The Enzyme Database

Your query returned 21 entries.    printer_iconPrintable version

EC 1.1.1.295     
Accepted name: momilactone-A synthase
Reaction: 3β-hydroxy-9β-pimara-7,15-diene-19,6β-olide + NAD(P)+ = momilactone A + NAD(P)H + H+
For diagram of the biosynthesis of diterpenoids from syn-copalyl diphosphate, click here
Other name(s): momilactone A synthase; OsMAS
Systematic name: 3β-hydroxy-9β-pimara-7,15-diene-19,6β-olide:NAD(P)+ oxidoreductase
Comments: The rice phytoalexin momilactone A is a diterpenoid secondary metabolite that is involved in the defense mechanism of the plant. Momilactone A is produced in response to attack by a pathogen through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation. The enzyme, which catalyses the last step in the biosynthesis of momilactone A, can use both NAD+ and NADP+ but activity is higher with NAD+ [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Atawong, A., Hasegawa, M. and Kodama, O. Biosynthesis of rice phytoalexin: enzymatic conversion of 3β-hydroxy-9β-pimara-7,15-dien-19,6β-olide to momilactone A. Biosci. Biotechnol. Biochem. 66 (2002) 566–570. [DOI] [PMID: 12005050]
2.  Shimura, K., Okada, A., Okada, K., Jikumaru, Y., Ko, K.W., Toyomasu, T., Sassa, T., Hasegawa, M., Kodama, O., Shibuya, N., Koga, J., Nojiri, H. and Yamane, H. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282 (2007) 34013–34018. [DOI] [PMID: 17872948]
[EC 1.1.1.295 created 2008]
 
 
EC 1.14.99.53     
Accepted name: lytic chitin monooxygenase
Reaction: [(1→4)-N-acetyl-β-D-glucosaminyl](m+n) + reduced acceptor + O2 = [(1→4)-N-acetyl-β-D-glucosaminyl](m-1)-(1→4)-2-(acetylamino)-2-deoxy-D-glucono-1,5-lactone + [(1→4)-N-acetyl-β-D-glucosaminyl]n + acceptor + H2O
Glossary: chitin = [(1→4)-N-acetyl-β-D-glucosaminyl]n
Other name(s): LPMO (ambiguous); CBP21; chitin oxidohydrolase
Systematic name: chitin, hydrogen-donor:oxygen oxidoreductase (N-acetyl-β-D-glucosaminyl C1-hydroxylating/C4-dehdyrogenating)
Comments: The enzyme cleaves chitin in an oxidative manner, releasing fragments of chitin with an N-acetylamino-D-glucono-1,5-lactone at the reducing end. The initially formed lactone at the reducing end of the shortened chitin chain quickly hydrolyses spontaneously to the aldonic acid. In vitro ascorbate can serve as reducing agent. The enzyme contains copper at the active site.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Sorlie, M. and Eijsink, V.G. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330 (2010) 219–222. [DOI] [PMID: 20929773]
2.  Vaaje-Kolstad, G., Bohle, L.A., Gaseidnes, S., Dalhus, B., Bjoras, M., Mathiesen, G. and Eijsink, V.G. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J. Mol. Biol. 416 (2012) 239–254. [DOI] [PMID: 22210154]
3.  Gudmundsson, M., Kim, S., Wu, M., Ishida, T., Momeni, M.H., Vaaje-Kolstad, G., Lundberg, D., Royant, A., Stahlberg, J., Eijsink, V.G., Beckham, G.T. and Sandgren, M. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. J. Biol. Chem. 289 (2014) 18782–18792. [DOI] [PMID: 24828494]
4.  Zhang, H., Zhao, Y., Cao, H., Mou, G. and Yin, H. Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis. Int. J. Biol. Macromol. 79 (2015) 72–75. [DOI] [PMID: 25936286]
[EC 1.14.99.53 created 2017]
 
 
EC 2.4.1.16     
Accepted name: chitin synthase
Reaction: UDP-N-acetyl-α-D-glucosamine + [(1→4)-N-acetyl-β-D-glucosaminyl]n = UDP + [(1→4)-N-acetyl-β-D-glucosaminyl]n+1
Glossary: chitin = [(1→4)-N-acetyl-β-D-glucosaminyl]n
Other name(s): chitin-UDP N-acetylglucosaminyltransferase; chitin-uridine diphosphate acetylglucosaminyltransferase; chitin synthetase; trans-N-acetylglucosaminosylase; UDP-N-acetyl-D-glucosamine:chitin 4-β-N-acetylglucosaminyl-transferase; UDP-N-acetyl-α-D-glucosamine:chitin 4-β-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:chitin 4-β-N-acetylglucosaminyltransferase (configuration-inverting)
Comments: Converts UDP-N-acetyl-α-D-glucosamine into chitin and UDP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-18-6
References:
1.  Glaser, L. and Brown, D.H. The synthesis of chitin in cell-free extracts of Neurospora crassa. J. Biol. Chem. 228 (1957) 729–742. [PMID: 13475355]
2.  Sburlati, A. and Cabib, E. Chitin synthetase 2, a presumptive participant in septum formation in Saccharomyces cerevisiae. J. Biol. Chem. 261 (1986) 15147–15152. [PMID: 2945823]
[EC 2.4.1.16 created 1961]
 
 
EC 2.4.1.280     
Accepted name: N,N′-diacetylchitobiose phosphorylase
Reaction: N,N′-diacetylchitobiose + phosphate = N-acetyl-D-glucosamine + N-acetyl-α-D-glucosamine 1-phosphate
Glossary: N,N′-diacetylchitobiose = N-acetyl-D-glucosaminyl-β-(1→4)-N-acetyl-D-glucosamine
Other name(s): chbP (gene name)
Systematic name: N,N′-diacetylchitobiose:phosphate N-acetyl-D-glucosaminyltransferase
Comments: The enzyme is specific for N,N′-diacetylchitobiose and does not phosphorylate other N-acetylchitooligosaccharides, cellobiose, trehalose, lactose, maltose or sucrose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Park, J.K., Keyhani, N.O. and Roseman, S. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of a N,N′-diacetylchitobiose phosphorylase. J. Biol. Chem. 275 (2000) 33077–33083. [DOI] [PMID: 10913116]
2.  Honda, Y., Kitaoka, M. and Hayashi, K. Reaction mechanism of chitobiose phosphorylase from Vibrio proteolyticus: identification of family 36 glycosyltransferase in Vibrio. Biochem. J. 377 (2004) 225–232. [DOI] [PMID: 13678418]
3.  Hidaka, M., Honda, Y., Kitaoka, M., Nirasawa, S., Hayashi, K., Wakagi, T., Shoun, H. and Fushinobu, S. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (α/α)6 barrel fold. Structure 12 (2004) 937–947. [DOI] [PMID: 15274915]
[EC 2.4.1.280 created 2012]
 
 
EC 2.7.1.8     
Accepted name: glucosamine kinase
Reaction: ATP + D-glucosamine = ADP + D-glucosamine 6-phosphate
Glossary: D-glucosamine 6-phosphate = 2-amino-2-deoxy-D-glucose 6-phosphate
Other name(s): glucosamine kinase (phosphorylating); ATP:2-amino-2-deoxy-D-glucose-6-phosphotransferase; aminodeoxyglucose kinase; ATP:D-glucosamine phosphotransferase
Systematic name: ATP:D-glucosamine 6-phosphotransferase
Comments: The enzyme is specific for glucosamine and has only a minor activity with D-glucose. Two unrelated enzymes with this activity have been described. One type was studied in the bacterium Vibrio cholerae, where it participates in a chitin degradation pathway. The other type has been described from actinobacteria, where it is involved in the incorporation of environmental glucosamine into antibiotic biosynthesis pathways. cf. EC 2.7.1.147, ADP-specific glucose/glucosamine kinase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-90-7
References:
1.  Bueding, E. and MacKinnon, J.A. Hexokinases of Schistosoma mansoni. J. Biol. Chem. 215 (1955) 495–506. [PMID: 13242546]
2.  Park, J.K., Wang, L.X. and Roseman, S. Isolation of a glucosamine-specific kinase, a unique enzyme of Vibrio cholerae. J. Biol. Chem. 277 (2002) 15573–15578. [DOI] [PMID: 11850417]
3.  Manso, J.A., Nunes-Costa, D., Macedo-Ribeiro, S., Empadinhas, N. and Pereira, P.J.B. Molecular fingerprints for a novel enzyme family in actinobacteria with glucosamine kinase activity. MBio 10:e00239-19 (2019). [PMID: 31088917]
[EC 2.7.1.8 created 1961, modified 2014, modified 2020]
 
 
EC 2.7.1.147     
Accepted name: ADP-specific glucose/glucosamine kinase
Reaction: (1) ADP + D-glucose = AMP + D-glucose 6-phosphate
(2) ADP + D-glucosamine = AMP + D-glucosamine 6-phosphate
Other name(s): ADP-specific glucokinase; ADP-dependent glucokinase
Systematic name: ADP:D-glucose/D-glucosamine 6-phosphotransferase
Comments: Requires Mg2+. The enzyme, characterized from a number of hyperthermophilic archaeal species, is highly specific for ADP. No activity is detected when ADP is replaced by ATP, GDP, phosphoenolpyruvate, diphosphate or polyphosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 173585-07-4
References:
1.  Kengen, S.W., Tuininga, J.E., de Bok, F.A., Stams, A.J. and de Vos, W.M. Purification and characterization of a novel ADP-dependent glucokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270 (1995) 30453–30457. [DOI] [PMID: 8530474]
2.  Koga, S., Yoshioka, I., Sakuraba, H., Takahashi, M., Sakasegawa, S., Shimizu, S. and Ohshima, T. Biochemical characterization, cloning, and sequencing of ADP-dependent (AMP-forming) glucokinase from two hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. J. Biochem. 128 (2000) 1079–1085. [PMID: 11098152]
3.  Aslam, M., Takahashi, N., Matsubara, K., Imanaka, T., Kanai, T. and Atomi, H. Identification of the glucosamine kinase in the chitinolytic pathway of Thermococcus kodakarensis. J. Biosci. Bioeng. 125:S1389-1723( (2018). [PMID: 29146530]
[EC 2.7.1.147 created 2001, modified 2020]
 
 
EC 2.7.1.196     
Accepted name: protein-Nπ-phosphohistidine—N,N′-diacetylchitobiose phosphotransferase
Reaction: [protein]-Nπ-phospho-L-histidine + N,N′-diacetylchitobiose[side 1] = [protein]-L-histidine + N,N′-diacetylchitobiose 6′-phosphate[side 2]
Other name(s): chbABC (gene names); N,N′-diacetylchitobiose PTS permease; chitobiose PTS permease; EIIcel; EIIchb; Enzyme IIcel; Enzyme IIchb
Systematic name: protein-Nπ-phospho-L-histidine:N,N′-diacetylchitobiose Nπ-phosphotransferase
Comments: This enzyme is a component (known as enzyme II) of a phosphoenolpyruvate (PEP)-dependent, sugar transporting phosphotransferase system (PTS). The system, which is found only in prokaryotes, simultaneously transports its substrate from the periplasm or extracellular space into the cytoplasm and phosphorylates it. The phosphate donor, which is shared among the different systems, is a phospho-carrier protein of low molecular mass that has been phosphorylated by EC 2.7.3.9 (phosphoenolpyruvate—protein phosphotransferase). Enzyme II, on the other hand, is specific for a particular substrate, although in some cases alternative substrates can be transported with lower efficiency. The reaction involves a successive transfer of the phosphate group to several amino acids within the enzyme before the final transfer to the substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Keyhani, N.O., Wang, L.X., Lee, Y.C. and Roseman, S. The chitin disaccharide, N,N′-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate:glycose phosphotransferase system. J. Biol. Chem. 275 (2000) 33084–33090. [DOI] [PMID: 10913117]
2.  Reizer, J., Reizer, A. and Saier, M.H., Jr. The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res. Microbiol. 141 (1990) 1061–1067. [DOI] [PMID: 2092358]
3.  Keyhani, N.O., Boudker, O. and Roseman, S. Isolation and characterization of IIAChb, a soluble protein of the enzyme II complex required for the transport/phosphorylation of N, N′-diacetylchitobiose in Escherichia coli. J. Biol. Chem. 275 (2000) 33091–33101. [DOI] [PMID: 10913118]
4.  Keyhani, N.O., Bacia, K. and Roseman, S. The transport/phosphorylation of N,N′-diacetylchitobiose in Escherichia coli. Characterization of phospho-IIB(Chb) and of a potential transition state analogue in the phosphotransfer reaction between the proteins IIA(Chb) AND IIB(Chb). J. Biol. Chem. 275 (2000) 33102–33109. [DOI] [PMID: 10913119]
[EC 2.7.1.196 created 1972 as EC 2.7.1.69, part transferred 2016 to EC 2.7.1.196]
 
 
EC 3.2.1.14     
Accepted name: chitinase
Reaction: Random endo-hydrolysis of N-acetyl-β-D-glucosaminide (1→4)-β-linkages in chitin and chitodextrins
Glossary: chitin = [(1→4)-β-D-GlcpNAc]n = (1→4)-2-acetamido-2-deoxy-β-D-glucan
Other name(s): ChiC; chitodextrinase (ambiguous); 1,4-β-poly-N-acetylglucosaminidase; poly-β-glucosaminidase; β-1,4-poly-N-acetyl glucosamidinase; poly[1,4-(N-acetyl-β-D-glucosaminide)] glycanohydrolase
Systematic name: (1→4)-2-acetamido-2-deoxy-β-D-glucan glycanohydrolase
Comments: The enzyme binds to chitin and randomly cleaves glycosidic linkages in chitin and chitodextrins in a non-processive mode, generating chitooligosaccharides and free ends on which exo-chitinases and exo-chitodextrinases can act. Activity is greatly stimulated in the presence of EC 1.14.99.53, lytic chitin monoxygenase, which attacks the crystalline structure of chitin and makes the polymer more accesible to the chitinase. cf. EC 3.2.1.202, endo-chitodextrinase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-06-3
References:
1.  Zechmeister, L. and Tóth, G. Chromatographic adsorption of the enzymes of emulsin which act on chitins. Enzymologia 7 (1939) 165–169.
2.  Tracey, M.V. Chitinase in some basidiomycetes. Biochem. J. 61 (1955) 579–586. [PMID: 13276340]
3.  Fischer, E.H. and Stein, E.A. Cleavage of O- and S-glycosidic bonds (survey). In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 4, Academic Press, New York, 1960, pp. 301–312.
4.  Connell, T.D., Metzger, D.J., Lynch, J. and Folster, J.P. Endochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of Vibrio cholerae. J. Bacteriol. 180 (1998) 5591–5600. [PMID: 9791107]
5.  Francetic, O., Badaut, C., Rimsky, S. and Pugsley, A.P. The ChiA (YheB) protein of Escherichia coli K-12 is an endochitinase whose gene is negatively controlled by the nucleoid-structuring protein H-NS. Mol. Microbiol. 35 (2000) 1506–1517. [DOI] [PMID: 10760150]
6.  Zverlov, V.V., Fuchs, K.P. and Schwarz, W.H. Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl. Environ. Microbiol. 68 (2002) 3176–3179. [DOI] [PMID: 12039789]
7.  Rottloff, S., Stieber, R., Maischak, H., Turini, F.G., Heubl, G. and Mithofer, A. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J. Exp. Bot. 62 (2011) 4639–4647. [DOI] [PMID: 21633084]
[EC 3.2.1.14 created 1961, modified 2017]
 
 
EC 3.2.1.17     
Accepted name: lysozyme
Reaction: Hydrolysis of (1→4)-β-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins
Other name(s): muramidase; globulin G; mucopeptide glucohydrolase; globulin G1; N,O-diacetylmuramidase; lysozyme g; L-7001; 1,4-N-acetylmuramidase; mucopeptide N-acetylmuramoylhydrolase; PR1-lysozyme
Systematic name: peptidoglycan N-acetylmuramoylhydrolase
Comments: cf. also EC 3.2.1.14 chitinase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-63-2
References:
1.  Blade, C.C.F., Johnson, L.N., Mair, G.A., North, A.C.T., Phillips, D.C. and Sarma, V.R. Crystallographic studies of the activity of hen egg-white lysozyme. Proc. R. Soc. Lond. B: Biol. Sci. 167 (1967) 378–388. [PMID: 4382801]
2.  Blake, C.C.F., Mair, G.A., North, A.C.T., Phillips, D.C. and Sarma, V.R. On the conformation of the hen egg-white lysozyme molecule. Proc. R. Soc. Lond. B: Biol. Sci. 167 (1967) 365–377. [PMID: 4382800]
3.  Jollès, P. Lysozyme. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 4, Academic Press, New York, 1960, pp. 431–445.
[EC 3.2.1.17 created 1961]
 
 
EC 3.2.1.165     
Accepted name: exo-1,4-β-D-glucosaminidase
Reaction: Hydrolysis of chitosan or chitosan oligosaccharides to remove successive D-glucosamine residues from the non-reducing termini
Glossary: GlcN = D-glucosamine = 2-amino-2-deoxy-D-glucopyranose
GlcNAc = N-acetyl-D-glucosamine
Other name(s): CsxA; GlcNase; exochitosanase; GlmA; exo-β-D-glucosaminidase; chitosan exo-1,4-β-D-glucosaminidase
Systematic name: chitosan exo-(1→4)-β-D-glucosaminidase
Comments: Chitosan is a partially or totally N-deacetylated chitin derivative that is found in the cell walls of some phytopathogenic fungi and comprises D-glucosamine residues with a variable content of GlcNAc residues [4]. Acts specifically on chitooligosaccharides and chitosan, having maximal activity on chitotetraose, chitopentaose and their corresponding alcohols [1]. The enzyme can degrade GlcN-GlcNAc but not GlcNAc-GlcNAc [3]. A member of the glycoside hydrolase family 2 (GH-2) [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nanjo, F., Katsumi, R. and Sakai, K. Purification and characterization of an exo-β-D-glucosaminidase, a novel type of enzyme, from Nocardia orientalis. J. Biol. Chem. 265 (1990) 10088–10094. [PMID: 2351651]
2.  Nogawa, M., Takahashi, H., Kashiwagi, A., Ohshima, K., Okada, H. and Morikawa, Y. Purification and characterization of exo-β-D-glucosaminidase from a cellulolytic fungus, Trichoderma reesei PC-3-7. Appl. Environ. Microbiol. 64 (1998) 890–895. [PMID: 16349528]
3.  Fukamizo, T., Fleury, A., Côté, N., Mitsutomi, M. and Brzezinski, R. Exo-β-D-glucosaminidase from Amycolatopsis orientalis: catalytic residues, sugar recognition specificity, kinetics, and synergism. Glycobiology 16 (2006) 1064–1072. [DOI] [PMID: 16877749]
4.  Côté, N., Fleury, A., Dumont-Blanchette, E., Fukamizo, T., Mitsutomi, M. and Brzezinski, R. Two exo-β-D-glucosaminidases/exochitosanases from actinomycetes define a new subfamily within family 2 of glycoside hydrolases. Biochem. J. 394 (2006) 675–686. [DOI] [PMID: 16316314]
5.  Ike, M., Isami, K., Tanabe, Y., Nogawa, M., Ogasawara, W., Okada, H. and Morikawa, Y. Cloning and heterologous expression of the exo-β-D-glucosaminidase-encoding gene (gls93) from a filamentous fungus, Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 72 (2006) 687–695. [DOI] [PMID: 16636831]
[EC 3.2.1.165 created 2008]
 
 
EC 3.2.1.200     
Accepted name: exo-chitinase (non-reducing end)
Reaction: Hydrolysis of N,N′-diacetylchitobiose from the non-reducing end of chitin and chitodextrins.
Other name(s): chiB (gene name)
Systematic name: (1→4)-2-acetamido-2-deoxy-β-D-glucan diacetylchitobiohydrolase (non-reducing end)
Comments: The enzyme hydrolyses the second glycosidic (1→4) linkage from non-reducing ends of chitin and chitodextrin molecules, liberating N,N′-diacetylchitobiose disaccharides. cf. EC 3.2.1.201, exo-chitinase (reducing end).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Tanaka, T., Fukui, T. and Imanaka, T. Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 276 (2001) 35629–35635. [DOI] [PMID: 11468293]
2.  Hult, E.L., Katouno, F., Uchiyama, T., Watanabe, T. and Sugiyama, J. Molecular directionality in crystalline β-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem. J. 388 (2005) 851–856. [DOI] [PMID: 15717865]
3.  Ohnuma, T., Numata, T., Osawa, T., Mizuhara, M., Lampela, O., Juffer, A.H., Skriver, K. and Fukamizo, T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 234 (2011) 123–137. [DOI] [PMID: 21390509]
4.  Gutierrez-Roman, M.I., Dunn, M.F., Tinoco-Valencia, R., Holguin-Melendez, F., Huerta-Palacios, G. and Guillen-Navarro, K. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). World J Microbiol Biotechnol 30 (2014) 33–42. [DOI] [PMID: 23824666]
[EC 3.2.1.200 created 2017]
 
 
EC 3.2.1.201     
Accepted name: exo-chitinase (reducing end)
Reaction: Hydrolysis of N,N′-diacetylchitobiose from the reducing end of chitin and chitodextrins.
Other name(s): chiA (gene name)
Systematic name: (1→4)-2-acetamido-2-deoxy-β-D-glucan diacetylchitobiohydrolase (reducing end)
Comments: The enzyme hydrolyses the second glycosidic (1→4) linkage from reducing ends of chitin and chitodextrin molecules, liberating N,N′-diacetylchitobiose disaccharides. cf. EC 3.2.1.200, exo-chitinase (non-reducing end).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hult, E.L., Katouno, F., Uchiyama, T., Watanabe, T. and Sugiyama, J. Molecular directionality in crystalline β-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem. J. 388 (2005) 851–856. [DOI] [PMID: 15717865]
2.  Nakagawa, Y.S., Eijsink, V.G., Totani, K. and Vaaje-Kolstad, G. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens. J. Agric. Food Chem. 61 (2013) 11061–11066. [DOI] [PMID: 24168426]
3.  Gutierrez-Roman, M.I., Dunn, M.F., Tinoco-Valencia, R., Holguin-Melendez, F., Huerta-Palacios, G. and Guillen-Navarro, K. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). World J Microbiol Biotechnol 30 (2014) 33–42. [DOI] [PMID: 23824666]
4.  Brurberg, M.B., Nes, I.F. and Eijsink, V.G. Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142 (1996) 1581–1589. [DOI] [PMID: 8757722]
[EC 3.2.1.201 created 2017]
 
 
EC 3.2.1.202     
Accepted name: endo-chitodextinase
Reaction: Hydrolysis of chitodextrins, releasing N,N′-diacetylchitobiose and small amounts of N,N′,N′′-triacetylchitotriose.
Other name(s): endo I (gene name); chitodextrinase (ambiguous); endolytic chitodextrinase; periplasmic chitodextrinase
Systematic name: (1→4)-2-acetamido-2-deoxy-β-D-glucan diacetylchitobiohydrolase (endo-cleaving)
Comments: The enzyme, characterized from the bacterium Vibrio furnissii, is an endo-cleaving chitodextrinase that participates in the the chitin catabolic pathway found in members of the Vibrionaceae. Unlike EC 3.2.1.14, chitinase, it has no activity on chitin. The smallest substrate is a tetrasaccharide, and the final products are N,N′-diacetylchitobiose and small amounts of N,N′,N′′-triacetylchitotriose. cf. EC 3.2.1.200, exo-chitinase (non-reducing end), and EC 3.2.1.201, exo-chitinase (reducing end).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bassler, B.L., Yu, C., Lee, Y.C. and Roseman, S. Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J. Biol. Chem. 266 (1991) 24276–24286. [PMID: 1761533]
2.  Keyhani, N.O. and Roseman, S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. J. Biol. Chem. 271 (1996) 33414–33424. [DOI] [PMID: 8969204]
[EC 3.2.1.202 created 2017]
 
 
EC 3.4.22.50     
Accepted name: V-cath endopeptidase
Reaction: Endopeptidase of broad specificity, hydrolysing substrates of both cathepsin L and cathepsin B
Other name(s): AcNPV protease; BmNPV protease; NPV protease; baculovirus cathepsin; nucleopolyhedrosis virus protease; viral cathepsin
Comments: In peptidase family C1. Contributes to the liquefaction of the tissues of the insect host in the late stages of infection by the baculovirus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, MEROPS, CAS registry number: 316365-69-2
References:
1.  Slack, J.M., Kuzio, J. and Faulkner, P. Characterization of V-cath, a cathepsin L-like proteinase expressed by the baculovirus Autographa californica multiple nuclear polyhedrosis-virus. J. Gen. Virol. 76 (1995) 1091–1098. [DOI] [PMID: 7730794]
2.  Hawtin, R.E., Zarkowska, T., Arnold, K., Thomas, C.J., Gooday, G.W., King, L.A., Kuzio, J.A. and Possee, R.D. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238 (1997) 243–253. [DOI] [PMID: 9400597]
[EC 3.4.22.50 created 2003]
 
 
EC 3.5.1.41     
Accepted name: chitin deacetylase
Reaction: chitin + H2O = chitosan + acetate
Systematic name: chitin amidohydrolase
Comments: Hydrolyses the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 56379-60-3
References:
1.  Araki, Y. and Ito, E. A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Biochem. Biophys. Res. Commun. 56 (1974) 669–675. [DOI] [PMID: 4826874]
[EC 3.5.1.41 created 1976]
 
 
EC 3.5.1.105     
Accepted name: chitin disaccharide deacetylase
Reaction: N,N′-diacetylchitobiose + H2O = N-acetyl-β-D-glucosaminyl-(1→4)-D-glucosamine + acetate
Glossary: N,N′-diacetylchitobiose = N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-D-glucosamine
Other name(s): chitobiose amidohydolase; COD; chitin oligosaccharide deacetylase; chitin oligosaccharide amidohydolase; 2-(acetylamino)-4-O-[2-(acetylamino)-2-deoxy-β-D-glucopyranosyl]-2-deoxy-D-glucopyranose acetylhydrolase
Systematic name: N,N′-diacetylchitobiose acetylhydrolase
Comments: Chitin oligosaccharide deacetylase is a key enzyme in the chitin catabolic cascade of chitinolytic Vibrio strains. Besides being a nutrient, the heterodisaccharide product 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a unique inducer of chitinase production in Vibrio parahemolyticus [2]. In contrast to EC 3.5.1.41 (chitin deacetylase) this enzyme is specific for the chitin disaccharide [1,3]. It also deacetylates the chitin trisaccharide with lower efficiency [3]. No activity with higher polymers of GlcNAc [1,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kadokura, K., Rokutani, A., Yamamoto, M., Ikegami, T., Sugita, H., Itoi, S., Hakamata, W., Oku, T. and Nishio, T. Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl. Microbiol. Biotechnol. 75 (2007) 357–365. [DOI] [PMID: 17334758]
2.  Hirano, T., Kadokura, K., Ikegami, T., Shigeta, Y., Kumaki, Y., Hakamata, W., Oku, T. and Nishio, T. Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes. Glycobiology 19 (2009) 1046–1053. [DOI] [PMID: 19553519]
3.  Ohishi, K., Yamagishi, M., Ohta, T., Motosugi, M., Izumida, H., Sano, H., Adachi, K., Miwa, T. Purification and properties of two deacetylases produced by Vibrio alginolyticus H-8. Biosci. Biotechnol. Biochem. 61 (1997) 1113–1117.
4.  Ohishi, K., Murase, K., Ohta, T. and Etoh, H. Cloning and sequencing of the deacetylase gene from Vibrio alginolyticus H-8. J. Biosci. Bioeng. 90 (2000) 561–563. [DOI] [PMID: 16232910]
[EC 3.5.1.105 created 2010]
 
 
EC 3.5.1.136     
Accepted name: N,N′-diacetylchitobiose non-reducing end deacetylase
Reaction: N,N′-diacetylchitobiose + H2O = β-D-glucosaminyl-(1→4)-N-acetyl-D-glucosamine + acetate
Other name(s): diacetylchitobiose deacetylase (ambiguous); cda (gene name)
Systematic name: N,N′-diacetylchitobiose non-reducing end acetylhydrolase
Comments: The enzyme, characterized from the archaeons Thermococcus kodakarensis and Pyrococcus horikoshii, deacetylates the non-reducing residue of N,N′-diacetylchitobiose, the end product of the archaeal chitinase, to produce β-D-glucosaminyl-(1→4)-N-acetyl-D-glucosamine. This is in contrast to EC 3.5.1.105, chitin disaccharide deacetylase, which deacetylates N,N′-diacetylchitobiose at the reducing residue to produce N-acetyl-β-D-glucosaminyl-(1→4)-D-glucosamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Tanaka, T., Fukui, T., Fujiwara, S., Atomi, H. and Imanaka, T. Concerted action of diacetylchitobiose deacetylase and exo-β-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 279 (2004) 30021–30027. [DOI] [PMID: 15136574]
2.  Mine, S., Ikegami, T., Kawasaki, K., Nakamura, T. and Uegaki, K. Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Expr. Purif. 84 (2012) 265–269. [DOI] [PMID: 22713621]
3.  Nakamura, T., Yonezawa, Y., Tsuchiya, Y., Niiyama, M., Ida, K., Oshima, M., Morita, J. and Uegaki, K. Substrate recognition of N,N′-diacetylchitobiose deacetylase from Pyrococcus horikoshii. J. Struct. Biol. 195:S1047-8477( (2016). [DOI] [PMID: 27456364]
[EC 3.5.1.136 created 2020]
 
 
EC 4.2.3.28     
Accepted name: ent-cassa-12,15-diene synthase
Reaction: ent-copalyl diphosphate = ent-cassa-12,15-diene + diphosphate
For diagram of the biosynthesis of diterpenoids from ent-copalyl diphosphate, click here
Other name(s): OsDTC1; OsKS7
Systematic name: ent-copalyl-diphosphate diphosphate-lyase (ent-cassa-12,15-diene-forming)
Comments: This class I diterpene cyclase produces ent-cassa-12,15-diene, a precursor of the rice phytoalexins (-)-phytocassanes A-E. Phytoalexins are diterpenoid secondary metabolites that are involved in the defense mechanism of the plant, and are produced in response to pathogen attack through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cho, E.M., Okada, A., Kenmoku, H., Otomo, K., Toyomasu, T., Mitsuhashi, W., Sassa, T., Yajima, A., Yabuta, G., Mori, K., Oikawa, H., Toshima, H., Shibuya, N., Nojiri, H., Omori, T., Nishiyama, M. and Yamane, H. Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J. 37 (2004) 1–8. [DOI] [PMID: 14675427]
[EC 4.2.3.28 created 2008]
 
 
EC 4.2.3.29     
Accepted name: ent-sandaracopimaradiene synthase
Reaction: ent-copalyl diphosphate = ent-sandaracopimara-8(14),15-diene + diphosphate
For diagram of the biosynthesis of diterpenoids from ent-copalyl diphosphate, click here
Other name(s): OsKS10; ent-sandaracopimara-8(14),15-diene synthase
Systematic name: ent-copalyl-diphosphate diphosphate-lyase [ent-sandaracopimara-8(14),15-diene-forming]
Comments: ent-Sandaracopimaradiene is a precursor of the rice oryzalexins A-F. Phytoalexins are diterpenoid secondary metabolites that are involved in the defense mechanism of the plant, and are produced in response to pathogen attack through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation. As a minor product, this enzyme also forms ent-pimara-8(14),15-diene, which is the sole product of EC 4.2.3.30, ent-pimara-8(14),15-diene synthase. ent-Pimara-8(14),15-diene is not a precursor in the biosynthesis of either gibberellins or phytoalexins [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Otomo, K., Kanno, Y., Motegi, A., Kenmoku, H., Yamane, H., Mitsuhashi, W., Oikawa, H., Toshima, H., Itoh, H., Matsuoka, M., Sassa, T. and Toyomasu, T. Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci. Biotechnol. Biochem. 68 (2004) 2001–2006. [DOI] [PMID: 15388982]
2.  Kanno, Y., Otomo, K., Kenmoku, H., Mitsuhashi, W., Yamane, H., Oikawa, H., Toshima, H., Matsuoka, M., Sassa, T. and Toyomasu, T. Characterization of a rice gene family encoding type-A diterpene cyclases. Biosci. Biotechnol. Biochem. 70 (2006) 1702–1710. [DOI] [PMID: 16861806]
[EC 4.2.3.29 created 2008]
 
 
EC 4.2.3.33     
Accepted name: stemar-13-ene synthase
Reaction: 9α-copalyl diphosphate = stemar-13-ene + diphosphate
For diagram of the biosynthesis of diterpenoids from 9alpha-copalyl diphosphate, click here
Glossary: syn-copalyl diphosphate = 9α-copalyl diphosphate
Other name(s): OsDTC2; OsK8; OsKL8; OsKS8; stemarene synthase; syn-stemar-13-ene synthase
Systematic name: 9α-copalyl-diphosphate diphosphate-lyase (stemar-13-ene-forming)
Comments: This diterpene cyclase produces stemar-13-ene, a putative precursor of the rice phytoalexin oryzalexin S. Phytoalexins are diterpenoid secondary metabolites that are involved in the defense mechanism of the plant, and are produced in response to pathogen attack through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mohan, R.S., Yee, N.K., Coates, R.M., Ren, Y.Y., Stamenkovic, P., Mendez, I. and West, C.A. Biosynthesis of cyclic diterpene hydrocarbons in rice cell suspensions: conversion of 9,10-syn-labda-8(17),13-dienyl diphosphate to 9β-pimara-7,15-diene and stemar-13-ene. Arch. Biochem. Biophys. 330 (1996) 33–47. [DOI] [PMID: 8651702]
2.  Nemoto, T., Cho, E.M., Okada, A., Okada, K., Otomo, K., Kanno, Y., Toyomasu, T., Mitsuhashi, W., Sassa, T., Minami, E., Shibuya, N., Nishiyama, M., Nojiri, H. and Yamane, H. Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Lett. 571 (2004) 182–186. [DOI] [PMID: 15280039]
[EC 4.2.3.33 created 2008]
 
 
EC 5.5.1.14     
Accepted name: syn-copalyl-diphosphate synthase
Reaction: geranylgeranyl diphosphate = 9α-copalyl diphosphate
For diagram of diterpenoids from 9α-copalyl diphosphate, click here
Glossary: syn-copalyl diphosphate = 9α-copalyl diphosphate
Other name(s): OsCyc1; OsCPSsyn; syn-CPP synthase; syn-copalyl diphosphate synthase; 9α-copalyl-diphosphate lyase (decyclizing)
Systematic name: 9α-copalyl-diphosphate lyase (ring-opening)
Comments: Requires a divalent metal ion, preferably Mg2+, for activity. This class II terpene synthase produces syn-copalyl diphosphate, a precursor of several rice phytoalexins, including oryzalexin S and momilactones A and B. Phytoalexins are diterpenoid secondary metabolites that are involved in the defense mechanism of the plant, and are produced in response to pathogen attack through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation. The enzyme is constitutively expressed in the roots of plants where one of its products, momilactone B, acts as an allelochemical (a molecule released into the environment to suppress the growth of neighbouring plants). In other tissues the enzyme is upregulated by conditions that stimulate the biosynthesis of phytoalexins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Otomo, K., Kenmoku, H., Oikawa, H., Konig, W.A., Toshima, H., Mitsuhashi, W., Yamane, H., Sassa, T. and Toyomasu, T. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J. 39 (2004) 886–893. [DOI] [PMID: 15341631]
2.  Xu, M., Hillwig, M.L., Prisic, S., Coates, R.M. and Peters, R.J. Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J. 39 (2004) 309–318. [DOI] [PMID: 15255861]
[EC 5.5.1.14 created 2008]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald