The Enzyme Database

Displaying entries 51-100 of 107.

<< Previous | Next >>    printer_iconPrintable version

EC 2.1.1.41     
Accepted name: sterol 24-C-methyltransferase
Reaction: S-adenosyl-L-methionine + 5α-cholesta-8,24-dien-3β-ol = S-adenosyl-L-homocysteine + 24-methylene-5α-cholest-8-en-3β-ol
For diagram of sterol sidechain modification, click here
Glossary: desmosterol = cholesta-5,24-dien-3β-ol
zymostrol = 5α-cholesta-8,24-dien-3β-ol
Other name(s): Δ24-methyltransferase; Δ24-sterol methyltransferase; zymosterol-24-methyltransferase; S-adenosyl-4-methionine:sterol Δ24-methyltransferase; SMT1; 24-sterol C-methyltransferase; S-adenosyl-L-methionine:Δ24(23)-sterol methyltransferase; phytosterol methyltransferase
Systematic name: S-adenosyl-L-methionine:zymosterol 24-C-methyltransferase
Comments: Requires glutathione. Acts on a range of sterols with a 24(25)-double bond in the sidechain. While zymosterol is the preferred substrate it also acts on desmosterol, 5α-cholesta-7,24-dien-3β-ol, 5α-cholesta-5,7,24-trien-3β-ol, 4α-methylzymosterol and others. S-Adenosyl-L-methionine attacks the Si-face of the 24(25) double bond and the C-24 hydrogen is transferred to C-25 on the Re face of the double bond.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37257-07-1
References:
1.  Moore, J.T., Jr. and Gaylor, J.L. Isolation and purification of an S-adenosylmethionine: Δ24-sterol methyltransferase from yeast. J. Biol. Chem. 244 (1969) 6334–6340. [PMID: 5354959]
2.  Venkatramesh, M., Guo, D., Jia, Z. and Nes, W.D. Mechanism and structural requirements for transformations of substrates by the S-adenosyl-L-methionine:Δ24(25)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1299 (1996) 313–324. [DOI] [PMID: 8597586]
3.  Tong, Y., McCourt, B.S., Guo, D., Mangla, A.T., Zhou, W.X., Jenkins, M.D., Zhou, W., Lopez, M. and Nes, W.D. , Stereochemical features of C-methylation on the path to Δ24(28)-methylene and Δ24(28)-ethylidene sterols: studies on the recombinant phytosterol methyl transferase from Arabidopsis thaliana. Tetrahedron Lett. 38 (1997) 6115–6118.
4.  Bouvier-Navé, P., Husselstein, T. and Benveniste, P. Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant biosynthesis. Eur. J. Biochem. 256 (1998) 88–96. [DOI] [PMID: 9746350]
5.  Nes, W.D., McCourt, B.S., Zhou, W., Ma, J., Marshall, J.A., Peek, L.A. and Brennan, M. Overexpression, purification, and stereochemical studies of the recombinant S-adenosyl-L-methionine:Δ24(25)- to Δ24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae sterol methyl transferase. Arch. Biochem. Biophys. 353 (1998) 297–311. [DOI] [PMID: 9606964]
[EC 2.1.1.41 created 1972, modified 2001]
 
 
EC 2.1.1.137     
Accepted name: arsenite methyltransferase
Reaction: (1) S-adenosyl-L-methionine + arsenic triglutathione + thioredoxin + 2 H2O = S-adenosyl-L-homocysteine + methylarsonous acid + 3 glutathione + thioredoxin disulfide
(2) 2 S-adenosyl-L-methionine + arsenic triglutathione + 2 thioredoxin + H2O = S-adenosyl-L-homocysteine + dimethylarsinous acid + 3 glutathione + 2 thioredoxin disulfide
(3) 3 S-adenosyl-L-methionine + arsenic triglutathione + 3 thioredoxin = S-adenosyl-L-homocysteine + trimethylarsane + 3 glutathione + 3 thioredoxin disulfide
For diagram of arsenate catabolism, click here
Other name(s): AS3MT (gene name); arsM (gene name); S-adenosyl-L-methionine:arsenic(III) methyltransferase; S-adenosyl-L-methionine:methylarsonite As-methyltransferase; methylarsonite methyltransferase
Systematic name: S-adenosyl-L-methionine:arsenous acid As-methyltransferase
Comments: An enzyme responsible for synthesis of trivalent methylarsenical antibiotics in microbes [11] or detoxification of inorganic arsenous acid in animals. The in vivo substrate is arsenic triglutathione or similar thiol (depending on the organism) [6], from which the arsenic is transferred to the enzyme forming bonds with the thiol groups of three cysteine residues [10] via a disulfide bond cascade pathway [7, 8]. Most of the substrates undergo two methylations and are converted to dimethylarsinous acid [9]. However, a small fraction are released earlier as methylarsonous acid, and a smaller amount proceeds via a third methylation, resulting in the volatile product trimethylarsane. Methylation involves temporary oxidation to arsenic(V) valency, followed by reduction back to arsenic(III) valency using electrons provided by thioredoxin or a similar reduction system. The arsenic(III) products are quickly oxidized in the presence of oxygen to the corresponding arsenic(V) species.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 167140-41-2
References:
1.  Zakharyan, R.A., Wu, Y., Bogdan, G.M. and Aposhian, H.V. Enzymatic methylation of arsenic compounds: assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver. Chem. Res. Toxicol. 8 (1995) 1029–1038. [PMID: 8605285]
2.  Zakharyan, R.A., Wildfang, E. and Aposhian, H.V. Enzymatic methylation of arsenic compounds. III. The marmoset and tamarin, but not the rhesus, monkeys are deficient in methyltransferases that methylate inorganic arsenic. Toxicol. Appl. Pharmacol. 140 (1996) 77–84. [DOI] [PMID: 8806872]
3.  Zakharyan, R.A. and Aposhian, H.V. Enzymatic reduction of arsenic compounds in mammalian systems: the rate-limiting enzyme of rabbit liver arsenic biotransformation is MMA(V) reductase. Chem. Res. Toxicol. 12 (1999) 1278–1283. [DOI] [PMID: 10604879]
4.  Zakharyan, R.A., Ayala-Fierro, F., Cullen, W.R., Carter, D.M. and Aposhian, H.V. Enzymatic methylation of arsenic compounds. VII. Monomethylarsonous acid (MMAIII) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes. Toxicol. Appl. Pharmacol. 158 (1999) 9–15. [DOI] [PMID: 10387927]
5.  Lin, S., Shi, Q., Nix, F.B., Styblo, M., Beck, M.A., Herbin-Davis, K.M., Hall, L.L., Simeonsson, J.B. and Thomas, D.J. A novel S-adenosyl-L-methionine:arsenic(III) methyltransferase from rat liver cytosol. J. Biol. Chem. 277 (2002) 10795–10803. [DOI] [PMID: 11790780]
6.  Hayakawa, T., Kobayashi, Y., Cui, X. and Hirano, S. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79 (2005) 183–191. [DOI] [PMID: 15526190]
7.  Dheeman, D.S., Packianathan, C., Pillai, J.K. and Rosen, B.P. Pathway of human AS3MT arsenic methylation. Chem. Res. Toxicol. 27 (2014) 1979–1989. [DOI] [PMID: 25325836]
8.  Marapakala, K., Packianathan, C., Ajees, A.A., Dheeman, D.S., Sankaran, B., Kandavelu, P. and Rosen, B.P. A disulfide-bond cascade mechanism for arsenic(III) S-adenosylmethionine methyltransferase. Acta Crystallogr. D Biol. Crystallogr. 71 (2015) 505–515. [DOI] [PMID: 25760600]
9.  Yang, H.C. and Rosen, B.P. New mechanisms of bacterial arsenic resistance. Biomed J 39 (2016) 5–13. [DOI] [PMID: 27105594]
10.  Packianathan, C., Kandavelu, P. and Rosen, B.P. The structure of an As(III) S-adenosylmethionine methyltransferase with 3-coordinately bound As(III) depicts the first step in catalysis. Biochemistry 57 (2018) 4083–4092. [DOI] [PMID: 29894638]
11.  Chen, J., Yoshinaga, M. and Rosen, B.P. The antibiotic action of methylarsenite is an emergent property of microbial communities. Mol. Microbiol. 111 (2019) 487–494. [DOI] [PMID: 30520200]
[EC 2.1.1.137 created 2000, (EC 2.1.1.138 incorporated 2003), modified 2003, modified 2021]
 
 
EC 2.3.2.2     
Accepted name: γ-glutamyltransferase
Reaction: a (5-L-glutamyl)-peptide + an amino acid = a peptide + a 5-L-glutamyl amino acid
Other name(s): glutamyl transpeptidase; α-glutamyl transpeptidase; γ-glutamyl peptidyltransferase; γ-glutamyl transpeptidase (ambiguous); γ-GPT; γ-GT; γ-GTP; L-γ-glutamyl transpeptidase; L-γ-glutamyltransferase; L-glutamyltransferase; GGT (ambiguous); γ-glutamyltranspeptidase (ambiguous)
Systematic name: (5-L-glutamyl)-peptide:amino-acid 5-glutamyltransferase
Comments: The mammlian enzyme is part of the cell antioxidant defense mechanism. It initiates extracellular glutathione (GSH) breakdown, provides cells with a local cysteine supply and contributes to maintain intracelular GSH levels. The protein also has EC 3.4.19.13 (glutathione hydrolase) activity [3-4]. The enzyme consists of two chains that are created by the proteolytic cleavage of a single precursor polypeptide. The N-terminal L-threonine of the C-terminal subunit functions as the active site for both the cleavage and the hydrolysis reactions [3-4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9046-27-9
References:
1.  Goore, M.Y. and Thompson, J.F. γ-Glutamyl transpeptidase from kidney bean fruit. I. Purification and mechanism of action. Biochim. Biophys. Acta 132 (1967) 15–26. [DOI] [PMID: 6030345]
2.  Leibach, F.H. and Binkley, F. γ-Glutamyl transferase of swine kidney. Arch. Biochem. Biophys. 127 (1968) 292–301. [PMID: 5698023]
3.  Okada, T., Suzuki, H., Wada, K., Kumagai, H. and Fukuyama, K. Crystal structures of γ-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc. Natl. Acad. Sci. USA 103 (2006) 6471–6476. [DOI] [PMID: 16618936]
4.  Boanca, G., Sand, A., Okada, T., Suzuki, H., Kumagai, H., Fukuyama, K. and Barycki, J.J. Autoprocessing of Helicobacter pylori γ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J. Biol. Chem. 282 (2007) 534–541. [DOI] [PMID: 17107958]
5.  Wickham, S., West, M.B., Cook, P.F. and Hanigan, M.H. Gamma-glutamyl compounds: substrate specificity of γ-glutamyl transpeptidase enzymes. Anal. Biochem. 414 (2011) 208–214. [DOI] [PMID: 21447318]
[EC 2.3.2.2 created 1972, modified 1976, modified 2011]
 
 
EC 2.3.2.15     
Accepted name: glutathione γ-glutamylcysteinyltransferase
Reaction: glutathione + [Glu(-Cys)]n-Gly = Gly + [Glu(-Cys)]n+1-Gly
Other name(s): phytochelatin synthase; γ-glutamylcysteine dipeptidyl transpeptidase
Systematic name: glutathione:poly(4-glutamyl-cysteinyl)glycine 4-glutamylcysteinyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 125390-02-5
References:
1.  Grill, E., Löffler, S., Winnacker, E.-L. and Zenk, M.H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86 (1989) 6838–6842. [DOI] [PMID: 16594069]
[EC 2.3.2.15 created 1992]
 
 
EC 2.5.1.12      
Deleted entry:  glutathione S-alkyltransferase. Now included with EC 2.5.1.18 glutathione transferase
[EC 2.5.1.12 created 1972, deleted 1976]
 
 
EC 2.5.1.13      
Deleted entry:  glutathione S-aryltransferase. Now included with EC 2.5.1.18 glutathione transferase
[EC 2.5.1.13 created 1972, deleted 1976]
 
 
EC 2.5.1.14      
Deleted entry:  glutathione S-aralkyltransferase. Now included with EC 2.5.1.18 glutathione transferase
[EC 2.5.1.14 created 1972, deleted 1976]
 
 
EC 2.5.1.18     
Accepted name: glutathione transferase
Reaction: RX + glutathione = HX + R-S-glutathione
Other name(s): glutathione S-transferase; glutathione S-alkyltransferase; glutathione S-aryltransferase; S-(hydroxyalkyl)glutathione lyase; glutathione S-aralkyltransferase; glutathione S-alkyl transferase; GST
Systematic name: RX:glutathione R-transferase
Comments: A group of enzymes of broad specificity. R may be an aliphatic, aromatic or heterocyclic group; X may be a sulfate, nitrile or halide group. Also catalyses the addition of aliphatic epoxides and arene oxides to glutathione, the reduction of polyol nitrate by glutathione to polyol and nitrile, certain isomerization reactions and disulfide interchange.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 50812-37-8
References:
1.  Habig, W.H., Pabst, M.J. and Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249 (1974) 7130–7139. [PMID: 4436300]
2.  Jakoby, W.B. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv. Enzymol. Relat. Areas Mol. Biol. 46 (1978) 383. [PMID: 345769]
3.  Jakoby, W.B. Glutathione transferases: an overview. Methods Enzymol. 113 (1985) 495–499. [PMID: 4088070]
4.  Keen, J.H. and Jakoby, W.B. Glutathione transferases. Catalysis of nucleophilic reactions of glutathione. J. Biol. Chem. 253 (1978) 5654–5657. [PMID: 670218]
5.  Sheehan, D., Meade, G., Foley, V.M. and Dowd, C.A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360 (2001) 1–16. [PMID: 11695986]
[EC 2.5.1.18 created 1976 (EC 2.5.1.12, EC 2.5.1.13, EC 2.5.1.14 and EC 4.4.1.7 created 1972, incorporated 1976)]
 
 
EC 2.5.1.151     
Accepted name: alkylcobalamin dealkylase
Reaction: (1) methylcob(III)alamin + [alkylcobalamin dealkylase] + glutathione = cob(I)alamin-[alkylcobalamin dealkylase] + an S-methyl glutathione
(2) adenosylcob(III)alamin + [alkylcobalamin dealkylase] + glutathione = cob(I)alamin-[alkylcobalamin dealkylase] + S-adenosyl glutathione
Other name(s): MMACHC (gene name); alkylcobalamin:glutathione S-alkyltransferase; alkylcobalamin reductase
Systematic name: methylcobalamin:glutathione S-methyltransferase
Comments: This mammalian enzyme, which is cytosolic, can bind internalized methylcob(III)alamin and adenosylcob(III)alamin and process them to cob(I)alamin using the thiolate of glutathione for nucleophilic displacement. The product remains bound to the protein, and, following its oxidation to cob(II)alamin, is transferred by the enzyme, together with its interacting partner MMADHC, directly to downstream enzymes involved in adenosylcob(III)alamin and methylcob(III)alamin biosynthesis. In addition to its dealkylase function, the enzyme also catalyse an entirely different decyanase reaction with cyanocob(III)alamin (cf. EC 1.16.1.6, cyanocobalamin reductase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hannibal, L., Kim, J., Brasch, N.E., Wang, S., Rosenblatt, D.S., Banerjee, R. and Jacobsen, D.W. Processing of alkylcobalamins in mammalian cells: A role for the MMACHC (cblC) gene product. Mol. Genet. Metab. 97 (2009) 260–266. [DOI] [PMID: 19447654]
2.  Kim, J., Hannibal, L., Gherasim, C., Jacobsen, D.W. and Banerjee, R. A human vitamin B12 trafficking protein uses glutathione transferase activity for processing alkylcobalamins. J. Biol. Chem. 284 (2009) 33418–33424. [PMID: 19801555]
3.  Koutmos, M., Gherasim, C., Smith, J.L. and Banerjee, R. Structural basis of multifunctionality in a vitamin B12-processing enzyme. J. Biol. Chem. 286 (2011) 29780–29787. [PMID: 21697092]
[EC 2.5.1.151 created 2018, modified 2021]
 
 
EC 2.8.1.3     
Accepted name: thiosulfate—thiol sulfurtransferase
Reaction: thiosulfate + 2 glutathione = sulfite + glutathione disulfide + sulfide
Other name(s): glutathione-dependent thiosulfate reductase; sulfane reductase; sulfane sulfurtransferase
Systematic name: thiosulfate:thiol sulfurtransferase
Comments: The primary product is glutathione hydrodisulfide, which reacts with glutathione to give glutathione disulfide and sulfide. L-Cysteine can also act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111070-24-7
References:
1.  Peck, H.D. and Fischer, E. The oxidation of thiosulfate and phosphorylation in extracts of Thiobacillus thioparus. J. Biol. Chem. 237 (1962) 190–197. [PMID: 14484816]
2.  Sido, B. and Koj, A. Separation of rhodanese and thiosulfate reductase activities in carp liver extracts. Acta Biol. Cracow Ser. Zoo. 15 (1972) 97–103.
3.  Uhteg, L.C. and Westley, J. Purification and steady-state kinetic analysis of yeast thiosulfate reductase. Arch. Biochem. Biophys. 195 (1979) 211–222. [DOI] [PMID: 383018]
[EC 2.8.1.3 created 1982]
 
 
EC 2.8.1.5     
Accepted name: thiosulfate—dithiol sulfurtransferase
Reaction: thiosulfate + dithioerythritol = sulfite + 4,5-cis-dihydroxy-1,2-dithiacyclohexane (i.e. oxidized dithioerythritol) + sulfide
Other name(s): thiosulfate reductase; TSR
Systematic name: thiosulfate:dithioerythritol sulfurtransferase
Comments: The enzyme from Chlorella shows very little activity towards monothiols such as glutathione and cysteine (cf. EC 2.8.1.3 thiosulfate—thiolsulfurtransferase). The enzyme probably transfers the sulfur atom onto one thiol group to form -S-S-, and sulfide is spontaneously expelled from this by reaction with the other thiol group. May be identical with EC 2.8.1.1 thiosulfate sulfurtransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9059-49-8
References:
1.  Schmidt, A., Erdle, I. and Gamon, B. Isolation and characterization of thiosulfate reductases from the green alga Chlorella fusca. Planta 162 (1984) 243–249. [PMID: 24253096]
[EC 2.8.1.5 created 1989, modified 1999]
 
 
EC 2.8.2.16     
Accepted name: thiol sulfotransferase
Reaction: 3′-phosphoadenylyl sulfate + a thiol = adenosine 3′,5′-bisphosphate + an S-alkyl thiosulfate
Glossary: 3′-phosphoadenylyl sulfate = PAPS
Other name(s): phosphoadenylylsulfate-thiol sulfotransferase; PAPS sulfotransferase; adenosine 3′-phosphate 5′-sulphatophosphate sulfotransferase; 3′-phosphoadenylyl-sulfate:thiol S-sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:thiol S-sulfonotransferase
Comments: Also acts on dithiols; substrates include glutathione, dithioerythritol and 2,3-bis(sulfanyl)propan-1-ol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 70356-45-5
References:
1.  Schmidt, A. The adenosine-5′-phosphosulfate sulfotransferase from spinach (Spinacea oleracea L.). Stabilization, partial purification, and properties. Planta 130 (1976) 257–263. [PMID: 24424637]
2.  Schmidt, A. and Christen, U. A PAPS-dependent sulfotransferase in Cyanophora paradoxa inhibited by 5′-AMP, 5′-ADP and APS. Z. Naturforsch. C: Biosci. 34 (1979) 222–228.
3.  Tsang, M. L.-S. and Schiff, J.A. Studies of sulfate utilization by algae. 17. Reactions of the adenosine 5′-phosphosulfate (APS) sulfotransferase from Chlorella and studies of model reactions which explain the diversity of side products with thiols. Plant Cell Physiol. 17 (1976) 1209–1220.
[EC 2.8.2.16 created 1984]
 
 
EC 2.8.2.33     
Accepted name: N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase
Reaction: (1) 3′-phospho-5′-adenylyl sulfate + [dermatan]-4-O-sulfo-N-acetyl-D-galactosamine = adenosine 3′,5′-bisphosphate + [dermatan]-4,6-di-O-sulfo-N-acetyl-D-galactosamine
(2) 3′-phospho-5′-adenylyl sulfate + [chondroitin]-4-O-sulfo-N-acetyl-D-galactosamine = adenosine 3′,5′-bisphosphate + [chondroitin]-4,6-di-O-sulfo-N-acetyl-D-galactosamine
Other name(s): GalNAc4S-6ST; CHST15 (gene name); 3′-phosphoadenylyl-sulfate:[dermatan]-4-O-sulfo-N-acetyl-D-galactosamine 6-O-sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:[dermatan]-4-O-sulfo-N-acetyl-D-galactosamine 6-O-sulfonotransferase
Comments: The enzyme is activated by divalent cations and reduced glutathione. The enzyme from human transfers sulfate to position 6 of both internal residues and non-reducing terminal GalNAc 4-sulfate residues of chondroitin sulfate and dermatan sulfate. Oligosaccharides derived from chondroitin sulfate also serve as acceptors but chondroitin sulfate E, keratan sulfate and heparan sulfate do not. Differs from EC 2.8.2.17, chondroitin 6-sulfotransferase, in being able to use both chondroitin and dermatan as effective substrates
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 242469-38-1
References:
1.  Ito, Y. and Habuchi, O. Purification and characterization of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase from the squid cartilage. J. Biol. Chem. 275 (2000) 34728–34736. [DOI] [PMID: 10871629]
2.  Ohtake, S., Ito, Y., Fukuta, M. and Habuchi, O. Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene. J. Biol. Chem. 276 (2001) 43894–43900. [DOI] [PMID: 11572857]
[EC 2.8.2.33 created 2005, modified 2010]
 
 
EC 2.8.4.6     
Accepted name: S-methyl-1-thioxylulose 5-phosphate methylthiotransferase
Reaction: S-methyl-1-thio-D-xylulose 5-phosphate + glutathione = 1-deoxy-D-xylulose 5-phosphate + S-(methylsulfanyl)glutathione
Other name(s): 1-methylthioxylulose 5-phosphate sulfurylase (incorrect)
Systematic name: S-methyl-1-thio-D-xylulose 5-phosphate:glutathione methylthiotransferase
Comments: The enzyme, characterized from the bacterium Rhodospirillum rubrum, belongs to the cupin superfamily and contains a manganese ion. It participates in an anaerobic salvage pathway that restores methionine from S-methyl-5′-thioadenosine. The enzyme was assayed in vitro using L-dithiothreitol instead of glutathione.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Erb, T.J., Evans, B.S., Cho, K., Warlick, B.P., Sriram, J., Wood, B.M., Imker, H.J., Sweedler, J.V., Tabita, F.R. and Gerlt, J.A. A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat. Chem. Biol. 8 (2012) 926–932. [DOI] [PMID: 23042035]
2.  Warlick, B.P., Evans, B.S., Erb, T.J., Ramagopal, U.A., Sriram, J., Imker, H.J., Sauder, J.M., Bonanno, J.B., Burley, S.K., Tabita, F.R., Almo, S.C., Sweedler, J.S. and Gerlt, J.A. 1-methylthio-D-xylulose 5-phosphate methylsulfurylase: a novel route to 1-deoxy-D-xylulose 5-phosphate in Rhodospirillum rubrum. Biochemistry 51 (2012) 8324–8326. [DOI] [PMID: 23035785]
3.  Cho, K., Evans, B.S., Wood, B.M., Kumar, R., Erb, T.J., Warlick, B.P., Gerlt, J.A. and Sweedler, J.V. Integration of untargeted metabolomics with transcriptomics reveals active metabolic pathways. Metabolomics 2014 (2014) . [DOI] [PMID: 25705145]
[EC 2.8.4.6 created 2021]
 
 
EC 3.1.2.6     
Accepted name: hydroxyacylglutathione hydrolase
Reaction: S-(2-hydroxyacyl)glutathione + H2O = glutathione + a 2-hydroxy carboxylate
Other name(s): glyoxalase II; S-2-hydroxylacylglutathione hydrolase; hydroxyacylglutathione hydrolase; acetoacetylglutathione hydrolase
Systematic name: S-(2-hydroxyacyl)glutathione hydrolase
Comments: Also hydrolyses S-acetoacetylglutathione, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-90-5
References:
1.  Racker, E. Spectrophotometric measurements of the metabolic formation and degradation of thiol esters and enediol compounds. Biochim. Biophys. Acta 9 (1952) 577–579. [DOI] [PMID: 13032160]
2.  Uotila, L. Preparation and assay of glutathione thiol esters. Survey of human liver glutathione thiol esterases. Biochemistry 12 (1973) 3938–3943. [PMID: 4200890]
3.  Uotila, L. Purification and characterization of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from human liver. Biochemistry 12 (1973) 3944–3951. [PMID: 4745654]
[EC 3.1.2.6 created 1961 (EC 3.1.2.8 created 1961, incorporated 1978)]
 
 
EC 3.1.2.7     
Accepted name: glutathione thiolesterase
Reaction: S-acylglutathione + H2O = glutathione + a carboxylate
Other name(s): citryl-glutathione thioesterhydrolase
Systematic name: S-acylglutathione hydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9025-99-4
References:
1.  Kielley, W.W. and Bradley, L.B. Glutathione thiolesterase. J. Biol. Chem. 206 (1954) 327–338. [PMID: 13130552]
[EC 3.1.2.7 created 1961]
 
 
EC 3.1.2.8      
Deleted entry:  S-acetoacylglutathione hydrolase. Now included with EC 3.1.2.6 hydroxyacylglutathione hydrolase
[EC 3.1.2.8 created 1961, deleted 1978]
 
 
EC 3.1.2.12     
Accepted name: S-formylglutathione hydrolase
Reaction: S-formylglutathione + H2O = glutathione + formate
Systematic name: S-formylglutathione hydrolase
Comments: Also hydrolyses S-acetylglutathione, but more slowly.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83380-83-0
References:
1.  Uotila, L. Preparation and assay of glutathione thiol esters. Survey of human liver glutathione thiol esterases. Biochemistry 12 (1973) 3938–3943. [PMID: 4200890]
2.  Uotila, L. and Koivusalo, M. Purification and properties of S-formylglutathione hydrolase from human liver. J. Biol. Chem. 249 (1974) 7664–7672. [PMID: 4436331]
3.  Harms, N., Ras, J., Reijnders, W.N., van Spanning, R.J. and Stouthamer, A.H. S-Formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification? J. Bacteriol. 178 (1996) 6296–6299. [DOI] [PMID: 8892832]
[EC 3.1.2.12 created 1978]
 
 
EC 3.1.2.13     
Accepted name: S-succinylglutathione hydrolase
Reaction: S-succinylglutathione + H2O = glutathione + succinate
Systematic name: S-succinylglutathione hydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 50812-22-1
References:
1.  Uotila, L. Preparation and assay of glutathione thiol esters. Survey of human liver glutathione thiol esterases. Biochemistry 12 (1973) 3938–3943. [PMID: 4200890]
2.  Uotila, L. Purification and properties of S-succinylglutathione hydrolase from human liver. J. Biol. Chem. 254 (1979) 7024–7029. [PMID: 457667]
[EC 3.1.2.13 created 1978]
 
 
EC 3.1.2.15      
Deleted entry: This activity is covered by EC 3.4.19.12, ubiquitinyl hydrolase 1
[EC 3.1.2.15 created 1986, deleted 2014]
 
 
EC 3.4.13.23     
Accepted name: cysteinylglycine-S-conjugate dipeptidase
Reaction: an [L-cysteinylglycine]-S-conjugate + H2O = an L-cysteine-S-conjugate + glycine
Other name(s): tpdA (gene name); LAP3 (gene name)
Systematic name: cysteinylglycine-S-conjugate dipeptide hydrolase
Comments: The enzyme participates in a widespread glutathione-mediated detoxification pathway. In animals the activity is usually catalysed by enzymes that have numerous additional activities, such as EC 3.4.11.1, leucyl aminopeptidase, EC 3.4.11.2, membrane alanyl aminopeptidase, and EC 3.4.13.19, membrane dipeptidase. However, in the bacterium Corynebacterium sp. Ax20, which degrades axillary secretions, the enzyme appears to be specific for this task.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  SEMENZA G Chromatographic purification of cysteinyl-glycinase. Biochim. Biophys. Acta 24 (1957) 401–413. [PMID: 13436444]
2.  Rankin, B.B., McIntyre, T.M. and Curthoys, N.P. Brush border membrane hydrolysis of S-benzyl-cysteine-p-nitroanilide, and activity of aminopeptidase M. Biochem. Biophys. Res. Commun. 96 (1980) 991–996. [PMID: 6108111]
3.  Hirota, T., Nishikawa, Y., Takahagi, H., Igarashi, T. and Kitagawa, H. Simultaneous purification and properties of dehydropeptidase-I and aminopeptidase-M from rat kidney. Res Commun Chem Pathol Pharmacol 49 (1985) 435–445. [PMID: 2865778]
4.  Josch, C., Klotz, L.O. and Sies, H. Identification of cytosolic leucyl aminopeptidase (EC 3.4.11.1) as the major cysteinylglycine-hydrolysing activity in rat liver. Biol. Chem. 384 (2003) 213–218. [PMID: 12675513]
5.  Emter, R. and Natsch, A. The sequential action of a dipeptidase and a β-lyase is required for the release of the human body odorant 3-methyl-3-sulfanylhexan-1-ol from a secreted Cys-Gly-(S) conjugate by Corynebacteria. J. Biol. Chem. 283 (2008) 20645–20652. [PMID: 18515361]
[EC 3.4.13.23 created 2019]
 
 
EC 3.4.17.25     
Accepted name: glutathione-S-conjugate glycine hydrolase
Reaction: a glutathione-S-conjugate + H2O = a [γ-glutamyl-L-cysteine]-S-conjugate + glycine
Other name(s): PCS1 (gene name); PRC1 (gene name); CPC (gene name); ATG42 (gene name); alr0975 (locus name)
Systematic name: glutathione-S-conjugate glycine hydrolase
Comments: The enzyme participates in a glutathione-mediated detoxification pathway found in plants, algae, fungi, and some bacteria. The enzymes from the plant Arabidopsis thaliana and the yeast Saccharomyces cerevisiae also catalyse the activity of EC 2.3.2.15, glutathione γ-glutamylcysteinyltransferase (phytochelatin synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Beck, A., Lendzian, K., Oven, M., Christmann, A. and Grill, E. Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry 62 (2003) 423–431. [PMID: 12620355]
2.  Grzam, A., Tennstedt, P., Clemens, S., Hell, R. and Meyer, A.J. Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Lett. 580 (2006) 6384–6390. [PMID: 17097087]
3.  Harada, E., von Roepenack-Lahaye, E. and Clemens, S. A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to γ-glutamylcysteine and lacks phytochelatin synthase activity. Phytochemistry 65 (2004) 3179–3185. [PMID: 15561184]
4.  Tsuji, N., Nishikori, S., Iwabe, O., Shiraki, K., Miyasaka, H., Takagi, M., Hirata, K. and Miyamoto, K. Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, Nostoc sp. PCC 7120. Biochem. Biophys. Res. Commun. 315 (2004) 751–755. [PMID: 14975765]
5.  Vivares, D., Arnoux, P. and Pignol, D. A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc. Natl. Acad. Sci. USA 102 (2005) 18848–18853. [PMID: 16339904]
6.  Wunschmann, J., Krajewski, M., Letzel, T., Huber, E.M., Ehrmann, A., Grill, E. and Lendzian, K.J. Dissection of glutathione conjugate turnover in yeast. Phytochemistry 71 (2010) 54–61. [PMID: 19897216]
[EC 3.4.17.25 created 2021]
 
 
EC 3.4.19.13     
Accepted name: glutathione γ-glutamate hydrolase
Reaction: (1) glutathione + H2O = L-cysteinylglycine + L-glutamate
(2) a glutathione-S-conjugate + H2O = an (L-cysteinylglycine)-S-conjugate + L-glutamate
Other name(s): glutathionase; γ-glutamyltranspeptidase (ambiguous); glutathione hydrolase; GGT (gene name); ECM38 (gene name)
Comments: This is a bifunctional protein that also has the activity of EC 2.3.2.2, γ-glutamyltransferase. The enzyme binds its substrate by forming an initial γ-glutamyl-enzyme intermediate, releasing the L-cysteinylglycine part of the molecule. The enzyme then reacts with either a water molecule or a different acceptor substrate (usually an L-amino acid or a dipeptide) to form L-glutamate or a product containing a new γ-glutamyl isopeptide bond, respectively. The enzyme acts on glutathione, glutathione-S-conjugates, and, at a lower level, on other substrates with an N-terminal L-γ-glutamyl residue. It plays a crucial part in the glutathione-mediated xenobiotic detoxification pathway. The enzyme consists of two chains that are created by the proteolytic cleavage of a single precursor polypeptide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hanigan, M.H. and Ricketts, W.A. Extracellular glutathione is a source of cysteine for cells that express γ-glutamyl transpeptidase. Biochemistry 32 (1993) 6302–6306. [PMID: 8099811]
2.  Carter, B.Z., Wiseman, A.L., Orkiszewski, R., Ballard, K.D., Ou, C.N. and Lieberman, M.W. Metabolism of leukotriene C4 in γ-glutamyl transpeptidase-deficient mice. J. Biol. Chem. 272 (1997) 12305–12310. [DOI] [PMID: 9139674]
3.  Suzuki, H. and Kumagai, H. Autocatalytic processing of γ-glutamyltranspeptidase. J. Biol. Chem. 277 (2002) 43536–43543. [DOI] [PMID: 12207027]
4.  Okada, T., Suzuki, H., Wada, K., Kumagai, H. and Fukuyama, K. Crystal structures of γ-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc. Natl. Acad. Sci. USA 103 (2006) 6471–6476. [DOI] [PMID: 16618936]
5.  Boanca, G., Sand, A., Okada, T., Suzuki, H., Kumagai, H., Fukuyama, K. and Barycki, J.J. Autoprocessing of Helicobacter pylori γ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J. Biol. Chem. 282 (2007) 534–541. [DOI] [PMID: 17107958]
6.  Okada, T., Suzuki, H., Wada, K., Kumagai, H. and Fukuyama, K. Crystal structure of the γ-glutamyltranspeptidase precursor protein from Escherichia coli. Structural changes upon autocatalytic processing and implications for the maturation mechanism. J. Biol. Chem. 282 (2007) 2433–2439. [DOI] [PMID: 17135273]
7.  Grzam, A., Martin, M.N., Hell, R. and Meyer, A.J. γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett. 581 (2007) 3131–3138. [PMID: 17561001]
8.  Wickham, S., West, M.B., Cook, P.F. and Hanigan, M.H. Gamma-glutamyl compounds: substrate specificity of γ-glutamyl transpeptidase enzymes. Anal. Biochem. 414 (2011) 208–214. [DOI] [PMID: 21447318]
9.  Keillor, J.W., Castonguay, R. and Lherbet, C. Gamma-glutamyl transpeptidase substrate specificity and catalytic mechanism. Methods Enzymol. 401 (2005) 449–467. [PMID: 16399402]
[EC 3.4.19.13 created 2011, modified 2019]
 
 
EC 3.4.19.14     
Accepted name: leukotriene-C4 hydrolase
Reaction: leukotriene C4 + H2O = leukotriene D4 + L-glutamate
Other name(s): γ-glutamyl leukotrienase; GGT5
Comments: The mouse enzyme is specific for leukotriene C4, while the human enzyme also has considerable activity towards glutathione and oxidized glutathione (cf. EC 3.4.19.13, glutathione hydrolase) [3-4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Carter, B.Z., Wiseman, A.L., Orkiszewski, R., Ballard, K.D., Ou, C.N. and Lieberman, M.W. Metabolism of leukotriene C4 in γ-glutamyl transpeptidase-deficient mice. J. Biol. Chem. 272 (1997) 12305–12310. [DOI] [PMID: 9139674]
2.  Shi, Z.Z., Han, B., Habib, G.M., Matzuk, M.M. and Lieberman, M.W. Disruption of γ-glutamyl leukotrienase results in disruption of leukotriene D4 synthesis in vivo and attenuation of the acute inflammatory response. Mol. Cell Biol. 21 (2001) 5389–5395. [DOI] [PMID: 11463821]
3.  Han, B., Luo, G., Shi, Z.Z., Barrios, R., Atwood, D., Liu, W., Habib, G.M., Sifers, R.N., Corry, D.B. and Lieberman, M.W. γ-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D4 formation in vivo. Am J Pathol 161 (2002) 481–490. [DOI] [PMID: 12163373]
4.  Wickham, S., West, M.B., Cook, P.F. and Hanigan, M.H. Gamma-glutamyl compounds: substrate specificity of γ-glutamyl transpeptidase enzymes. Anal. Biochem. 414 (2011) 208–214. [DOI] [PMID: 21447318]
[EC 3.4.19.14 created 2012]
 
 
EC 3.4.19.16     
Accepted name: glucosinolate γ-glutamyl hydrolase
Reaction: (1) an (E)-1-(glutathion-S-yl)-N-hydroxy-ω-(methylsulfanyl)alkan-1-imine + H2O = an (E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-ω-(methylsulfanyl)alkan-1-imine + L-glutamate
(2) (E)-1-(glutathion-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O = (E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + L-glutamate
(3) (glutathion-S-yl)(1H-indol-3-yl)acetonitrile + H2O = (L-cysteinylglycin-S-yl)(1H-indol-3-yl)acetonitrile + L-glutamate
(4) (Z)-1-(glutathion-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O = (Z)-1-(L-cysteinyglycin-S-yl)-N-hydroxy-2-phenylethan-1-imine + L-glutamate
Other name(s): GGP1 (gene name); GGP3 (gene name)
Comments: This enzyme, characterized from the plant Arabidopsis thaliana, participates in the biosynthesis of the plant defense compounds glucosinolates and camalexin. It is the only known plant enzyme capable of hydrolysing the γ-glutamyl residue of glutathione in the cytosol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Geu-Flores, F., Møldrup, M.E., Böttcher, C., Olsen, C.E., Scheel, D. and Halkier, B.A. Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23 (2011) 2456–2469. [DOI] [PMID: 21712415]
[EC 3.4.19.16 created 2017]
 
 
EC 3.5.1.78     
Accepted name: glutathionylspermidine amidase
Reaction: glutathionylspermidine + H2O = glutathione + spermidine
For diagram of trypanothione biosynthesis, click here
Glossary: spermidine = N-(3-aminopropyl)butane-1,4-diamine
Other name(s): glutathionylspermidine amidohydrolase (spermidine-forming)
Systematic name: γ-L-glutamyl-L-cysteinyl-glycine:spermidine amidase
Comments: Spermidine is numbered so that atom N-1 is in the amino group of the aminopropyl part of the molecule. The enzyme from Escherichia coli is bifunctional and also catalyses the glutathionylspermidine synthase (EC 6.3.1.8) reaction, resulting in a net hydrolysis of ATP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 171040-71-4
References:
1.  Bollinger, J.M., Kwon, D.S., Huisman, G.W., Kolter, R., Walsh, C.T. Glutathionylspermidine metabolism in E. coli. Purification, cloning, overproduction and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J. Biol. Chem. 270 (1995) 14031–14041. [DOI] [PMID: 7775463]
[EC 3.5.1.78 created 1999]
 
 
EC 3.5.1.124     
Accepted name: protein deglycase
Reaction: (1) an Nω-(1-hydroxy-2-oxopropyl)-[protein]-L-arginine + H2O = a [protein]-L-arginine + lactate
(2) an N6-(1-hydroxy-2-oxopropyl)-[protein]-L-lysine + H2O = a [protein]-L-lysine + lactate
(3) an S-(1-hydroxy-2-oxopropyl)-[protein]-L-cysteine + H2O = a [protein]-L-cysteine + lactate
Glossary: 2-oxopropanal = methylglyoxal
Other name(s): PARK7 (gene name); DJ-1 protein; yhbO (gene name); yajL (gene name); glyoxylase III (incorrect)
Systematic name: a [protein]-L-amino acid-1-hydroxypropan-2-one hydrolase [(R)-lactate-forming]
Comments: The enzyme, previously thought to be a glyoxalase, acts on glycated L-arginine, L-lysine, and L-cysteine residues within proteins that have been attacked and modified by glyoxal or 2-oxopropanal. The attack forms hemithioacetal in the case of cysteines and aminocarbinols in the case of arginines and lysines. The enzyme repairs the amino acids, releasing glycolate or lactate (70-80% (S)-lactate and 20-30% (R)-lactate), depending on whether the attacking agent was glyoxal or 2-oxopropanal, respectively [3,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Misra, K., Banerjee, A.B., Ray, S. and Ray, M. Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem. J. 305 (1995) 999–1003. [PMID: 7848303]
2.  Subedi, K.P., Choi, D., Kim, I., Min, B. and Park, C. Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol. Microbiol. 81 (2011) 926–936. [DOI] [PMID: 21696459]
3.  Richarme, G., Mihoub, M., Dairou, J., Bui, L.C., Leger, T. and Lamouri, A. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 290 (2015) 1885–1897. [DOI] [PMID: 25416785]
4.  Mihoub, M., Abdallah, J., Gontero, B., Dairou, J. and Richarme, G. The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal. Biochem. Biophys. Res. Commun. 463 (2015) 1305–1310. [DOI] [PMID: 26102038]
5.  Abdallah, J., Mihoub, M., Gautier, V. and Richarme, G. The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal. Biochem. Biophys. Res. Commun. 470 (2016) 282–286. [DOI] [PMID: 26774339]
[EC 3.5.1.124 created 2016]
 
 
EC 3.5.1.128     
Accepted name: deaminated glutathione amidase
Reaction: N-(4-oxoglutaryl)-L-cysteinylglycine + H2O = 2-oxoglutarate + L-cysteinylglycine
Glossary: N-(4-oxoglutaryl)-L-cysteinylglycine = deaminated glutathione
Other name(s): dGSH deaminase; NIT1 (gene name)
Systematic name: N-(4-oxoglutaryl)-L-cysteinylglycine amidohydrolase
Comments: The enzyme, present in animals, fungi and bacteria, is involved in clearing cells of the toxic compound deaminated glutathione, which can be produced as an unwanted side product by several transaminases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Peracchi, A., Veiga-da-Cunha, M., Kuhara, T., Ellens, K.W., Paczia, N., Stroobant, V., Seliga, A.K., Marlaire, S., Jaisson, S., Bommer, G.T., Sun, J., Huebner, K., Linster, C.L., Cooper, A.JL. and Van Schaftingen, E. Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc. Natl. Acad. Sci. USA 114 (2017) E3233–E3242. [DOI] [PMID: 28373563]
[EC 3.5.1.128 created 2018]
 
 
EC 3.6.3.44      
Transferred entry: xenobiotic-transporting ATPase. Now EC 7.6.2.2, ABC-type xenobiotic transporter
[EC 3.6.3.44 created 2000 (EC 3.6.3.45 incorporated 2006), modified 2006, deleted 2018]
 
 
EC 3.6.3.46      
Transferred entry: cadmium-transporting ATPase. Now EC 7.2.2.2, ABC-type Cd2+ transporter
[EC 3.6.3.46 created 2000, transferred 2018 to EC 7.2.2.2, deleted 2018]
 
 
EC 3.7.1.2     
Accepted name: fumarylacetoacetase
Reaction: 4-fumarylacetoacetate + H2O = acetoacetate + fumarate
For diagram of tyrosine catabolism, click here
Other name(s): β-diketonase; fumarylacetoacetate hydrolase
Systematic name: 4-fumarylacetoacetate fumarylhydrolase
Comments: Also acts on other 3,5- and 2,4-dioxo acids.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-59-1
References:
1.  Connors, W.M. and Stotz, E. The purification and properties of a triacetic acid-hydrolyzing enzyme. J. Biol. Chem. 178 (1949) 881–890. [PMID: 18117010]
2.  Edwards, S.W. and Knox, W.E. Homogentisate metabolism: the isomerization of maleylacetoacetate by an enzyme which requires glutathione. J. Biol. Chem. 220 (1956) 79–91. [PMID: 13319328]
3.  Meister, A. and Greenstein, J.P. Enzymatic hydrolysis of 2,4-diketo acids. J. Biol. Chem. 175 (1948) 573–588. [PMID: 18880754]
[EC 3.7.1.2 created 1961]
 
 
EC 4.2.1.130     
Accepted name: D-lactate dehydratase
Reaction: (R)-lactate = 2-oxopropanal + H2O
Glossary: methylglyoxal = 2-oxopropanal
(R)-lactate = D-lactate
Other name(s): glyoxylase III; GLO3
Systematic name: (R)-lactate hydro-lyase
Comments: The enzyme, described from the fungi Candida albicans and Schizosaccharomyces pombe, converts 2-oxopropanal to (R)-lactate in a single glutathione (GSH)-independent step. The other known route for this conversion is the two-step GSH-dependent pathway catalysed by EC 4.4.1.5 (lactoylglutathione lyase) and EC 3.1.2.6 (hydroxyacylglutathione hydrolase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hasim, S., Hussin, N.A., Alomar, F., Bidasee, K.R., Nickerson, K.W. and Wilson, M.A. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J. Biol. Chem. 289 (2014) 1662–1674. [DOI] [PMID: 24302734]
2.  Zhao, Q., Su, Y., Wang, Z., Chen, C., Wu, T. and Huang, Y. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol Biol 14:86 (2014). [DOI] [PMID: 24758716]
[EC 4.2.1.130 created 2011]
 
 
EC 4.3.2.7     
Accepted name: glutathione-specific γ-glutamylcyclotransferase
Reaction: glutathione = L-cysteinylglycine + 5-oxo-L-proline
Other name(s): γ-GCG; CHAC (gene name); CHAC1 (gene name); CHAC2 (gene name)
Systematic name: glutathione γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
Comments: The enzyme, found in bacteria, fungi and animals, is specific for glutathione (cf. EC 4.3.2.9, γ-glutamylcyclotransferase). The enzyme acts as a cyclotransferase, cleaving the amide bond via transamidation using the α-amine of the L-glutamyl residue, releasing it as the cyclic 5-oxo-L-proline.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kumar, A., Tikoo, S., Maity, S., Sengupta, S., Sengupta, S., Kaur, A. and Bachhawat, A.K. Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep. 13 (2012) 1095–1101. [DOI] [PMID: 23070364]
2.  Kaur, A., Gautam, R., Srivastava, R., Chandel, A., Kumar, A., Karthikeyan, S. and Bachhawat, A.K. ChaC2, an enzyme for slow turnover of cytosolic glutathione. J. Biol. Chem. 292 (2017) 638–651. [DOI] [PMID: 27913623]
[EC 4.3.2.7 created 2017]
 
 
EC 4.3.2.9     
Accepted name: γ-glutamylcyclotransferase
Reaction: α-(γ-L-glutamyl)-L-amino acid = α-L-amino acid + 5-oxo-L-proline
Other name(s): γ-glutamyl-amino acid cyclotransferase; γ-L-glutamylcyclotransferase; L-glutamic cyclase; (5-L-glutamyl)-L-amino-acid 5-glutamyltransferase (cyclizing); GGCT
Systematic name: α-(γ-L-glutamyl)-L-amino-acid γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
Comments: The enzyme, found in animals and plants, acts on derivatives of L-glutamate, L-2-aminobutanoate, L-alanine and glycine. The enzyme acts as a cyclotransferase, cleaving the amide bond via transamidation using the α-amine of the L-glutamyl residue, releasing it as the cyclic 5-oxo-L-proline.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9045-44-7
References:
1.  Bodnaryk, R.P. and McGirr, L. Purification, properties and function of a unique γ-glutamyl cyclotransferase from the housefly, Musca domestica L. Biochim. Biophys. Acta 315 (1973) 352–362.
2.  Orlowski, M., Richman, P.G. and Meister, A. Isolation and properties of γ-L-glutamylcyclotransferase from human brain. Biochemistry 8 (1969) 1048–1055. [PMID: 5781001]
3.  Oakley, A.J., Yamada, T., Liu, D., Coggan, M., Clark, A.G. and Board, P.G. The identification and structural characterization of C7orf24 as γ-glutamyl cyclotransferase. An essential enzyme in the γ-glutamyl cycle. J. Biol. Chem. 283 (2008) 22031–22042. [DOI] [PMID: 18515354]
4.  Paulose, B., Chhikara, S., Coomey, J., Jung, H.I., Vatamaniuk, O. and Dhankher, O.P. A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25 (2013) 4580–4595. [DOI] [PMID: 24214398]
[EC 4.3.2.9 created 1972 as EC 2.3.2.4, transferred 2017 to EC 4.3.2.9]
 
 
EC 4.4.1.5     
Accepted name: lactoylglutathione lyase
Reaction: (R)-S-lactoylglutathione = glutathione + 2-oxopropanal
Glossary: 2-oxopropanal = methylglyoxal
Other name(s): methylglyoxalase; aldoketomutase; ketone-aldehyde mutase; glyoxylase I; (R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing)
Systematic name: (R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing; glutathione-forming)
Comments: Also acts on 3-phosphoglycerol-glutathione.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9033-12-9
References:
1.  Ekwall, K. and Mannervik, B. The stereochemical configuration of the lactoyl group of S-lactoylglutathionine formed by the action of glyoxalase I from porcine erythrocytes and yeast. Biochim. Biophys. Acta 297 (1973) 297–299. [DOI] [PMID: 4574550]
2.  Racker, E. The mechanism of action of glyoxalase. J. Biol. Chem. 190 (1951) 685–696. [PMID: 14841219]
[EC 4.4.1.5 created 1961]
 
 
EC 4.4.1.7      
Deleted entry:  S-(hydroxyalkyl)glutathione lyase. Now included with EC 2.5.1.18 glutathione transferase
[EC 4.4.1.7 created 1972, deleted 1976]
 
 
EC 4.4.1.20     
Accepted name: leukotriene-C4 synthase
Reaction: leukotriene C4 = leukotriene A4 + glutathione
For diagram of leukotriene biosynthesis, click here
Glossary: leukotriene C4 = (7E,9E,11Z,14Z)-(5S,6R)-6-(glutathion-S-yl)-5-hydroxyicosa-7,9,11,14-tetraenoate
leukotriene A4 = (7E,9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7,9,11,14-tetraenoate
Other name(s): leukotriene C4 synthetase; LTC4 synthase; LTC4 synthetase; leukotriene A4:glutathione S-leukotrienyltransferase; (7E,9E,11Z,14Z)-(5S,6R)-5,6-epoxyicosa-7,9,11,14-tetraenoate:glutathione leukotriene-transferase (epoxide-ring-opening); (7E,9E,11Z,14Z)-(5S,6R)-6-(glutathion-S-yl)-5-hydroxyicosa-7,9,11,14-tetraenoate glutathione-lyase (epoxide-forming)
Systematic name: leukotriene-C4 glutathione-lyase (leukotriene-A4-forming)
Comments: The reaction proceeds in the direction of addition. Not identical with EC 2.5.1.18, glutathione transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 90698-32-1
References:
1.  Bach, M.K., Brashler, J.R. and Morton, D.R., Jr. Solubilization and characterization of the leukotriene C4 synthetase of rat basophil leukemia cells: a novel, particulate glutathione S-transferase. Arch. Biochem. Biophys. 230 (1984) 455–465. [DOI] [PMID: 6324687]
2.  Shimizu, T. Enzymes functional in the syntheses of leukotrienes and related compounds. Int. J. Biochem. 20 (1988) 661–666. [PMID: 2846379]
3.  Lam, B.K. and Austen, K.F. Leukotriene C4 synthase: a pivotal enzyme in cellular biosynthesis of the cysteinyl leukotrienes. Prostaglandins Other Lipid Mediat. 68-69 (2002) 511–520. [DOI] [PMID: 12432940]
4.  Christmas, P., Weber, B.M., McKee, M., Brown, D. and Soberman, R.J. Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem. 277 (2002) 28902–28908. [DOI] [PMID: 12023288]
[EC 4.4.1.20 created 1989 as EC 2.5.1.37, transferred 2004 to EC 4.4.1.20]
 
 
EC 4.4.1.22     
Accepted name: S-(hydroxymethyl)glutathione synthase
Reaction: S-(hydroxymethyl)glutathione = glutathione + formaldehyde
Other name(s): glutathione-dependent formaldehyde-activating enzyme; Gfa; S-(hydroxymethyl)glutathione formaldehyde-lyase
Systematic name: S-(hydroxymethyl)glutathione formaldehyde-lyase (glutathione-forming)
Comments: The enzyme from Paracoccus denitrificans accelerates the spontaneous reaction in which the adduct of formaldehyde and glutathione is formed, i.e. the substrate for EC 1.1.1.284, S-(hydroxymethyl)glutathione dehydrogenase, in the formaldehyde-detoxification pathway.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 425642-27-9
References:
1.  Goenrich, M., Bartoschek, S., Hagemeier, C.H., Griesinger, C. and Vorholt, J.A. A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J. Biol. Chem. 277 (2002) 3069–3072. [DOI] [PMID: 11741920]
[EC 4.4.1.22 created 2005 (EC 1.2.1.1 created 1961, modified 1982, modified 2002, part transferred 2005 to EC 4.4.1.22)]
 
 
EC 4.4.1.34     
Accepted name: isoprene-epoxide—glutathione S-transferase
Reaction: 2-(glutathion-S-yl)-2-methylbut-3-en-1-ol = (3R)-3,4-epoxy-3-methylbut-1-ene + glutathione
For diagram of isoprene biosynthesis and metabolism, click here
Other name(s): isoI (gene name)
Systematic name: 2-(glutathion-S-yl)-2-methylbut-3-en-1-ol lyase [(3R)-3,4-epoxy-3-methylbut-1-ene-forming]
Comments: The enzyme, characterized from the bacterium Rhodococcus sp. AD45, is involved in isoprene degradation. The enzyme can catalyse the glutathione-dependent ring opening of various epoxides, but the highest activity is with (3R)-3,4-epoxy-3-methylbut-1-ene, which is derived from isoprene by EC 1.14.13.69, alkene monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van Hylckama Vlieg, J.E., Kingma, J., van den Wijngaard, A.J. and Janssen, D.B. A glutathione S-transferase with activity towards cis-1, 2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45. Appl. Environ. Microbiol. 64 (1998) 2800–2805. [PMID: 9687433]
2.  van Hylckama Vlieg, J.E., Kingma, J., Kruizinga, W. and Janssen, D.B. Purification of a glutathione S-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in Rhodococcus sp. strain AD45. J. Bacteriol. 181 (1999) 2094–2101. [PMID: 10094686]
[EC 4.4.1.34 created 2016]
 
 
EC 4.5.1.3     
Accepted name: dichloromethane dehalogenase
Reaction: dichloromethane + H2O = formaldehyde + 2 chloride
Other name(s): dichloromethane chloride-lyase (chloride-hydrolysing)
Systematic name: dichloromethane chloride-lyase (adding H2O; chloride-hydrolysing; formaldehyde-forming)
Comments: Requires glutathione.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 97002-70-5
References:
1.  Kohler-Staub, D. and Leisinger, T. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162 (1985) 676–681. [PMID: 3988708]
[EC 4.5.1.3 created 1989]
 
 
EC 5.2.1.2     
Accepted name: maleylacetoacetate isomerase
Reaction: 4-maleylacetoacetate = 4-fumarylacetoacetate
For diagram of tyrosine catabolism, click here
Other name(s): maleylacetoacetic isomerase; maleylacetone isomerase; maleylacetone cis-trans-isomerase
Systematic name: 4-maleylacetoacetate cis-trans-isomerase
Comments: Also acts on maleylpyruvate.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-75-0
References:
1.  Edwards, S.W. and Knox, W.E. Homogentisate metabolism: the isomerization of maleylacetoacetate by an enzyme which requires glutathione. J. Biol. Chem. 220 (1956) 79–91. [PMID: 13319328]
2.  Lack, L. Enzymic cis-trans isomerization of maleylpyruvic acid. J. Biol. Chem. 236 (1961) 2835–2840. [PMID: 14461395]
3.  Seltzer, S. Purification and properties of maleylacetone cis-trans isomerase from Vibrio 01. J. Biol. Chem. 248 (1973) 215–222. [PMID: 4692831]
[EC 5.2.1.2 created 1961]
 
 
EC 5.3.99.2     
Accepted name: prostaglandin-D synthase
Reaction: (5Z,13E,15S)-9α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate = (5Z,13E,15S)-9α,15-dihydroxy-11-oxoprosta-5,13-dienoate
Other name(s): prostaglandin-H2 Δ-isomerase; prostaglandin-R-prostaglandin D isomerase; PGH-PGD isomerase(5,13)-(15S)-9α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate Δ-isomerase (incorrect); (5,13)-(15S)-9α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate D-isomerase; prostaglandin endoperoxide Δ-isomerase; prostaglandin D synthetase
Systematic name: (5Z,13E,15S)-9α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate D-isomerase
Comments: Brings about the opening of the epidioxy bridge. Some enzymes require glutathione.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 65802-85-9
References:
1.  Christ-Hazelhof, E. and Nugteren, D.H. Purification and characterisation of prostaglandin endoperoxide Δ-isomerase, a cytoplasmic, glutathione-requiring enzyme. Biochim. Biophys. Acta 572 (1979) 43–51. [DOI] [PMID: 32914]
2.  Shimizu, T., Yamamoto, S. and Hayaishi, O. Purification and properties of prostaglandin D synthetase from rat brain. J. Biol. Chem. 254 (1979) 5222–5228. [PMID: 109431]
[EC 5.3.99.2 created 1976, modified 1990]
 
 
EC 5.3.99.3     
Accepted name: prostaglandin-E synthase
Reaction: (5Z,13E)-(15S)-9α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate = (5Z,13E)-(15S)-11α,15-dihydroxy-9-oxoprosta-5,13-dienoate
Other name(s): prostaglandin-H2 E-isomerase; endoperoxide isomerase; endoperoxide isomerase; prostaglandin R-prostaglandin E isomerase; prostaglandin endoperoxide E isomerase; PGE isomerase; PGH-PGE isomerase; PGE2 isomerase; prostaglandin endoperoxide E2 isomerase; prostaglandin H-E isomerase
Systematic name: (5Z,13E)-(15S)-9α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate E-isomerase
Comments: Brings about the opening of the epidioxy bridge. Requires glutathione.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52227-79-9
References:
1.  Ogino, N., Miyamoto, T., Yamamoto, S. and Hayaishi, O. Prostaglandin endoperoxide E isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme. J. Biol. Chem. 252 (1977) 890–895. [PMID: 838703]
2.  Tanaka, Y., Ward, S.L. and Smith, W.L. Immunochemical and kinetic evidence for two different prostaglandin H-prostaglandin E isomerases in sheep vesicular gland microsomes. J. Biol. Chem. 262 (1987) 1374–1381. [PMID: 3100531]
[EC 5.3.99.3 created 1976, modified 1990]
 
 
EC 5.99.1.4     
Accepted name: 2-hydroxychromene-2-carboxylate isomerase
Reaction: 2-hydroxy-2H-chromene-2-carboxylate = (3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate
For diagram of naphthalene metabolism, click here
Other name(s): HCCA isomerase; 2HC2CA isomerase; 2-hydroxychromene-2-carboxylic acid isomerase
Systematic name: 2-hydroxy-2H-chromene-2-carboxylate—(3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate isomerase
Comments: This enzyme is involved in naphthalene degradation.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ohmoto, T., Kinoshita, T., Moriyoshi, K., Sakai, K., Hamada, N. and Ohe, T. Purification and some properties of 2-hydroxychromene-2-carboxylate isomerase from naphthalenesulfonate-assimilating Pseudomonas sp. TA-2. J. Biochem. 124 (1998) 591–597. [PMID: 9722670]
2.  Keck, A., Conradt, D., Mahler, A., Stolz, A., Mattes, R. and Klein, J. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152 (2006) 1929–1940. [DOI] [PMID: 16804169]
3.  Eaton, R.W. Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J. Bacteriol. 176 (1994) 7757–7762. [DOI] [PMID: 8002605]
4.  Thompson, L.C., Ladner, J.E., Codreanu, S.G., Harp, J., Gilliland, G.L. and Armstrong, R.N. 2-Hydroxychromene-2-carboxylic acid isomerase: a kappa class glutathione transferase from Pseudomonas putida. Biochemistry 46 (2007) 6710–6722. [DOI] [PMID: 17508726]
[EC 5.99.1.4 created 2010]
 
 
EC 6.3.1.8     
Accepted name: glutathionylspermidine synthase
Reaction: glutathione + spermidine + ATP = glutathionylspermidine + ADP + phosphate
For diagram of trypanothione biosynthesis, click here and for diagram of trypanothione biosynthesis, click here
Glossary: glutathione = γ-L-glutamyl-L-cysteinyl-glycine
spermidine = N-(3-aminopropyl)butane-1,4-diamine
Other name(s): glutathione:spermidine ligase (ADP-forming)
Systematic name: γ-L-glutamyl-L-cysteinyl-glycine:spermidine ligase (ADP-forming) [spermidine is numbered so that atom N-1 is in the amino group of the aminopropyl part of the molecule]
Comments: Requires magnesium ions. Involved in the synthesis of trypanothione in trypanosomatids. The enzyme from Escherichia coli is bifunctional and also catalyses the glutathionylspermidine amidase (EC 3.5.1.78) reaction, resulting in a net hydrolysis of ATP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9077-09-2
References:
1.  Smith, K., Nadeau, K., Bradley, M., Walsh, C.T., Fairlamb, A.H. Purification of glutathionylspermidine and trypanothione synthase from Crithidia fasciculata. Protein Sci. 1 (1992) 874–883. [DOI] [PMID: 1304372]
2.  Bollinger, J.M., Kwon, D.S., Huisman, G.W., Kolter, R., Walsh, C.T. Glutathionylspermidine metabolism in E. coli. Purification, cloning, overproduction and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J. Biol. Chem. 270 (1995) 14031–14041. [DOI] [PMID: 7775463]
[EC 6.3.1.8 created 1999]
 
 
EC 6.3.1.9     
Accepted name: trypanothione synthase
Reaction: (1) glutathione + spermidine + ATP = glutathionylspermidine + ADP + phosphate
(2) glutathione + glutathionylspermidine + ATP = N1,N8-bis(glutathionyl)spermidine + ADP + phosphate
For diagram of trypanothione biosynthesis, click here and for diagram of trypanothione biosynthesis, click here
Glossary: N1,N8-bis(glutathionyl)spermidine = trypanothione
Other name(s): glutathionylspermidine:glutathione ligase (ADP-forming)
Systematic name: spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)
Comments: The enzyme, characterized from several trypanosomatids (e.g. Trypanosoma cruzi) catalyses two subsequent reactions, leading to production of trypanothione from glutathione and spermidine. Some trypanosomatids (e.g. Crithidia species and some Leishmania species) also contain an enzyme that only carries out the first reaction (cf. EC 6.3.1.8, glutathionylspermidine synthase). The enzyme is bifunctional, and also catalyses the hydrolysis of glutathionylspermidine and trypanothione (cf. EC 3.5.1.78, glutathionylspermidine amidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 130246-69-4
References:
1.  Smith, K., Nadeau, K., Bradley, M., Walsh, C.T., Fairlamb, A.H. Purification of glutathionylspermidine and trypanothione synthase from Crithidia fasciculata. Protein Sci. 1 (1992) 874–883. [DOI] [PMID: 1304372]
2.  Oza, S.L., Tetaud, E., Ariyanayagam, M.R., Warnon, S.S. and Fairlamb, A.H. A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi. J. Biol. Chem. 277 (2002) 35853–35861. [DOI] [PMID: 12121990]
3.  Comini, M., Menge, U., Wissing, J. and Flohe, L. Trypanothione synthesis in crithidia revisited. J. Biol. Chem. 280 (2005) 6850–6860. [DOI] [PMID: 15537651]
4.  Oza, S.L., Shaw, M.P., Wyllie, S. and Fairlamb, A.H. Trypanothione biosynthesis in Leishmania major. Mol. Biochem. Parasitol. 139 (2005) 107–116. [DOI] [PMID: 15610825]
5.  Fyfe, P.K., Oza, S.L., Fairlamb, A.H. and Hunter, W.N. Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. J. Biol. Chem. 283 (2008) 17672–17680. [DOI] [PMID: 18420578]
[EC 6.3.1.9 created 1999, modified 2014]
 
 
EC 6.3.1.13     
Accepted name: L-cysteine:1D-myo-inositol 2-amino-2-deoxy-α-D-glucopyranoside ligase
Reaction: 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + L-cysteine + ATP = 1-O-[2-(L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol + AMP + diphosphate
For diagram of mycothiol biosynthesis, click here
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy--D-glucopyranosyl]-1D-myo-inositol
Other name(s): MshC; MshC ligase; Cys:GlcN-Ins ligase; mycothiol ligase
Systematic name: L-cysteine:1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol ligase (AMP-forming)
Comments: This enzyme is a key enzyme in the biosynthesis of mycothiol, a small molecular weight thiol found in Mycobacteria spp. and other actinomycetes. Mycothiol plays a fundamental role in these organisms by helping to provide protection from the effects of reactive oxygen species and electrophiles, including many antibiotics. The enzyme may represent a novel target for new classes of antituberculars [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fan, F., Luxenburger, A., Painter, G.F. and Blanchard, J.S. Steady-state and pre-steady-state kinetic analysis of Mycobacterium smegmatis cysteine ligase (MshC). Biochemistry 46 (2007) 11421–11429. [DOI] [PMID: 17848100]
2.  Gutierrez-Lugo, M.T., Newton, G.L., Fahey, R.C. and Bewley, C.A. Cloning, expression and rapid purification of active recombinant mycothiol ligase as B1 immunoglobulin binding domain of streptococcal protein G, glutathione-S-transferase and maltose binding protein fusion proteins in Mycobacterium smegmatis. Protein Expr. Purif. 50 (2006) 128–136. [DOI] [PMID: 16908186]
3.  Tremblay, L.W., Fan, F., Vetting, M.W. and Blanchard, J.S. The 1.6 Å crystal structure of Mycobacterium smegmatis MshC: the penultimate enzyme in the mycothiol biosynthetic pathway. Biochemistry 47 (2008) 13326–13335. [DOI] [PMID: 19053270]
[EC 6.3.1.13 created 2009]
 
 
EC 6.3.2.2     
Accepted name: glutamate—cysteine ligase
Reaction: ATP + L-glutamate + L-cysteine = ADP + phosphate + γ-L-glutamyl-L-cysteine
For diagram of glutathione biosynthesis, click here
Other name(s): γ-glutamylcysteine synthetase; γ-glutamyl-L-cysteine synthetase; γ-glutamylcysteinyl synthetase
Systematic name: L-glutamate:L-cysteine γ-ligase (ADP-forming)
Comments: Can use L-aminohexanoate in place of glutamate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-64-7
References:
1.  MacKinnon, C.M., Carter, P.E., Smyth, S.J., Dunbar, B. and Fothergill, J.E. Molecular cloning of cDNA for human complement component C1s. The complete amino acid sequence. Eur. J. Biochem. 169 (1987) 547–553. [DOI] [PMID: 3500856]
2.  Snoke, J.E., Yanari, S. and Bloch, K. Synthesis of glutathione from γ-glutamylcysteine. J. Biol. Chem. 201 (1953) 573–586. [PMID: 13061393]
3.  Mandeles, S. and Bloch, K. Enzymatic synthesis of γ-glutamylcysteine. J. Biol. Chem. 214 (1955) 639–646. [PMID: 14381401]
[EC 6.3.2.2 created 1961]
 
 
EC 6.3.2.3     
Accepted name: glutathione synthase
Reaction: ATP + γ-L-glutamyl-L-cysteine + glycine = ADP + phosphate + glutathione
For diagram of glutathione biosynthesis, click here
Other name(s): glutathione synthetase; GSH synthetase
Systematic name: γ-L-glutamyl-L-cysteine:glycine ligase (ADP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-62-5
References:
1.  Law, M.Y. and Halliwell, B. Purification and properties of glutathione synthetase from (Spinacia oleracea) leaves. Plant Sci. 43 (1986) 185–191.
2.  Macnicol, P.K. Homoglutathione and glutathione synthetases of legume seedlings - partial-purification and substrate-specificity. Plant Sci. 53 (1987) 229–235.
[EC 6.3.2.3 created 1961]
 
 
EC 6.3.2.23     
Accepted name: homoglutathione synthase
Reaction: ATP + γ-L-glutamyl-L-cysteine + β-alanine = ADP + phosphate + γ-L-glutamyl-L-cysteinyl-β-alanine
Other name(s): homoglutathione synthetase; β-alanine specific hGSH synthetase
Systematic name: γ-L-glutamyl-L-cysteine:β-alanine ligase (ADP-forming)
Comments: Not identical with EC 6.3.2.3 glutathione synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 113875-72-2
References:
1.  Macnicol, P.K. Homoglutathione and glutathione synthetases of legume seedlings - partial-purification and substrate-specificity. Plant Sci. 53 (1987) 229–235.
[EC 6.3.2.23 created 1990]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald