The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

EC 1.14.19.69     
Accepted name: biflaviolin synthase
Reaction: (1) 2 flaviolin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 3,3′-biflaviolin + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
(2) 2 flaviolin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 3,8′-biflaviolin + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
For diagram of flaviolin metabolism, click here
Glossary: flaviolin = 4,5,7-trihydroxynaphthalene-1,2-dione
3,3′-biflaviolin = 3,3′,6,6′,8,8′-hexahydroxy-2,2′-binaphthalene-1,1′,4,4′-tetraone
3,8′-biflaviolin = 2,3′,4,6′,7,8′-hexahydroxy-1,2′-binaphthalene-1′,4′,5,8-tetraone
Other name(s): CYP158A2 (gene name); cytochrome P450 158A2
Systematic name: flaviolin,reduced ferredoxin:oxygen oxidoreductase
Comments: This cytochrome-P-450 (heme-thiolate) enzyme, from the soil-dwelling bacterium Streptomyces coelicolor A3(2), catalyses a phenol oxidation C-C coupling reaction, which results in the polymerization of flaviolin to form biflaviolin or triflaviolin without the incorporation of oxygen into the product [1,3]. The products are highly conjugated pigments that protect the bacterium from the deleterious effects of UV irradiation [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zhao, B., Guengerich, F.P., Bellamine, A., Lamb, D.C., Izumikawa, M., Lei, L., Podust, L.M., Sundaramoorthy, M., Kalaitzis, J.A., Reddy, L.M., Kelly, S.L., Moore, B.S., Stec, D., Voehler, M., Falck, J.R., Shimada, T. and Waterman, M.R. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J. Biol. Chem. 280 (2005) 11599–11607. [DOI] [PMID: 15659395]
2.  Zhao, B., Guengerich, F.P., Voehler, M. and Waterman, M.R. Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer. J. Biol. Chem. 280 (2005) 42188–42197. [DOI] [PMID: 16239228]
3.  Zhao, B., Lamb, D.C., Lei, L., Kelly, S.L., Yuan, H., Hachey, D.L. and Waterman, M.R. Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2. Biochemistry 46 (2007) 8725–8733. [DOI] [PMID: 17614370]
[EC 1.14.19.69 created 2008 as EC 1.14.21.7, transferred 2018 to EC 1.14.19.69]
 
 
EC 1.14.21.7      
Transferred entry: biflaviolin synthase. Now EC 1.14.19.69, biflaviolin synthase
[EC 1.14.21.7 created 2008, deleted 2018]
 
 
EC 2.5.1.123     
Accepted name: flaviolin linalyltransferase
Reaction: geranyl diphosphate + flaviolin = 3-linalylflaviolin + diphosphate
For diagram of flaviolin metabolism, click here
Glossary: flaviolin = 2,5,7-trihydroxynaphthalene-1,4-dione
3-linalylflaviolin = 2,5,7-trihydroxy-3-(3,7-dimethylocta-1,6-dien-3-yl)naphthalene-1,4-dione
Other name(s): Fnq26
Systematic name: geranyl-diphosphate:flaviolin 3-linalyltransferase
Comments: Does not require Mg2+ or any other metal ions. Isolated from the bacterium Streptomyces cinnamonensis. In vitro the enzyme also forms traces of 3-geranylflaviolin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Haagen, Y., Unsold, I., Westrich, L., Gust, B., Richard, S.B., Noel, J.P. and Heide, L. A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates. FEBS Lett. 581 (2007) 2889–2893. [DOI] [PMID: 17543953]
[EC 2.5.1.123 created 2014]
 
 
EC 2.5.1.124     
Accepted name: 6-linalyl-2-O,3-dimethylflaviolin synthase
Reaction: geranyl diphosphate + 2-O,3-dimethylflaviolin = diphosphate + 6-linalyl-2-O,3-dimethylflaviolin
Glossary: flaviolin = 2,5,7-trihydroxy-1,4-naphthoquinone
2-O,3-dimethylflaviolin = 5,7-dihydroxy-2-methoxy-3-methylnaphthalene-1,4-dione
6-linalyl-2-O,3-dimethylflaviolin = 6-(3,7-dimethylocta-1,6-dien-3-yl)-5,7-dihydroxy-2-methoxy-3-methylnaphthalene-1,4-dione
Other name(s): Fur7; 6-(3,7-dimethylocta-1,6-dien-3-yl)-5,7-dihydroxy-2-methoxy-3-methylnaphthalene-1,4-dione synthase
Systematic name: geranyl-diphosphate:2-O-methyl-3-methylflaviolin geranyltransferase (6-linalyl-2-O,3-dimethylflaviolin-forming)
Comments: The enzyme is involved in biosynthesis of the polyketide-isoprenoid furaquinocin D in the bacterium Streptomyces sp. KO-3988. It catalyses the transfer of a geranyl group to 2-O,3-dimethylflaviolin to yield 6-linalyl-2-O,3-dimethylflaviolin and 7-O-geranyl-2-O,3-dimethylflaviolin (cf. EC 2.5.1.125, 7-geranyloxy-5-hydroxy-2-methoxy-3-methylnaphthalene-1,4-dione synthase) in a 10:1 ratio.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kumano, T., Tomita, T., Nishiyama, M. and Kuzuyama, T. Functional characterization of the promiscuous prenyltransferase responsible for furaquinocin biosynthesis: identification of a physiological polyketide substrate and its prenylated reaction products. J. Biol. Chem. 285 (2010) 39663–39671. [DOI] [PMID: 20937800]
[EC 2.5.1.124 created 2014]
 
 
EC 2.5.1.125     
Accepted name: 7-geranyloxy-5-hydroxy-2-methoxy-3-methylnaphthalene-1,4-dione synthase
Reaction: geranyl diphosphate + 2-O,3-dimethylflaviolin = diphosphate + 7-O-geranyl-2-O,3-dimethylflaviolin
Glossary: flaviolin = 2,5,7-trihydroxy-1,4-naphthoquinone
2-O,3-dimethylflaviolin = 5,7-dihydroxy-2-methoxy-3-methylnaphthalene-1,4-dione
7-O-geranyl-2-O,3-dimethylflaviolin = 7-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-5-hydroxy-2-methoxy-3-methylnaphthalene-1,4-dione
Other name(s): Fur7
Systematic name: geranyl-diphosphate:2-O,3-dimethylflaviolin geranyltransferase (7-O-geranyl-2-O,3-dimethylflaviolin-forming)
Comments: The enzyme is involved in furaquinocin biosynthesis in the bacterium Streptomyces sp. KO-3988. It catalyses the transfer of a geranyl group to 2-O,3-dimethylflaviolin to yield 7-O-geranyl-2-O,3-dimethylflaviolin and 6-linalyl-2-O,3-dimethylflaviolin (cf. EC 2.5.1.124, 6-linalyl-2-O,3-dimethylflaviolin synthase) in a 1:10 ratio.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kumano, T., Tomita, T., Nishiyama, M. and Kuzuyama, T. Functional characterization of the promiscuous prenyltransferase responsible for furaquinocin biosynthesis: identification of a physiological polyketide substrate and its prenylated reaction products. J. Biol. Chem. 285 (2010) 39663–39671. [DOI] [PMID: 20937800]
[EC 2.5.1.125 created 2014]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald