The Enzyme Database

Your query returned 3 entries.    printer_iconPrintable version

EC 2.7.7.66     
Accepted name: malonate decarboxylase holo-[acyl-carrier protein] synthase
Reaction: 2′-(5-triphosphoribosyl)-3′-dephospho-CoA + malonate decarboxylase apo-[acyl-carrier protein] = malonate decarboxylase holo-[acyl-carrier protein] + diphosphate
For diagram of reaction, click here
Other name(s): holo ACP synthase (ambiguous); 2′-(5′′-triphosphoribosyl)-3′-dephospho-CoA:apo ACP 2′-(5′′-triphosphoribosyl)-3′-dephospho-CoA transferase; MdcG; 2′-(5′′-triphosphoribosyl)-3′-dephospho-CoA:apo-malonate-decarboxylase adenylyltransferase; holo-malonate-decarboxylase synthase (incorrect)
Systematic name: 2′-(5-triphosphoribosyl)-3′-dephospho-CoA:apo-malonate-decarboxylase 2′-(5-phosphoribosyl)-3′-dephospho-CoA-transferase
Comments: The δ subunit of malonate decarboxylase serves as an an acyl-carrier protein (ACP) and contains the cofactor 2-(5-triphosphoribosyl)-3-dephospho-CoA. Two reactions are involved in the production of the holo-ACP form of this enzyme. The first reaction is catalysed by EC 2.4.2.52, triphosphoribosyl-dephospho-CoA synthase. The resulting cofactor is then attached to the ACP subunit via a phosphodiester linkage to a serine residue, thus forming the holo form of the enzyme, in a manner analogous to that of EC 2.7.7.61, citrate lyase holo-[acyl-carrier protein] synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hoenke, S., Wild, M.R. and Dimroth, P. Biosynthesis of triphosphoribosyl-dephospho-coenzyme A, the precursor of the prosthetic group of malonate decarboxylase. Biochemistry 39 (2000) 13223–13232. [DOI] [PMID: 11052675]
2.  Hoenke, S., Schmid, M. and Dimroth, P. Identification of the active site of phosphoribosyl-dephospho-coenzyme A transferase and relationship of the enzyme to an ancient class of nucleotidyltransferases. Biochemistry 39 (2000) 13233–13240. [DOI] [PMID: 11052676]
[EC 2.7.7.66 created 2008]
 
 
EC 2.7.8.7     
Accepted name: holo-[acyl-carrier-protein] synthase
Reaction: CoA-[4′-phosphopantetheine] + an apo-[acyl-carrier protein] = adenosine 3′,5′-bisphosphate + an [acyl-carrier protein]
Glossary: apo-[acyl-carrier protein] = a family of proteins or protein domains that contain a conserved serine residue, which are involved in acyl-group transfer.
[acyl-carrier protein] = holo-[acyl-carrier protein] = ACP = holo-ACP = the active form of apo-[acyl-carrier protein], in which the hydroxyl group of the conserved serine is substituted by a 4′-phosphopantetheine group, resulting in a sulfydryl group at which the acyl group to be transferred may then be substituted.
Other name(s): acyl carrier protein holoprotein (holo-ACP) synthetase; holo-ACP synthetase; coenzyme A:fatty acid synthetase apoenzyme 4′-phosphopantetheine transferase; holosynthase; acyl carrier protein synthetase; holo-ACP synthase; PPTase; AcpS; ACPS; acyl carrier protein synthase; P-pant transferase; CoA:apo-[acyl-carrier-protein] pantetheinephosphotransferase; CoA-[4′-phosphopantetheine]:apo-[acyl-carrier-protein] 4′-pantetheinephosphotransferase
Systematic name: CoA-[4′-phosphopantetheine]:apo-[acyl-carrier protein] 4′-pantetheinephosphotransferase
Comments: Requires Mg2+. All polyketide synthases, fatty-acid synthases and non-ribosomal peptide synthases require post-translational modification of their constituent acyl-carrier-protein (ACP) domains to become catalytically active. The inactive apo-proteins are converted into their active holo-forms by transfer of the 4′-phosphopantetheinyl moiety of CoA to the sidechain hydroxy group of a conserved serine residue in each ACP domain [3]. The enzyme from human can activate both the ACP domain of the human cytosolic multifunctional fatty-acid synthase system (EC 2.3.1.85) and that associated with human mitochondria as well as peptidyl-carrier and acyl-carrier-proteins from prokaryotes [6]. Removal of the 4-phosphopantetheinyl moiety from holo-ACP is carried out by EC 3.1.4.14, [acyl-carrier-protein] phosphodiesterase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37278-30-1
References:
1.  Elovson, J. and Vagelos, P.R. Acyl carrier protein. X. Acyl carrier protein synthetase. J. Biol. Chem. 243 (1968) 3603–3611. [PMID: 4872726]
2.  Prescott, D.J. and Vagelos, P.R. Acyl carrier protein. Adv. Enzymol. Relat. Areas Mol. Biol. 36 (1972) 269–311. [DOI] [PMID: 4561013]
3.  Lambalot, R.H., Gehring, A.M., Flugel, R.S., Zuber, P., LaCelle, M., Marahiel, M.A., Reid, R., Khosla, C. and Walsh, C.T. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem. Biol. 3 (1996) 923–936. [DOI] [PMID: 8939709]
4.  Walsh, C.T., Gehring, A.M., Weinreb, P.H., Quadri, L.E.N. and Flugel, R.S. Post-translational modification of polyketide and nonribosomal peptide synthases. Curr. Opin. Chem. Biol. 1 (1997) 309–315. [DOI] [PMID: 9667867]
5.  Mootz, H.D., Finking, R. and Marahiel, M.A. 4′-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J. Biol. Chem. 276 (2001) 37289–37298. [DOI] [PMID: 11489886]
6.  Joshi, A.K., Zhang, L., Rangan, V.S. and Smith, S. Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity. J. Biol. Chem. 278 (2003) 33142–33149. [DOI] [PMID: 12815048]
[EC 2.7.8.7 created 1972, modified 2006, modified 2022]
 
 
EC 3.1.4.14     
Accepted name: [acyl-carrier-protein] phosphodiesterase
Reaction: holo-[acyl-carrier protein] + H2O = 4′-phosphopantetheine + apo-[acyl-carrier protein]
Other name(s): ACP hydrolyase; ACP phosphodiesterase; AcpH; [acyl-carrier-protein] 4′-pantetheine-phosphohydrolase; holo-[acyl-carrier-protein] 4′-pantetheine-phosphohydrolase
Systematic name: holo-[acyl-carrier protein] 4′-pantetheine-phosphohydrolase
Comments: The enzyme cleaves acyl-[acyl-carrier-protein] species with acyl chains of 6-16 carbon atoms although it appears to demonstrate a preference for the unacylated acyl-carrier protein (ACP) and short-chain ACPs over the medium- and long-chain species [3]. Deletion of the gene encoding this enzyme abolishes ACP cofactor turnover in vivo [3]. Activation of apo-ACP to form the holoenzyme is carried out by EC 2.7.8.7, holo-[acyl-carrier-protein] synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-21-4
References:
1.  Sobhy, C. Regulation of fatty acid synthetase activity. The 4′-phosphopantetheine hydrolase of rat liver. J. Biol. Chem. 254 (1979) 8561–8566. [DOI] [PMID: 224058]
2.  Vagelos, P.R. and Larrabee, A.R. Acyl carrier protein. IX. Acyl carrier protein hydrolase. J. Biol. Chem. 242 (1967) 1776–1781. [DOI] [PMID: 4290442]
3.  Thomas, J. and Cronan, J.E. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J. Biol. Chem. 280 (2005) 34675–34683. [DOI] [PMID: 16107329]
[EC 3.1.4.14 created 1972, modified 2006]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald