The Enzyme Database

Your query returned 18 entries.    printer_iconPrintable version

EC 1.1.1.288     
Accepted name: xanthoxin dehydrogenase
Reaction: xanthoxin + NAD+ = abscisic aldehyde + NADH + H+
For diagram of abscisic-acid biosynthesis, click here and for carotenoid-epoxide rearrangements, click here
Other name(s): xanthoxin oxidase; ABA2
Systematic name: xanthoxin:NAD+ oxidoreductase
Comments: Requires a molybdenum cofactor for activity. NADP+ cannot replace NAD+ and short-chain alcohols such as ethanol, isopropanol, butanol and cyclohexanol cannot replace xanthoxin as substrate [3]. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.2.3.14 (abscisic-aldehyde oxidase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8′-hydroxylase]. Abscisic acid is a sesquiterpenoid plant hormone that is involved in the control of a wide range of essential physiological processes, including seed development, germination and responses to stress [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129204-37-1
References:
1.  Sindhu, R.K. and Walton, D.C. Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol. 88 (1988) 178–182. [PMID: 16666262]
2.  Schwartz, S.H., Leon-Kloosterziel, K.M., Koornneef, M. and Zeevaart, J.A. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114 (1997) 161–166. [PMID: 9159947]
3.  González-Guzmán, M., Apostolova, N., Bellés, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R. and Rodríguez, P.L. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14 (2002) 1833–1846. [DOI] [PMID: 12172025]
[EC 1.1.1.288 created 2005]
 
 
EC 1.3.99.19     
Accepted name: quinoline-4-carboxylate 2-oxidoreductase
Reaction: quinoline-4-carboxylate + acceptor + H2O = 2-oxo-1,2-dihydroquinoline-4-carboxylate + reduced acceptor
For diagram of reaction, click here
Other name(s): quinaldic acid 4-oxidoreductase; quinoline-4-carboxylate:acceptor 2-oxidoreductase (hydroxylating)
Systematic name: quinoline-4-carboxylate:acceptor 2-oxidoreductase (hydroxylating)
Comments: A molybdenum—iron—sulfur flavoprotein with molybdopterin cytosine dinucleotide as the molybdenum cofactor. Quinoline, 4-methylquinoline and 4-chloroquinoline can also serve as substrates for the enzyme from Agrobacterium sp. 1B. Iodonitrotetrazolium chloride, thionine, menadione and 2,6-dichlorophenolindophenol can act as electron acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 175780-18-4
References:
1.  Bauer, G. and Lingens, F. Microbial metabolism of quinoline and related compounds. XV. Quinoline-4-carboxylic acid oxidoreductase from Agrobacterium spec.1B: a molybdenum-containing enzyme. Biol. Chem. Hoppe-Seyler 373 (1992) 699–705. [PMID: 1418685]
[EC 1.3.99.19 created 1999, modified 2006]
 
 
EC 1.5.99.14     
Accepted name: 6-hydroxypseudooxynicotine dehydrogenase
Reaction: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one + acceptor + H2O = 1-(2,6-dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one + reduced acceptor
For diagram of nicotine catabolism by arthrobacter, click here
Glossary: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one = 6-hydroxypseudooxynicotine
1-(2,6-dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one = 2,6-dihydroxypseudooxynicotine
Systematic name: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one:acceptor 6-oxidoreductase (hydroxylating)
Comments: Contains a cytidylyl molybdenum cofactor [3]. The enzyme, which participates in the nicotine degradation pathway, has been characterized from the soil bacterium Arthrobacter nicotinovorans [1,2].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Freudenberg, W., Konig, K. and Andreesen, J. R. Nicotine dehydrogenase from Arthrobacter oxidans: A molybdenum-containing hydroxylase. FEMS Microbiology Letters 52 (1988) 13–18.
2.  Grether-Beck, S., Igloi, G.L., Pust, S., Schilz, E., Decker, K. and Brandsch, R. Structural analysis and molybdenum-dependent expression of the pAO1-encoded nicotine dehydrogenase genes of Arthrobacter nicotinovorans. Mol. Microbiol. 13 (1994) 929–936. [DOI] [PMID: 7815950]
3.  Sachelaru, P., Schiltz, E. and Brandsch, R. A functional mobA gene for molybdopterin cytosine dinucleotide cofactor biosynthesis is required for activity and holoenzyme assembly of the heterotrimeric nicotine dehydrogenases of Arthrobacter nicotinovorans. Appl. Environ. Microbiol. 72 (2006) 5126–5131. [DOI] [PMID: 16820521]
[EC 1.5.99.14 created 2012]
 
 
EC 1.7.2.3     
Accepted name: trimethylamine-N-oxide reductase
Reaction: trimethylamine + 2 (ferricytochrome c)-subunit + H2O = trimethylamine N-oxide + 2 (ferrocytochrome c)-subunit + 2 H+
For diagram of dimethyl sulfide catabolism, click here
Other name(s): TMAO reductase; TOR; torA (gene name); torZ (gene name); bisZ (gene name); trimethylamine-N-oxide reductase (cytochrome c)
Systematic name: trimethylamine:cytochrome c oxidoreductase
Comments: Contains bis(molybdopterin guanine dinucleotide)molybdenum cofactor. The reductant is a membrane-bound multiheme cytochrome c. Also reduces dimethyl sulfoxide to dimethyl sulfide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-34-1
References:
1.  Arata, H., Shimizu, M. and Takamiya, K. Purification and properties of trimethylamine N-oxide reductase from aerobic photosynthetic bacterium Roseobacter denitrificans. J. Biochem. (Tokyo) 112 (1992) 470–475. [PMID: 1337081]
2.  Knablein, J., Dobbek, H., Ehlert, S. and Schneider, F. Isolation, cloning, sequence analysis and X-ray structure of dimethyl sulfoxide trimethylamine N-oxide reductase from Rhodobacter capsulatus. Biol. Chem. 378 (1997) 293–302. [PMID: 9165084]
3.  Czjzek, M., Dos Santos, J.P., Pommier, J., Giordano, G., Méjean, V. and Haser, R. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J. Mol. Biol. 284 (1998) 435–447. [DOI] [PMID: 9813128]
4.  Gon, S., Giudici-Orticoni, M.T., Mejean, V. and Iobbi-Nivol, C. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J. Biol. Chem. 276 (2001) 11545–11551. [DOI] [PMID: 11056172]
5.  Zhang, L., Nelson, K.J., Rajagopalan, K.V. and George, G.N. Structure of the molybdenum site of Escherichia coli trimethylamine N-oxide reductase. Inorg. Chem. 47 (2008) 1074–1078. [PMID: 18163615]
6.  Yin, Q.J., Zhang, W.J., Qi, X.Q., Zhang, S.D., Jiang, T., Li, X.G., Chen, Y., Santini, C.L., Zhou, H., Chou, I.M. and Wu, L.F. High hydrostatic pressure inducible trimethylamine N-oxide reductase improves the pressure tolerance of piezosensitive bacteria Vibrio fluvialis. Front. Microbiol. 8:2646 (2017). [PMID: 29375513]
[EC 1.7.2.3 created 2002, modified 2018]
 
 
EC 1.8.2.4     
Accepted name: dimethyl sulfide:cytochrome c2 reductase
Reaction: dimethyl sulfide + 2 ferricytochrome c2 + H2O = dimethyl sulfoxide + 2 ferrocytochrome c2 + 2 H+
For diagram of dimethyl sulfide catabolism, click here
Other name(s): Ddh (gene name)
Systematic name: dimethyl sulfide:cytochrome-c2 oxidoreductase
Comments: The enzyme from the bacterium Rhodovulum sulfidophilum binds molybdopterin guanine dinucleotide, heme b and [4Fe-4S] clusters.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hanlon, S.P., Toh, T.H., Solomon, P.S., Holt, R.A. and McEwan, A.G. Dimethylsulfide:acceptor oxidoreductase from Rhodobacter sulfidophilus. The purified enzyme contains b-type haem and a pterin molybdenum cofactor. Eur. J. Biochem. 239 (1996) 391–396. [DOI] [PMID: 8706745]
2.  McDevitt, C.A., Hugenholtz, P., Hanson, G.R. and McEwan, A.G. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol. Microbiol. 44 (2002) 1575–1587. [DOI] [PMID: 12067345]
[EC 1.8.2.4 created 2011]
 
 
EC 1.8.5.3     
Accepted name: respiratory dimethylsulfoxide reductase
Reaction: dimethylsulfide + menaquinone + H2O = dimethylsulfoxide + menaquinol
For diagram of dimethyl sulfide catabolism, click here
Other name(s): dmsABC (gene names); DMSO reductase (ambiguous); dimethylsulfoxide reductase (ambiguous)
Systematic name: dimethyl sulfide:menaquinone oxidoreductase
Comments: The enzyme participates in bacterial electron transfer pathways in which dimethylsulfoxide (DMSO) is the terminal electron acceptor. It is composed of three subunits - DmsA contains a bis(guanylyl molybdopterin) cofactor and a [4Fe-4S] cluster, DmsB is an iron-sulfur protein, and DmsC is a transmembrane protein that anchors the enzyme and accepts electrons from the quinol pool. The electrons are passed through DmsB to DmsA and on to DMSO. The enzyme can also reduce pyridine-N-oxide and trimethylamine N-oxide to the corresponding amines with lower activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Daruwala, R. and Meganathan, R. Dimethyl sulfoxide reductase is not required for trimethylamine N-oxide reduction in Escherichia coli. FEMS Microbiol. Lett. 67 (1991) 255–259. [PMID: 1769531]
2.  Miguel, L. and Meganthan, R. Electron donors and the quinone involved in dimethyl sulfoxide reduction in Escherichia coli. Curr. Microbiol. 22 (1991) 109–115.
3.  Simala-Grant, J.L. and Weiner, J.H. Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology 142 (1996) 3231–3239. [DOI] [PMID: 8969520]
4.  Rothery, R.A., Trieber, C.A. and Weiner, J.H. Interactions between the molybdenum cofactor and iron-sulfur clusters of Escherichia coli dimethylsulfoxide reductase. J. Biol. Chem. 274 (1999) 13002–13009. [DOI] [PMID: 10224050]
[EC 1.8.5.3 created 2011, modified 2019]
 
 
EC 1.14.11.48     
Accepted name: xanthine dioxygenase
Reaction: xanthine + 2-oxoglutarate + O2 = urate + succinate + CO2
For diagram of AMP catabolism, click here
Other name(s): XanA; α-ketoglutarate-dependent xanthine hydroxylase
Systematic name: xanthine,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires Fe2+ and L-ascorbate. The enzyme, which was characterized from fungi, is specific for xanthine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cultrone, A., Scazzocchio, C., Rochet, M., Montero-Moran, G., Drevet, C. and Fernandez-Martin, R. Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via α-ketoglutarate-dependent dioxygenases. Mol. Microbiol. 57 (2005) 276–290. [DOI] [PMID: 15948966]
2.  Montero-Moran, G.M., Li, M., Rendon-Huerta, E., Jourdan, F., Lowe, D.J., Stumpff-Kane, A.W., Feig, M., Scazzocchio, C. and Hausinger, R.P. Purification and characterization of the FeII- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 46 (2007) 5293–5304. [DOI] [PMID: 17429948]
3.  Li, M., Muller, T.A., Fraser, B.A. and Hausinger, R.P. Characterization of active site variants of xanthine hydroxylase from Aspergillus nidulans. Arch. Biochem. Biophys. 470 (2008) 44–53. [DOI] [PMID: 18036331]
[EC 1.14.11.48 created 2015]
 
 
EC 2.7.7.75     
Accepted name: molybdopterin adenylyltransferase
Reaction: ATP + molybdopterin = diphosphate + adenylyl-molybdopterin
For diagram of MoCo biosynthesis, click here
Glossary: molybdopterin = H2Dtpp-mP = [(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl)-4,5,5a,8,9a,10-hexahydro-1H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogen phosphate
Other name(s): MogA; Cnx1 (ambiguous)
Systematic name: ATP:molybdopterin adenylyltransferase
Comments: Catalyses the activation of molybdopterin for molybdenum insertion. In eukaryotes, this reaction is catalysed by the C-terminal domain of a fusion protein that also includes molybdopterin molybdotransferase (EC 2.10.1.1). The reaction requires a divalent cation such as Mg2+ or Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nichols, J.D. and Rajagopalan, K.V. In vitro molybdenum ligation to molybdopterin using purified components. J. Biol. Chem. 280 (2005) 7817–7822. [DOI] [PMID: 15632135]
2.  Kuper, J., Palmer, T., Mendel, R.R. and Schwarz, G. Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization. Proc. Natl. Acad. Sci. USA 97 (2000) 6475–6480. [DOI] [PMID: 10823911]
3.  Llamas, A., Mendel, R.R. and Schwarz, G. Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. J. Biol. Chem. 279 (2004) 55241–55246. [DOI] [PMID: 15504727]
[EC 2.7.7.75 created 2011]
 
 
EC 2.7.7.76     
Accepted name: molybdenum cofactor cytidylyltransferase
Reaction: CTP + molybdenum cofactor = diphosphate + cytidylyl molybdenum cofactor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MocA; CTP:molybdopterin cytidylyltransferase; MoCo cytidylyltransferase; Mo-MPT cytidyltransferase
Systematic name: CTP:molybdenum cofactor cytidylyltransferase
Comments: Catalyses the cytidylation of the molybdenum cofactor. This modification occurs only in prokaryotes. Divalent cations such as Mg2+ or Mn2+ are required for activity. ATP or GTP cannot replace CTP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Neumann, M., Mittelstadt, G., Seduk, F., Iobbi-Nivol, C. and Leimkuhler, S. MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli. J. Biol. Chem. 284 (2009) 21891–21898. [DOI] [PMID: 19542235]
2.  Neumann, M., Seduk, F., Iobbi-Nivol, C. and Leimkuhler, S. Molybdopterin dinucleotide biosynthesis in Escherichia coli: Identification of amino acid residues of molybdopterin dinucleotide transferases that determine specificity for binding of guanine or cytosine nucleotides. J. Biol. Chem. 286 (2011) 1400–1408. [DOI] [PMID: 21081498]
[EC 2.7.7.76 created 2011]
 
 
EC 2.7.7.77     
Accepted name: molybdenum cofactor guanylyltransferase
Reaction: GTP + molybdenum cofactor = diphosphate + guanylyl molybdenum cofactor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MobA; MoCo guanylyltransferase
Systematic name: GTP:molybdenum cofactor guanylyltransferase
Comments: Catalyses the guanylation of the molybdenum cofactor. This modification occurs only in prokaryotes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lake, M.W., Temple, C.A., Rajagopalan, K.V. and Schindelin, H. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J. Biol. Chem. 275 (2000) 40211–40217. [DOI] [PMID: 10978347]
2.  Temple, C.A. and Rajagopalan, K.V. Mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase. J. Biol. Chem. 275 (2000) 40202–40210. [DOI] [PMID: 10978348]
3.  Guse, A., Stevenson, C.E., Kuper, J., Buchanan, G., Schwarz, G., Giordano, G., Magalon, A., Mendel, R.R., Lawson, D.M. and Palmer, T. Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA. J. Biol. Chem. 278 (2003) 25302–25307. [DOI] [PMID: 12719427]
[EC 2.7.7.77 created 2011]
 
 
EC 2.7.7.80     
Accepted name: molybdopterin-synthase adenylyltransferase
Reaction: ATP + [molybdopterin-synthase sulfur-carrier protein]-Gly-Gly = diphosphate + [molybdopterin-synthase sulfur-carrier protein]-Gly-Gly-AMP
For diagram of MoCo biosynthesis, click here
Glossary: small subunit of the molybdopterin synthase = molybdopterin-synthase sulfur-carrier protein = MoaD
Other name(s): MoeB; adenylyltransferase and sulfurtransferase MOCS3
Systematic name: ATP:molybdopterin-synthase adenylyltransferase
Comments: Adenylates the C-terminus of the small subunit of the molybdopterin synthase. This activation is required to form the thiocarboxylated C-terminus of the active molybdopterin synthase small subunit. The reaction occurs in prokaryotes and eukaryotes. In the human, the reaction is catalysed by the N-terminal domain of the protein MOCS3, which also includes a molybdopterin-synthase sulfurtransferase (EC 2.8.1.11) C-terminal domain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Leimkuhler, S., Wuebbens, M.M. and Rajagopalan, K.V. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276 (2001) 34695–34701. [DOI] [PMID: 11463785]
2.  Matthies, A., Nimtz, M. and Leimkuhler, S. Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44 (2005) 7912–7920. [DOI] [PMID: 15910006]
[EC 2.7.7.80 created 2011]
 
 
EC 2.8.1.9     
Accepted name: molybdenum cofactor sulfurtransferase
Reaction: molybdenum cofactor + L-cysteine + reduced acceptor + 2 H+ = thio-molybdenum cofactor + L-alanine + H2O + oxidized acceptor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): molybdenum cofactor sulfurase; ABA3; HMCS; MoCo sulfurase; MoCo sulfurtransferase
Systematic name: L-cysteine:molybdenum cofactor sulfurtransferase
Comments: Contains pyridoxal phosphate. Replaces the equatorial oxo ligand of the molybdenum by sulfur via an enzyme-bound persulfide. The reaction occurs in prokaryotes and eukaryotes but MoCo sulfurtransferases are only found in eukaryotes. In prokaryotes the reaction is catalysed by two enzymes: cysteine desulfurase (EC 2.8.1.7), which is homologous to the N-terminus of eukaryotic MoCo sulfurtransferases, and a molybdo-enzyme specific chaperone which binds the MoCo and acts as an adapter protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bittner, F., Oreb, M. and Mendel, R.R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276 (2001) 40381–40384. [DOI] [PMID: 11553608]
2.  Heidenreich, T., Wollers, S., Mendel, R.R. and Bittner, F. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 280 (2005) 4213–4218. [DOI] [PMID: 15561708]
3.  Wollers, S., Heidenreich, T., Zarepour, M., Zachmann, D., Kraft, C., Zhao, Y., Mendel, R.R. and Bittner, F. Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 283 (2008) 9642–9650. [DOI] [PMID: 18258600]
[EC 2.8.1.9 created 2011, modified 2015]
 
 
EC 2.8.1.11     
Accepted name: molybdopterin synthase sulfurtransferase
Reaction: [molybdopterin-synthase sulfur-carrier protein]-Gly-Gly-AMP + [cysteine desulfurase]-S-sulfanyl-L-cysteine + reduced acceptor = AMP + [molybdopterin-synthase sulfur-carrier protein]-Gly-NH-CH2-C(O)SH + [cysteine desulfurase]-L-cysteine + oxidized acceptor
For diagram of MoCo biosynthesis, click here
Other name(s): adenylyltransferase and sulfurtransferase MOCS3; Cnx5 (gene name); molybdopterin synthase sulfurylase
Systematic name: [cysteine desulfurase]-S-sulfanyl-L-cysteine:[molybdopterin-synthase sulfur-carrier protein]-Gly-Gly sulfurtransferase
Comments: The enzyme transfers sulfur to form a thiocarboxylate moiety on the C-terminal glycine of the small subunit of EC 2.8.1.12, molybdopterin synthase. In the human, the reaction is catalysed by the rhodanese-like C-terminal domain (cf. EC 2.8.1.1) of the MOCS3 protein, a bifunctional protein that also contains EC 2.7.7.80, molybdopterin-synthase adenylyltransferase, at the N-terminal domain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Matthies, A., Nimtz, M. and Leimkuhler, S. Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44 (2005) 7912–7920. [DOI] [PMID: 15910006]
2.  Leimkuhler, S. and Rajagopalan, K.V. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J. Biol. Chem. 276 (2001) 22024–22031. [DOI] [PMID: 11290749]
3.  Hanzelmann, P., Dahl, J.U., Kuper, J., Urban, A., Muller-Theissen, U., Leimkuhler, S. and Schindelin, H. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains. Protein Sci. 18 (2009) 2480–2491. [DOI] [PMID: 19798741]
4.  Dahl, J.U., Urban, A., Bolte, A., Sriyabhaya, P., Donahue, J.L., Nimtz, M., Larson, T.J. and Leimkuhler, S. The identification of a novel protein involved in molybdenum cofactor biosynthesis in Escherichia coli. J. Biol. Chem. 286 (2011) 35801–35812. [DOI] [PMID: 21856748]
[EC 2.8.1.11 created 2011, modified 2016]
 
 
EC 2.8.1.12     
Accepted name: molybdopterin synthase
Reaction: cyclic pyranopterin phosphate + 2 [molybdopterin-synthase sulfur-carrier protein]-Gly-NH-CH2-C(O)SH + H2O = molybdopterin + 2 molybdopterin-synthase sulfur-carrier protein
For diagram of MoCo biosynthesis, click here
Glossary: molybdopterin = H2Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate(2-)
cyclic pyranopterin phosphate = cPMP = precursor Z = 8-amino-2,12,12-trihydroxy-4a,5a,6,9,11,11a,12,12a-octahydro[1,3,2]dioxaphosphinino[4′,5′:5,6]pyrano[3,2-g]pteridin-10(4H)-one 2-oxide = 8-amino-2,12,12-trihydroxy-4,4a,5a,6,9,10,11,11a,12,12a-decahydro-[1,3,2]dioxaphosphinino[4′,5′:5,6]pyrano[3,2-g]pteridine 2-oxide
Other name(s): MPT synthase
Systematic name: thiocarboxylated molybdopterin synthase:cyclic pyranopterin phosphate sulfurtransferase
Comments: Catalyses the synthesis of molybdopterin from cyclic pyranopterin monophosphate. Two sulfur atoms are transferred to cyclic pyranopterin monophosphate in order to form the characteristic ene-dithiol group found in the molybdenum cofactor. Molybdopterin synthase consists of two large subunits forming a central dimer and two small subunits (molybdopterin-synthase sulfur-carrier proteins) that are thiocarboxylated at the C-terminus by EC 2.8.1.11, molybdopterin synthase sulfurtransferase. The reaction occurs in prokaryotes and eukaryotes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Daniels, J.N., Wuebbens, M.M., Rajagopalan, K.V. and Schindelin, H. Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its sulfur transfer mechanism and its role in molybdenum cofactor deficiency. Biochemistry 47 (2008) 615–626. [DOI] [PMID: 18092812]
2.  Wuebbens, M.M. and Rajagopalan, K.V. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J. Biol. Chem. 278 (2003) 14523–14532. [DOI] [PMID: 12571226]
[EC 2.8.1.12 created 2011]
 
 
EC 2.10.1.1     
Accepted name: molybdopterin molybdotransferase
Reaction: adenylyl-molybdopterin + molybdate = molybdenum cofactor + AMP + H2O
For diagram of MoCo biosynthesis, click here
Glossary: molybdopterin = H2Dtpp-mP = [(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl)-4,5,5a,8,9a,10-hexahydro-1H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogen phosphate
molybdate = tetraoxidomolybdate(2-) = MoO42-
molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MoeA; Cnx1 (ambiguous)
Systematic name: adenylyl-molybdopterin:molybdate molybdate transferase (AMP-forming)
Comments: Catalyses the insertion of molybdenum into the ene-dithiol group of molybdopterin. In eukaryotes this reaction is catalysed by the N-terminal domain of a fusion protein whose C-terminal domain catalyses EC 2.7.7.75, molybdopterin adenylyltransferase. Requires divalent cations such as Mg2+ or Zn2+ for activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nichols, J.D. and Rajagopalan, K.V. In vitro molybdenum ligation to molybdopterin using purified components. J. Biol. Chem. 280 (2005) 7817–7822. [DOI] [PMID: 15632135]
2.  Nichols, J.D., Xiang, S., Schindelin, H. and Rajagopalan, K.V. Mutational analysis of Escherichia coli MoeA: two functional activities map to the active site cleft. Biochemistry 46 (2007) 78–86. [DOI] [PMID: 17198377]
3.  Llamas, A., Otte, T., Multhaup, G., Mendel, R.R. and Schwarz, G. The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J. Biol. Chem. 281 (2006) 18343–18350. [DOI] [PMID: 16636046]
[EC 2.10.1.1 created 2011]
 
 
EC 4.1.99.18      
Transferred entry: cyclic pyranopterin phosphate synthase. Now known to be catalysed by the combined effort of EC 4.1.99.22, GTP 3,8-cyclase, and EC 4.6.1.17, cyclic pyranopterin monophosphate synthase
[EC 4.1.99.18 created 2011, deleted 2016]
 
 
EC 4.1.99.22     
Accepted name: GTP 3′,8-cyclase
Reaction: GTP + S-adenosyl-L-methionine + reduced electron acceptor = (8S)-3′,8-cyclo-7,8-dihydroguanosine 5′-triphosphate + 5′-deoxyadenosine + L-methionine + oxidized electron acceptor
For diagram of MoCo biosynthesis, click here
Other name(s): MOCS1A (gene name); moaA (gene name); cnx2 (gene name)
Systematic name: GTP 3′,8-cyclase [(8S)-3′,8-cyclo-7,8-dihydroguanosine 5′-triphosphate-forming]
Comments: The enzyme catalyses an early step in the biosynthesis of the molybdenum cofactor (MoCo). In bacteria and plants the reaction is catalysed by MoaA and Cnx2, respectively. In mammals it is catalysed by the MOCS1A domain of the bifunctional MOCS1 protein, which also catalyses EC 4.6.1.17, cyclic pyranopterin monophosphate synthase. The enzyme belongs to the superfamily of radical S-adenosyl-L-methionine (radical SAM) enzymes, and contains two oxygen-sensitive FeS clusters.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hänzelmann, P., Hernandez, H.L., Menzel, C., Garcia-Serres, R., Huynh, B.H., Johnson, M.K., Mendel, R.R. and Schindelin, H. Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 279 (2004) 34721–34732. [DOI] [PMID: 15180982]
2.  Hänzelmann, P. and Schindelin, H. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc. Natl. Acad. Sci. USA 101 (2004) 12870–12875. [DOI] [PMID: 15317939]
3.  Hänzelmann, P. and Schindelin, H. Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc. Natl. Acad. Sci. USA 103 (2006) 6829–6834. [DOI] [PMID: 16632608]
4.  Lees, N.S., Hänzelmann, P., Hernandez, H.L., Subramanian, S., Schindelin, H., Johnson, M.K. and Hoffman, B.M. ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: mechanistic implications. J. Am. Chem. Soc. 131 (2009) 9184–9185. [DOI] [PMID: 19566093]
5.  Hover, B.M., Loksztejn, A., Ribeiro, A.A. and Yokoyama, K. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J. Am. Chem. Soc. 135 (2013) 7019–7032. [DOI] [PMID: 23627491]
6.  Hover, B.M. and Yokoyama, K. C-Terminal glycine-gated radical initiation by GTP 3′,8-cyclase in the molybdenum cofactor biosynthesis. J. Am. Chem. Soc. 137 (2015) 3352–3359. [DOI] [PMID: 25697423]
7.  Hover, B.M., Tonthat, N.K., Schumacher, M.A. and Yokoyama, K. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. Proc. Natl. Acad. Sci. USA 112 (2015) 6347–6352. [DOI] [PMID: 25941396]
[EC 4.1.99.22 created 2011 as EC 4.1.99.18, part transferred 2016 to EC 4.1.99.22]
 
 
EC 4.6.1.17     
Accepted name: cyclic pyranopterin monophosphate synthase
Reaction: (8S)-3′,8-cyclo-7,8-dihydroguanosine 5′-triphosphate = cyclic pyranopterin phosphate + diphosphate
Other name(s): MOCS1B (gene name); moaC (gene name); cnx3 (gene name)
Systematic name: (8S)-3′,8-cyclo-7,8-dihydroguanosine 5′-triphosphate lyase (cyclic pyranopterin phosphate-forming)
Comments: The enzyme catalyses an early step in the biosynthesis of the molybdenum cofactor (MoCo). In bacteria and plants the reaction is catalysed by MoaC and Cnx3, respectively. In mammals the reaction is catalysed by the MOCS1B domain of the bifuctional MOCS1 protein, which also catalyses EC 4.1.99.22, GTP 3′,8-cyclase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rieder, C., Eisenreich, W., O'Brien, J., Richter, G., Götze, E., Boyle, P., Blanchard, S., Bacher, A. and Simon, H. Rearrangement reactions in the biosynthesis of molybdopterin - an NMR study with multiply 13C/15N labelled precursors. Eur. J. Biochem. 255 (1998) 24–36. [DOI] [PMID: 9692897]
2.  Wuebbens, M.M. and Rajagopalan, K.V. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J. Biol. Chem. 270 (1995) 1082–1087. [DOI] [PMID: 7836363]
3.  Hover, B.M., Tonthat, N.K., Schumacher, M.A. and Yokoyama, K. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. Proc. Natl. Acad. Sci. USA 112 (2015) 6347–6352. [DOI] [PMID: 25941396]
[EC 4.6.1.17 created 2011 as EC 4.1.99.18, part transferred 2016 to EC 4.6.1.17]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald