The Enzyme Database

Your query returned 7 entries.    printer_iconPrintable version



EC 1.1.3.20     
Accepted name: long-chain-alcohol oxidase
Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase
Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129430-50-8
References:
1.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [DOI] [PMID: 36040]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
3.  Cheng, Q., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett. 574 (2004) 62–68. [DOI] [PMID: 15358540]
4.  Zhao, S., Lin, Z., Ma, W., Luo, D. and Cheng, Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Prog. 24 (2008) 773–779. [DOI] [PMID: 18396913]
5.  Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim. Biophys. Acta 1735 (2005) 192–203. [DOI] [PMID: 16046182]
[EC 1.1.3.20 created 1984, modified 2010]
 
 
EC 1.2.1.48     
Accepted name: long-chain-aldehyde dehydrogenase
Reaction: a long-chain aldehyde + NAD+ + H2O = a long-chain carboxylate + NADH + 2 H+
Other name(s): long-chain aliphatic aldehyde dehydrogenase; long-chain fatty aldehyde dehydrogenase; fatty aldehyde:NAD+ oxidoreductase
Systematic name: long-chain-aldehyde:NAD+ oxidoreductase
Comments: The best substrate is dodecylaldehyde.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 59298-89-4
References:
1.  Le Beault, J.M., Roche, B., Duvnjak, Z. and Azoulay, E. Alcool- et aldéhyde-déshydrogénases particulaires de Candida tropicalis cultivé sur hydrocarbures. Biochim. Biophys. Acta 220 (1970) 373–385. [DOI] [PMID: 5499619]
2.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [DOI] [PMID: 36040]
3.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
[EC 1.2.1.48 created 1984]
 
 
EC 1.2.1.50     
Accepted name: long-chain acyl-protein thioester reductase
Reaction: a long-chain aldehyde + [protein]-L-cysteine + NADP+ = a [protein]-S-(long-chain fatty acyl)-L-cysteine + NADPH + H+
Other name(s): luxC (gene name); acyl-CoA reductase; acyl coenzyme A reductase; long-chain-aldehyde:NADP+ oxidoreductase (acyl-CoA-forming); long-chain-fatty-acyl-CoA reductase
Systematic name: long-chain-aldehyde:NADP+ oxidoreductase (protein thioester-forming)
Comments: Together with a hydrolase component (EC 3.1.2.2 and EC 3.1.2.14) and a synthetase component (EC 6.2.1.19), this enzyme forms a multienzyme fatty acid reductase complex that produces the long-chain aldehyde substrate of the bacterial luciferase enzyme (EC 1.14.14.3). The enzyme is acylated by receiving an acyl group from EC 6.2.1.19, and catalyses the reduction of the acyl group, releasing the aldehyde product. The enzyme is also able to accept the acyl group from a long-chain acyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 50936-56-6
References:
1.  Riendeau, D., Rodrigues, A. and Meighen, E. Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. J. Biol. Chem. 257 (1982) 6908–6915. [PMID: 7085612]
2.  Wall, L. and Meighen, E.A. Subunit structure of the fatty-acid reductase complex from Photobacterium phosphoreum. Biochemistry 25 (1986) 4315–4321.
3.  Lin, J.W., Chao, Y.F. and Weng, S.F. Nucleotide sequence of the luxC gene encoding fatty acid reductase of the lux operon from Photobacterium leiognathi. Biochem. Biophys. Res. Commun. 191 (1993) 314–318. [DOI] [PMID: 8447834]
[EC 1.2.1.50 created 1986, modified 2016]
 
 
EC 1.2.1.80     
Accepted name: long-chain acyl-[acyl-carrier-protein] reductase
Reaction: a long-chain aldehyde + an [acyl-carrier protein] + NAD(P)+ = a long-chain acyl-[acyl-carrier protein] + NAD(P)H + H+
Glossary: a long-chain aldehyde = an aldehyde derived from a fatty acid with an aliphatic chain of 13-22 carbons.
an [acyl-carrier protein] = ACP = [acp]
Other name(s): long-chain acyl-[acp] reductase; fatty acyl-[acyl-carrier-protein] reductase; acyl-[acp] reductase
Systematic name: long-chain-aldehyde:NAD(P)+ oxidoreductase (acyl-[acyl-carrier protein]-forming)
Comments: Catalyses the reaction in the opposite direction. This enzyme, purified from the cyanobacterium Synechococcus elongatus PCC 7942, catalyses the NAD(P)H-dependent reduction of an activated fatty acid (acyl-[acp]) to the corresponding aldehyde. Together with EC 4.1.99.5, octadecanal decarbonylase, it is involved in alkane biosynthesis. The natural substrates of the enzyme are C16 and C18 activated fatty acids. Requires Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schirmer, A., Rude, M.A., Li, X., Popova, E. and del Cardayre, S.B. Microbial biosynthesis of alkanes. Science 329 (2010) 559–562. [DOI] [PMID: 20671186]
[EC 1.2.1.80 created 2011]
 
 
EC 1.14.14.3     
Accepted name: bacterial luciferase
Reaction: a long-chain aldehyde + FMNH2 + O2 = a long-chain fatty acid + FMN + H2O +
Other name(s): aldehyde monooxygenase; luciferase; Vibrio fischeri luciferase; alkanal,reduced-FMN:oxygen oxidoreductase (1-hydroxylating, luminescing); alkanal,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing); alkanal monooxygenase (FMN); aldehyde,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing)
Systematic name: long-chain-aldehyde,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing)
Comments: The reaction sequence starts with the incorporation of a molecule of oxygen into reduced FMN bound to the enzyme, forming luciferase peroxyflavin. The peroxyflavin interacts with an aliphatic long-chain aldehyde, producing a highly fluorescent species believed to be luciferase hydroxyflavin. The enzyme is highly specific for reduced FMN and for long-chain aliphatic aldehydes with eight carbons or more. The highest efficiency is achieved with tetradecanal. cf. EC 1.13.12.18, dinoflagellate luciferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-00-0
References:
1.  Hastings, J.W. and Nealson, K.H. Bacterial bioluminescence. Annu. Rev. Microbiol. 31 (1977) 549–595. [DOI] [PMID: 199107]
2.  Hastings, J.W. Bacterial bioluminescence light emission in the mixed function oxidation of reduced flavin and fatty aldehyde. Crit. Rev. Biochem. 5 (1978) 163–184. [PMID: 363350]
3.  Hastings, J.W. and Presswood, R.P. Bacterial luciferase: FMNH2-aldehyde oxidase. Methods Enzymol. 53 (1978) 558–570. [PMID: 309549]
4.  Nealson, K.H. and Hastings, J.W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43 (1979) 496–518. [PMID: 396467]
5.  Suzuki, K., Kaidoh, T., Katagiri, M. and Tsuchiya, T. O2 incorporation into a long-chain fatty-acid during bacterial luminescence. Biochim. Biophys. Acta 722 (1983) 297–301.
6.  Kurfurst, M., Ghisla, S. and Hastings, J.W. Characterization and postulated structure of the primary emitter in the bacterial luciferase reaction. Proc. Natl. Acad. Sci. USA 81 (1984) 2990–2994. [DOI] [PMID: 16593462]
[EC 1.14.14.3 created 1981, modified 2016]
 
 
EC 4.1.99.5     
Accepted name: aldehyde oxygenase (deformylating)
Reaction: a long-chain aldehyde + O2 + 2 NADPH + 2 H+ = an alkane + formate + H2O + 2 NADP+
Glossary: a long-chain aldehyde = an aldehyde derived from a fatty acid with an aliphatic chain of 13-22 carbons.
Other name(s): decarbonylase; aldehyde decarbonylase; octadecanal decarbonylase; octadecanal alkane-lyase
Systematic name: a long-chain aldehyde alkane-lyase
Comments: Contains a diiron center. Involved in the biosynthesis of alkanes. The enzyme from the cyanobacterium Nostoc punctiforme PCC 73102 is only active in vitro in the presence of ferredoxin, ferredoxin reductase and NADPH, and produces mostly C15 and C17 alkanes [2,3]. The enzyme from pea (Pisum sativum) produces alkanes of chain length C18 to C32 and is inhibited by metal-chelating agents [1]. The substrate for this enzyme is formed by EC 1.2.1.80, acyl-[acyl-carrier protein] reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 94185-90-7
References:
1.  Cheesbrough, T.M. and, K olattukudy, P.E. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc. Natl. Acad. Sci. USA 81 (1984) 6613–6617. [DOI] [PMID: 6593720]
2.  Schirmer, A., Rude, M.A., Li, X., Popova, E. and del Cardayre, S.B. Microbial biosynthesis of alkanes. Science 329 (2010) 559–562. [DOI] [PMID: 20671186]
3.  Warui, D.M., Li, N., Nørgaard, H., Krebs, C., Bollinger, J.M. and Booker, S.J. Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J. Am. Chem. Soc. 133 (2011) 3316–3319. [DOI] [PMID: 21341652]
4.  Li, N., Chang, W.C., Warui, D.M., Booker, S.J., Krebs, C. and Bollinger, J.M., Jr. Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51 (2012) 7908–7916. [DOI] [PMID: 22947199]
[EC 4.1.99.5 created 1989, modified 2011, modified 2013]
 
 
EC 6.2.1.19     
Accepted name: long-chain-fatty-acid—protein ligase
Reaction: ATP + a long-chain fatty acid + [protein]-L-cysteine = AMP + diphosphate + a [protein]-S-(long-chain-acyl)-L-cysteine
Other name(s): luxE (gene name); acyl-protein synthetase; long-chain-fatty-acid—luciferin-component ligase
Systematic name: long-chain-fatty-acid:protein ligase (AMP-forming)
Comments: Together with a hydrolase component (EC 3.1.2.2/EC 3.1.2.14) and a reductase component (EC 1.2.1.50), this enzyme forms a multienzyme fatty acid reductase complex that produces the long-chain aldehyde substrate of the bacterial luciferase enzyme (EC 1.14.14.3). The enzyme activates free long-chain fatty acids, generated by the action of the transferase component, forming a fatty acyl-AMP intermediate, followed by the transfer of the acyl group to an internal L-cysteine residue. It then transfers the acyl group to EC 1.2.1.50, long-chain acyl-protein thioester reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82657-98-5
References:
1.  Riendeau, D., Rodrigues, A. and Meighen, E. Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. J. Biol. Chem. 257 (1982) 6908–6915. [PMID: 7085612]
2.  Rodriguez, A. and Meighen, E. Fatty acyl-AMP as an intermediate in fatty acid reduction to aldehyde in luminescent bacteria. J. Biol. Chem. 260 (1985) 771–774. [PMID: 3968067]
3.  Wall, L. and Meighen, E.A. Subunit structure of the fatty-acid reductase complex from Photobacterium phosphoreum. Biochemistry 25 (1986) 4315–4321.
4.  Soly, R.R. and Meighen, E.A. Identification of the acyl transfer site of fatty acyl-protein synthetase from bioluminescent bacteria. J. Mol. Biol. 219 (1991) 69–77. [DOI] [PMID: 2023262]
5.  Lin, J.W., Chao, Y.F. and Weng, S.F. Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi. Biochem. Biophys. Res. Commun. 228 (1996) 764–773. [DOI] [PMID: 8941351]
[EC 6.2.1.19 created 1986, modified 2011, modified 2016]
 
 


Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald