The Enzyme Database

Your query returned 9 entries.    printer_iconPrintable version



EC 2.1.1.45     
Accepted name: thymidylate synthase
Reaction: 5,10-methylenetetrahydrofolate + dUMP = dihydrofolate + dTMP
For diagram of C1 metabolism, click here
Other name(s): dTMP synthase; thymidylate synthetase; methylenetetrahydrofolate:dUMP C-methyltransferase; TMP synthetase
Systematic name: 5,10-methylenetetrahydrofolate:dUMP C-methyltransferase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9031-61-2
References:
1.  Blakley, R.L. The biosynthesis of thymidylic acid. IV. Further studies on thymidylate synthase. J. Biol. Chem. 238 (1963) 2113–2118.
2.  Lockshin, A., Moran, R.G. and Danenberg, P.V. Thymidylate synthetase purified to homogeneity from human leukemic cells. Proc. Natl. Acad. Sci. USA 76 (1979) 750–754. [DOI] [PMID: 34155]
3.  Slavik, K. and Slavikova, V. Purification of thymidylate synthetase from enzyme-poor sources by affinity chromatography. Methods Enzymol. 66 (1980) 709–723. [PMID: 6990200]
4.  Wahba, A.J. and Friedkin, M. The enzymatic synthesis of thymidylate. I. Early steps in the purification of thymidylate synthetase of Escherichia coli. J. Biol. Chem. 237 (1962) 3794–3801. [PMID: 13998281]
[EC 2.1.1.45 created 1976]
 
 
EC 2.1.1.148     
Accepted name: thymidylate synthase (FAD)
Reaction: 5,10-methylenetetrahydrofolate + dUMP + NADPH + H+ = dTMP + tetrahydrofolate + NADP+
For diagram of C1 metabolism, click here
Other name(s): Thy1; ThyX
Systematic name: 5,10-methylenetetrahydrofolate,FADH2:dUMP C-methyltransferase
Comments: Contains FAD. All thymidylate synthases catalyse a reductive methylation involving the transfer of the methylene group of 5,10-methylenetetrahydrofolate to the C5 position of dUMP and a two electron reduction of the methylene group to a methyl group. Unlike the classical thymidylate synthase, ThyA (EC 2.1.1.45), which uses folate as both a 1-carbon donor and a source of reducing equivalents, this enzyme uses a flavin coenzyme as a source of reducing equivalents, which are derived from NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 850167-13-4
References:
1.  Myllykallio, H., Lipowski, G., Leduc, D., Filee, J., Forterre, P. and Liebl, U. An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297 (2002) 105–107. [DOI] [PMID: 12029065]
2.  Griffin, J., Roshick, C., Iliffe-Lee, E. and McClarty, G. Catalytic mechanism of Chlamydia trachomatis flavin-dependent thymidylate synthase. J. Biol. Chem. 280 (2005) 5456–5467. [DOI] [PMID: 15591067]
3.  Graziani, S., Bernauer, J., Skouloubris, S., Graille, M., Zhou, C.Z., Marchand, C., Decottignies, P., van Tilbeurgh, H., Myllykallio, H. and Liebl, U. Catalytic mechanism and structure of viral flavin-dependent thymidylate synthase ThyX. J. Biol. Chem. 281 (2006) 24048–24057. [DOI] [PMID: 16707489]
4.  Koehn, E.M., Fleischmann, T., Conrad, J.A., Palfey, B.A., Lesley, S.A., Mathews, I.I. and Kohen, A. An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 458 (2009) 919–923. [DOI] [PMID: 19370033]
5.  Koehn, E.M. and Kohen, A. Flavin-dependent thymidylate synthase: a novel pathway towards thymine. Arch. Biochem. Biophys. 493 (2010) 96–102. [DOI] [PMID: 19643076]
6.  Mishanina, T.V., Yu, L., Karunaratne, K., Mondal, D., Corcoran, J.M., Choi, M.A. and Kohen, A. An unprecedented mechanism of nucleotide methylation in organisms containing thyX. Science 351 (2016) 507–510. [DOI] [PMID: 26823429]
[EC 2.1.1.148 created 2003, modified 2010]
 
 
EC 2.7.1.21     
Accepted name: thymidine kinase
Reaction: ATP + thymidine = ADP + dTMP
Glossary: dTMP = thymidine 5′-phosphate
Other name(s): thymidine kinase (phosphorylating); 2′-deoxythymidine kinase; deoxythymidine kinase (phosphorylating)
Systematic name: ATP:thymidine 5′-phosphotransferase
Comments: Deoxyuridine can also act as acceptor, and dGTP can act as a donor. The deoxypyrimidine kinase complex induced by Herpes simplex virus catalyses this reaction as well as those of EC 2.7.1.114 (AMP—thymidine kinase), EC 2.7.1.118 (ADP—thymidine kinase) and EC 2.7.4.9 (dTMP-kinase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9002-06-6
References:
1.  Falke, D., Labenz, J., Brauer, D. and Muller, W.E.G. Adenosine diphosphate: thymidine 5′-phosphotransferase, a new enzyme activity, associated with the Herpes simplex virus-induced deoxypyrimidine kinase. Biochim. Biophys. Acta 708 (1982) 99–103. [DOI] [PMID: 6293576]
2.  Kizer, D.E. and Holman, L. Purification and properties of thymidine kinase from regenerating rat liver. Biochim. Biophys. Acta 350 (1974) 193–200. [DOI] [PMID: 4407348]
3.  Okazaki, R. and Kornberg, A. Deoxythymidine kinase of Escherichia coli. I. Purification and some properties of the enzyme. J. Biol. Chem. 239 (1964) 269–274. [PMID: 14114853]
[EC 2.7.1.21 created 1961, deleted 1972, reinstated 1976 (EC 2.7.1.75 created 1972, incorporated 1976)]
 
 
EC 2.7.1.114     
Accepted name: AMP—thymidine kinase
Reaction: AMP + thymidine = adenosine + dTMP
Glossary: dTMP = thymidine 5′-phosphate
Other name(s): adenylate-nucleoside phosphotransferase
Systematic name: AMP:thymidine 5′-phosphotransferase
Comments: The deoxypyrimidine kinase complex induced by Herpes simplex virus catalyses this reaction as well as those of EC 2.7.1.21 (thymidine kinase), EC 2.7.1.118 (ADP—thymidine kinase) and EC 2.7.4.9 (dTMP kinase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 60440-28-0
References:
1.  Falke, D., Labenz, J., Brauer, D. and Muller, W.E.G. Adenosine diphosphate: thymidine 5′-phosphotransferase, a new enzyme activity, associated with the Herpes simplex virus-induced deoxypyrimidine kinase. Biochim. Biophys. Acta 708 (1982) 99–103. [DOI] [PMID: 6293576]
2.  Falke, D., Nehrbass, W., Brauer, D. and Mueller, W.E.G. Adenylic acid: deoxythymidine 5′-phosphotransferase: evidence for the existence of a novel Herpes simplex virus-induced enzyme. J. Gen. Virol. 53 (1981) 247–255. [DOI] [PMID: 6267178]
[EC 2.7.1.114 created 1984]
 
 
EC 2.7.1.118     
Accepted name: ADP—thymidine kinase
Reaction: ADP + thymidine = AMP + dTMP
Glossary: dTMP = thymidine 5′-phosphate
Other name(s): ADP:dThd phosphotransferase; adenosine diphosphate-thymidine phosphotransferase
Systematic name: ADP:thymidine 5′-phosphotransferase
Comments: The deoxypyrimidine kinase complex induced by Herpes simplex virus catalyses this reaction as well as those of EC 2.7.1.21 (thymidine kinase), EC 2.7.1.114 (AMP—thymidine kinase) and EC 2.7.4.9 (dTMP kinase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82114-39-4
References:
1.  Falke, D., Labenz, J., Brauer, D. and Muller, W.E.G. Adenosine diphosphate: thymidine 5′-phosphotransferase, a new enzyme activity, associated with the Herpes simplex virus-induced deoxypyrimidine kinase. Biochim. Biophys. Acta 708 (1982) 99–103. [DOI] [PMID: 6293576]
[EC 2.7.1.118 created 1986]
 
 
EC 2.7.4.9     
Accepted name: dTMP kinase
Reaction: ATP + dTMP = ADP + dTDP
Other name(s): thymidine monophosphate kinase; thymidylate kinase; thymidylate monophosphate kinase; thymidylic acid kinase; thymidylic kinase; deoxythymidine 5′-monophosphate kinase; TMPK; thymidine 5′-monophosphate kinase
Systematic name: ATP:dTMP phosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-43-1
References:
1.  Hurwitz, J. The enzymatic incorporation of ribonucleotides into polydeoxynucleotide material. J. Biol. Chem. 234 (1959) 2351–2358. [PMID: 14405566]
2.  Keilley, R.K. Purification and properties of thymidine monophosphate kinase from mouse hepatoma. J. Biol. Chem. 245 (1970) 4204–4212. [PMID: 4323166]
3.  Nelson, D.J. and Carter, C.E. Purification and characterization of thymidine 5-monophosphate kinase from Escherichia coli B. J. Biol. Chem. 244 (1969) 5254–5262. [PMID: 4899016]
[EC 2.7.4.9 created 1965]
 
 
EC 2.7.4.12     
Accepted name: T2-induced deoxynucleotide kinase
Reaction: ATP + dGMP (or dTMP) = ADP + dGDP (or dTDP)
Systematic name: ATP:(d)NMP phosphotransferase
Comments: dTMP and dAMP can act as acceptors; dATP can act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37278-99-2
References:
1.  Bello, L.J. and Bessman, M.J. The enzymology of virus-infected bacteria. IV. Purification and properties of the deoxynucleotide kinase induced by bacteriophage T2. J. Biol. Chem. 238 (1963) 1777–1787. [PMID: 13967158]
[EC 2.7.4.12 created 1972]
 
 
EC 3.1.3.35     
Accepted name: thymidylate 5′-phosphatase
Reaction: thymidylate + H2O = thymidine + phosphate
Other name(s): thymidylate 5′-nucleotidase; deoxythymidylate 5′-nucleotidase; thymidylate nucleotidase; deoxythymidylic 5′-nucleotidase; deoxythymidylate phosphohydrolase; dTMPase
Systematic name: thymidylate 5′-phosphohydrolase
Comments: Acts on 5-methyl-dCMP and on TMP, but more slowly than on dTMP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-80-6
References:
1.  Aposhian, H.V. and Tremblay, G.Y. Deoxythymidylate 5′-nucleotidase. Purification and properties of an enzyme found after infection of Bacillus subtilis with phage SP5C. J. Biol. Chem. 241 (1966) 5095–5101. [PMID: 4958986]
[EC 3.1.3.35 created 1972]
 
 
EC 3.2.2.10     
Accepted name: pyrimidine-5′-nucleotide nucleosidase
Reaction: a pyrimidine 5′-nucleotide + H2O = D-ribose 5-phosphate + a pyrimidine base
Other name(s): pyrimidine nucleotide N-ribosidase; Pyr5N
Systematic name: pyrimidine-5′-nucleotide phosphoribo(deoxyribo)hydrolase
Comments: Also acts on dUMP, dTMP and dCMP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9023-31-8
References:
1.  Imada, A. Degradation of pyrimidine nucleotides by enzyme systems of Streptomyces. II. Pyrimidine 5′-nucleotide phosphoribo(deoxyribo) hydrolase of Streptomyces virginiae. J. Gen. Appl. Microbiol. 13 (1967) 267–278.
2.  Imada, A., Kuno, M. and Igarasi, S. Degradation of pyrimidine nucleotides by enzyme systems of Streptomyces. I. Ribose-5-phosphate formation from pyrimidine nucleotides. J. Gen. Appl. Microbiol. 13 (1967) 255–265.
[EC 3.2.2.10 created 1972]
 
 


Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald