The Enzyme Database

Your query returned 24 entries.    printer_iconPrintable version

EC 1.1.1.183     
Accepted name: geraniol dehydrogenase (NADP+)
Reaction: geraniol + NADP+ = geranial + NADPH + H+
For diagram of acyclic monoterpenoid biosynthesis, click here
Systematic name: geraniol:NADP+ oxidoreductase
Comments: Also acts, more slowly on farnesol but not on nerol. The enzyme produces a mixture known as citral, which includes geranial and neral. It is still not known whether neral is produced directly by the enzyme, or by isomerization of geranial.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 56802-96-1
References:
1.  Potty, V.H. and Bruemmer, J.H. Oxidation of geraniol by an enzyme system from orange. Phytochemistry 9 (1970) 1001–1007.
2.  Sekiwa-Iijima, Y., Aizawa, Y. and Kubota, K. Geraniol dehydrogenase activity related to aroma formation in ginger (Zingiber officinale Roscoe). J. Agric. Food Chem. 49 (2001) 5902–5906. [DOI] [PMID: 11743782]
3.  Saito, Y., Ito, S., Koltunow, A.M. and Sakai, H. Crystallization and preliminary X-ray analysis of geraniol dehydrogenase from Backhousia citriodora (lemon myrtle). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 (2011) 665–667. [DOI] [PMID: 21636906]
[EC 1.1.1.183 created 1983]
 
 
EC 1.1.1.216     
Accepted name: farnesol dehydrogenase (NADP+)
Reaction: (2E,6E)-farnesol + NADP+ = (2E,6E)-farnesal + NADPH + H+
For diagram of juvenile hormone biosynthesis, click here
Other name(s): NADP+-farnesol dehydrogenase; farnesol (nicotinamide adenine dinucleotide phosphate) dehydrogenase
Systematic name: (2E,6E)-farnesol:NADP+ 1-oxidoreductase
Comments: Also acts, more slowly, on (2Z,6E)-farnesol, geraniol, citronerol and nerol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 89089-75-8, 90804-55-0
References:
1.  Inoue, H., Tsuji, H. and Uritani, I. Characterization and activity change of farnesol dehydrogenase in black rot fungus-infected sweet-potato. Agric. Biol. Chem. 48 (1984) 733–738.
[EC 1.1.1.216 created 1989]
 
 
EC 1.1.1.324     
Accepted name: 8-hydroxygeraniol dehydrogenase
Reaction: (6E)-8-hydroxygeraniol + 2 NADP+ = (6E)-8-oxogeranial + 2 NADPH + 2 H+ (overall reaction)
(1a) (6E)-8-hydroxygeraniol + NADP+ = (6E)-8-hydroxygeranial + NADPH + H+
(1b) (6E)-8-hydroxygeraniol + NADP+ = (6E)-8-oxogeraniol + NADPH + H+
(1c) (6E)-8-hydroxygeranial + NADP+ = (6E)-8-oxogeranial + NADPH + H+
(1d) (6E)-8-oxogeraniol + NADP+ = (6E)-8-oxogeranial + NADPH + H+
For diagram of acyclic monoterpenoid biosynthesis, click here
Other name(s): 8-hydroxygeraniol oxidoreductase; CYP76B10; G10H; CrG10H; SmG10H; acyclic monoterpene primary alcohol:NADP+ oxidoreductase
Systematic name: (6E)-8-hydroxygeraniol:NADP+ oxidoreductase
Comments: Contains Zn2+. The enzyme catalyses the oxidation of (6E)-8-hydroxygeraniol to (6E)-8-oxogeranial via either (6E)-8-hydroxygeranial or (6E)-8-oxogeraniol. Also acts on geraniol, nerol and citronellol. May be identical to EC 1.1.1.183 geraniol dehydrogenase. The recommended numbering of geraniol gives 8-hydroxygeraniol as the substrate rather than 10-hydroxygeraniol as used by references 1 and 2. See prenol nomenclature Pr-1.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ikeda, H., Esaki, N., Nakai, S., Hashimoto, K., Uesato, S., Soda, K. and Fujita, T. Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols. J. Biochem. 109 (1991) 341–347. [PMID: 1864846]
2.  Hallahan, D.L., West, J.M., Wallsgrove, R.M., Smiley, D.W., Dawson, G.W., Pickett, J.A. and Hamilton, J.G. Purification and characterization of an acyclic monoterpene primary alcohol:NADP+ oxidoreductase from catmint (Nepeta racemosa). Arch. Biochem. Biophys. 318 (1995) 105–112. [DOI] [PMID: 7726550]
[EC 1.1.1.324 created 2012]
 
 
EC 1.1.1.347     
Accepted name: geraniol dehydrogenase (NAD+)
Reaction: geraniol + NAD+ = geranial + NADH + H+
Other name(s): GeDH; geoA (gene name)
Systematic name: geraniol:NAD+ oxidoreductase
Comments: The enzyme from the bacterium Castellaniella defragrans is most active in vitro with perillyl alcohol [2]. The enzyme from the prune mite Carpoglyphus lactis also acts (more slowly) on farnesol but not on nerol [1].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Noge, K., Kato, M., Mori, N., Kataoka, M., Tanaka, C., Yamasue, Y., Nishida, R. and Kuwahara, Y. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae). FEBS J. 275 (2008) 2807–2817. [DOI] [PMID: 18422649]
2.  Lüddeke, F., Wülfing, A., Timke, M., Germer, F., Weber, J., Dikfidan, A., Rahnfeld, T., Linder, D., Meyerdierks, A. and Harder, J. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl. Environ. Microbiol. 78 (2012) 2128–2136. [DOI] [PMID: 22286981]
[EC 1.1.1.347 created 2013]
 
 
EC 1.14.13.152      
Transferred entry: geraniol 8-hydroxylase. Now EC 1.14.14.83, geraniol 8-hydroxylase
[EC 1.14.13.152 created 2012, deleted 2018]
 
 
EC 1.14.14.58     
Accepted name: trimethyltridecatetraene synthase
Reaction: (6E,10E)-geranyllinalool + [reduced NADPH—hemoprotein reductase] + O2 = (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene + [oxidized NADPH—hemoprotein reductase] + but-3-en-2-one + 2 H2O
For diagram of acyclic diterpenoid biosynthesis, click here
Glossary: (6E,10E)-geranyllinalool = (6E,10E)-3,7,11,15-tetramethylhexadeca-1,6,10,14-tetraen-3-ol
Other name(s): CYP82G1; CYP92C5; CYP92C6; DMNT/TMTT homoterpene synthase
Systematic name: (6E,10E)-geranyllinalool,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plants Arabidopsis thaliana (thale cress) and Zea mays (maize). It forms this C16 homoterpene in response to herbivore attack. In vitro some variants of the enzyme also convert (3S,6E)-nerolidol to (3E)-4,8-dimethylnona-1,3,7-triene (see EC 1.14.14.59, dimethylnonatriene synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, S., Badieyan, S., Bevan, D.R., Herde, M., Gatz, C. and Tholl, D. Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proc. Natl. Acad. Sci. USA 107 (2010) 21205–21210. [DOI] [PMID: 21088219]
2.  Richter, A., Schaff, C., Zhang, Z., Lipka, A.E., Tian, F., Kollner, T.G., Schnee, C., Preiss, S., Irmisch, S., Jander, G., Boland, W., Gershenzon, J., Buckler, E.S. and Degenhardt, J. Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. Plant Cell 28 (2016) 2651–2665. [DOI] [PMID: 27662898]
[EC 1.14.14.58 created 2018]
 
 
EC 1.14.14.59     
Accepted name: dimethylnonatriene synthase
Reaction: (3S,6E)-nerolidol + [reduced NADPH—hemoprotein reductase] + O2 = (3E)-4,8-dimethylnona-1,3,7-triene + [oxidized NADPH—hemoprotein reductase] + but-3-en-2-one + 2 H2O
For diagram of acyclic sesquiterpenoid biosynthesis, click here
Other name(s): CYP82G1; CYP92C5; DMNT/TMTT homoterpene synthase
Systematic name: (3S,6E)-nerolidol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plants Arabidopsis thaliana (thale cress) and Zea mays (maize). It forms this C11 homoterpene in response to herbivore attack. In vitro the enzyme also converts (6E,10E)-geranyllinalool to (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (see EC 1.14.14.58, trimethyltridecatetraene synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, S., Badieyan, S., Bevan, D.R., Herde, M., Gatz, C. and Tholl, D. Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proc. Natl. Acad. Sci. USA 107 (2010) 21205–21210. [DOI] [PMID: 21088219]
2.  Richter, A., Schaff, C., Zhang, Z., Lipka, A.E., Tian, F., Kollner, T.G., Schnee, C., Preiss, S., Irmisch, S., Jander, G., Boland, W., Gershenzon, J., Buckler, E.S. and Degenhardt, J. Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. Plant Cell 28 (2016) 2651–2665. [DOI] [PMID: 27662898]
[EC 1.14.14.59 created 2018]
 
 
EC 1.14.14.83     
Accepted name: geraniol 8-hydroxylase
Reaction: geraniol + [reduced NADPH—hemoprotein reductase] + O2 = (6E)-8-hydroxygeraniol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of acyclic monoterpenoid biosynthesis, click here
Other name(s): CYP76B6 (gene name); G10H (gene name)
Systematic name: geraniol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (8-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) protein found in plants. Also hydroxylates nerol and citronellol, cf. EC 1.14.14.84, linalool 8-monooxygenase. The recommended numbering of geraniol gives 8-hydroxygeraniol as the product rather than 10-hydroxygeraniol as used by references 1-3. See prenol nomenclature Pr-1. The cloned enzyme also catalysed, but less efficiently, the 3′-hydroxylation of naringenin (cf. EC 1.14.14.82, flavonoid 3′-monooxygenase) [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Collu, G., Unver, N., Peltenburg-Looman, A.M., van der Heijden, R., Verpoorte, R. and Memelink, J. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 508 (2001) 215–220. [DOI] [PMID: 11718718]
2.  Wang, J., Liu, Y., Cai, Y., Zhang, F., Xia, G. and Xiang, F. Cloning and functional analysis of geraniol 10-hydroxylase, a cytochrome P450 from Swertia mussotii Franch. Biosci. Biotechnol. Biochem. 74 (2010) 1583–1590. [PMID: 20699579]
3.  Sung, P.H., Huang, F.C., Do, Y.Y. and Huang, P.L. Functional expression of geraniol 10-hydroxylase reveals its dual function in the biosynthesis of terpenoid and phenylpropanoid. J. Agric. Food Chem. 59 (2011) 4637–4643. [DOI] [PMID: 21504162]
[EC 1.14.14.83 created 2012 as EC 1.14.13.152, transferred 2018 to EC 1.14.14.83]
 
 
EC 1.21.3.7     
Accepted name: tetrahydrocannabinolic acid synthase
Reaction: cannabigerolate + O2 = Δ9-tetrahydrocannabinolate + H2O2
For diagram of cannabinoid biosynthesis, click here
Glossary: Δ9-tetrahydrocannabinolate = Δ9-THCA = (6aR,10aR)-1-hydroxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromene-2-carboxylate
cannabigerolate = CBGA = 3-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
cannabinerolate = 3-[(2Z)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
Other name(s): THCA synthase; Δ1-tetrahydrocannabinolic acid synthase
Systematic name: cannabigerolate:oxygen oxidoreductase (cyclizing, Δ9-tetrahydrocannabinolate-forming)
Comments: A flavoprotein (FAD). The cofactor is covalently bound. Part of the cannabinoids biosynthetic pathway in the plant Cannabis sativa. The enzyme can also convert cannabinerolate (the (Z)-isomer of cannabigerolate) to Δ9-THCA with lower efficiency. Whereas the product was originally called Δ1-tetrahydrocannabinolate, the recommended name according to systematic peripheral numbering is Δ9-tetrahydrocannabinolate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Taura, F., Morimoto, S. Shoyama, Y. and Mechoulam, R. First direct evidence for the mechanism of Δ1-tetrahydrocannabinolic acid biosynthesis. J. Am. Chem. Soc. 117 (1995) 9766–9767.
2.  Sirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., Shoyama, Y. and Taura, F. The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Δ1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 279 (2004) 39767–39774. [DOI] [PMID: 15190053]
3.  Shoyama, Y., Takeuchi, A., Taura, F., Tamada, T., Adachi, M., Kuroki, R., Shoyama, Y. and Morimoto, S. Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 799–801. [DOI] [PMID: 16511162]
4.  Shoyama, Y., Tamada, T., Kurihara, K., Takeuchi, A., Taura, F., Arai, S., Blaber, M., Shoyama, Y., Morimoto, S. and Kuroki, R. Structure and function of 1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J. Mol. Biol. 423 (2012) 96–105. [DOI] [PMID: 22766313]
[EC 1.21.3.7 created 2012]
 
 
EC 1.21.3.8     
Accepted name: cannabidiolic acid synthase
Reaction: cannabigerolate + O2 = cannabidiolate + H2O2
For diagram of cannabinoid biosynthesis, click here
Glossary: cannabigerolate = CBGA = 3-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
cannabidiolate = 2,4-dihydroxy-3-[(1R,6R)-3-methyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl]-6-pentylbenzoate
Other name(s): CBDA synthase
Systematic name: cannabigerolate:oxygen oxidoreductase (cyclizing, cannabidiolate-forming)
Comments: Binds FAD covalently. Part of the cannabinoids biosynthetic pathway of the plant Cannabis sativa. The enzyme can also convert cannabinerolate to cannabidiolate with lower efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Taura, F., Morimoto, S. and Shoyama, Y. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 271 (1996) 17411–17416. [DOI] [PMID: 8663284]
2.  Taura, F., Sirikantaramas, S., Shoyama, Y., Yoshikai, K., Shoyama, Y. and Morimoto, S. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett. 581 (2007) 2929–2934. [DOI] [PMID: 17544411]
[EC 1.21.3.8 created 2012]
 
 
EC 2.5.1.1     
Accepted name: dimethylallyltranstransferase
Reaction: prenyl diphosphate + 3-methylbut-3-en-1-yl diphosphate = diphosphate + geranyl diphosphate
For diagram of terpenoid biosynthesis, click here
Glossary: 3-methylbut-3-en-1-yl = isopentenyl (ambiguous)
prenyl = 3-methylbut-2-en-1-yl = dimethylallyl (ambiguous)
Other name(s): geranyl-diphosphate synthase; prenyltransferase; dimethylallyltransferase; DMAPP:IPP-dimethylallyltransferase; (2E,6E)-farnesyl diphosphate synthetase; diprenyltransferase; geranyl pyrophosphate synthase; geranyl pyrophosphate synthetase; trans-farnesyl pyrophosphate synthetase; dimethylallyl-diphosphate:isopentenyl-diphosphate dimethylallyltranstransferase
Systematic name: prenyl-diphosphate:3-methylbut-3-en-1-yl-diphosphate prenyltranstransferase
Comments: This enzyme will not accept larger prenyl diphosphates as efficient donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-79-5
References:
1.  Banthorpe, D.V., Bucknall, G.A., Doonan, H.J., Doonan, S. and Rowan, M.G. Biosynthesis of geraniol and nerol in cell-free extracts of Tanacetum vulgare. Phytochemistry 15 (1976) 91–100.
2.  Sagami, H., Ogura, K., Seto, S. and Kurokawa, T. A new prenyltransferase from Micrococcus lysodeikticus. Biochem. Biophys. Res. Commun. 85 (1978) 572–578. [DOI] [PMID: 736921]
[EC 2.5.1.1 created 1961]
 
 
EC 2.5.1.28     
Accepted name: dimethylallylcistransferase
Reaction: prenyl diphosphate + 3-methyl-but-3-en-1-yl diphosphate = diphosphate + neryl diphosphate
For diagram of all-cis-polyprenyl diphosphate, click here
Glossary: neryl = (2Z)-3,7-dimethylocta-2,6-dien-1-yl
Other name(s): neryl-diphosphate synthase; dimethylallyl-diphosphate:isopentenyl-diphosphate dimethylallylcistransferase
Systematic name: prenyl-diphosphate:3-methyl-but-3-en-1-yl-diphosphate prenylcistransferase
Comments: This enzyme will not use larger prenyl diphosphates as efficient donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-79-5
References:
1.  Banthorpe, D.V., Bucknall, G.A., Doonan, H.J., Doonan, S. and Rowan, M.G. Biosynthesis of geraniol and nerol in cell-free extracts of Tanacetum vulgare. Phytochemistry 15 (1976) 91–100.
2.  Beytía, E., Valenzuela, P. and Cori, O. Terpene biosynthesis: formation of nerol, geraniol, and other prenols by an enzyme system from Pinus radiata seedlings. Arch. Biochem. Biophys. 129 (1969) 346–356. [DOI] [PMID: 4303098]
[EC 2.5.1.28 created 1984]
 
 
EC 2.5.1.102     
Accepted name: geranyl-pyrophosphate—olivetolic acid geranyltransferase
Reaction: geranyl diphosphate + 2,4-dihydroxy-6-pentylbenzoate = diphosphate + cannabigerolate
For diagram of cannabinoid biosynthesis, click here
Glossary: 2,4-dihydroxy-6-pentylbenzoate = olivetolate
cannabigerolate = CBGA = 3-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
cannabinerolate = 3-[(2Z)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
Other name(s): GOT (ambiguous)
Systematic name: geranyl-diphosphate:olivetolate geranyltransferase
Comments: Part of the cannabinoids biosynthetic pathway of the plant Cannabis sativa. The enzyme can also use neryl diphosphate as substrate, forming cannabinerolate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fellermeier, M. and Zenk, M.H. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett. 427 (1998) 283–285. [DOI] [PMID: 9607329]
[EC 2.5.1.102 created 2012]
 
 
EC 3.1.7.13     
Accepted name: neryl diphosphate diphosphatase
Reaction: neryl diphosphate + H2O = nerol + diphosphate
For diagram of all-cis-polyprenyl diphosphate, click here
Glossary: nerol = (2Z)-3,7-dimethylocta-2,6-dien-1-ol
Other name(s): NES (gene name); nerol synthase
Systematic name: neryl-diphosphate diphosphohydrolase
Comments: The enzyme, characterized from Glycine max (soybeans), is specific for neryl diphosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zhang, M., Liu, J., Li, K. and Yu, D. Identification and characterization of a novel monoterpene synthase from soybean restricted to neryl diphosphate precursor. PLoS One 8:e75972 (2013). [DOI] [PMID: 24124526]
[EC 3.1.7.13 created 2020 as EC 3.7.1.27, transferred 2021 to EC 3.1.7.13]
 
 
EC 3.7.1.27      
Transferred entry: neryl diphosphate diphosphatase. Now EC 3.1.7.13, neryl diphosphate diphosphatase.
[EC 3.7.1.27 created 2020, deleted 2021]
 
 
EC 4.2.3.40     
Accepted name: (Z)-γ-bisabolene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (Z)-γ-bisabolene + diphosphate
For diagram of bisabolene-derived sesquiterpenoid biosynthesis, click here
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(Z)-γ-bisabolene-forming]
Comments: This sesquiterpenoid enzyme is constitutively expressed in the root, hydathodes and stigma of the plant Arabidopsis thaliana. If the leaves of the plant are wounded, e.g. by cutting, the enzyme is also induced close to the wound site. The sesquiterpenoids (E)-nerolidol and α-bisabolol are also produced by this enzyme as minor products.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ro, D.K., Ehlting, J., Keeling, C.I., Lin, R., Mattheus, N. and Bohlmann, J. Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Arch. Biochem. Biophys. 448 (2006) 104–116. [DOI] [PMID: 16297850]
[EC 4.2.3.40 created 2009]
 
 
EC 4.2.3.47     
Accepted name: β-farnesene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (E)-β-farnesene + diphosphate
For diagram of acyclic sesquiterpenoid biosynthesis, click here
Other name(s): farnesene synthase; terpene synthase 10; terpene synthase 10-B73; TPS10
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(E)-β-farnesene-forming]
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zhao, B., Lei, L., Vassylyev, D.G., Lin, X., Cane, D.E., Kelly, S.L., Yuan, H., Lamb, D.C. and Waterman, M.R. Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J. Biol. Chem. 284 (2009) 36711–36719. [DOI] [PMID: 19858213]
2.  Picaud, S., Brodelius, M. and Brodelius, P.E. Expression, purification and characterization of recombinant (E)-β-farnesene synthase from Artemisia annua. Phytochemistry 66 (2005) 961–967. [DOI] [PMID: 15896363]
3.  Kollner, T.G., Gershenzon, J. and Degenhardt, J. Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70 (2009) 1139–1145. [DOI] [PMID: 19646721]
4.  Schnee, C., Kollner, T.G., Held, M., Turlings, T.C., Gershenzon, J. and Degenhardt, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 103 (2006) 1129–1134. [DOI] [PMID: 16418295]
5.  Maruyama, T., Ito, M. and Honda, G. Molecular cloning, functional expression and characterization of (E)-β farnesene synthase from Citrus junos. Biol. Pharm. Bull. 24 (2001) 1171–1175. [PMID: 11642326]
6.  Crock, J., Wildung, M. and Croteau, R. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha × piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene. Proc. Natl. Acad. Sci. USA 94 (1997) 12833–12838. [DOI] [PMID: 9371761]
7.  Schnee, C., Kollner, T.G., Gershenzon, J. and Degenhardt, J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol. 130 (2002) 2049–2060. [DOI] [PMID: 12481088]
8.  Huber, D.P.W., Philippe, R.N., Godard, K.-A., Sturrock, R.N. and Bohlmann, J. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry 66 (2005) 1427–1439. [DOI] [PMID: 15921711]
[EC 4.2.3.47 created 2010]
 
 
EC 4.2.3.48     
Accepted name: (3S,6E)-nerolidol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (3S,6E)-nerolidol + diphosphate
For diagram of acyclic sesquiterpenoid biosynthesis, click here
Glossary: (3S,6E)-nerolidol = (3R,6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol
Other name(s): (E)-nerolidol synthase; nerolidol synthase; (3S)-(E)-nerolidol synthase; FaNES1
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(3S,6E)-nerolidol-forming]
Comments: The enzyme catalyses a step in the formation of (3E)-4,8-dimethylnona-1,3,7-triene, a key signal molecule in induced plant defense mediated by the attraction of enemies of herbivores [2]. Nerolidol is a naturally occurring sesquiterpene found in the essential oils of many types of plants.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Aharoni, A., Giri, A.P., Verstappen, F.W., Bertea, C.M., Sevenier, R., Sun, Z., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16 (2004) 3110–3131. [DOI] [PMID: 15522848]
2.  Bouwmeester, H.J., Verstappen, F.W., Posthumus, M.A. and Dicke, M. Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121 (1999) 173–180. [PMID: 10482672]
3.  Degenhardt, J. and Gershenzon, J. Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta 210 (2000) 815–822. [DOI] [PMID: 10805454]
4.  Arimura, G., Garms, S., Maffei, M., Bossi, S., Schulze, B., Leitner, M., Mithofer, A. and Boland, W. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227 (2008) 453–464. [DOI] [PMID: 17924138]
[EC 4.2.3.48 created 2010]
 
 
EC 4.2.3.49     
Accepted name: (3R,6E)-nerolidol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (3R,6E)-nerolidol + diphosphate
For diagram of acyclic sesquiterpenoid biosynthesis, click here
Other name(s): terpene synthase 1
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(3R,6E)-nerolidol-forming]
Comments: The enzyme catalyses a step in the formation of (3E)-4,8-dimethylnona-1,3,7-triene, a key signal molecule in induced plant defense mediated by the attraction of enemies of herbivores [1]. Nerolidol is a naturally occurring sesquiterpene found in the essential oils of many types of plants.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schnee, C., Kollner, T.G., Gershenzon, J. and Degenhardt, J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol. 130 (2002) 2049–2060. [DOI] [PMID: 12481088]
[EC 4.2.3.49 created 2010]
 
 
EC 4.2.3.64     
Accepted name: (+)-epicubenol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-epicubenol + diphosphate
For diagram of ent-cadinane sesquiterpenoid biosynthesis, click here
Other name(s): farnesyl pyrophosphate cyclase (ambiguous)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-epicubenol-forming]
Comments: Requires Mg2+. In the bacteria Streptomyces and the liverwort Heteroscyphus the (+)-isomer is formed in contrast to higher plants where the (-)-isomer is formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cane, D.E., Tandon, M., and Prabhakaran, P.C. Epicubenol synthase and the enzymatic cyclization of farnesyl diphosphate. J. Am. Chem. Soc. 115 (1993) 8103–8106.
2.  Cane, D.E. and Tandon, M. Biosynthesis of (+)-epicubenol. Tetrahedron Lett. 35 (1994) 5355–5358.
3.  Cane, D.E. and Tandon, M. Epicubenol synthase and the stereochemistry of the enzymatic cyclization of farnesyl and nerolidyl diphosphate. J. Am. Chem. Soc. 117 (1995) 5602–5603.
4.  Nabeta, K., Kigure, K., Fujita, M., Nagoya, T., Ishikawa, T., Okuyama, H. and Takasawa, T. Bioynthesis of (+)-cubenene and (+)-epicubenol by cell-free extracts of cultured cells of Heteroscyphus planus and cyclization of [2H]farnesyl diphosphates. J. Chem. Soc., Perkin Trans. 1 (1995) 1935–1939.
5.  Nabeta, K., Fujita, M., Komuro, K., Katayama, K., and Takasawa, T. In vitro biosynthesis of cadinanes by cell-free extracts of cultured cells of Heteroscyphus planus. J. Chem. Soc., Perkin Trans. 1 (1997) 2065–2070.
[EC 4.2.3.64 created 2011]
 
 
EC 4.2.3.81     
Accepted name: exo-α-bergamotene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-exo-α-bergamotene + diphosphate
For diagram of santalene and bergamotene biosynthesis, click here
Glossary: (-)-exo-α-bergamotene = (-)-trans-α-bergamotene = (1S,5S,6R)-2,6-dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]hept-2-ene
Other name(s): trans-α-bergamotene synthase; LaBERS (gene name)
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (-)-exo-α-bergamotene-forming)
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2E,6E)-farnesyl diphosphate. As well as (-)-exo-α-bergamotene (74%) there were (E)-nerolidol (10%), (Z)-α-bisabolene (6%), (E)-β-farnesene (5%) and β-sesquiphellandrene (1%).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schnee, C., Kollner, T.G., Held, M., Turlings, T.C., Gershenzon, J. and Degenhardt, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 103 (2006) 1129–1134. [DOI] [PMID: 16418295]
2.  Landmann, C., Fink, B., Festner, M., Dregus, M., Engel, K.H. and Schwab, W. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys. 465 (2007) 417–429. [DOI] [PMID: 17662687]
[EC 4.2.3.81 created 2011]
 
 
EC 4.2.3.97     
Accepted name: (-)-δ-cadinene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-δ-cadinene + diphosphate
For diagram of ent-cadinane sesquiterpenoid biosynthesis, click here
Glossary: (-)-δ-cadinene = (1R,8aS)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (-)-δ-cadinene-forming)
Comments: The cyclization mechanism involves an intermediate nerolidyl diphosphate leading to a helminthogermacradienyl cation. Following a 1,3-hydride shift of the original 1-pro-S hydrogen of (2E,6E)-farnesyl diphosphate, cyclization and deprotonation gives (-)-δ-cadinene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hu, Y., Chou, W.K., Hopson, R. and Cane, D.E. Genome mining in Streptomyces clavuligerus: expression and biochemical characterization of two new cryptic sesquiterpene synthases. Chem. Biol. 18 (2011) 32–37. [DOI] [PMID: 21276937]
[EC 4.2.3.97 created 2012]
 
 
EC 4.2.3.98     
Accepted name: (+)-T-muurolol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-T-muurolol + diphosphate
For diagram of ent-cadinane sesquiterpenoid biosynthesis, click here
Glossary: (+)-T-muurolol = (1R,4R,4aS,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-T-muurolol-forming)
Comments: The cyclization mechanism involves an intermediate nerolidyl diphosphate leading to a helminthogermacradienyl cation. After a 1,3-hydride shift of the original 1-pro-S hydrogen of farnesyl diphosphate, cyclization and deprotonation result in (+)-T-muurolol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hu, Y., Chou, W.K., Hopson, R. and Cane, D.E. Genome mining in Streptomyces clavuligerus: expression and biochemical characterization of two new cryptic sesquiterpene synthases. Chem. Biol. 18 (2011) 32–37. [DOI] [PMID: 21276937]
[EC 4.2.3.98 created 2012]
 
 
EC 4.2.3.187     
Accepted name: (2Z,6E)-hedycaryol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (2Z,6E)-hedycaryol + diphosphate
For diagram of biosynthesis of ent-germacrene sesquiterpenoids, click here
Glossary: (2Z,6E)-hedycaryol = (1E,4Z,7S)-germacra-1(10),4-dien-11-ol
Other name(s): HcS
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (2Z,6E)-hedycaryol-forming]
Comments: Isolated from the bacterium Kitasatospora setae. The stereochemistry suggests the farnesyl diphosphate rearranges to nerolidyl diphosphate or an equivalent intermediate before cyclization. See also EC 4.2.3.174 (2E,6E)-hedycaryol synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Baer, P., Rabe, P., Citron, C.A., de Oliveira Mann, C.C., Kaufmann, N., Groll, M. and Dickschat, J.S. Hedycaryol synthase in complex with nerolidol reveals terpene cyclase mechanism. ChemBioChem 15 (2014) 213–216. [DOI] [PMID: 24399794]
[EC 4.2.3.187 created 2017]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald