The Enzyme Database

Your query returned 3 entries.    printer_iconPrintable version

EC 1.1.99.13     
Accepted name: glucoside 3-dehydrogenase (acceptor)
Reaction: sucrose + acceptor = 3-dehydro-α-D-glucosyl-β-D-fructofuranoside + reduced acceptor
Other name(s): D-glucoside 3-dehydrogenase (ambiguous); D-aldohexopyranoside dehydrogenase (ambiguous); D-aldohexoside:(acceptor) 3-oxidoreductase; thuA (gene name); thuB (gene name); glucoside 3-dehydrogenase
Systematic name: D-aldohexoside:acceptor 3-oxidoreductase
Comments: The enzymes from members of the Rhizobiaceae family (such as Agrobacterium tumefaciens) act on disaccharides that contain a glucose moiety at the non-reducing end, such as sucrose, trehalose, leucrose, palatinose, trehalulose, and maltitol, forming the respective 3′-keto derivatives. cf. EC 1.1.2.11, glucoside 3-dehydrogenase (cytochrome c).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9031-74-7
References:
1.  Jensen, J.B., Ampomah, O.Y., Darrah, R., Peters, N.K. and Bhuvaneswari, T.V. Role of trehalose transport and utilization in Sinorhizobium meliloti-alfalfa interactions. Mol. Plant Microbe Interact. 18 (2005) 694–702. [DOI] [PMID: 16042015]
2.  Ampomah, O.Y., Avetisyan, A., Hansen, E., Svenson, J., Huser, T., Jensen, J.B. and Bhuvaneswari, T.V. The thuEFGKAB operon of Rhizobia and Agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives. J. Bacteriol. 195 (2013) 3797–3807. [DOI] [PMID: 23772075]
3.  Ampomah, O.Y. and Jensen, J.B. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp. World J. Microbiol. Biotechnol. 30 (2014) 1129–1134. [DOI] [PMID: 24142427]
[EC 1.1.99.13 created 1972, modified 2022]
 
 
EC 3.2.1.10     
Accepted name: oligo-1,6-glucosidase
Reaction: Hydrolysis of (1→6)-α-D-glucosidic linkages in some oligosaccharides produced from starch and glycogen by EC 3.2.1.1 (α-amylase), and in isomaltose
Other name(s): limit dextrinase (erroneous); isomaltase; sucrase-isomaltase; exo-oligo-1,6-glucosidase; dextrin 6α-glucanohydrolase; α-limit dextrinase; dextrin 6-glucanohydrolase; oligosaccharide α-1,6-glucohydrolase; α-methylglucosidase
Systematic name: oligosaccharide 6-α-glucohydrolase
Comments: This enzyme, like EC 3.2.1.33 (amylo-α-1,6-glucosidase), can release an α-1→6-linked glucose, whereas the shortest chain that can be released by EC 3.2.1.41 (pullulanase), EC 3.2.1.142 (limit dextrinase), and EC 3.2.1.68 (isoamylase) is maltose. It also hydrolyses isomaltulose (palatinose), isomaltotriose and panose, but has no action on glycogen or phosphorylase limit dextrin. The enzyme from intestinal mucosa is a single polypeptide chain that also catalyses the reaction of EC 3.2.1.48 (sucrose α-glucosidase). Differs from EC 3.2.1.33 (amylo-α-1,6-glucosidase) in its preference for short-chain substrates and in its not requiring the 6-glucosylated residue to be at a branch point, i.e. linked at both C-1 and C-4.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9032-15-9
References:
1.  Hauri, H.-P., Quaroni, A. and Isselbacher, K.J. Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc. Natl. Acad. Sci. USA 76 (1979) 5183–5186. [DOI] [PMID: 291933]
2.  Sjöström, H., Norén, O., Christiansen, L., Wacker, H. and Semenza, G. A fully active, two-active-site, single-chain sucrase-isomaltase from pig small intestine. Implications for the biosynthesis of a mammalian integral stalked membrane protein. J. Biol. Chem. 255 (1980) 11332–11338. [PMID: 7002920]
3.  Rodriguez, I.R., Taravel, F.R. and Whelan, W.J. Characterization and function of pig intestinal sucrase-isomaltase and its separate subunits. Eur. J. Biochem. 143 (1984) 575–582. [DOI] [PMID: 6479163]
4.  Khan, N.A. and Eaton, N.R. Purification and characterization of maltase and α-methyl glucosidase from yeast. Biochim. Biophys. Acta 146 (1967) 173–180. [DOI] [PMID: 6060462]
5.  Yamamoto, K., Nakayama, A., Yamamoto, Y. and Tabata, S. Val216 decides the substrate specificity of α-glucosidase in Saccharomyces cerevisiae. Eur. J. Biochem. 271 (2004) 3414–3420. [DOI] [PMID: 15291818]
[EC 3.2.1.10 created 1961, modified 2000, modified 2013]
 
 
EC 3.2.1.219     
Accepted name: palatinase
Reaction: palatinose + H2O = α-D-glucopyranose + D-fructofuranose
Glossary: palatinose = 6-O-α-D-glucopyranosyl-D-fructofuranose
Other name(s): palQ (gene name)
Systematic name: palatinose α-1,6-glucohydrolase
Comments: The enzyme, characterized from the bacterium Erwinia rhapontici, is specific for palatinose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bornke, F., Hajirezaei, M. and Sonnewald, U. Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici. J. Bacteriol. 183 (2001) 2425–2430. [DOI] [PMID: 11274100]
[EC 3.2.1.219 created 2022]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald