The Enzyme Database

Your query returned 36 entries.    printer_iconPrintable version

EC 1.3.1.35      
Transferred entry: phosphatidylcholine desaturase. Now EC 1.14.19.22, microsomal oleoyl-lipid 12-desaturase
[EC 1.3.1.35 created 1984, deleted 2015]
 
 
EC 1.14.13.26      
Transferred entry: phosphatidylcholine 12-monooxygenase. Now classified as EC 1.14.18.4, phosphatidylcholine 12-monooxygenase.
[EC 1.14.13.26 created 1984, deleted 2015]
 
 
EC 1.14.18.4     
Accepted name: phosphatidylcholine 12-monooxygenase
Reaction: a 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + 2 ferrocytochrome b5 + O2 + 2 H+ = a 1-acyl-2-[(12R)-12-hydroxyoleoyl]-sn-glycero-3-phosphocholine + 2 ferricytochrome b5 + H2O
Glossary: ricinoleic acid = (9Z,12R)-12-hydroxyoctadec-9-enoic acid
Other name(s): ricinoleic acid synthase; oleate Δ12-hydroxylase; oleate Δ12-monooxygenase
Systematic name: 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine,ferrocytochrome-b5:oxygen oxidoreductase (12-hydroxylating)
Comments: The enzyme, characterized from the plant Ricinus communis (castor bean), is involved in production of the 12-hydroxylated fatty acid ricinoleate. The enzyme, which shares sequence similarity with fatty-acyl desaturases, requires a cytochrome b5 as the electron donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77950-95-9
References:
1.  Galliard, T. and Stumpf, P.K. Fat metabolism in higher plants. 30. Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J. Biol. Chem. 241 (1966) 5806–5812. [PMID: 4289003]
2.  Moreau, R.A. and Stumpf, P.K. Recent studies of the enzymic-synthesis of ricinoleic acid by developing castor beans. Plant Physiol. 67 (1981) 672–676. [PMID: 16661734]
3.  Smith, M.A., Jonsson, L., Stymne, S. and Stobart, K. Evidence for cytochrome b5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L.). Biochem. J. 287 (1992) 141–144. [PMID: 1417766]
4.  Lin, J.T., McKeon, T.A., Goodrich-Tanrikulu, M. and Stafford, A.E. Characterization of oleoyl-12-hydroxylase in castor microsomes using the putative substrate, 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine. Lipids 31 (1996) 571–577. [DOI] [PMID: 8784737]
5.  Broun, P. and Somerville, C. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol. 113 (1997) 933–942. [PMID: 9085577]
[EC 1.14.18.4 created 1984 as EC 1.14.13.26, transferred 2015 to EC 1.14.18.4]
 
 
EC 1.14.19.16     
Accepted name: linoleoyl-lipid Δ12 conjugase (11E,13Z-forming)
Reaction: a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,11E,13Z)-octadeca-9,11,13-trienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: punicate = (9Z,11E,13Z)-octadeca-9,11,13-trienoate
linoleate = (9Z,12Z)-octadeca-9,12-dienoate
Other name(s): Fac (gene name)
Systematic name: linoleoyl-lipid,ferrocytochrome-b5:oxygen 11,14 allylic oxidase (11E,13Z-forming)
Comments: The enzyme, characterized from the plants Punica granatum (pomegranate) and Trichosanthes kirilowii (Mongolian snake-gourd), converts a single cis double bond at position 12 of linoleate incorporated into phosphatidylcholine into conjugated 11-trans and 13-cis double bonds. cf. EC 1.14.19.33, Δ12 acyl-lipid conjugase (11E,13E-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hornung, E., Pernstich, C. and Feussner, I. Formation of conjugated Δ11Δ13-double bonds by Δ12-linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds. Eur. J. Biochem. 269 (2002) 4852–4859. [DOI] [PMID: 12354116]
2.  Iwabuchi, M., Kohno-Murase, J. and Imamura, J. Δ12-oleate desaturase-related enzymes associated with formation of conjugated trans11, cis13 double bonds. J. Biol. Chem. 278 (2003) 4603–4610. [DOI] [PMID: 12464604]
[EC 1.14.19.16 created 2015]
 
 
EC 1.14.19.22     
Accepted name: acyl-lipid ω-6 desaturase (cytochrome b5)
Reaction: an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a linoleoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Other name(s): oleate desaturase (ambiguous); linoleate synthase (ambiguous); oleoyl-CoA desaturase (incorrect); oleoylphosphatidylcholine desaturase (ambiguous); phosphatidylcholine desaturase (ambiguous); n-6 desaturase (ambiguous); FAD2 (gene name)
Systematic name: 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine,ferrocytochrome-b5:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This microsomal enzyme introduces a cis double bond in fatty acids attached to lipid molecules at a location 6 carbons away from the methyl end of the fatty acid. The distance from the carboxylic acid end of the molecule does not affect the location of the new double bond. The most common substrates are oleoyl groups attached to either the sn-1 or sn-2 position of the glycerol backbone in phosphatidylcholine. cf. EC 1.14.19.23, acyl-lipid ω-6 desaturase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72536-70-0
References:
1.  Pugh, E.L. and Kates, M. Characterization of a membrane-bound phospholipid desaturase system of Candida lipolytica. Biochim. Biophys. Acta 380 (1975) 442–453. [DOI] [PMID: 166662]
2.  Slack, C.R., Roughan, P.G. and Browse, J. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed. Biochem. J. 179 (1979) 649–656. [PMID: 475773]
3.  Stymne, S. and Appelqvist, L.-A. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds. Eur. J. Biochem. 90 (1978) 223–229. [DOI] [PMID: 710426]
4.  Smith, M.A., Cross, A.R., Jones, O.T., Griffiths, W.T., Stymne, S. and Stobart, K. Electron-transport components of the 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine Δ12-desaturase (Δ12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochem. J. 272 (1990) 23–29. [PMID: 2264826]
5.  Kearns, E.V., Hugly, S. and Somerville, C.R. The role of cytochrome b5 in Δ12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Arch. Biochem. Biophys. 284 (1991) 431–436. [DOI] [PMID: 1989527]
6.  Miquel, M. and Browse, J. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J. Biol. Chem. 267 (1992) 1502–1509. [PMID: 1730697]
[EC 1.14.19.22 created 1984 as EC 1.3.1.35, transferred 2015 to EC 1.14.19.22]
 
 
EC 1.14.19.23     
Accepted name: acyl-lipid (n+3)-(Z)-desaturase (ferredoxin)
Reaction: an oleoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a linoleoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): acyl-lipid ω6-desaturase (ferredoxin); oleate desaturase (ambiguous); linoleate synthase (ambiguous); oleoyl-CoA desaturase (ambiguous); oleoylphosphatidylcholine desaturase (ambiguous); phosphatidylcholine desaturase (ambiguous); FAD6 (gene name)
Systematic name: oleoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This plastidial enzyme is able to insert a cis double bond in monounsaturated fatty acids incorporated into glycerolipids. The enzyme introduces the new bond at a position 3 carbons away from the existing double bond, towards the methyl end of the fatty acid. The native substrates are oleoyl (18:1 Δ9) and (Z)-hexadec-7-enoyl (16:1 Δ7) groups attached to either position of the glycerol backbone in glycerolipids, resulting in the introduction of the second double bond at positions 12 and 10, respectively This prompted the suggestion that this is an ω6 desaturase. However, when acting on palmitoleoyl groups(16:1 Δ9), the enzyme introduces the second double bond at position 12 (ω4), indicating it is an (n+3) desaturase [3]. cf. EC 1.14.19.34, acyl-lipid (9+3)-(E)-desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schmidt, H. and Heinz, E. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts. Proc. Natl. Acad. Sci. USA 87 (1990) 9477–9480. [DOI] [PMID: 11607123]
2.  Schmidt, H. and Heinz, E. Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol. 94 (1990) 214–220. [PMID: 16667689]
3.  Hitz, W.D., Carlson, T.J., Booth, J.R., Jr., Kinney, A.J., Stecca, K.L. and Yadav, N.S. Cloning of a higher-plant plastid ω-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol. 105 (1994) 635–641. [PMID: 8066133]
4.  Falcone, D.L., Gibson, S., Lemieux, B. and Somerville, C. Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast ω 6 desaturase activity. Plant Physiol. 106 (1994) 1453–1459. [PMID: 7846158]
5.  Schmidt, H., Dresselhaus, T., Buck, F. and Heinz, E. Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol. Biol. 26 (1994) 631–642. [PMID: 7948918]
[EC 1.14.19.23 created 2015]
 
 
EC 1.14.19.25     
Accepted name: acyl-lipid ω-3 desaturase (cytochrome b5)
Reaction: a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-linolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: linoleoyl-[glycerolipid] = (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid]
α-linolenoyl-[glycerolipid] = (9Z,12Z,15Z)-octadeca-9,12,15-trienoyl-[glycerolipid]
Other name(s): FAD3
Systematic name: (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (15,16 cis-dehydrogenating)
Comments: This microsomal enzyme introduces a cis double bond three carbons away from the methyl end of a fatty acid incorporated into a glycerolipid. The distance from the carboxylic acid end of the molecule does not have an effect. The plant enzyme acts on carbon 15 of linoleoyl groups incorporated into both the sn-1 and sn-2 positions of the glycerol backbone of phosphatidylcholine and other phospholipids, converting them into α-linolenoyl groups. The enzyme from the fungus Mortierella alpina acts on γ-linolenoyl and arachidonoyl groups, converting them into stearidonoyl and icosapentaenoyl groups, respectively [3]. cf. EC 1.14.19.35, sn-2 acyl-lipid ω-3 desaturase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Browse, J., McConn, M., James, D., Jr. and Miquel, M. Mutants of Arabidopsis deficient in the synthesis of α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J. Biol. Chem. 268 (1993) 16345–16351. [PMID: 8102138]
2.  Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M. and Somerville, C.R. Map-based cloning of a gene controlling ω-3 fatty acid desaturation in Arabidopsis. Science 258 (1992) 1353–1355. [DOI] [PMID: 1455229]
3.  Sakuradani, E., Abe, T., Iguchi, K. and Shimizu, S. A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 66 (2005) 648–654. [DOI] [PMID: 15538555]
[EC 1.14.19.25 created 2015]
 
 
EC 2.1.1.17     
Accepted name: phosphatidylethanolamine N-methyltransferase
Reaction: S-adenosyl-L-methionine + phosphatidylethanolamine = S-adenosyl-L-homocysteine + phosphatidyl-N-methylethanolamine
Other name(s): PEMT; LMTase; lipid methyl transferase; phosphatidylethanolamine methyltransferase; phosphatidylethanolamine-N-methylase; phosphatidylethanolamine-S-adenosylmethionine methyltransferase
Systematic name: S-adenosyl-L-methionine:phosphatidylethanolamine N-methyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-91-0
References:
1.  Hirata, F., Viveros, O.H., Diliberto, E.J., Jr. and Axelrod, J. Identification and properties of two methyltransferases in conversion of phosphatidylethanolamine to phosphatidylcholine. Proc. Natl. Acad. Sci. USA 75 (1978) 1718–1721. [DOI] [PMID: 25437]
2.  Morgan, T.E. Isolation and characterization of lipid N-methyltransferase from dog lung. Biochim. Biophys. Acta 178 (1969) 21–34. [DOI] [PMID: 5773456]
3.  Schneider, W.J. and Vance, D.E. Conversion of phosphatidylethanolamine to phosphatidylcholine in rat liver. Partial purification and characterization of the enzymatic activities. J. Biol. Chem. 254 (1979) 3886–3891. [PMID: 438165]
[EC 2.1.1.17 created 1972]
 
 
EC 2.1.1.71     
Accepted name: phosphatidyl-N-methylethanolamine N-methyltransferase
Reaction: S-adenosyl-L-methionine + phosphatidyl-N-methylethanolamine = S-adenosyl-L-homocysteine + phosphatidyl-N-dimethylethanolamine
Other name(s): phosphatidylmonomethylethanolamine methyltransferase; methyltransferase II; phospholipid methyltransferase; PLMT; phosphatidyl-N-methylethanolamine methyltransferase; phosphatidyl-N-monomethylethanolamine methyltransferase; phosphatidylethanolamine methyltransferase I; phosphatidylmonomethylethanolamine methyltransferase
Systematic name: S-adenosyl-L-methionine:phosphatidyl-N-methylethanolamine N-methyltransferase
Comments: The enzyme also catalyses the transfer of a further methyl group, producing phosphatidylcholine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67167-73-1
References:
1.  Hirata, F., Viveros, O.H., Diliberto, E.J., Jr. and Axelrod, J. Identification and properties of two methyltransferases in conversion of phosphatidylethanolamine to phosphatidylcholine. Proc. Natl. Acad. Sci. USA 75 (1978) 1718–1721. [DOI] [PMID: 25437]
2.  Schneider, W.J. and Vance, D.E. Conversion of phosphatidylethanolamine to phosphatidylcholine in rat liver. Partial purification and characterization of the enzymatic activities. J. Biol. Chem. 254 (1979) 3886–3891. [PMID: 438165]
[EC 2.1.1.71 created 1984]
 
 
EC 2.1.1.103     
Accepted name: phosphoethanolamine N-methyltransferase
Reaction: S-adenosyl-L-methionine + ethanolamine phosphate = S-adenosyl-L-homocysteine + N-methylethanolamine phosphate
Other name(s): phosphoethanolamine methyltransferase
Systematic name: S-adenosyl-L-methionine:ethanolamine-phosphate N-methyltransferase
Comments: The enzyme may catalyse the transfer of two further methyl groups to the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 171040-79-2
References:
1.  Datko, A.H. and Mudd, S.H. Enzymes of phosphatidylcholine synthesis in Lemna, soybean, and carrot. Plant Physiol. 88 (1988) 1338–1348. [PMID: 16666464]
[EC 2.1.1.103 created 1992]
 
 
EC 2.3.1.23     
Accepted name: 1-acylglycerophosphocholine O-acyltransferase
Reaction: acyl-CoA + 1-acyl-sn-glycero-3-phosphocholine = CoA + 1,2-diacyl-sn-glycero-3-phosphocholine
Other name(s): lysolecithin acyltransferase; 1-acyl-sn-glycero-3-phosphocholine acyltransferase; acyl coenzyme A-monoacylphosphatidylcholine acyltransferase; acyl-CoA:1-acyl-glycero-3-phosphocholine transacylase; lysophosphatide acyltransferase; lysophosphatidylcholine acyltransferase
Systematic name: acyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase
Comments: Acts preferentially with unsaturated acyl-CoA derivatives. 1-Acyl-sn-glycero-3-phosphoinositol can also act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-64-9
References:
1.  Bell, R.M. and Coleman, R.A. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49 (1980) 459–487. [DOI] [PMID: 6250446]
2.  Hill, E.E. and Lands, W.E.M. Incorporation of long-chain and polyunsaturated acids into phosphatidate and phosphatidylcholine. Biochim. Biophys. Acta 152 (1968) 645–648. [DOI] [PMID: 5661029]
3.  Miki, Y., Hosaka, K., Yamashita, S., Handa, H. and Numa, S. Acyl-acceptor specificities of 1-acylglycerolphosphate acyltransferase and 1-acylglycerophosphorylcholine acyltransferase resolved from rat liver microsomes. Eur. J. Biochem. 81 (1977) 433–441. [DOI] [PMID: 598375]
4.  van den Bosch, H., van Golde, L.M.G., Eibl, H. and van Deenen, L.L.M. The acylation of 1-acylglycero-3-phosphorylcholines by rat-liver microsomes. Biochim. Biophys. Acta 144 (1967) 613–623. [DOI] [PMID: 6078124]
[EC 2.3.1.23 created 1972]
 
 
EC 2.3.1.43     
Accepted name: phosphatidylcholine—sterol O-acyltransferase
Reaction: phosphatidylcholine + a sterol = 1-acylglycerophosphocholine + a sterol ester
Other name(s): lecithin—cholesterol acyltransferase; phospholipid—cholesterol acyltransferase; LCAT (lecithin-cholesterol acyltransferase); lecithin:cholesterol acyltransferase; lysolecithin acyltransferase
Systematic name: phosphatidylcholine:sterol O-acyltransferase
Comments: Palmitoyl, oleoyl and linoleoyl residues can be transferred; a number of sterols, including cholesterol, can act as acceptors. The bacterial enzyme also catalyses the reactions of EC 3.1.1.4 phospholipase A2 and EC 3.1.1.5 lysophospholipase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-14-5
References:
1.  Bartlett, K., Keat, M.J. and Mercer, E.I. Biosynthesis of sterol esters in Phycomyces blakesleeanus. Phytochemistry 13 (1974) 1107–1113.
2.  Buckley, J.T., Halasa, L.N. and Macintyre, S. Purification and partial characterization of a bacterial phospholipid: cholesterol acyltransferase. J. Biol. Chem. 257 (1982) 3320–3325. [PMID: 7061477]
3.  Glomset, J.A.J. The plasma lecithins:cholesterol acyltransferase reaction. Lipid Res. 9 (1968) 155–167. [PMID: 4868699]
4.  Vahouny, G.V. and Tradwell, C.R. Enzymatic synthesis and hydrolysis of cholesterol esters. Methods Biochem. Anal. 16 (1968) 219–272. [PMID: 4877146]
[EC 2.3.1.43 created 1972, modified 1976]
 
 
EC 2.3.1.51     
Accepted name: 1-acylglycerol-3-phosphate O-acyltransferase
Reaction: acyl-CoA + 1-acyl-sn-glycerol 3-phosphate = CoA + 1,2-diacyl-sn-glycerol 3-phosphate
Other name(s): 1-acyl-sn-glycero-3-phosphate acyltransferase; 1-acyl-sn-glycerol 3-phosphate acyltransferase; 1-acylglycero-3-phosphate acyltransferase; 1-acylglycerolphosphate acyltransferase; 1-acylglycerophosphate acyltransferase; lysophosphatidic acid-acyltransferase
Systematic name: acyl-CoA:1-acyl-sn-glycerol-3-phosphate 2-O-acyltransferase
Comments: Acyl-[acyl-carrier protein] can also act as an acyl donor. The animal enzyme is specific for the transfer of unsaturated fatty acyl groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 51901-16-7
References:
1.  Frentzen, M., Heinz, E., McKeon, T.A. and Stumpf, P.K. Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur. J. Biochem. 129 (1983) 629–636. [DOI] [PMID: 6825679]
2.  Hill, E.E. and Lands, W.E.M. Incorporation of long-chain and polyunsaturated acids into phosphatidate and phosphatidylcholine. Biochim. Biophys. Acta 152 (1968) 645–648. [DOI] [PMID: 5661029]
3.  Yamashita, S., Hosaka, K. and Numa, S. Acyl-donor specificities of partially purified 1-acylglycerophosphate acyltransferase, 2-acylglycerophosphate acyltransferase and 1-acylglycerophosphorylcholine acyltransferase from rat-liver microsomes. Eur. J. Biochem. 38 (1973) 25–31. [DOI] [PMID: 4774123]
[EC 2.3.1.51 created 1976, modified 1990]
 
 
EC 2.3.1.62     
Accepted name: 2-acylglycerophosphocholine O-acyltransferase
Reaction: acyl-CoA + 2-acyl-sn-glycero-3-phosphocholine = CoA + phosphatidylcholine
Other name(s): 2-acylglycerol-3-phosphorylcholine acyltransferase; 2-acylglycerophosphocholine acyltransferase
Systematic name: acyl-CoA:2-acyl-sn-glycero-3-phosphocholine O-acyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 64295-73-4
References:
1.  Lands, W.E.M. and Hart, P. Metabolism of glycerolipids. VI. Specificities of acyl coenzyme A:phospholipid acyltransferases. J. Biol. Chem. 240 (1965) 1905–1911. [PMID: 14299609]
2.  van den Bosch, H., van Golde, L.M.G., Slotboom, A.J. and van Deenen, L.L.M. The acylation of isomeric monoacyl phosphatidylcholines. Biochim. Biophys. Acta 152 (1968) 694–703. [DOI] [PMID: 5660084]
[EC 2.3.1.62 created 1978]
 
 
EC 2.3.1.83     
Accepted name: phosphatidylcholine—dolichol O-acyltransferase
Reaction: 3-sn-phosphatidylcholine + dolichol = 1-acyl-sn-glycero-3-phosphocholine + acyldolichol
Systematic name: 3-sn-phosphatidylcholine:dolichol O-acyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111839-04-4
References:
1.  Keenan, R. and Kruczek, H. The esterification of dolichol by rat liver microsomes. Biochemistry 15 (1976) 1586–1591. [PMID: 4095]
2.  Radominska-Pyrek, A., Chojnachi, T. and Zulezyk, W. Acyl esters of polyprenols: specificity of microsomal transacylase for polyprenols of different chain length and saturation. Acta Biochim. Pol. 26 (1979) 125–134. [PMID: 506613]
[EC 2.3.1.83 created 1984]
 
 
EC 2.3.1.135     
Accepted name: phosphatidylcholine—retinol O-acyltransferase
Reaction: phosphatidylcholine + retinol—[cellular-retinol-binding-protein] = 2-acylglycerophosphocholine + retinyl-ester—[cellular-retinol-binding-protein]
Glossary: phosphatidylcholine = lecithin
Other name(s): lecithin—retinol acyltransferase; phosphatidylcholine:retinol-(cellular-retinol-binding-protein) O-acyltransferase; lecithin:retinol acyltransferase; lecithin-retinol acyltransferase; retinyl ester synthase; LRAT; lecithin retinol acyl transferase
Systematic name: phosphatidylcholine:retinol—[cellular-retinol-binding-protein] O-acyltransferase
Comments: A key enzyme in retinoid metabolism, catalysing the transfer of an acyl group from the sn-1 position of phosphatidylcholine to retinol, forming retinyl esters which are then stored. Recognizes the substrate both in free form and when bound to cellular-retinol-binding-protein, but has higher affinity for the bound form. Can also esterify 11-cis-retinol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 117444-03-8
References:
1.  MacDonald, P.N. and Ong, D.E. Evidence for a lecithin-retinol acyltransferase activity in the rat small intestine. J. Biol. Chem. 263 (1988) 12478–12482. [PMID: 3410848]
2.  Saari, J.C. and Bredberg, D.L. Lecithin:retinol acyltransferase in retinal pigment epithelial microsomes. J. Biol. Chem. 264 (1989) 8636. [PMID: 2722792]
3.  Saari, J.C., Bredberg, D.L. and Farrell, D.F. Retinol esterification in bovine retinal pigment epithelium: reversibility of lecithin:retinol acyltransferase. Biochem. J. 291 (1993) 697–700. [PMID: 8489497]
4.  Mata, N.L. and Tsin, A.T. Distribution of 11-cis LRAT, 11-cis RD and 11-cis REH in bovine retinal pigment epithelium membranes. Biochim. Biophys. Acta 1394 (1998) 16–22. [DOI] [PMID: 9767084]
5.  Ruiz, A., Winston, A., Lim, Y.H., Gilbert, B.A., Rando, R.R. and Bok, D. Molecular and biochemical characterization of lecithin retinol acyltransferase. J. Biol. Chem. 274 (1999) 3834–3841. [DOI] [PMID: 9920938]
[EC 2.3.1.135 created 1992, modified 2011]
 
 
EC 2.3.1.251     
Accepted name: lipid IVA palmitoyltransferase
Reaction: (1) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + hexa-acyl lipid A = 2-acyl-sn-glycero-3-phosphocholine + hepta-acyl lipid A
(2) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + lipid IIA = 2-acyl-sn-glycero-3-phosphocholine + lipid IIB
(3) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + lipid IVA = 2-acyl-sn-glycero-3-phosphocholine + lipid IVB
For diagram of lipid IVB biosynthesis, click here
Glossary: palmitoyl = hexadecanoyl
hexa-acyl lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
hepta-acyl lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid IIA = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranose phosphate
lipid IIB = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranose phosphate
lipid IVB = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): PagP; crcA (gene name)
Systematic name: 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine:lipid-IVA palmitoyltransferase
Comments: Isolated from the bacteria Escherichia coli and Salmonella typhimurium. The enzyme prefers phosphatidylcholine with a palmitoyl group at the sn-1 position and palmitoyl or stearoyl groups at the sn-2 position. There is some activity with corresponding phosphatidylserines but only weak activity with other diacylphosphatidyl compounds. The enzyme also acts on Kdo-(2→4)-Kdo-(2→6)-lipid IVA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I. and Raetz, C.R. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J. 19 (2000) 5071–5080. [DOI] [PMID: 11013210]
2.  Cuesta-Seijo, J.A., Neale, C., Khan, M.A., Moktar, J., Tran, C.D., Bishop, R.E., Pomes, R. and Prive, G.G. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 18 (2010) 1210–1219. [DOI] [PMID: 20826347]
[EC 2.3.1.251 created 2015]
 
 
EC 2.7.7.57     
Accepted name: N-methylphosphoethanolamine cytidylyltransferase
Reaction: CTP + N-methylethanolamine phosphate = diphosphate + CDP-N-methylethanolamine
Other name(s): monomethylethanolamine phosphate cytidylyltransferase; CTP:P-MEA cytidylyltransferase
Systematic name: CTP:N-methylethanolamine-phosphate cytidylyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119345-28-7
References:
1.  Datko, A.H. and Mudd, S.H. Enzymes of phosphatidylcholine synthesis in Lemna, soybean, and carrot. Plant Physiol. 88 (1988) 1338–1348. [PMID: 16666464]
[EC 2.7.7.57 created 1992]
 
 
EC 2.7.8.2     
Accepted name: diacylglycerol cholinephosphotransferase
Reaction: CDP-choline + 1,2-diacyl-sn-glycerol = CMP + a phosphatidylcholine
Other name(s): phosphorylcholine-glyceride transferase; alkylacylglycerol cholinephosphotransferase; 1-alkyl-2-acetylglycerol cholinephosphotransferase; cholinephosphotransferase; CPT (ambiguous); alkylacylglycerol choline phosphotransferase; diacylglycerol choline phosphotransferase; 1-alkyl-2-acetyl-m-glycerol:CDPcholine choline phosphotransferase; CDP-choline diglyceride phosphotransferase; cytidine diphosphocholine glyceride transferase; cytidine diphosphorylcholine diglyceride transferase; phosphocholine diacylglyceroltransferase; sn-1,2-diacylglycerol cholinephosphotransferase; 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase; CDP choline:1,2-diacylglycerol cholinephosphotransferase; CDP-choline:1,2-diacylglycerol cholinephosphotransferase
Systematic name: CDP-choline:1,2-diacyl-sn-glycerol cholinephosphotransferase
Comments: 1-Alkyl-2-acylglycerol can act as acceptor; this activity was previously listed separately.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-13-5
References:
1.  Coleman, R. and Bell, R.M. Phospholipid synthesis in isolated fat cells. Studies of microsomal diacylglycerol cholinephosphotransferase and diacylglycerol ethanolaminephosphotransferase activities. J. Biol. Chem. 252 (1977) 3050–3056. [PMID: 192727]
2.  Lee, T.-C., Blank, M.L., Fitzgerald, V. and Snyder, F. Formation of alkylacyl- and diacylglycerophosphocholines via diradylglycerol cholinephosphotransferase in rat liver. Biochim. Biophys. Acta 713 (1982) 479–483. [DOI] [PMID: 6295501]
3.  Parsasarathy, S., Cady, R.K., Kraushaar, D.S., Sladek, N.E. and Baumann, W.J. Inhibition of diacylglycerol:CDPcholine cholinephosphotransferase activity by dimethylaminoethyl p-chlorophenoxyacetate. Lipids 13 (1978) 161–164. [DOI] [PMID: 204847]
4.  Renooij, W. and Snyder, F. Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor and a hypotensive lipid) by cholinephosphotransferase in various rat tissues. Biochim. Biophys. Acta 663 (1981) 545–556. [DOI] [PMID: 6260215]
[EC 2.7.8.2 created 1961, modified 1986 (EC 2.7.8.16 created 1983, incorporated 1986)]
 
 
EC 2.7.8.24     
Accepted name: phosphatidylcholine synthase
Reaction: CDP-diacylglycerol + choline = CMP + phosphatidylcholine
Other name(s): CDP-diglyceride-choline O-phosphatidyltransferase
Systematic name: CDP-diacylglycerol:choline O-phosphatidyltransferase
Comments: Requires divalent cations, with Mn2+ being more effective than Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 243666-86-6
References:
1.  de Rudder, K.E.E., Sohlenkamp, C. and Geiger, O. Plant-exudated choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J. Biol. Chem. 274 (1999) 20011–20016. [DOI] [PMID: 10391951]
2.  Sohlenkamp, C., de Rudder, K.E.E., Röhrs, V., López-Lara, I.M. and Geiger, O. Cloning and characterization of the gene for phosphatidylcholine synthase. J. Biol. Chem. 275 (2000) 18919–18925. [DOI] [PMID: 10858449]
[EC 2.7.8.24 created 2001]
 
 
EC 2.7.8.27     
Accepted name: sphingomyelin synthase
Reaction: a ceramide + a phosphatidylcholine = a sphingomyelin + a 1,2-diacyl-sn-glycerol
For diagram of reaction, click here
Glossary: sphingomyelin = a ceramide-1-phosphocholine
ceramide = an N-acylsphingoid. The fatty acids of naturally occurring ceramides range in chain length from about C16 to about C26 and may contain one or more double bonds and/or hydroxy substituents at C-2
sphingoid = sphinganine, i.e. D-erythro-2-aminooctadecane-1,3-diol, and its homologues and stereoisomers (see also Lip-1.4)
Other name(s): SM synthase; SMS1; SMS2
Systematic name: ceramide:phosphatidylcholine cholinephosphotransferase
Comments: The reaction can occur in both directions [3]. This enzyme occupies a central position in sphingolipid and glycerophospholipid metabolism [4]. Up- and down-regulation of its activity has been linked to mitogenic and pro-apoptotic signalling in a variety of mammalian cell types [4]. Unlike EC 2.7.8.3, ceramide cholinephosphotransferase, CDP-choline cannot replace phosphatidylcholine as the donor of the phosphocholine moiety of sphingomyelin [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 58703-97-2
References:
1.  Ullman, M.D. and Radin, N.S. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J. Biol. Chem. 249 (1974) 1506–1512. [PMID: 4817756]
2.  Voelker, D.R. and Kennedy, E.P. Cellular and enzymic synthesis of sphingomyelin. Biochemistry 21 (1982) 2753–2759. [PMID: 7093220]
3.  Huitema, K., van den Dikkenberg, J., Brouwers, J.F. and Holthuis, J.C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23 (2004) 33–44. [DOI] [PMID: 14685263]
4.  Tafesse, F.G., Ternes, P. and Holthuis, J.C. The multigenic sphingomyelin synthase family. J. Biol. Chem. 281 (2006) 29421–29425. [DOI] [PMID: 16905542]
5.  Yamaoka, S., Miyaji, M., Kitano, T., Umehara, H. and Okazaki, T. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J. Biol. Chem. 279 (2004) 18688–18693. [DOI] [PMID: 14976195]
[EC 2.7.8.27 created 2006]
 
 
EC 3.1.1.4     
Accepted name: phospholipase A2
Reaction: phosphatidylcholine + H2O = 1-acylglycerophosphocholine + a carboxylate
Other name(s): lecithinase A; phosphatidase; phosphatidolipase; phospholipase A
Systematic name: phosphatidylcholine 2-acylhydrolase
Comments: Also acts on phosphatidylethanolamine, choline plasmalogen and phosphatides, removing the fatty acid attached to the 2-position. Requires Ca2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-84-7
References:
1.  Doery, H.M. and Pearson, J.E. Haemolysins in venoms of Australian snakes. Observations on the haemolysins of the venoms of some Australian snakes and the separation of phospholipase A from the venom of Pseudechis porphyriacus. Biochem. J. 78 (1961) 820–827. [PMID: 13723433]
2.  Fraenkel-Conrat, H. and Fraenkel-Conrat, J. Inactivation of crotoxin by group-specific reagents. Biochim. Biophys. Acta 5 (1950) 98–104. [DOI] [PMID: 15433984]
3.  Hanahan, D.J., Brockerhoff, H. and Barron, E.J. The site of attack of phospholipase (lecithinase) A on lecithin: a re-evaluation. Position of fatty acids on lecithins and triglycerides. J. Biol. Chem. 235 (1960) 1917–1923. [PMID: 14399412]
4.  Moore, J.H. and Williams, D.L. Some observations on the specificity of phospholipase A. Biochim. Biophys. Acta 84 (1964) 41–54. [PMID: 14124755]
5.  Saito, K. and Hanahan, D.J. A study of the purification and properties of the phospholipase A of Crotalus adamanteus venom. Biochemistry 1 (1962) 521–532. [PMID: 14496116]
6.  van den Bosch, H. Intracellular phospholipases A. Biochim. Biophys. Acta 604 (1980) 191–246. [DOI] [PMID: 6252969]
[EC 3.1.1.4 created 1961, modified 1976, modified 1983]
 
 
EC 3.1.1.5     
Accepted name: lysophospholipase
Reaction: 2-lysophosphatidylcholine + H2O = glycerophosphocholine + a carboxylate
Other name(s): lecithinase B; lysolecithinase; phospholipase B; lysophosphatidase; lecitholipase; phosphatidase B; lysophosphatidylcholine hydrolase; lysophospholipase A1; lysophopholipase L2; lysophospholipase transacylase; neuropathy target esterase; NTE; NTE-LysoPLA; NTE-lysophospholipase
Systematic name: 2-lysophosphatidylcholine acylhydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-85-8
References:
1.  Abe, M., Ohno, K. and Sato, R. Possible identity of lysolecithin acyl-hydrolase with lysolecithin-lysolecithin acyl-transferase in rat-lung soluble fraction. Biochim. Biophys. Acta 369 (1974) 361–370.
2.  Contardi, A. and Ercoli, A. The enzymic cleavage of lecithin and lysolecithin. Biochem. Z. 261 (1933) 275–302.
3.  Dawson, R.M.C. Studies on the hydrolysis of lecithin by Penicillium notatum phospholipase B preparation. Biochem. J. 70 (1958) 559–570. [PMID: 13607409]
4.  Fairbairn, D. The preparation and properties of a lysophospholipase from Penicillium notatum. J. Biol. Chem. 173 (1948) 705–714. [PMID: 18910725]
5.  Shapiro, B. Purification and properties of a lysolecithinase from pancreas. Biochem. J. 53 (1953) 663–666. [PMID: 13032127]
6.  van den Bosch, H., Aarsman, A.J., De Jong, J.G.N. and van Deenen, L.L.M. Studies on lysophospholipases. I. Purification and some properties of a lysophospholipase from beef pancreas. Biochim. Biophys. Acta 296 (1973) 94–104. [DOI] [PMID: 4693514]
7.  van den Bosch, H., Vianen, G.M. and van Heusden, G.P.H. Lysophospholipase-transacylase from rat lung. Methods Enzymol. 71 (1981) 513–521. [PMID: 7278668]
8.  van Tienhoven, M., Atkins, J., Li, Y. and Glynn, P. Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J. Biol. Chem. 277 (2002) 20942–20948. [DOI] [PMID: 11927584]
9.  Quistad, G.B., Barlow, C., Winrow, C.J., Sparks, S.E. and Casida, J.E. Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc. Natl. Acad. Sci. USA 100 (2003) 7983–7987. [DOI] [PMID: 12805562]
10.  Lush, M.J., Li, Y., Read, D.J., Willis, A.C. and Glynn, P. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem. J. 332 (1998) 1–4. [PMID: 9576844]
11.  Winrow, C.J., Hemming, M.L., Allen, D.M., Quistad, G.B., Casida, J.E. and Barlow, C. Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat. Genet. 33 (2003) 477–485. [DOI] [PMID: 12640454]
[EC 3.1.1.5 created 1961, modified 1976, modified 1983]
 
 
EC 3.1.1.26     
Accepted name: galactolipase
Reaction: 1,2-diacyl-3-β-D-galactosyl-sn-glycerol + 2 H2O = 3-β-D-galactosyl-sn-glycerol + 2 carboxylates
Other name(s): galactolipid lipase; polygalactolipase; galactolipid acylhydrolase
Systematic name: 1,2-diacyl-3-β-D-galactosyl-sn-glycerol acylhydrolase
Comments: Also acts on 2,3-di-O-acyl-1-O-(6-O-α-D-galactosyl-β-D-galactosyl)-D-glycerol, and phosphatidylcholine and other phospholipids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37278-40-3
References:
1.  Helmsing, P.J. Purification and properties of galactolipase. Biochim. Biophys. Acta 178 (1969) 519–533. [DOI] [PMID: 5784904]
2.  Hirayama, O., Matsuda, H., Takeda, H., Maenaka, K. and Takatsuka, H. Purification and properties of a lipid acyl-hydrolase from potato tubers. Biochim. Biophys. Acta 384 (1975) 127–137. [DOI] [PMID: 236765]
[EC 3.1.1.26 created 1972]
 
 
EC 3.1.1.32     
Accepted name: phospholipase A1
Reaction: phosphatidylcholine + H2O = 2-acylglycerophosphocholine + a carboxylate
Systematic name: phosphatidylcholine 1-acylhydrolase
Comments: This enzyme has a much broader specificity than EC 3.1.1.4 phospholipase A2. Requires Ca2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9043-29-2
References:
1.  Gatt, S. Purification and properties of phospholipase A-1 from rat and calf brain. Biochim. Biophys. Acta 159 (1968) 304–316. [DOI] [PMID: 5657461]
2.  Scandella, C.J. and Kornberg, A. A membrane-bound phospholipase A1 purified from Escherichia coli. Biochemistry 10 (1971) 4447–4456. [PMID: 4946924]
3.  van den Bosch, H. Intracellular phospholipases A. Biochim. Biophys. Acta 604 (1980) 191–246. [DOI] [PMID: 6252969]
4.  van den Bosch, H., Aarsman, A.J. and van Deenen, L.L.M. Isolation and properties of a phospholipase A1 activity from beef pancreas. Biochim. Biophys. Acta 348 (1974) 197–209. [DOI] [PMID: 4858811]
[EC 3.1.1.32 created 1972, modified 1976]
 
 
EC 3.1.1.90     
Accepted name: all-trans-retinyl ester 13-cis isomerohydrolase
Reaction: an all-trans-retinyl ester + H2O = 13-cis-retinol + a fatty acid
For diagram of retinal and derivatives biosynthesis, click here
Systematic name: all-trans-retinyl ester acylhydrolase, 13-cis-retinol-forming
Comments: All-trans-retinyl esters, which are a storage form of vitamin A, are generated by the activity of EC 2.3.1.135, phosphatidylcholine—retinol O-acyltransferase (LRAT). They can be hydrolysed to 11-cis-retinol by EC 3.1.1.64, retinoid isomerohydrolase (RPE65), or to 13-cis-retinol by this enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Takahashi, Y., Moiseyev, G., Chen, Y., Farjo, K., Nikolaeva, O. and Ma, J.X. An enzymatic mechanism for generating the precursor of endogenous 13-cis retinoic acid in the brain. FEBS J. 278 (2011) 973–987. [DOI] [PMID: 21235714]
[EC 3.1.1.90 created 2011]
 
 
EC 3.1.1.111     
Accepted name: phosphatidylserine sn-1 acylhydrolase
Reaction: (1) a phosphatidylserine + H2O = a 2-acyl-1-lyso-phosphatidylserine + a fatty acid
(2) a 1-acyl-2-lyso-phosphatidylserine + H2O = glycerophosphoserine + a fatty acid
Glossary: phosphatidylserine = 3-sn-phosphatidyl-L-serine = 1,2-diacyl-sn-glycero-3-phospho-L-serine
glycerophosphoserine = sn-glycero-3-phospho-L-serine
Other name(s): phosphatidylserine-specific phospholipase A1; PS-PLA1; PLA1A (gene name)
Systematic name: 3-sn-phosphatidyl-L-serine sn-1 acylhydrolase
Comments: The enzyme, which has been described from mammals, is specific for phosphatidylserine and 2-lysophosphatidylserine, and does not act on phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid or phosphatidylinositol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sato, T., Aoki, J., Nagai, Y., Dohmae, N., Takio, K., Doi, T., Arai, H. and Inoue, K. Serine phospholipid-specific phospholipase A that is secreted from activated platelets. A new member of the lipase family. J. Biol. Chem. 272 (1997) 2192–2198. [PMID: 8999922]
2.  Nagai, Y., Aoki, J., Sato, T., Amano, K., Matsuda, Y., Arai, H. and Inoue, K. An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J. Biol. Chem. 274 (1999) 11053–11059. [PMID: 10196188]
3.  Hosono, H., Aoki, J., Nagai, Y., Bandoh, K., Ishida, M., Taguchi, R., Arai, H. and Inoue, K. Phosphatidylserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2-acyl-1-lysophosphatidylserine. J. Biol. Chem. 276 (2001) 29664–29670. [PMID: 11395520]
4.  Aoki, J., Nagai, Y., Hosono, H., Inoue, K. and Arai, H. Structure and function of phosphatidylserine-specific phospholipase A1. Biochim. Biophys. Acta 1582 (2002) 26–32. [PMID: 12069807]
[EC 3.1.1.111 created 2019]
 
 
EC 3.1.4.3     
Accepted name: phospholipase C
Reaction: a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
Other name(s): lipophosphodiesterase I; lecithinase C; Clostridium welchii α-toxin; Clostridium oedematiens β- and γ-toxins; lipophosphodiesterase C; phosphatidase C; heat-labile hemolysin; α-toxin
Systematic name: phosphatidylcholine cholinephosphohydrolase
Comments: The bacterial enzyme, which is a zinc protein, also acts on sphingomyelin and phosphatidylinositol; that from seminal plasma does not act on phosphatidylinositol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-86-9
References:
1.  Druzhinina, K.V. and Kritzman, M.G. [Lecithinase from animal tissues.] Biokhimiya 17 (1952) 77–81. [PMID: 13066482] (in Russian)
2.  Little, C. and Otnass, A.-B. The metal ion dependence of phospholipase C from Bacillus cereus. Biochim. Biophys. Acta 391 (1975) 326–333. [DOI] [PMID: 807246]
3.  Sheiknejad, R.G. and Srivastava, P.N. Isolation and properties of a phosphatidylcholine-specific phospholipase C from bull seminal plasma. J. Biol. Chem. 261 (1986) 7544–7549. [PMID: 3086312]
4.  Takahashi, T., Sugahara, T. and Ohsaka, A. Purification of Clostridium perfringens phospholipase C (α-toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein. Biochim. Biophys. Acta 351 (1974) 155–171. [DOI] [PMID: 4365891]
[EC 3.1.4.3 created 1961]
 
 
EC 3.1.4.4     
Accepted name: phospholipase D
Reaction: a phosphatidylcholine + H2O = choline + a phosphatidate
Other name(s): lipophosphodiesterase II; lecithinase D; choline phosphatase
Systematic name: phosphatidylcholine phosphatidohydrolase
Comments: Also acts on other phosphatidyl esters.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-87-0
References:
1.  Astrachan, L. The bond hydrolyzed by cardiolipin-specific phospholipase D. Biochim. Biophys. Acta 296 (1973) 79–88. [DOI] [PMID: 4632675]
2.  Einset, E. and Clark, W.L. The enzymatically catalyzed release of choline from lecithin. J. Biol. Chem. 231 (1958) 703–715. [PMID: 13539005]
3.  Hanahan, D.J. and Chaikoff, I.L. On the nature of the phosphorus-containing lipides of cabbage leaves and their relation to a phospholipide-splitting enzyme contained in these leaves. J. Biol. Chem. 172 (1948) 191–198. [PMID: 18920784]
4.  Tookey, H.L. and Balls, A.K. Plant phospholipase D. I. Studies on cottonseed and cabbage phospholipase D. J. Biol. Chem. 218 (1956) 213–224. [PMID: 13278329]
[EC 3.1.4.4 created 1961]
 
 
EC 3.1.4.12     
Accepted name: sphingomyelin phosphodiesterase
Reaction: a sphingomyelin + H2O = a ceramide + phosphocholine
Glossary: a ceramide = an N-acylsphingosine
Other name(s): neutral sphingomyelinase
Systematic name: sphingomyelin cholinephosphohydrolase
Comments: Has very little activity on phosphatidylcholine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-54-3
References:
1.  Barnholz, Y., Roitman, A. and Gatt, S. Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain. J. Biol. Chem. 241 (1966) 3731–3737. [PMID: 5916388]
2.  Chatterjee, S. and Ghosh, N. Neutral sphingomyelinase from human urine. Purification and preparation of monospecific antibodies. J. Biol. Chem. 264 (1989) 12554–12561. [PMID: 2545711]
3.  Heller, M. and Shapiro, B. Enzymic hydrolysis of sphingomyelin by rat liver. Biochem. J. 98 (1966) 763–769. [PMID: 5911524]
4.  Kanfer, J.N., Young, O.M., Shapiro, D. and Brady, R.O. The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue. J. Biol. Chem. 241 (1966) 1081–1084. [PMID: 5933867]
[EC 3.1.4.12 created 1972]
 
 
EC 3.1.4.38     
Accepted name: glycerophosphocholine cholinephosphodiesterase
Reaction: sn-glycero-3-phosphocholine + H2O = glycerol + phosphocholine
Other name(s): L-3-glycerylphosphinicocholine cholinephosphohydrolase
Systematic name: sn-glycero-3-phosphocholine cholinephosphohydrolase
Comments: No activity on sn-3-glycerophosphoethanolamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60063-78-7
References:
1.  Abra, R.M. and Quinn, P.J. A novel pathway for phosphatidylcholine catabolism in rat brain homogenates. Biochim. Biophys. Acta 380 (1975) 436–441. [DOI] [PMID: 166661]
[EC 3.1.4.38 created 1976]
 
 
EC 3.1.4.41     
Accepted name: sphingomyelin phosphodiesterase D
Reaction: sphingomyelin + H2O = ceramide phosphate + choline
Other name(s): sphingomyelinase D
Systematic name: sphingomyelin ceramide-phosphohydrolase
Comments: Does not act on phosphatidylcholine, but hydrolyses 2-lysophosphatidylcholine to choline and 2-lysophosphatidate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 54992-31-3
References:
1.  Carne, H.R. and Onon, E. Action of Corynebacterium ovis exotoxin on endothelial cells of blood vessels. Nature 271 (1978) 246–248. [PMID: 622164]
2.  Soucek, A., Michalec, C. and Souckov, A. Identification and characterization of a new enzyme of the group phospholipase D isolated from Corynebacterium ovis. Biochim. Biophys. Acta 227 (1971) 116–128. [DOI] [PMID: 5543581]
[EC 3.1.4.41 created 1978]
 
 
EC 3.1.4.54     
Accepted name: N-acetylphosphatidylethanolamine-hydrolysing phospholipase D
Reaction: N-acylphosphatidylethanolamine + H2O = N-acylethanolamine + a 1,2-diacylglycerol 3-phosphate
Other name(s): NAPE-PLD; anandamide-generating phospholipase D; N-acyl phosphatidylethanolamine phospholipase D; NAPE-hydrolyzing phospholipase D
Systematic name: N-acetylphosphatidylethanolamine phosphatidohydrolase
Comments: This enzyme is involved in the biosynthesis of anandamide. It does not hydrolyse phosphatidylcholine and phosphatidylethanolamine [1]. No transphosphatidation [1]. The enzyme contains Zn2+ and is activated by Mg2+ or Ca2+ [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. and Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279 (2004) 5298–5305. [DOI] [PMID: 14634025]
2.  Wang, J., Okamoto, Y., Morishita, J., Tsuboi, K., Miyatake, A. and Ueda, N. Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-β-lactamase family. J. Biol. Chem. 281 (2006) 12325–12335. [DOI] [PMID: 16527816]
[EC 3.1.4.54 created 2011]
 
 
EC 3.6.3.1      
Transferred entry: phospholipid-translocating ATPase. Now EC 7.6.2.1, P-type phospholipid transporter
[EC 3.6.3.1 created 2000 (EC 3.6.3.13 created 2000, incorporated 2001), deleted 2018]
 
 
EC 5.2.1.3      
Deleted entry: retinal isomerase. Now known to be catalysed by a pathway involving EC 1.1.1.300, NADP-retinol dehydrogenase; EC 2.3.1.135, phosphatidylcholine—retinol O-acyltransferase; EC 3.1.1.64, retinoid isomerohydrolase; and EC 1.1.1.315, 11-cis-retinol dehydrogenase.
[EC 5.2.1.3 created 1961, modified 1976, deleted 2011]
 
 
EC 7.6.2.1     
Accepted name: P-type phospholipid transporter
Reaction: ATP + H2O + phospholipid[side 1] = ADP + phosphate + phospholipid[side 2]
Other name(s): Mg2+-ATPase (ambiguous); flippase (ambiguous); aminophospholipid-transporting ATPase (ambiguous); phospholipid-translocating ATPase (ambiguous); phospholipid-transporting ATPase (ambiguous)
Systematic name: ATP phosphohydrolase (P-type, phospholipid-flipping)
Comments: A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. Different forms of the enzyme move phospholipids such as phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidyglycerol, sphingomyelin and glucosylceramide from one membrane face to the other (‘flippase’).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Morris, M.B., Auland, M.E., Xu, Y.H. and Roufogalis, B.D. Characterization of the Mg2+-ATPase activity of the human erythrocyte membrane. Biochem. Mol. Biol. Int. 31 (1993) 823–832. [PMID: 8136700]
2.  Vermeulen, W.P., Briede, J.J. and Rolofsen, B. Manipulation of the phosphatidylethanolamine pool in the human red cell membrane affects its Mg2+-ATPase activity. Mol. Membr. Biol. 13 (1996) 95–102. [PMID: 8839453]
3.  Suzuki, H., Kamakura, M., Morii, M. and Takeguchi, N. The phospholipid flippase activity of gastric vesicles. J. Biol. Chem. 272 (1997) 10429–10434. [DOI] [PMID: 9099684]
4.  Auland, M.E., Roufogalis, B.D., Devaux, P.F. and Zachowski, A. Reconstitution of ATP-dependent aminophospholipid translocation in proteoliposomes. Proc. Natl. Acad. Sci. USA 91 (1994) 10938–10942. [DOI] [PMID: 7971987]
5.  Alder-Baerens, N., Lisman, Q., Luong, L., Pomorski, T. and Holthuis, J.C. Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol. Biol. Cell 17 (2006) 1632–1642. [DOI] [PMID: 16452632]
6.  Lopez-Marques, R.L., Poulsen, L.R., Hanisch, S., Meffert, K., Buch-Pedersen, M.J., Jakobsen, M.K., Pomorski, T.G. and Palmgren, M.G. Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA α-subunit. Mol. Biol. Cell 21 (2010) 791–801. [DOI] [PMID: 20053675]
7.  Jensen, M.S., Costa, S.R., Duelli, A.S., Andersen, P.A., Poulsen, L.R., Stanchev, L.D., Gourdon, P., Palmgren, M., Günther Pomorski, T. and Lopez-Marques, R.L. Phospholipid flipping involves a central cavity in P4 ATPases. Sci. Rep. 7:17621 (2017). [PMID: 29247234]
[EC 7.6.2.1 created 2000 as EC 3.6.3.1 (EC 3.6.3.13 created 2000, incorporated 2001), transferred 2018 to EC 7.6.2.1]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald