-dehydroquinate is that of the recommendations on cyclitols, sections I-8 and I-9: and is shown in the reaction diagram. The use of the term '5-dehydroquinate' for this compound is based on an earlier system of numbering.
Other name(s): YdiB; quinate/shikimate dehydrogenase (ambiguous)
Systematic name: L-quinate:NAD(P)+ 3-oxidoreductase
Comments: This is the second shikimate dehydrogenase enzyme found in Escherichia coli. It can use both quinate and shikimate as substrates and either NAD+ or NADP+ as acceptor. The low catalytic efficiency with both quinate and shikimate suggests that neither may be the physiological substrate. cf. EC 1.1.1.24, quinate/shikimate dehydrogenase (NAD+), EC 1.1.5.8, quinate/shikimate dehydrogenase (quinone), and EC 1.1.1.25, shikimate dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Michel, G., Roszak, A.W., Sauvé, V., Maclean, J., Matte, A., Coggins, J.R., Cygler, M. and Lapthorn, A.J. Structures of shikimate dehydrogenase AroE and its paralog YdiB. A common structural framework for different activities. J. Biol. Chem. 278 (2003) 19463–19472. [DOI] [PMID: 12637497]
2.  Benach, J., Lee, I., Edstrom, W., Kuzin, A.P., Chiang, Y., Acton, T.B., Montelione, G.T. and Hunt, J.F. The 2.3-Å crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase. J. Biol. Chem. 278 (2003) 19176–19182. [DOI] [PMID: 12624088]
[EC 1.1.1.282 created 2004, modified 2021]
 
 
EC 1.1.5.8     
Accepted name: quinate/shikimate dehydrogenase (quinone)
Reaction: quinate + quinone = 3-dehydroquinate + quinol
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: quinate = (1R,3R,4R,5R)-1,3,4,5-tetrahydroxycyclohexanecarboxylic acid and is a cyclitol carboxylate
The numbering system used for the 3-dehydroquinate is that of the recommendations on cyclitols, sections I-8 and I-9: and is shown in the reaction diagram. The use of the term '5-dehydroquinate' for this compound is based on an earlier system of numbering.
Other name(s): NAD(P)+-independent quinate dehydrogenase; quinate:pyrroloquinoline-quinone 5-oxidoreductase; quinate dehydrogenase (quinone)
Systematic name: quinate:quinol 3-oxidoreductase
Comments: The enzyme is membrane-bound. Does not use NAD(P)+ as acceptor. Contains pyrroloquinoline-quinone. cf. EC 1.1.1.24, quinate/shikimate dehydrogenase (NAD+), EC 1.1.1.282, quinate/shikimate dehydrogenase [NAD(P)+], and EC 1.1.1.25, shikimate dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 115299-99-5
References:
1.  van Kleef, M.A.G. and Duine, J.A. Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein. Arch. Microbiol. 150 (1988) 32–36. [PMID: 3044290]
2.  Adachi, O., Tanasupawat, S., Yoshihara, N., Toyama, H. and Matsushita, K. 3-Dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway. Biosci. Biotechnol. Biochem. 67 (2003) 2124–2131. [DOI] [PMID: 14586099]
3.  Vangnai, A.S., Toyama, H., De-Eknamkul, W., Yoshihara, N., Adachi, O. and Matsushita, K. Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase. FEMS Microbiol. Lett. 241 (2004) 157–162. [DOI] [PMID: 15598527]
[EC 1.1.5.8 created 1992 as EC 1.1.99.25, modified 2004, transferred 2010 to EC 1.1.5.8, modified 2021]
 
 
EC 1.1.99.25      
Transferred entry: quinate dehydrogenase (pyrroloquinoline-quinone). Now EC 1.1.5.8, quinate dehydrogenase (quinone)
[EC 1.1.99.25 created 1992, modified 2004, deleted 2010]
 
 
EC 1.4.1.24     
Accepted name: 3-dehydroquinate synthase II
Reaction: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + H2O + NAD+ = 3-dehydroquinate + NH3 + NADH + H+
For diagram of 3-dehydroquinate biosynthesis in archaea, click here
Glossary: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate = 2-amino-2,3,7-trideoxy-D-lyxo-hept-6-ulosonate
Other name(s): DHQ synthase II; MJ1249 (gene name); aroB′ (gene name)
Systematic name: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate:NAD+ oxidoreductase (deaminating)
Comments: The enzyme, which was isolated from the archaeon Methanocaldococcus jannaschii, plays a key role in an alternative pathway for the biosynthesis of 3-dehydroquinate (DHQ), an intermediate of the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme catalyses a two-step reaction - an oxidative deamination, followed by cyclization.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  White, R.H. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43 (2004) 7618–7627. [DOI] [PMID: 15182204]
[EC 1.4.1.24 created 2012]
 
 
EC 1.14.13.36      
Transferred entry: 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase. Now EC 1.14.14.96, 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase
[EC 1.14.13.36 created 1990, deleted 2018]
 
 
EC 1.14.14.96     
Accepted name: 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase
Reaction: trans-5-O-(4-coumaroyl)-D-quinate + [reduced NADPH—hemoprotein reductase] + O2 = trans-5-O-caffeoyl-D-quinate + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): 5-O-(4-coumaroyl)-D-quinate/shikimate 3′-hydroxylase; coumaroylquinate(coumaroylshikimate) 3′-monooxygenase; CYP98A3 (gene name)
Systematic name: trans-5-O-(4-coumaroyl)-D-quinate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3′-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein, found in plants. It also acts on trans-5-O-(4-coumaroyl)shikimate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 112131-08-5
References:
1.  Kühnl, T., Koch, U., Heller, W. and Wellman, E. Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3′-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch. Biochem. Biophys. 258 (1987) 226–232. [DOI] [PMID: 2821918]
2.  Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P. and Werck-Reichhart, D. CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276 (2001) 36566–36574. [PMID: 11429408]
3.  Franke, R., Humphreys, J.M., Hemm, M.R., Denault, J.W., Ruegger, M.O., Cusumano, J.C. and Chapple, C. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J. 30 (2002) 33–45. [PMID: 11967091]
4.  Matsuno, M., Compagnon, V., Schoch, G.A., Schmitt, M., Debayle, D., Bassard, J.E., Pollet, B., Hehn, A., Heintz, D., Ullmann, P., Lapierre, C., Bernier, F., Ehlting, J. and Werck-Reichhart, D. Evolution of a novel phenolic pathway for pollen development. Science 325 (2009) 1688–1692. [PMID: 19779199]
[EC 1.14.14.96 created 1990 as EC 1.14.13.36, transferred 2018 to EC 1.14.14.96]
 
 
EC 2.2.1.10     
Accepted name: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase
Reaction: L-aspartate 4-semialdehyde + 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + 2,3-dioxopropyl phosphate
For diagram of 3-dehydroquinate biosynthesis in archaea, click here
Glossary: 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 6-deoxy-5-ketofructose 1-phosphate
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate = 2-amino-2,3,7-trideoxy-D-lyxo-hept-6-ulosonate
Other name(s): ADH synthase; ADHS; MJ0400 (gene name)
Systematic name: L-aspartate 4-semialdehyde:1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate methylglyoxaltransferase
Comments: The enzyme plays a key role in an alternative pathway of the biosynthesis of 3-dehydroquinate (DHQ), which is involved in the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme can also catalyse the reaction of EC 4.1.2.13, fructose-bisphosphate aldolase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  White, R.H. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43 (2004) 7618–7627. [DOI] [PMID: 15182204]
2.  Samland, A.K., Wang, M. and Sprenger, G.A. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity. FEMS Microbiol. Lett. 281 (2008) 36–41. [DOI] [PMID: 18318840]
3.  Morar, M., White, R.H. and Ealick, S.E. Structure of 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase, a catalyst in the archaeal pathway for the biosynthesis of aromatic amino acids. Biochemistry 46 (2007) 10562–10571. [DOI] [PMID: 17713928]
[EC 2.2.1.10 created 2012]
 
 
EC 2.2.1.11     
Accepted name: 6-deoxy-5-ketofructose 1-phosphate synthase
Reaction: (1) 2-oxopropanal + D-fructose 1,6-bisphosphate = D-glyceraldehyde 3-phosphate + 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate
(2) 2-oxopropanal + D-fructose 1-phosphate = D-glyceraldehyde + 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate
For diagram of 3-dehydroquinate biosynthesis in archaea, click here
Glossary: 2-oxopropanal = methylglyoxal
1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 6-deoxy-5-ketofructose 1-phosphate
Other name(s): DKFP synthase
Systematic name: 2-oxopropanal:D-fructose 1,6-bisphosphate glycerone-phosphotransferase
Comments: The enzyme plays a key role in an alternative pathway of the biosynthesis of 3-dehydroquinate (DHQ), which is involved in the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme can also catalyse the reaction of EC 4.1.2.13, fructose-bisphosphate aldolase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  White, R.H. and Xu, H. Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. Biochemistry 45 (2006) 12366–12379. [DOI] [PMID: 17014089]
2.  Samland, A.K., Wang, M. and Sprenger, G.A. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity. FEMS Microbiol. Lett. 281 (2008) 36–41. [DOI] [PMID: 18318840]
[EC 2.2.1.11 created 2012]
 
 
EC 2.3.1.98     
Accepted name: chlorogenate—glucarate O-hydroxycinnamoyltransferase
Reaction: chlorogenate + glucarate = quinate + 2-O-caffeoylglucarate
Other name(s): chlorogenate:glucarate caffeoyltransferase; chlorogenic acid:glucaric acid O-caffeoyltransferase; chlorogenate:glucarate caffeoyltransferase
Systematic name: chlorogenate:glucarate O-(hydroxycinnamoyl)transferase
Comments: Galactarate can act as acceptor, more slowly. Involved with EC 2.3.1.99 quinate O-hydroxycinnamoyltransferase in the formation of caffeoylglucarate in tomato.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 126124-92-3
References:
1.  Strack, D. and Gross, W. Properties and activity changes of chlorogenic acid - glucaric acid caffeoyltransferase from tomato (Lycopersicon esculentum). Plant Physiol. 92 (1990) 41–47. [PMID: 16667263]
2.  Strack, D., Gross, W., Wray, V. and Grotjahn, L. Enzymatic-synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons. Plant Physiol. 83 (1987) 475–478. [PMID: 16665274]
[EC 2.3.1.98 created 1989, modified 1990]
 
 
EC 2.3.1.99     
Accepted name: quinate O-hydroxycinnamoyltransferase
Reaction: feruloyl-CoA + quinate = CoA + O-feruloylquinate
Other name(s): hydroxycinnamoyl coenzyme A-quinate transferase
Systematic name: feruloyl-CoA:quinate O-(hydroxycinnamoyl)transferase
Comments: Caffeoyl-CoA and 4-coumaroyl-CoA can also act as donors, but more slowly. Involved in the biosynthesis of chlorogenic acid in sweet potato and, with EC 2.3.1.98 chlorogenate—glucarate O-hydroxycinnamoyltransferase, in the formation of caffeoyl-CoA in tomato.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60321-02-0
References:
1.  Strack, D., Gross, W., Wray, V. and Grotjahn, L. Enzymatic-synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons. Plant Physiol. 83 (1987) 475–478. [PMID: 16665274]
2.  Strack, D., Keller, H. and Weissenböck, G. Enzymatic-synthesis of hydroxycinnamic acid-esters of sugar acids and hydroaromatic acids by protein preparations from rye (Secale cereale) primary leaves. J. Plant Physiol. 131 (1987) 61–73.
3.  Villegas, R.J.A. and Kojima, M. Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. J. Biol. Chem. 261 (1986) 8729–8733. [PMID: 3722170]
[EC 2.3.1.99 created 1989, modified 1990]
 
 
EC 3.1.1.42     
Accepted name: chlorogenate hydrolase
Reaction: chlorogenate + H2O = caffeate + quinate
Other name(s): chlorogenase; chlorogenic acid esterase
Systematic name: chlorogenate hydrolase
Comments: Also acts, more slowly, on isochlorogenate. No other substrates are known.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74082-59-0
References:
1.  Schöbel, B. and Pollmann, W. Isolation and characterization of a chlorogenic acid esterase from Aspergillus niger. Z. Naturforsch. C: Biosci. 35 (1980) 209–212. [PMID: 7385941]
2.  Schöbel, B. and Pollmann, W. Weitere Charakterisierung einer Chlorogensäure - Hydrolase aus Aspergillus niger. Z. Naturforsch. C: Biosci. 35 (1980) 699–701. [PMID: 7445677]
[EC 3.1.1.42 created 1981]
 
 
EC 4.2.1.10     
Accepted name: 3-dehydroquinate dehydratase
Reaction: 3-dehydroquinate = 3-dehydroshikimate + H2O
For diagram of shikimate and chorismate biosynthesis, click here and for mechanism of reaction, click here
Glossary: quinate = (1R,3R,4R,5R)-1,3,4,5-tetrahydroxycyclohexanecarboxylic acid and is a cyclitol carboxylate
The numbering system used for the 3-dehydroquinate is that of the recommendations on cyclitols, sections I-8 and I-9: and is shown in the reaction diagram). The use of the term ’5-dehydroquinate’ for this compound is based on an earlier system of numbering.
Other name(s): 3-dehydroquinate hydrolase; DHQase; dehydroquinate dehydratase; 3-dehydroquinase; 5-dehydroquinase; dehydroquinase; 5-dehydroquinate dehydratase; 5-dehydroquinate hydro-lyase; 3-dehydroquinate hydro-lyase
Systematic name: 3-dehydroquinate hydro-lyase (3-dehydroshikimate-forming)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9012-66-2
References:
1.  Mitsuhashi, S. and Davis, B.D. Aromatic biosynthesis. XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. Biophys. Acta 15 (1954) 54–61. [DOI] [PMID: 13198937]
2.  Mitsuhashi, S. and Davis, B.D. Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. Biophys. Acta 15 (1954) 268–280. [DOI] [PMID: 13208693]
[EC 4.2.1.10 created 1961, modified 1976]
 
 
EC 4.2.3.4     
Accepted name: 3-dehydroquinate synthase
Reaction: 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate = 3-dehydroquinate + phosphate
For diagram of shikimate and chorismate biosynthesis, click here and for mechanism of reaction, click here
Glossary: quinate = (1R,3R,4R,5R)-1,3,4,5-tetrahydroxycyclohexanecarboxylic acid and is a cyclitol carboxylate
The numbering system used for the 3-dehydroquinate is that of the recommendations on cyclitols, sections I-8 and I-9: and is shown in the reaction diagram). The use of the term ’5-dehydroquinate’ for this compound is based on an earlier system of numbering.
Other name(s): 5-dehydroquinate synthase; 5-dehydroquinic acid synthetase; dehydroquinate synthase; 3-dehydroquinate synthetase; 3-deoxy-arabino-heptulosonate-7-phosphate phosphate-lyase (cyclizing); 3-deoxy-arabino-heptulonate-7-phosphate phosphate-lyase (cyclizing); 3-deoxy-arabino-heptulonate-7-phosphate phosphate-lyase (cyclizing; 3-dehydroquinate-forming)
Systematic name: 3-deoxy-D-arabino-hept-2-ulosonate-7-phosphate phosphate-lyase (cyclizing; 3-dehydroquinate-forming)
Comments: Requires Co2+ and bound NAD+. The hydrogen atoms on C-7 of the substrate are retained on C-2 of the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37211-77-1
References:
1.  Rotenberg, S.L. and Sprinson, D.B. Mechanism and stereochemistry of 5-dehydroquinate synthetase. Proc. Natl. Acad. Sci. USA 67 (1970) 1669–1672. [DOI] [PMID: 5275368]
2.  Srinivasan, P.R., Rothschild, J. and Sprinson, D.B. The enzymic conversion of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate to 5-dehydroquinate. J. Biol. Chem. 238 (1963) 3176–3182. [PMID: 14085358]
3.  Bender, S.L., Mehdi, S. and Knowles, J.R. Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis. Biochemistry 28 (1989) 7555–7560. [PMID: 2514789]
4.  Carpenter, E.P., Hawkins, A.R., Frost, J.W. and Brown, K.A. Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis. Nature 394 (1998) 299–302. [DOI] [PMID: 9685163]
[EC 4.2.3.4 created 1978 as EC 4.6.1.3, transferred 2000 to EC 4.2.3.4, modified 2002]
 
 
EC 4.2.3.124     
Accepted name: 2-deoxy-scyllo-inosose synthase
Reaction: D-glucose 6-phosphate = 2-deoxy-L-scyllo-inosose + phosphate
For diagram of paromamine biosynthesis, click here
Other name(s): btrC (gene name); neoC (gene name); kanC (gene name)
Systematic name: D-glucose-6-phosphate phosphate-lyase (2-deoxy-L-scyllo-inosose-forming)
Comments: Requires Co2+ [2]. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Requires an NAD+ cofactor, which is transiently reduced during the reaction [1,4]. The enzyme from the bacterium Bacillus circulans forms a complex with the glutamine amidotransferase subunit of pyridoxal 5′-phosphate synthase (EC 4.3.3.6), which appears to stabilize the complex [6,7].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kudo, F., Yamauchi, N., Suzuki, R. and Kakinuma, K. Kinetic isotope effect and reaction mechanism of 2-deoxy-scyllo-inosose synthase derived from butirosin-producing Bacillus circulans. J. Antibiot. (Tokyo) 50 (1997) 424–428. [PMID: 9207913]
2.  Kudo, F., Hosomi, Y., Tamegai, H. and Kakinuma, K. Purification and characterization of 2-deoxy-scyllo-inosose synthase derived from Bacillus circulans. A crucial carbocyclization enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. J. Antibiot. (Tokyo) 52 (1999) 81–88. [PMID: 10344560]
3.  Kudo, F., Tamegai, H., Fujiwara, T., Tagami, U., Hirayama, K. and Kakinuma, K. Molecular cloning of the gene for the key carbocycle-forming enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics and its comparison with dehydroquinate synthase. J. Antibiot. (Tokyo) 52 (1999) 559–571. [PMID: 10470681]
4.  Huang, Z., Kakinuma, K. and Eguchi, T. Stereospecificity of hydride transfer in NAD+-catalyzed 2-deoxy-scyllo-inosose synthase, the key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics. Bioorg. Chem. 33 (2005) 82–89. [DOI] [PMID: 15788164]
5.  Thuy, M.L., Kharel, M.K., Lamichhane, R., Lee, H.C., Suh, J.W., Liou, K. and Sohng, J.K. Expression of 2-deoxy-scyllo-inosose synthase (kanA) from kanamycin gene cluster in Streptomyces lividans. Biotechnol. Lett. 27 (2005) 465–470. [DOI] [PMID: 15928851]
6.  Tamegai, H., Nango, E., Koike-Takeshita, A., Kudo, F. and Kakinuma, K. Significance of the 20-kDa subunit of heterodimeric 2-deoxy-scyllo-inosose synthase for the biosynthesis of butirosin antibiotics in Bacillus circulans. Biosci. Biotechnol. Biochem. 66 (2002) 1538–1545. [PMID: 12224638]
7.  Tamegai, H., Sawada, H., Nango, E., Aoki, R., Hirakawa, H., Iino, T. and Eguchi, T. Roles of a 20 kDa protein associated with a carbocycle-forming enzyme involved in aminoglycoside biosynthesis in primary and secondary metabolism. Biosci. Biotechnol. Biochem. 74 (2010) 1215–1219. [DOI] [PMID: 20530911]
[EC 4.2.3.124 created 2012]
 
 
EC 4.2.3.152     
Accepted name: 2-epi-5-epi-valiolone synthase
Reaction: α-D-sedoheptulopyranose 7-phosphate = 2-epi-5-epi-valiolone + phosphate
For diagram of valiolone biosynthesis, click here
Glossary: 2-epi-5-epi-valiolone = (2S,3S,4S,5R)-2,3,4,5-tetrahydroxy-5-(hydroxymethyl)cyclohexan-1-one
Other name(s): AcbC; ValA; CetA; SalQ; C7-cyclitol synthase
Systematic name: α-D-sedoheptulopyranose-7-phosphate phosphate-lyase (cyclizing; 2-epi-5-epi-valiolone-forming)
Comments: The enzyme is highly specific for α-D-sedoheptulopyranose 7-phosphate. It requires a divalent metal ion (Zn2+ or Co2+) and an NAD+ cofactor, which is transiently reduced during the reaction. The enzyme is involved in the biosynthesis of C7N-aminocyclitol natural products, such as the valienamine moiety of the antidiabetic drug acarbose and the crop protectant validamycin A. cf. EC 4.2.3.155, 2-epi-valiolone synthase and EC 4.2.3.154, demethyl-4-deoxygadusol synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Stratmann, A., Mahmud, T., Lee, S., Distler, J., Floss, H.G. and Piepersberg, W. The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the α-glucosidase inhibitor acarbose. J. Biol. Chem. 274 (1999) 10889–10896. [DOI] [PMID: 10196166]
2.  Yu, Y., Bai, L., Minagawa, K., Jian, X., Li, L., Li, J., Chen, S., Cao, E., Mahmud, T., Floss, H.G., Zhou, X. and Deng, Z. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl. Environ. Microbiol. 71 (2005) 5066–5076. [DOI] [PMID: 16151088]
3.  Wu, X., Flatt, P.M., Schlorke, O., Zeeck, A., Dairi, T. and Mahmud, T. A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. ChemBioChem 8 (2007) 239–248. [DOI] [PMID: 17195255]
4.  Choi, W.S., Wu, X., Choeng, Y.H., Mahmud, T., Jeong, B.C., Lee, S.H., Chang, Y.K., Kim, C.J. and Hong, S.K. Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Appl. Microbiol. Biotechnol. 80 (2008) 637–645. [DOI] [PMID: 18648803]
5.  Kean, K.M., Codding, S.J., Asamizu, S., Mahmud, T. and Karplus, P.A. Structure of a sedoheptulose 7-phosphate cyclase: ValA from Streptomyces hygroscopicus. Biochemistry 53 (2014) 4250–4260. [DOI] [PMID: 24832673]
[EC 4.2.3.152 created 2015, modified 2016]
 
 
EC 4.6.1.3      
Transferred entry: 3-dehydroquinate synthase. Now EC 4.2.3.4, 3-dehydroquinate synthase
[EC 4.6.1.3 created 1978, deleted 2000]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald