The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

Deleted entry:  cysteamine dehydrogenase
[EC created 1961, deleted 1972]
Accepted name: formylglycine-generating enzyme
Reaction: a [sulfatase]-L-cysteine + O2 + 2 a thiol = a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
Glossary: 3-oxo-L-alanine = formylglycine = Cα-formylglycine = FGly
Other name(s): sulfatase-modifying factor 1; Cα-formylglycine-generating enzyme 1; SUMF1 (gene name)
Systematic name: [sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)
Comments: Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Dierks, T., Schmidt, B. and von Figura, K. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94 (1997) 11963–11968. [DOI] [PMID: 9342345]
2.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [DOI] [PMID: 9748219]
3.  Preusser-Kunze, A., Mariappan, M., Schmidt, B., Gande, S.L., Mutenda, K., Wenzel, D., von Figura, K. and Dierks, T. Molecular characterization of the human Cα-formylglycine-generating enzyme. J. Biol. Chem. 280 (2005) 14900–14910. [DOI] [PMID: 15657036]
4.  Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K. and Rudolph, M.G. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc. Natl. Acad. Sci. USA 103 (2006) 81–86. [DOI] [PMID: 16368756]
5.  Carlson, B.L., Ballister, E.R., Skordalakes, E., King, D.S., Breidenbach, M.A., Gilmore, S.A., Berger, J.M. and Bertozzi, C.R. Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283 (2008) 20117–20125. [DOI] [PMID: 18390551]
6.  Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Banas, S., de Hart, G.W., Baker, J. and Rabuka, D. Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J. Biol. Chem. 290 (2015) 15730–15745. [DOI] [PMID: 25931126]
7.  Knop, M., Engi, P., Lemnaru, R. and Seebeck, F.P. In vitro reconstitution of formylglycine-generating enzymes requires copper(I). ChemBioChem 16 (2015) 2147–2150. [DOI] [PMID: 26403223]
8.  Knop, M., Dang, T.Q., Jeschke, G. and Seebeck, F.P. Copper is a cofactor of the formylglycine-generating enzyme. ChemBioChem 18 (2017) 161–165. [DOI] [PMID: 27862795]
9.  Meury, M., Knop, M. and Seebeck, F.P. Structural basis for copper-oxygen mediated C-H bond activation by the formylglycine-generating enzyme. Angew. Chem. Int. Ed. Engl. (2017) . [DOI] [PMID: 28544744]
[EC created 2014]
Accepted name: cysteamine dioxygenase
Reaction: cysteamine + O2 = hypotaurine
For diagram of taurine biosynthesis, click here
Glossary: cysteamine = 2-aminoethanethiol
Other name(s): ADO (gene name); persulfurase; cysteamine oxygenase; cysteamine:oxygen oxidoreductase
Systematic name: 2-aminoethanethiol:oxygen oxidoreductase
Comments: A non-heme iron protein that is involved in the biosynthesis of taurine. 3-Aminopropanethiol (homocysteamine) and 2-sulfanylethan-1-ol (2-mercaptoethanol) can also act as substrates, but glutathione, cysteine, and cysteine ethyl- and methyl esters are not good substrates [1,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9033-41-4
1.  Cavallini, D., de Marco, C., Scandurra, R., Duprè, S. and Graziani, M.T. The enzymatic oxidation of cysteamine to hypotaurine. Purification and properties of the enzyme. J. Biol. Chem. 241 (1966) 3189–3196. [PMID: 5912113]
2.  Wood, J.L. and Cavallini, D. Enzymic oxidation of cysteamine to hypotaurine in the absence of a cofactor. Arch. Biochem. Biophys. 119 (1967) 368–372. [DOI] [PMID: 6052430]
3.  Cavallini, D., Federici, G., Ricci, G., Duprè, S. and Antonucci, A. The specificity of cysteamine oxygenase. FEBS Lett. 56 (1975) 348–351. [DOI] [PMID: 1157952]
4.  Richerson, R.B. and Ziegler, D.M. Cysteamine dioxygenase. Methods Enzymol. 143 (1987) 410–415. [DOI] [PMID: 3657558]
5.  Dominy, J.E., Jr., Simmons, C.R., Hirschberger, L.L., Hwang, J., Coloso, R.M. and Stipanuk, M.H. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J. Biol. Chem. 282 (2007) 25189–25198. [PMID: 17581819]
[EC created 1972, modified 2006]
Accepted name: pantetheine hydrolase
Reaction: (R)-pantetheine + H2O = (R)-pantothenate + 2-aminoethanethiol
Other name(s): pantetheinase; vanin; vanin-1
Systematic name: (R)-pantetheine amidohydrolase
Comments: The enzyme hydrolyses only one of the amide bonds of pantetheine. The substrate analogues phosphopantetheine and CoA are not substrates. The enzyme recycles pantothenate (vitamin B5) and produces 2-aminoethanethiol (cysteamine), a potent anti-oxidant [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56093-18-6
1.  Duprè, S. and Cavallini, D. Purification and properties of pantetheinase from horse kidney. Methods Enzymol. 62 (1979) 262–267. [PMID: 440106]
2.  Duprè, S., Chiaraluce, R., Nardini, M., Cannella, C., Ricci, G. and Cavallini, D. Continuous spectrophotometric assay of pantetheinase activity. Anal. Biochem. 142 (1984) 175–181. [DOI] [PMID: 6549111]
3.  Maras, B., Barra, D., Duprè, S. and Pitari, G. Is pantetheinase the actual identity of mouse and human vanin-1 proteins? FEBS Lett. 461 (1999) 149–152. [DOI] [PMID: 10567687]
4.  Aurrand-Lions, M., Galland, F., Bazin, H., Zakharyev, V.M., Imhof, B.A. and Naquet, P. Vanin-1, a novel GPI-linked perivascular molecule involved in thymus homing. Immunity 5 (1996) 391–405. [DOI] [PMID: 8934567]
5.  Pitari, G., Malergue, F., Martin, F., Philippe, J.M., Massucci, M.T., Chabret, C., Maras, B., Duprè, S., Naquet, P. and Galland, F. Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett. 483 (2000) 149–154. [DOI] [PMID: 11042271]
6.  Martin, F., Malergue, F., Pitari, G., Philippe, J.M., Philips, S., Chabret, C., Granjeaud, S., Mattei, M.G., Mungall, A.J., Naquet, P. and Galland, F. Vanin genes are clustered (human 6q22-24 and mouse 10A2B1) and encode isoforms of pantetheinase ectoenzymes. Immunogenetics 53 (2001) 296–306. [PMID: 11491533]
7.  Pace, H.C. and Brenner, C. The nitrilase superfamily: classification, structure and function. Genome Biol. 2 (2001) 0001.. [PMID: 11380987]
[EC created 2006]
Accepted name: trans-2-decenoyl-[acyl-carrier protein] isomerase
Reaction: a trans-dec-2-enoyl-[acyl-carrier protein] = a cis-dec-3-enoyl-[acyl-carrier protein]
Other name(s): β-hydroxydecanoyl thioester dehydrase; trans-2-cis-3-decenoyl-ACP isomerase; trans-2,cis-3-decenoyl-ACP isomerase; trans-2-decenoyl-ACP isomerase; FabM; decenoyl-[acyl-carrier-protein] Δ2-trans3-cis-isomerase
Systematic name: decenoyl-[acyl-carrier protein] Δ2-trans3-cis-isomerase
Comments: While the enzyme from Escherichia coli is highly specific for the 10-carbon enoyl-ACP, the enzyme from Streptococcus pneumoniae can also use the 12-carbon enoyl-ACP as substrate in vitro but not 14- or 16-carbon enoyl-ACPs [3]. ACP can be replaced by either CoA or N-acetylcysteamine thioesters. The cis-3-enoyl product is required to form unsaturated fatty acids, such as palmitoleic acid and cis-vaccenic acid, in dissociated (or type II) fatty-acid biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-80-2
1.  Brock, D.J.H., Kass, L.R. and Bloch, K. β-Hydroxydecanoyl thioester dehydrase. II. Mode of action. J. Biol. Chem. 242 (1967) 4432–4440. [PMID: 4863740]
2.  Bloch, K. Enzymatic synthesis of monounsaturated fatty acids. Acc. Chem. Res. 2 (1969) 193–202.
3.  Marrakchi, H., Choi, K.H. and Rock, C.O. A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J. Biol. Chem. 277 (2002) 44809–44816. [DOI] [PMID: 12237320]
4.  Cronan, J.E., Jr. and Rock, C.O. Biosynthesis of membrane lipids. In: Neidhardt, F.C. (Ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, vol. 1, ASM Press, Washington, DC, 1996, pp. 612–636.
[EC created 2006]

Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald