Accepted name: ent-13-epi-manoyl oxide synthase
Reaction: ent-8α-hydroxylabd-13-en-15-yl diphosphate = ent-13-epi-manoyl oxide + diphosphate
Glossary: Ent-13-epi-manoyl oxide = (13R)-ent-8,13-epoxylabd-14-ene
Other name(s): SmKSL2; ent-LDPP synthase
Systematic name: ent-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (cyclizing, ent-13-epi-manoyl-oxide-forming)
Comments: Isolated from the plant Salvia miltiorrhiza (red sage).
1.  Cui, G., Duan, L., Jin, B., Qian, J., Xue, Z., Shen, G., Snyder, J.H., Song, J., Chen, S., Huang, L., Peters, R.J. and Qi, X. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol. 169 (2015) 1607–1618. [PMID: 26077765]
[EC created 2017]
Accepted name: manoyl oxide synthase
Reaction: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = manoyl oxide + diphosphate
Glossary: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = 8-hydroxycopalyl diphosphate
manoyl oxide = (13R)-8,13-epoxylabd-14-ene
Other name(s): GrTPS6; CfTPS3; CfTPS4; MvELS
Systematic name: (13E)-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (manoyl-oxide-forming)
Comments: Manoyl oxide is found in many plants. This enzyme has been isolated from the plants, Grindelia hirsutula (gum weed), Plectranthus barbatus (forskohlii) and Marrubium vulgare (white horehound).
1.  Zerbe, P., Hamberger, B., Yuen, M.M., Chiang, A., Sandhu, H.K., Madilao, L.L., Nguyen, A., Hamberger, B., Bach, S.S. and Bohlmann, J. Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol. 162 (2013) 1073–1091. [PMID: 23613273]
2.  Pateraki, I., Andersen-Ranberg, J., Hamberger, B., Heskes, A.M., Martens, H.J., Zerbe, P., Bach, S.S., Moller, B.L., Bohlmann, J. and Hamberger, B. Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol. 164 (2014) 1222–1236. [PMID: 24481136]
3.  Zerbe, P., Chiang, A., Dullat, H., O'Neil-Johnson, M., Starks, C., Hamberger, B. and Bohlmann, J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. Plant J. 79 (2014) 914–927. [PMID: 24990389]
[EC created 2017]