The Enzyme Database

Displaying entries 1-50 of 51.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.95     
Accepted name: phosphoglycerate dehydrogenase
Reaction: 3-phospho-D-glycerate + NAD+ = 3-phosphooxypyruvate + NADH + H+
For diagram of serine biosynthesis, click here
Other name(s): PHGDH (gene name); D-3-phosphoglycerate:NAD+ oxidoreductase; α-phosphoglycerate dehydrogenase; 3-phosphoglycerate dehydrogenase; 3-phosphoglyceric acid dehydrogenase; D-3-phosphoglycerate dehydrogenase; glycerate 3-phosphate dehydrogenase; glycerate-1,3-phosphate dehydrogenase; phosphoglycerate oxidoreductase; phosphoglyceric acid dehydrogenase; SerA; 3-phosphoglycerate:NAD+ 2-oxidoreductase; SerA 3PG dehydrogenase; 3PHP reductase
Systematic name: 3-phospho-D-glycerate:NAD+ 2-oxidoreductase
Comments: This enzyme catalyses the first committed and rate-limiting step in the phosphoserine pathway of serine biosynthesis. The reaction occurs predominantly in the direction of reduction. The enzyme from the bacterium Escherichia coli also catalyses the activity of EC 1.1.1.399, 2-oxoglutarate reductase [6].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9075-29-0
References:
1.  Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem. 238 (1963) 3934–3944. [PMID: 14086727]
2.  Walsh, D.A. and Sallach, H.J. Purification and properties of chicken liver D-3-phosphoglycerate dehydrogenase. Biochemistry 4 (1965) 1076–1085. [PMID: 4378782]
3.  Slaughter, J.C. and Davies, D.D. The isolation and characterization of 3-phosphoglycerate dehydrogenase from peas. Biochem. J. 109 (1968) 743–748. [PMID: 4386930]
4.  Sugimoto, E. and Pizer, L.I. The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J. Biol. Chem. 243 (1968) 2081. [PMID: 4384871]
5.  Schuller, D.J., Grant, G.A. and Banaszak, L.J. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2 (1995) 69–76. [PMID: 7719856]
6.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
7.  Achouri, Y., Rider, M.H., Schaftingen, E.V. and Robbi, M. Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem. J. 323 (1997) 365–370. [PMID: 9163325]
8.  Dey, S., Grant, G.A. and Sacchettini, J.C. Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem. 280 (2005) 14892–14899. [DOI] [PMID: 15668249]
[EC 1.1.1.95 created 1972, modified 2006, modified 2016]
 
 
EC 1.1.1.290     
Accepted name: 4-phosphoerythronate dehydrogenase
Reaction: 4-phospho-D-erythronate + NAD+ = (3R)-3-hydroxy-2-oxo-4-phosphooxybutanoate + NADH + H+
For diagram of pyridoxal biosynthesis, click here
Other name(s): PdxB; PdxB 4PE dehydrogenase; 4-O-phosphoerythronate dehydrogenase; 4PE dehydrogenase; erythronate-4-phosphate dehydrogenase
Systematic name: 4-phospho-D-erythronate:NAD+ 2-oxidoreductase
Comments: This enzyme catalyses a step in a bacterial pathway for the biosynthesis of pyridoxal 5′-phosphate. The enzyme contains a tightly-bound NAD(H) cofactor that is not re-oxidized by free NAD+. In order to re-oxidize the cofactor and restore enzyme activity, the enzyme catalyses the reduction of a 2-oxo acid (such as 2-oxoglutarate, oxaloacetate, or pyruvate) to the respective (R)-hydroxy acid [6]. cf. EC 1.1.1.399, 2-oxoglutarate reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 125858-75-5
References:
1.  Lam, H.M. and Winkler, M.E. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. J. Bacteriol. 172 (1990) 6518–6528. [DOI] [PMID: 2121717]
2.  Pease, A.J., Roa, B.R., Luo, W. and Winkler, M.E. Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J. Bacteriol. 184 (2002) 1359–1369. [DOI] [PMID: 11844765]
3.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
4.  Grant, G.A. A new family of 2-hydroxyacid dehydrogenases. Biochem. Biophys. Res. Commun. 165 (1989) 1371–1374. [DOI] [PMID: 2692566]
5.  Schoenlein, P.V., Roa, B.B. and Winkler, M.E. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J. Bacteriol. 171 (1989) 6084–6092. [DOI] [PMID: 2681152]
6.  Rudolph, J., Kim, J. and Copley, S.D. Multiple turnovers of the nicotino-enzyme PdxB require α-keto acids as cosubstrates. Biochemistry 49 (2010) 9249–9255. [DOI] [PMID: 20831184]
[EC 1.1.1.290 created 2006, modified 2016]
 
 
EC 1.1.1.355     
Accepted name: 2′-dehydrokanamycin reductase
Reaction: kanamycin A + NADP+ = 2′-dehydrokanamycin A + NADPH + H+
For diagram of kanamycin A biosynthesis, click here
Glossary: kanamycin A = (1S,2R,3R,4S,6R)-4,6-diamino-3-(6-amino-6-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
2′-dehydrokanamycin A = (1S,2R,3R,4S,6R)-4,6-diamino-3-[(6-amino-6-deoxy-α-D-arabino-hexopyranosyl-2-ulose)oxy]-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
Other name(s): kanK (gene name, ambiguous)
Systematic name: kanamycin A:NADP+ oxidoreductase
Comments: Found in the bacterium Streptomyces kanamyceticus where it is involved in the conversion of kanamycin B to kanamycin A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sucipto, H., Kudo, F. and Eguchi, T. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK. Angew. Chem. Int. Ed. Engl. 51 (2012) 3428–3431. [DOI] [PMID: 22374809]
[EC 1.1.1.355 created 2013]
 
 
EC 1.1.1.399     
Accepted name: 2-oxoglutarate reductase
Reaction: (R)-2-hydroxyglutarate + NAD+ = 2-oxoglutarate + NADH + H+
Other name(s): serA (gene name)
Systematic name: (R)-2-hydroxyglutarate:NAD+ 2-oxidireductase
Comments: The enzyme catalyses a reversible reaction. The enzyme from the bacterium Peptoniphilus asaccharolyticus is specific for (R)-2-hydroxyglutarate [1,2]. The SerA enzyme from the bacterium Escherichia coli can also accept (S)-2-hydroxyglutarate with a much higher Km, and also catalyses the activity of EC 1.1.1.95, phosphoglycerate dehydrogenase [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lerud, R.F. and Whiteley, H.R. Purification and properties of α-ketoglutarate reductase from Micrococcus aerogenes. J. Bacteriol. 106 (1971) 571–577. [PMID: 4396793]
2.  Johnson, W.M. and Westlake, D.W. Purification and characterization of glutamic acid dehydrogenase and α-ketoglutaric acid reductase from Peptococcus aerogenes. Can. J. Microbiol. 18 (1972) 881–892. [PMID: 4338318]
3.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
[EC 1.1.1.399 created 2016]
 
 
EC 1.1.99.2     
Accepted name: L-2-hydroxyglutarate dehydrogenase
Reaction: (S)-2-hydroxyglutarate + acceptor = 2-oxoglutarate + reduced acceptor
Other name(s): α-ketoglutarate reductase; α-hydroxyglutarate dehydrogenase; L-α-hydroxyglutarate dehydrogenase; hydroxyglutaric dehydrogenase; α-hydroxyglutarate oxidoreductase; L-α-hydroxyglutarate:NAD+ 2-oxidoreductase; α-hydroxyglutarate dehydrogenase (NAD+ specific); (S)-2-hydroxyglutarate:(acceptor) 2-oxidoreductase
Systematic name: (S)-2-hydroxyglutarate:acceptor 2-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-80-2
References:
1.  Weil-Malherbe, H. The oxidation of l(–)α-hydroxyglutaric acid in animal tissues. Biochem. J. 31 (1937) 2080–2094. [PMID: 16746551]
[EC 1.1.99.2 created 1961, modified 2013]
 
 
EC 1.2.4.2     
Accepted name: oxoglutarate dehydrogenase (succinyl-transferring)
Reaction: 2-oxoglutarate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine = [dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine + CO2
For diagram of the citric acid cycle, click here and for diagram of oxo-acid dehydrogenase complexes, click here
Glossary: dihydrolipoyl group
thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): 2-ketoglutarate dehydrogenase; 2-oxoglutarate dehydrogenase; 2-oxoglutarate: lipoate oxidoreductase; 2-oxoglutarate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-succinylating); α-ketoglutarate dehydrogenase; alphaketoglutaric acid dehydrogenase; α-ketoglutaric dehydrogenase; α-oxoglutarate dehydrogenase; AKGDH; OGDC; ketoglutaric dehydrogenase; oxoglutarate decarboxylase (misleading); oxoglutarate dehydrogenase; oxoglutarate dehydrogenase (lipoamide)
Systematic name: 2-oxoglutarate:[dihydrolipoyllysine-residue succinyltransferase]-lipoyllysine 2-oxidoreductase (decarboxylating, acceptor-succinylating)
Comments: Contains thiamine diphosphate. It is a component of the multienzyme 2-oxoglutarate dehydrogenase complex, EC 1.2.1.105, in which multiple copies of it are bound to a core of molecules of EC 2.3.1.61, dihydrolipoyllysine-residue succinyltransferase, which also binds multiple copies of EC 1.8.1.4, dihydrolipoyl dehydrogenase. It does not act on free lipoamide or lipoyllysine, but only on the lipoyllysine residue in EC 2.3.1.61.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-02-1
References:
1.  Massey, V. The composition of the ketoglutarate dehydrogenase complex. Biochim. Biophys. Acta 38 (1960) 447–460. [DOI] [PMID: 14422131]
2.  Ochoa, S. Enzymic mechanisms in the citric acid cycle. Adv. Enzymol. Relat. Subj. Biochem. 15 (1954) 183–270. [PMID: 13158180]
3.  Sanadi, D.R., Littlefield, J.W. and Bock, R.M. Studies on α-ketoglutaric oxidase. II. Purification and properties. J. Biol. Chem. 197 (1952) 851–862. [PMID: 12981117]
4.  Perham, R.N. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69 (2000) 961–1004. [DOI] [PMID: 10966480]
[EC 1.2.4.2 created 1961, modified 1980, modified 1986, modified 2003]
 
 
EC 1.2.7.1     
Accepted name: pyruvate synthase
Reaction: pyruvate + CoA + 2 oxidized ferredoxin = acetyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+
For diagram of the 3-hydroxypropanoate/4-hydroxybutanoate cycle and dicarboxylate/4-hydroxybutanoate cycle in archaea, click here
Other name(s): pyruvate oxidoreductase; pyruvate synthetase; pyruvate:ferredoxin oxidoreductase; pyruvic-ferredoxin oxidoreductase; 2-oxobutyrate synthase; α-ketobutyrate-ferredoxin oxidoreductase; 2-ketobutyrate synthase; α-ketobutyrate synthase; 2-oxobutyrate-ferredoxin oxidoreductase; 2-oxobutanoate:ferredoxin 2-oxidoreductase (CoA-propionylating); 2-oxobutanoate:ferredoxin 2-oxidoreductase (CoA-propanoylating)
Systematic name: pyruvate:ferredoxin 2-oxidoreductase (CoA-acetylating)
Comments: Contains thiamine diphosphate and [4Fe-4S] clusters. The enzyme also decarboxylates 2-oxobutyrate with lower efficiency, but shows no activity with 2-oxoglutarate. This enzyme is a member of the 2-oxoacid oxidoreductases, a family of enzymes that oxidatively decarboxylate different 2-oxoacids to form their CoA derivatives, and are differentiated based on their substrate specificity. For examples of other members of this family, see EC 1.2.7.3, 2-oxoglutarate synthase and EC 1.2.7.7, 3-methyl-2-oxobutanoate dehydrogenase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9082-51-3
References:
1.  Evans, M.C.W. and Buchanan, B.B. Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 53 (1965) 1420–1425. [DOI] [PMID: 5217644]
2.  Gehring, U. and Arnon, D.I. Purification and properties of α-ketoglutarate synthase from a photosynthetic bacterium. J. Biol. Chem. 247 (1972) 6963–6969. [PMID: 4628267]
3.  Uyeda, K. and Rabinowitz, J.C. Pyruvate-ferredoxin oxidoreductase. 3. Purification and properties of the enzyme. J. Biol. Chem. 246 (1971) 3111–3119. [PMID: 5574389]
4.  Uyeda, K. and Rabinowitz, J.C. Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J. Biol. Chem. 246 (1971) 3120–3125. [PMID: 4324891]
5.  Charon, M.-H., Volbeda, A., Chabriere, E., Pieulle, L. and Fontecilla-Camps, J.C. Structure and electron transfer mechanism of pyruvate:ferredoxin oxidoreductase. Curr. Opin. Struct. Biol. 9 (1999) 663–669. [DOI] [PMID: 10607667]
[EC 1.2.7.1 created 1972, modified 2003, modified 2013]
 
 
EC 1.2.7.3     
Accepted name: 2-oxoglutarate synthase
Reaction: 2-oxoglutarate + CoA + 2 oxidized ferredoxin = succinyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+
Other name(s): 2-ketoglutarate ferredoxin oxidoreductase; 2-oxoglutarate:ferredoxin oxidoreductase; KGOR; 2-oxoglutarate ferredoxin oxidoreductase; 2-oxoglutarate:ferredoxin 2-oxidoreductase (CoA-succinylating)
Systematic name: 2-oxoglutarate:ferredoxin oxidoreductase (decarboxylating)
Comments: The enzyme contains thiamine diphosphate and two [4Fe-4S] clusters. Highly specific for 2-oxoglutarate. This enzyme is a member of the 2-oxoacid oxidoreductases, a family of enzymes that oxidatively decarboxylate different 2-oxoacids to form their CoA derivatives, and are differentiated based on their substrate specificity. For examples of other members of this family, see EC 1.2.7.1, pyruvate synthase and EC 1.2.7.7, 3-methyl-2-oxobutanoate dehydrogenase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37251-05-1
References:
1.  Buchanan, B.B. and Evans, M.C.W. The synthesis of α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 54 (1965) 1212–1218. [DOI] [PMID: 4286833]
2.  Gehring, U. and Arnon, D.I. Purification and properties of α-ketoglutarate synthase from a photosynthetic bacterium. J. Biol. Chem. 247 (1972) 6963–6969. [PMID: 4628267]
3.  Dorner, E. and Boll, M. Properties of 2-oxoglutarate:ferredoxin oxidoreductase from Thauera aromatica and its role in enzymatic reduction of the aromatic ring. J. Bacteriol. 184 (2002) 3975–3983. [DOI] [PMID: 12081970]
4.  Mai, X. and Adams, M.W. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J. Bacteriol. 178 (1996) 5890–5896. [DOI] [PMID: 8830683]
5.  Schut, G.J., Menon, A.L. and Adams, M.W.W. 2-Keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. Methods Enzymol. 331 (2001) 144–158. [DOI] [PMID: 11265457]
[EC 1.2.7.3 created 1972, modified 2005]
 
 
EC 1.5.1.8     
Accepted name: saccharopine dehydrogenase (NADP+, L-lysine-forming)
Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NADP+ + H2O = L-lysine + 2-oxoglutarate + NADPH + H+
Glossary: L-saccharopine = N6-(L-1,3-dicarboxypropyl)-L-lysine
Other name(s): lysine-2-oxoglutarate reductase; lysine-ketoglutarate reductase; L-lysine-α-ketoglutarate reductase; lysine:α-ketoglutarate:TPNH oxidoreductase (ε-N-[gultaryl-2]-L-lysine forming); saccharopine (nicotinamide adenine dinucleotide phosphate, lysine-forming) dehydrogenase; 6-N-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)
Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-19-0
References:
1.  Hutzler, J. and Dancis, J. Conversion of lysine to saccharopine by human tissues. Biochim. Biophys. Acta 158 (1968) 62–69. [DOI] [PMID: 4385118]
2.  Markovitz, P.J., Chuang, D.T. and Cox, R.P. Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J. Biol. Chem. 259 (1984) 11643–11646. [PMID: 6434529]
[EC 1.5.1.8 created 1972]
 
 
EC 1.14.11.3     
Accepted name: pyrimidine-deoxynucleoside 2′-dioxygenase
Reaction: 2′-deoxyuridine + 2-oxoglutarate + O2 = uridine + succinate + CO2
Other name(s): deoxyuridine 2′-dioxygenase; deoxyuridine 2′-hydroxylase; pyrimidine deoxyribonucleoside 2′-hydroxylase; thymidine 2′-dioxygenase; thymidine 2′-hydroxylase; thymidine 2-oxoglutarate dioxygenase; thymidine dioxygenase
Systematic name: 2′-deoxyuridine,2-oxoglutarate:oxygen oxidoreductase (2′-hydroxylating)
Comments: Requires iron(II) and ascorbate. Also acts on thymidine. cf. EC 1.14.11.10, pyrimidine-deoxynucleoside 1′-dioxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-89-5
References:
1.  Bankel, L., Lindstedt, G. and Lindstedt, S. Thymidine 2′-hydroxylation in Neurospora crassa. J. Biol. Chem. 247 (1972) 6128–6134. [PMID: 4265566]
2.  Stubbe, J. Identification of two α-ketoglutarate-dependent dioxygenases in extracts of Rhodotorula glutinis catalyzing deoxyuridine hydroxylation. J. Biol. Chem. 260 (1985) 9972–9975. [PMID: 4040518]
3.  Warn-Cramer, B.J., Macrander, L.A. and Abbott, M.T. Markedly different ascorbate dependencies of the sequential α-ketoglutarate dioxygenase reactions catalyzed by an essentially homogeneous thymine 7-hydroxylase from Rhodotorula glutinis. J. Biol. Chem. 258 (1983) 10551–10557. [PMID: 6684117]
[EC 1.14.11.3 created 1972, modified 1976, modified 1989, modified 2002]
 
 
EC 1.14.11.4     
Accepted name: procollagen-lysine 5-dioxygenase
Reaction: [procollagen]-L-lysine + 2-oxoglutarate + O2 = [procollagen]-(2S,5R)-5-hydroxy-L-lysine + succinate + CO2
Other name(s): lysine hydroxylase; lysine,2-oxoglutarate 5-dioxygenase; protocollagen lysine dioxygenase; collagen lysine hydroxylase; lysine-2-oxoglutarate dioxygenase; lysyl hydroxylase; lysylprotocollagen dioxygenase; protocollagen lysyl hydroxylase; peptidyl-lysine, 2-oxoglutarate: oxygen oxidoreductase; peptidyllysine, 2-oxoglutarate:oxygen 5-oxidoreductase; protocollagen lysine hydroxylase; procollagen-L-lysine,2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating); L-lysine-[procollagen],2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating)
Systematic name: [procollagen]-L-lysine,2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating)
Comments: Requires Fe2+ and ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9059-25-0
References:
1.  Hausmann, E. Cofactor requirements for the enzymatic hydroxylation of lysine in a polypeptide precursor of collagen. Biochim. Biophys. Acta 133 (1967) 591–598. [DOI] [PMID: 6033801]
2.  Rhoads, R.E. and Udenfriend, S. Decarboxylation of α-ketoglutarate coupled to collagen proline hydroxylase. Proc. Natl. Acad. Sci. USA 60 (1968) 1473–1478. [DOI] [PMID: 5244754]
3.  Puistola, U., Turpeenniemi-Hujanen, T.M., Myllyla, R. and Kivirikko, K.I. Studies on the lysyl hydroxylase reaction. I. Initial velocity kinetics and related aspects. Biochim. Biophys. Acta 611 (1980) 40–50. [DOI] [PMID: 6766066]
4.  Puistola, U., Turpeenniemi-Hujanen, T.M., Myllyla, R. and Kivirikko, K.I. Studies on the lysyl hydroxylase reaction. II. Inhibition kinetics and the reaction mechanism. Biochim. Biophys. Acta 611 (1980) 51–60. [DOI] [PMID: 6766067]
[EC 1.14.11.4 created 1972, modified 1983]
 
 
EC 1.14.11.6     
Accepted name: thymine dioxygenase
Reaction: thymine + 2-oxoglutarate + O2 = 5-hydroxymethyluracil + succinate + CO2
Other name(s): thymine 7-hydroxylase; 5-hydroxy-methyluracil dioxygenase; 5-hydroxymethyluracil oxygenase
Systematic name: thymine,2-oxoglutarate:oxygen oxidoreductase (7-hydroxylating)
Comments: Requires Fe2+ and ascorbate. Also acts on 5-hydroxymethyluracil to oxidize its -CH2OH group first to -CHO and then to -COOH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-67-0
References:
1.  Bankel, L., Holme, E., Lindstedt, G. and Lindstedt, S. Oxygenases involved in thymine and thymidine metabolism in Neurospora crassa. FEBS Lett. 21 (1972) 135–138. [DOI] [PMID: 11946494]
2.  Liu, C.-K., Hsu, C.-A. and Abbott, M.T. Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase. Arch. Biochem. Biophys. 159 (1973) 180–187. [DOI] [PMID: 4274083]
3.  Warn-Cramer, B.J., Macrander, L.A. and Abbott, M.T. Markedly different ascorbate dependencies of the sequential α-ketoglutarate dioxygenase reactions catalyzed by an essentially homogeneous thymine 7-hydroxylase from Rhodotorula glutinis. J. Biol. Chem. 258 (1983) 10551–10557. [PMID: 6684117]
[EC 1.14.11.6 created 1972, modified 1976 (EC 1.14.11.5 created 1972, incorporated 1976)]
 
 
EC 1.14.11.8     
Accepted name: trimethyllysine dioxygenase
Reaction: N6,N6,N6-trimethyl-L-lysine + 2-oxoglutarate + O2 = (3S)-3-hydroxy-N6,N6,N6-trimethyl-L-lysine + succinate + CO2
Other name(s): trimethyllysine α-ketoglutarate dioxygenase; TML-α-ketoglutarate dioxygenase; TML hydroxylase; 6-N,6-N,6-N-trimethyl-L-lysine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Systematic name: N6,N6,N6-trimethyl-L-lysine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+ and ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74622-49-4
References:
1.  Hulse, J.D., Ellis, S.R. and Henderson, L.M. Carnitine biosynthesis. β-Hydroxylation of trimethyllysine by an α-ketoglutarate-dependent mitochondrial dioxygenase. J. Biol. Chem. 253 (1978) 1654–1659. [PMID: 627563]
2.  Al Temimi, A.H., Pieters, B.J., Reddy, Y.V., White, P.B. and Mecinovic, J. Substrate scope for trimethyllysine hydroxylase catalysis. Chem. Commun. (Camb.) 52 (2016) 12849–12852. [PMID: 27730239]
3.  Lesniak, R.K., Markolovic, S., Tars, K. and Schofield, C.J. Human carnitine biosynthesis proceeds via (2S,3S)-3-hydroxy-Nε-trimethyllysine. Chem. Commun. (Camb.) 53 (2016) 440–442. [PMID: 27965989]
4.  Reddy, Y.V., Al Temimi, A.H., White, P.B. and Mecinovic, J. Evidence that trimethyllysine hydroxylase catalyzes the formation of (2S,3S)-3-hydroxy-Nε-trimethyllysine. Org. Lett. 19 (2017) 400–403. [PMID: 28045275]
[EC 1.14.11.8 created 1983]
 
 
EC 1.14.11.10     
Accepted name: pyrimidine-deoxynucleoside 1′-dioxygenase
Reaction: 2′-deoxyuridine + 2-oxoglutarate + O2 = uracil + 2-deoxyribonolactone + succinate + CO2
Other name(s): deoxyuridine-uridine 1′-dioxygenase
Systematic name: 2′-deoxyuridine,2-oxoglutarate:oxygen oxidoreductase (1′-hydroxylating)
Comments: Requires iron(II) and ascorbate. cf. EC 1.14.11.3, pyrimidine-deoxynucleoside 2′-dioxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 98865-52-2
References:
1.  Stubbe, J. Identification of two α-ketoglutarate-dependent dioxygenases in extracts of Rhodotorula glutinis catalyzing deoxyuridine hydroxylation. J. Biol. Chem. 260 (1985) 9972–9975. [PMID: 4040518]
[EC 1.14.11.10 created 1989, modified 2002]
 
 
EC 1.14.11.17     
Accepted name: taurine dioxygenase
Reaction: taurine + 2-oxoglutarate + O2 = sulfite + aminoacetaldehyde + succinate + CO2
Other name(s): 2-aminoethanesulfonate dioxygenase; α-ketoglutarate-dependent taurine dioxygenase
Systematic name: taurine, 2-oxoglutarate:oxygen oxidoreductase (sulfite-forming)
Comments: Requires FeII. The enzyme from Escherichia coli also acts on pentanesulfonate, 3-(N-morpholino)propanesulfonate and 2-(1,3-dioxoisoindolin-2-yl)ethanesulfonate, but at lower rates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 197809-75-9
References:
1.  Eichhorn, E., Van Der Poeg, J.R., Kertesz, M.A. and Leisinger, T. Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J. Biol. Chem. 272 (1997) 23031–23036. [DOI] [PMID: 9287300]
[EC 1.14.11.17 created 2000]
 
 
EC 1.14.11.21     
Accepted name: clavaminate synthase
Reaction: (1) deoxyamidinoproclavaminate + 2-oxoglutarate + O2 = amidinoproclavaminate + succinate + CO2
(2) proclavaminate + 2-oxoglutarate + O2 = dihydroclavaminate + succinate + CO2 + H2O
(3) dihydroclavaminate + 2-oxoglutarate + O2 = clavaminate + succinate + CO2 + H2O
For diagram of clavulanate biosynthesis, click here
Other name(s): clavaminate synthase 2; clavaminic acid synthase
Systematic name: deoxyamidinoproclavaminate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Contains nonheme iron. Catalyses three separate oxidative reactions in the pathway for the biosythesis of the β-lactamase inhibitor clavulanate in Streptomyces clavuligerus. The first step (hydroxylation) is separated from the latter two (oxidative cyclization and desaturation) by the action of EC 3.5.3.22, proclavaminate amidinohydrolase. The three reactions are all catalysed at the same nonheme iron site.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 122799-56-8
References:
1.  Salowe, S.P., Krol, W.J., Iwatareuyl, D. and Townsend, C.A. Elucidation of the order of oxidations and identification of an intermediate in the multistep clavaminate synthase reaction. Biochemistry 30 (1991) 2281–2292. [PMID: 1998687]
2.  Zhou, J., Gunsior, M., Bachmann, B.O., Townsend, C.A. and Solomon, E.I. Substrate binding to the α-ketoglutarate-dependent non-heme iron enzyme clavaminate synthase 2: Coupling mechanism of oxidative decarboxylation and hydroxylation. J. Am. Chem. Soc. 120 (1998) 13539–13540.
3.  Zhang, Z.H., Ren, J.S., Stammers, D.K., Baldwin, J.E., Harlos, K. and Schofield, C.J. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat. Struct. Biol. 7 (2000) 127–133. [DOI] [PMID: 10655615]
4.  Zhou, J., Kelly, W.L., Bachmann, B.O., Gunsior, M., Townsend, C.A. and Solomon, E.I. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional α-KG-dependent non-heme iron enzyme: Correlation with mechanisms and reactivities. J. Am. Chem. Soc. 123 (2001) 7388–7398. [DOI] [PMID: 11472170]
5.  Townsend, C.A. New reactions in clavulanic acid biosynthesis. Curr. Opin. Chem. Biol. 6 (2002) 583–589. [DOI] [PMID: 12413541]
[EC 1.14.11.21 created 2003]
 
 
EC 1.14.11.33     
Accepted name: DNA oxidative demethylase
Reaction: DNA-base-CH3 + 2-oxoglutarate + O2 = DNA-base + formaldehyde + succinate + CO2
Other name(s): alkylated DNA repair protein; α-ketoglutarate-dependent dioxygenase ABH1; alkB (gene name)
Systematic name: methyl DNA-base, 2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)
Comments: Contains iron; activity is slightly stimulated by ascorbate. Catalyses oxidative demethylation of the DNA base lesions N1-methyladenine, N3-methylcytosine, N1-methylguanine, and N3-methylthymine. It works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Falnes, P.O., Johansen, R.F. and Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419 (2002) 178–182. [DOI] [PMID: 12226668]
2.  Yi, C., Yang, C.G. and He, C. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc. Chem. Res. 42 (2009) 519–529. [DOI] [PMID: 19852088]
3.  Yi, C., Jia, G., Hou, G., Dai, Q., Zhang, W., Zheng, G., Jian, X., Yang, C.G., Cui, Q. and He, C. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase. Nature 468 (2010) 330–333. [DOI] [PMID: 21068844]
[EC 1.14.11.33 created 2011]
 
 
EC 1.14.11.37     
Accepted name: kanamycin B dioxygenase
Reaction: kanamycin B + 2-oxoglutarate + O2 = 2′-dehydrokanamycin A + succinate + NH3 + CO2
For diagram of kanamycin A biosynthesis, click here
Other name(s): kanJ (gene name)
Systematic name: kanamycin-B,2-oxoglutarate:oxygen oxidoreductase (deaminating, 2′-hydroxylating)
Comments: Requires Fe2+ and ascorbate. Found in the bacterium Streptomyces kanamyceticus where it is involved in the conversion of the aminoglycoside antibiotic kanamycin B to kanamycin A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sucipto, H., Kudo, F. and Eguchi, T. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK. Angew. Chem. Int. Ed. Engl. 51 (2012) 3428–3431. [DOI] [PMID: 22374809]
[EC 1.14.11.37 created 2013, modified 2013]
 
 
EC 1.14.11.38     
Accepted name: verruculogen synthase
Reaction: fumitremorgin B + 2-oxoglutarate + 2 O2 + reduced acceptor = verruculogen + succinate + CO2 + H2O + acceptor
For diagram of fumitremorgin alkaloid biosynthesis (part 2), click here
Glossary: fumitremorgin B = (5aR,6S,12S,14aS)-5a,6-dihydroxy-9-methoxy-11-(3-methylbut-2-en-1-yl)-12-(2-methylprop-1-en-1-yl)-1,2,3,5a,6,11,12,14a-octahydro-5H,14H-pyrrolo[1′′,2′′:4′,5′]pyrazino[1′,2′:1,6]pyrido[3,4-b]indole-5,14-dione
verruculogen = (5R,10S,10aR,14aS,15bS)-10,10a-dihydroxy-6-methoxy-2,2-dimethyl-5-(2-methylprop-1-en-1-yl)-1,10,10a,14,14a,15b-hexahydro-12H-3,4-dioxa-5a,11a,15a-triazacycloocta[1,2,3-lm]indeno[5,6-b]fluorene-11,15(2H,13H)-dione
Other name(s): fmtF (gene name); FmtOx1
Systematic name: fumitremorgin B,2-oxoglutarate:oxygen oxidoreductase (verruculogen-forming)
Comments: Requires Fe2+ and ascorbate. Found in the fungus Aspergillus fumigatus. Both atoms of a dioxygen molecule are incorporated into verruculogen [1,2]. Involved in the biosynthetic pathways of several indole alkaloids such as fumitremorgin A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Steffan, N., Grundmann, A., Afiyatullov, S., Ruan, H. and Li, S.M. FtmOx1, a non-heme Fe(II) and α-ketoglutarate-dependent dioxygenase, catalyses the endoperoxide formation of verruculogen in Aspergillus fumigatus. Org. Biomol. Chem. 7 (2009) 4082–4087. [DOI] [PMID: 19763315]
2.  Kato, N., Suzuki, H., Takagi, H., Uramoto, M., Takahashi, S. and Osada, H. Gene disruption and biochemical characterization of verruculogen synthase of Aspergillus fumigatus. ChemBioChem 12 (2011) 711–714. [DOI] [PMID: 21404415]
[EC 1.14.11.38 created 2013]
 
 
EC 1.14.11.43     
Accepted name: (S)-dichlorprop dioxygenase (2-oxoglutarate)
Reaction: (1) (S)-2-(4-chloro-2-methylphenoxy)propanoate + 2-oxoglutarate + O2 = 4-chloro-2-methylphenol + pyruvate + succinate + CO2
(2) (S)-(2,4-dichlorophenoxy)propanoate + 2-oxoglutarate + O2 = 2,4-dichlorophenol + pyruvate + succinate + CO2
Glossary: (S)-2-(4-chloro-2-methylphenoxy)propanoate = (S)-mecoprop
(S)-(2,4-dichlorophenoxy)propanoate = (S)-dichlorprop
Other name(s): SdpA; α-ketoglutarate-dependent (S)-dichlorprop dioxygenase; (S)-phenoxypropionate/α-ketoglutarate-dioxygenase; 2-oxoglutarate-dependent (S)-dichlorprop dioxygenase; (S)-mecoprop dioxygenase; 2-oxoglutarate-dependent (S)-mecoprop dioxygenase
Systematic name: (S)-2-(4-chloro-2-methylphenoxy)propanoate,2-oxoglutarate:oxygen oxidoreductase (pyruvate-forming)
Comments: Fe2+-dependent enzyme. The enzymes from the Gram-negative bacteria Delftia acidovorans MC1 and Sphingomonas herbicidovorans MH are involved in the degradation of the (S)-enantiomer of the phenoxyalkanoic acid herbicides mecoprop and dichlorprop [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Westendorf, A., Benndorf, D., Muller, R.H. and Babel, W. The two enantiospecific dichlorprop/α-ketoglutarate-dioxygenases from Delftia acidovorans MC1 – protein and sequence data of RdpA and SdpA. Microbiol. Res. 157 (2002) 317–322. [PMID: 12501996]
2.  Muller, T.A., Fleischmann, T., van der Meer, J.R. and Kohler, H.P. Purification and characterization of two enantioselective α-ketoglutarate-dependent dioxygenases, RdpA and SdpA, from Sphingomonas herbicidovorans MH. Appl. Environ. Microbiol. 72 (2006) 4853–4861. [DOI] [PMID: 16820480]
3.  Muller, T.A., Zavodszky, M.I., Feig, M., Kuhn, L.A. and Hausinger, R.P. Structural basis for the enantiospecificities of R- and S-specific phenoxypropionate/α-ketoglutarate dioxygenases. Protein Sci. 15 (2006) 1356–1368. [DOI] [PMID: 16731970]
[EC 1.14.11.43 created 2013]
 
 
EC 1.14.11.44     
Accepted name: (R)-dichlorprop dioxygenase (2-oxoglutarate)
Reaction: (1) (R)-2-(4-chloro-2-methylphenoxy)propanoate + 2-oxoglutarate + O2 = 4-chloro-2-methylphenol + pyruvate + succinate + CO2
(2) (R)-(2,4-dichlorophenoxy)propanoate + 2-oxoglutarate + O2 = 2,4-dichlorophenol + pyruvate + succinate + CO2
Glossary: (R)-2-(4-chloro-2-methylphenoxy)propanoate = (R)-mecoprop
(R)-(2,4-dichlorophenoxy)propanoate = (R)-dichlorprop
Other name(s): RdpA; α-ketoglutarate-dependent (R)-dichlorprop dioxygenase; (R)-phenoxypropionate/α-ketoglutarate-dioxygenase; 2-oxoglutarate-dependent (R)-dichlorprop dioxygenase; (R)-mecoprop dioxygenase; 2-oxoglutarate-dependent (R)-mecoprop dioxygenase
Systematic name: (R)-2-(4-chloro-2-methylphenoxy)propanoate,2-oxoglutarate:oxygen oxidoreductase (pyruvate-forming)
Comments: Fe2+-dependent enzyme. The enzymes from the Gram-negative bacteria Delftia acidovorans MC1 and Sphingomonas herbicidovorans MH are involved in the degradation of the (R)-enantiomer of the phenoxyalkanoic acid herbicides mecoprop and dichlorprop [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Westendorf, A., Benndorf, D., Muller, R.H. and Babel, W. The two enantiospecific dichlorprop/α-ketoglutarate-dioxygenases from Delftia acidovorans MC1 – protein and sequence data of RdpA and SdpA. Microbiol. Res. 157 (2002) 317–322. [PMID: 12501996]
2.  Muller, T.A., Fleischmann, T., van der Meer, J.R. and Kohler, H.P. Purification and characterization of two enantioselective α-ketoglutarate-dependent dioxygenases, RdpA and SdpA, from Sphingomonas herbicidovorans MH. Appl. Environ. Microbiol. 72 (2006) 4853–4861. [DOI] [PMID: 16820480]
3.  Muller, T.A., Zavodszky, M.I., Feig, M., Kuhn, L.A. and Hausinger, R.P. Structural basis for the enantiospecificities of R- and S-specific phenoxypropionate/α-ketoglutarate dioxygenases. Protein Sci. 15 (2006) 1356–1368. [DOI] [PMID: 16731970]
[EC 1.14.11.44 created 2013]
 
 
EC 1.14.11.48     
Accepted name: xanthine dioxygenase
Reaction: xanthine + 2-oxoglutarate + O2 = urate + succinate + CO2
For diagram of AMP catabolism, click here
Other name(s): XanA; α-ketoglutarate-dependent xanthine hydroxylase
Systematic name: xanthine,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires Fe2+ and L-ascorbate. The enzyme, which was characterized from fungi, is specific for xanthine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cultrone, A., Scazzocchio, C., Rochet, M., Montero-Moran, G., Drevet, C. and Fernandez-Martin, R. Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via α-ketoglutarate-dependent dioxygenases. Mol. Microbiol. 57 (2005) 276–290. [DOI] [PMID: 15948966]
2.  Montero-Moran, G.M., Li, M., Rendon-Huerta, E., Jourdan, F., Lowe, D.J., Stumpff-Kane, A.W., Feig, M., Scazzocchio, C. and Hausinger, R.P. Purification and characterization of the FeII- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 46 (2007) 5293–5304. [DOI] [PMID: 17429948]
3.  Li, M., Muller, T.A., Fraser, B.A. and Hausinger, R.P. Characterization of active site variants of xanthine hydroxylase from Aspergillus nidulans. Arch. Biochem. Biophys. 470 (2008) 44–53. [DOI] [PMID: 18036331]
[EC 1.14.11.48 created 2015]
 
 
EC 1.14.11.49     
Accepted name: uridine-5′-phosphate dioxygenase
Reaction: UMP + 2-oxoglutarate + O2 = 5′-dehydrouridine + succinate + CO2 + phosphate
For diagram of pyrimidine biosynthesis, click here
Glossary: 5′-dehydrouridine = uridine-5′-aldehyde
Other name(s): lipL (gene name)
Systematic name: UMP,2-oxoglutarate:oxygen oxidoreductase
Comments: The enzyme catalyses a net dephosphorylation and oxidation of UMP to generate 5′-dehydrouridine, the first intermediate in the biosynthesis of the unusual aminoribosyl moiety found in several C7-furanosyl nucleosides such as A-90289s, caprazamycins, liposidomycins, muraymycins and FR-900453. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yang, Z., Chi, X., Funabashi, M., Baba, S., Nonaka, K., Pahari, P., Unrine, J., Jacobsen, J.M., Elliott, G.I., Rohr, J. and Van Lanen, S.G. Characterization of LipL as a non-heme, Fe(II)-dependent α-ketoglutarate:UMP dioxygenase that generates uridine-5′-aldehyde during A-90289 biosynthesis. J. Biol. Chem. 286 (2011) 7885–7892. [DOI] [PMID: 21216959]
2.  Yang, Z., Unrine, J., Nonaka, K. and Van Lanen, S.G. Fe(II)-dependent, uridine-5′-monophosphate α-ketoglutarate dioxygenases in the synthesis of 5′-modified nucleosides. Methods Enzymol. 516 (2012) 153–168. [DOI] [PMID: 23034228]
[EC 1.14.11.49 created 2015]
 
 
EC 1.14.11.52     
Accepted name: validamycin A dioxygenase
Reaction: validamycin A + 2-oxoglutarate + O2 = validamycin B + succinate + CO2
For diagram of validamycin biosynthesis, click here
Glossary: validamycin A = (1R,2R,3S,4S,6R)-2,3-dihydroxy-6-(hydroxymethyl)-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}cyclohexyl β-D-glucopyranoside
validamycin B = (1R,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-6-(hydroxymethyl)-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}cyclohexyl β-D-glucopyranoside
Other name(s): vldW (gene name)
Systematic name: validamycin-A,2-oxoglutarate:oxygen oxidoreductase (6′-hydroxylating)
Comments: The enzyme was characterized from the bacterium Streptomyces hygroscopicus subsp. limoneus. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Almabruk, K.H., Asamizu, S., Chang, A., Varghese, S.G. and Mahmud, T. The α-ketoglutarate/Fe(II)-dependent dioxygenase VldW is responsible for the formation of validamycin B. ChemBioChem 13 (2012) 2209–2211. [DOI] [PMID: 22961651]
[EC 1.14.11.52 created 2016]
 
 
EC 1.14.11.77     
Accepted name: alkyl sulfatase
Reaction: a primary alkyl sulfate ester + 2-oxoglutarate + O2 = an aldehyde + succinate + CO2 + sulfate
Other name(s): atsK (gene name); α-ketoglutarate-dependent sulfate ester dioxygenase; 2-oxoglutarate-dependent sulfate ester dioxygenase; type II alkyl sulfatase
Systematic name: primary alkyl sulfate ester, 2-oxoglutarate:oxygen oxidoreductase (sulfate-hydrolyzing)
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. The type II sulfatases oxidize the C-H bond of the carbon next to the sulfate ester, using 2-oxoglutarate and oxygen as substrates. The resulting hemiacetal sulfate ester collapses, liberating inorganic sulfate and an alkyl aldehyde along with carbon dioxide and succinate. The enzymes often desulfate a broad spectrum of linear and branched-chain sulfate esters. The enzyme from Pseudomonas putida acts on a range of medium-chain alkyl sulfate esters, with chain lengths ranging from C4 to C12. cf. sulfatase EC 3.1.6.1, arylsulfatase (type I), EC 3.1.6.21, linear primary-alkylsulfatase, and EC 3.1.6.22, branched primary-alkylsulfatase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kahnert, A. and Kertesz, M.A. Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J. Biol. Chem. 275 (2000) 31661–31667. [DOI] [PMID: 10913158]
2.  Muller, I., Kahnert, A., Pape, T., Sheldrick, G.M., Meyer-Klaucke, W., Dierks, T., Kertesz, M. and Uson, I. Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) α-ketoglutarate-dependent dioxygenase superfamily. Biochemistry 43 (2004) 3075–3088. [DOI] [PMID: 15023059]
3.  Sogi, K.M., Gartner, Z.J., Breidenbach, M.A., Appel, M.J., Schelle, M.W. and Bertozzi, C.R. Mycobacterium tuberculosis Rv3406 is a type II alkyl sulfatase capable of sulfate scavenging. PLoS One 8:e65080 (2013). [DOI] [PMID: 23762287]
[EC 1.14.11.77 created 2021]
 
 
EC 1.14.20.15     
Accepted name: L-threonyl-[L-threonyl-carrier protein] 4-chlorinase
Reaction: an L-threonyl-[L-threonyl-carrier protein] + 2-oxoglutarate + O2 + Cl- = a 4-chloro-L-threonyl-[L-threonyl-carrier protein] + succinate + CO2 + H2O
Other name(s): syrB2 (gene name)
Systematic name: L-threonyl-[L-threonyl-carrier protein],2-oxoglutarate:oxygen oxidoreductase (4-halogenating)
Comments: The enzyme, characterized from the bacterium Pseudomonas syringae, participates in syringomycin E biosynthesis. The enzyme is a specialized iron(II)/2-oxoglutarate-dependent oxygenase that catalyses the chlorination of its substrate in a reaction that requires oxygen, chloride ions, ferrous iron and 2-oxoglutarate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vaillancourt, F.H., Yin, J. and Walsh, C.T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase. Proc. Natl. Acad. Sci. USA 102 (2005) 10111–10116. [DOI] [PMID: 16002467]
[EC 1.14.20.15 created 2018]
 
 
EC 2.2.1.5     
Accepted name: 2-hydroxy-3-oxoadipate synthase
Reaction: 2-oxoglutarate + glyoxylate = 2-hydroxy-3-oxoadipate + CO2
For diagram of reaction mechanism, click here
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): 2-hydroxy-3-oxoadipate glyoxylate-lyase (carboxylating); α-ketoglutaric-glyoxylic carboligase; oxoglutarate: glyoxylate carboligase
Systematic name: 2-oxoglutarate:glyoxylate succinaldehydetransferase (decarboxylating)
Comments: The bacterial enzyme requires thiamine diphosphate. The product decarboxylates to 5-hydroxy-4-oxopentanoate. The enzyme can decarboxylate 2-oxoglutarate. Acetaldehyde can replace glyoxylate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9054-72-2
References:
1.  Schlossberg, M.A., Bloom, R.J., Richert, D.A. and Westerfield, W.W. Carboligase activity of α-ketoglutarate dehydrogenase. Biochemistry 9 (1970) 1148–1153. [PMID: 5418712]
2.  Schlossberg, M.A., Richert, D.A., Bloom, R.J. and Westerfield, W.W. Isolation and identification of 5-hydroxy-4-ketovaleric acid as a product of α-ketoglutarate: glyoxylate carboligase. Biochemistry 7 (1968) 333–337. [PMID: 4320439]
3.  Stewart, P.R. and Quayle, J.R. The synergistic decarboxylation of glyoxalate and 2-oxoglutarate by an enzyme system from pig-liver mitochondria. Biochem. J. 102 (1967) 885–897. [PMID: 16742506]
[EC 2.2.1.5 created 1972 as EC 4.1.3.15, transferred 2002 to EC 2.2.1.5]
 
 
EC 2.3.1.182      
Transferred entry: (R)-citramalate synthase. Now classified as EC 2.3.3.21, (R)-citramalate synthase.
[EC 2.3.1.182 created 2007, deleted 2021]
 
 
EC 2.3.3.21     
Accepted name: (R)-citramalate synthase
Reaction: acetyl-CoA + pyruvate + H2O = CoA + (2R)-2-hydroxy-2-methylbutanedioate
Glossary: (2R)-2-hydroxy-2-methylbutanedioate = (2R)-2-methylmalate = (–)-citramalate
3-methyl-2-oxobutanoate = α-ketoisovalerate
2-oxobutanoate = α-ketobutyrate
4-methyl-2-oxopentanoate = α-ketoisocaproate
2-oxohexanoate = α-ketopimelate
2-oxoglutarate = α-ketoglutarate
Other name(s): CimA
Comments: One of the enzymes involved in a pyruvate-derived pathway for isoleucine biosynthesis that is found in some bacterial and archaeal species [1,2]. The enzyme can be inhibited by isoleucine, the end-product of the pathway, but not by leucine [2]. The enzyme is highly specific for pyruvate as substrate, as the 2-oxo acids 3-methyl-2-oxobutanoate, 2-oxobutanoate, 4-methyl-2-oxopentanoate, 2-oxohexanoate and 2-oxoglutarate cannot act as substrate [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Howell, D.M., Xu, H. and White, R.H. (R)-citramalate synthase in methanogenic archaea. J. Bacteriol. 181 (1999) 331–333. [DOI] [PMID: 9864346]
2.  Xu, H., Zhang, Y., Guo, X., Ren, S., Staempfli, A.A., Chiao, J., Jiang, W. and Zhao, G. Isoleucine biosynthesis in Leptospira interrogans serotype 1ai strain 56601 proceeds via a threonine-independent pathway. J. Bacteriol. 186 (2004) 5400–5409. [DOI] [PMID: 15292141]
[EC 2.3.3.21 created 2007 as EC 2.3.1.182, transferred 2021 to EC 2.3.3.21]
 
 
EC 2.5.1.64      
Transferred entry: 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase. The reaction that was attributed to this enzyme is now known to be catalysed by two separate enzymes: EC 2.2.1.9 (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase) and EC 4.2.99.20 (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase)
[EC 2.5.1.64 created 2003, deleted 2008]
 
 
EC 2.6.1.1     
Accepted name: aspartate transaminase
Reaction: L-aspartate + 2-oxoglutarate = oxaloacetate + L-glutamate
For diagram of EC 2.6.1, click here
Other name(s): glutamic-oxaloacetic transaminase; glutamic-aspartic transaminase; transaminase A; AAT; AspT; 2-oxoglutarate-glutamate aminotransferase; aspartate α-ketoglutarate transaminase; aspartate aminotransferase; aspartate-2-oxoglutarate transaminase; aspartic acid aminotransferase; aspartic aminotransferase; aspartyl aminotransferase; AST (ambiguous); glutamate-oxalacetate aminotransferase; glutamate-oxalate transaminase; glutamic-aspartic aminotransferase; glutamic-oxalacetic transaminase; glutamic oxalic transaminase; GOT (enzyme) [ambiguous]; L-aspartate transaminase; L-aspartate-α-ketoglutarate transaminase; L-aspartate-2-ketoglutarate aminotransferase; L-aspartate-2-oxoglutarate aminotransferase; L-aspartate-2-oxoglutarate-transaminase; L-aspartic aminotransferase; oxaloacetate-aspartate aminotransferase; oxaloacetate transferase; aspartate:2-oxoglutarate aminotransferase; glutamate oxaloacetate transaminase
Systematic name: L-aspartate:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on L-tyrosine, L-phenylalanine and L-tryptophan. Aspartate transaminase activity can be formed from the aromatic-amino-acid transaminase (EC 2.6.1.57) of Escherichia coli by controlled proteolysis [7], some EC 2.6.1.57 activity can be found in this enzyme from other sources [8]; indeed the enzymes are identical in Trichomonas vaginalis [6].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9000-97-9
References:
1.  Banks, B.E.C. and Vernon, C.A. Transamination. Part I. The isolation of the apoenzyme of glutamic-aspartic transaminase from pig heart muscle. J. Chem. Soc. (Lond.) (1961) 1698–1705.
2.  Bertland, L.H. and Kaplan, N.O. Chicken heart soluble aspartate aminotransferase. Purification and properties. Biochemistry 7 (1968) 134–142. [PMID: 5758538]
3.  Forest, J.C. and Wightman, F. Amino acid metabolism in plants. III. Purification and some properties of a multispecific aminotransferase isolated from bushbean seedlings (Phaseolus vulgaris L.). Can. J. Biochem. 50 (1973) 813–829.
4.  Henson, C.P. and Cleland, W.W. Kinetic studies of glutamic oxaloacetic transaminase isozymes. Biochemistry 3 (1964) 338–345. [PMID: 14155095]
5.  Jenkins, W.T., Yphantis, D.A. and Sizer, I.W. Glutamic aspartic transaminase. I. Assay, purification, and general properties. J. Biol. Chem. 234 (1959) 51–57. [PMID: 13610891]
6.  Lowe, P.N. and Rowe, A.F. Aspartate: 2-oxoglutarate aminotransferase from Trichomonas vaginalis. Identity of aspartate aminotransferase and aromatic amino acid aminotransferase. Biochem. J. 232 (1985) 689–695. [PMID: 3879173]
7.  Mavrides, C. and Orr, W. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J. Biol. Chem. 250 (1975) 4128–4133. [PMID: 236311]
8.  Schreiber, G., Eckstein, M., Oeser, A. and Holzer, H. [The concentration of aspartate aminotransferase from brewers’ yeast] Biochem. Z. 340 (1964) 13–20. [PMID: 14317947]
9.  Shrawder, E. and Martinez-Carrion, M. Evidence of phenylalanine transaminase activity in the isoenzymes of aspartate transaminase. J. Biol. Chem. 247 (1972) 2486–2492. [PMID: 4623131]
[EC 2.6.1.1 created 1961, modified 1976]
 
 
EC 2.6.1.2     
Accepted name: alanine transaminase
Reaction: L-alanine + 2-oxoglutarate = pyruvate + L-glutamate
For diagram of reaction, click here and for mechanism, click here
Other name(s): glutamic-pyruvic transaminase; glutamic-alanine transaminase; GPT (ambiguous); alanine aminotransferase; alanine-α-ketoglutarate aminotransferase; alanine-pyruvate aminotransferase; ALT; glutamic acid-pyruvic acid transaminase; glutamic-pyruvic aminotransferase; L-alanine aminotransferase; L-alanine transaminase; L-alanine-α-ketoglutarate aminotransferase; pyruvate transaminase; pyruvate-alanine aminotransferase; pyruvate-glutamate transaminase
Systematic name: L-alanine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. 2-Aminobutanoate can act slowly instead of alanine.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9000-86-6
References:
1.  Dumitru, I.F., Iordachescu, D. and Niculescu, S. Chromatographic purification, crystallization and study of vegetable L-alanine: 2-oxoglutarate-aminotransferase properties. Experientia 26 (1970) 837–838. [PMID: 5452003]
2.  Dumitru, I.F., Iordachescu, D. and Niculescu, S. L-Alanine: 2-oxoglutarate-aminotransferase chromatographic purification and crystallization of the enzyme from seeds of Glycine hispida var Cheepeura. Rev. Roum. Biochim. 7 (1970) 31–44.
3.  Green, D.E., Leloir, L.F. and Nocito, W. Transaminases. J. Biol. Chem. 161 (1945) 559–582. [PMID: 21006939]
4.  Iordachescu, D., Dumitru, I.F. and Corniciuc, M.-T. Comparative biochemical studies concerning L-alanine: 2-oxoglutarate-aminotransferase from the liver and the bile of swines. Rev. Roum. Biochim. 20 (1983) 173–179.
5.  Wilson, D.G., King, K.W. and Burris, R.H. Transaminase reactions in plants. J. Biol. Chem. 208 (1954) 863–874. [PMID: 13174595]
[EC 2.6.1.2 created 1961]
 
 
EC 2.6.1.5     
Accepted name: tyrosine transaminase
Reaction: L-tyrosine + 2-oxoglutarate = 4-hydroxyphenylpyruvate + L-glutamate
For diagram of reaction, click here, for mechanism, click here , for diagram of phenylalanine and tyrosine biosynthesis, click here and for diagram of the methionine-salvage pathway, click here
Other name(s): tyrosine aminotransferase; glutamic-hydroxyphenylpyruvic transaminase; glutamic phenylpyruvic aminotransferase; L-phenylalanine 2-oxoglutarate aminotransferase; L-tyrosine aminotransferase; phenylalanine aminotransferase; phenylalanine transaminase; phenylalanine-α-ketoglutarate transaminase; phenylpyruvate transaminase; phenylpyruvic acid transaminase; tyrosine-α-ketoglutarate aminotransferase; tyrosine-α-ketoglutarate transaminase; tyrosine-2-ketoglutarate aminotransferase; TyrAT
Systematic name: L-tyrosine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. L-Phenylalanine can act instead of L-tyrosine. The mitochondrial enzyme may be identical with EC 2.6.1.1 (aspartate transaminase). The three isoenzymic forms are interconverted by EC 3.4.22.32 (stem bromelain) and EC 3.4.22.33 (fruit bromelain). The enzyme can also catalyse the final step in the methionine-salvage pathway of Klebsiella pneumoniae [8].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-55-5
References:
1.  Canellakis, Z.N. and Cohen, P.P. Purification studies of tyrosine-α-ketoglutaric acid transaminase. J. Biol. Chem. 222 (1956) 53–62. [PMID: 13366978]
2.  Canellakis, Z.N. and Cohen, P.P. Kinetic and substrate specificity study of tyrosine-α-ketoglutaric acid transaminase. J. Biol. Chem. 222 (1956) 63–71. [PMID: 13366979]
3.  Jacoby, G.A. and La Ru, B.N. Studies on the specificity of tyrosine-α-ketoglutarate transaminase. J. Biol. Chem. 239 (1964) 419–424. [PMID: 14171223]
4.  Kenney, F.T. Properties of partially purified tyrosine-α-ketoglutarate transaminase from rat liver. J. Biol. Chem. 234 (1959) 2707–2712. [PMID: 14408534]
5.  Miller, J.E. and Litwack, G. Purification, properties, and identity of liver mitochondrial tyrosine aminotransferase. J. Biol. Chem. 246 (1971) 3234–3240. [PMID: 4396841]
6.  Rowsell, E.V. Transaminations with L-glutamate and α-oxoglutarate in fresh extracts of animal tissues. Biochem. J. 64 (1956) 235–245. [PMID: 13363833]
7.  SentheShanmuganathan, S. The purification and properties of the tyrosine-2-oxoglutarate transaminase of Saccharomyces cerevisiae. Biochem. J. 77 (1960) 619–625. [PMID: 13750129]
8.  Heilbronn, J., Wilson, J. and Berger, B.J. Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. J. Bacteriol. 181 (1999) 1739–1747. [PMID: 10074065]
[EC 2.6.1.5 created 1961]
 
 
EC 2.6.1.6     
Accepted name: leucine transaminase
Reaction: L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate
For diagram of reaction, click here, for diagram of leucine biosynthesis, click here and for diagram of mechanism, click here
Other name(s): L-leucine aminotransferase; leucine 2-oxoglutarate transaminase; leucine aminotransferase; leucine-α-ketoglutarate transaminase
Systematic name: L-leucine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. This enzyme differs from EC 2.6.1.42, branched-chain-amino-acid transaminase, in that it does not act on L-valine or L-isoleucine, although it does act on L-methionine. The mitochondrial form from rat liver differs in physical characteristics from the cytoplasmic form.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-37-9
References:
1.  Aki, K., Ogawa, K. and Ichihara, A. Transaminases of branched chain amino acids. IV. Purification and properties of two enzymes from rat liver. Biochim. Biophys. Acta 159 (1968) 276–284. [DOI] [PMID: 4968655]
2.  Ikeda, T., Konishi, Y. and Ichihara, A. Transaminase of branched chain amino acids. XI. Leucine (methionine) transaminase of rat liver mitochondria. Biochim. Biophys. Acta 445 (1976) 622–631. [DOI] [PMID: 974100]
[EC 2.6.1.6 created 1961, modified 1982]
 
 
EC 2.6.1.13     
Accepted name: ornithine aminotransferase
Reaction: L-ornithine + a 2-oxo carboxylate = L-glutamate 5-semialdehyde + an L-amino acid
Other name(s): ornithine δ-transaminase; L-ornithine:α-ketoglutarate δ-aminotransferase; OAT; L-ornithine 5-aminotransferase; L-ornithine aminotransferase; ornithine 5-aminotransferase; ornithine transaminase; ornithine-α-ketoglutarate aminotransferase; ornithine-2-oxoacid aminotransferase; ornithine-keto acid aminotransferase; ornithine-keto acid transaminase; ornithine-ketoglutarate aminotransferase; ornithine-oxo acid aminotransferase; ornithine:α-oxoglutarate transaminase; ornithine—oxo-acid transaminase
Systematic name: L-ornithine:2-oxo-acid aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-42-6
References:
1.  Fincham, J.R.S. Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochem. J. 53 (1953) 313–320. [PMID: 13032071]
2.  Katunuma, N., Matsuda, Y. and Tomino, I. Studies on ornithine-ketoacid transaminase. I. Purification and properties. J. Biochem. (Tokyo) 56 (1964) 499–503. [PMID: 14244051]
3.  Meister, A. Enzymatic transamination reactions involving arginine and ornithine. J. Biol. Chem. 206 (1954) 587–596. [PMID: 13143017]
4.  Peraino, C., Bunville, L.G. and Tahmisian, T.N. Chemical, physical, and morphological properties of ornithine aminotransferase from rat liver. J. Biol. Chem. 244 (1969) 2241–2249. [PMID: 5783831]
5.  Quastel, J.H. and Witty, R. Ornithine transaminase. Nature 167 (1951) 556. [PMID: 14826840]
6.  Strecker, H.J. Purification and properties of rat liver ornithine δ-transaminase. J. Biol. Chem. 240 (1965) 1225–1230. [PMID: 14284729]
[EC 2.6.1.13 created 1961]
 
 
EC 2.6.1.19     
Accepted name: 4-aminobutyrate—2-oxoglutarate transaminase
Reaction: 4-aminobutanoate + 2-oxoglutarate = succinate semialdehyde + L-glutamate
For diagram of arginine catabolism, click here
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Other name(s): β-alanine-oxoglutarate transaminase; aminobutyrate aminotransferase (ambiguous); β-alanine aminotransferase; β-alanine-oxoglutarate aminotransferase; γ-aminobutyrate aminotransaminase (ambiguous); γ-aminobutyrate transaminase (ambiguous); γ-aminobutyrate-α-ketoglutarate aminotransferase; γ-aminobutyrate-α-ketoglutarate transaminase; γ-aminobutyrate:α-oxoglutarate aminotransferase; γ-aminobutyric acid aminotransferase (ambiguous); γ-aminobutyric acid transaminase (ambiguous); γ-aminobutyric acid-α-ketoglutarate transaminase; γ-aminobutyric acid-α-ketoglutaric acid aminotransferase; γ-aminobutyric acid-2-oxoglutarate transaminase; γ-aminobutyric transaminase (ambiguous); 4-aminobutyrate aminotransferase (ambiguous); 4-aminobutyrate-2-ketoglutarate aminotransferase; 4-aminobutyrate-2-oxoglutarate aminotransferase; 4-aminobutyrate-2-oxoglutarate transaminase; 4-aminobutyric acid 2-ketoglutaric acid aminotransferase; 4-aminobutyric acid aminotransferase (ambiguous); aminobutyrate transaminase (ambiguous); GABA aminotransferase (ambiguous); GABA transaminase (ambiguous); GABA transferase (ambiguous); GABA-α-ketoglutarate aminotransferase; GABA-α-ketoglutarate transaminase; GABA-α-ketoglutaric acid transaminase; GABA-α-oxoglutarate aminotransferase; GABA-2-oxoglutarate aminotransferase; GABA-2-oxoglutarate transaminase; GABA-oxoglutarate aminotransferase; GABA-oxoglutarate transaminase; glutamate-succinic semialdehyde transaminase; GabT
Systematic name: 4-aminobutanoate:2-oxoglutarate aminotransferase
Comments: Requires pyridoxal phosphate. Some preparations also act on β-alanine, 5-aminopentanoate and (R,S)-3-amino-2-methylpropanoate. cf. EC 2.6.1.120, β-alanine—2-oxoglutarate transaminase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9037-67-6
References:
1.  Scott, E.M. and Jakoby, W.B. Soluble γ-aminobutyric-glutamic transaminase from Pseudomonas fluorescens. J. Biol. Chem. 234 (1959) 932–936. [PMID: 13654294]
2.  Aurich, H. Über die β-Alanin-α-Ketoglutarat-Transaminase aus Neurospora crassa. Hoppe-Seyler's Z. Physiol. Chem. 326 (1961) 25–33. [PMID: 13863304]
3.  Schausboe, A., Wu, J.-Y. and Roberts, E. Purification and characterization of the 4-aminobutyrate-2-ketoglutarate transaminase from mouse brain. Biochemistry 12 (1973) 2868–2873. [PMID: 4719123]
4.  Bartsch, K., von Johnn-Marteville, A. and Schulz, A. Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD). J. Bacteriol. 172 (1990) 7035–7042. [DOI] [PMID: 2254272]
[EC 2.6.1.19 created 1965, modified 1982, modified 2012, modified 2021]
 
 
EC 2.6.1.22     
Accepted name: (S)-3-amino-2-methylpropionate transaminase
Reaction: (S)-3-amino-2-methylpropanoate + 2-oxoglutarate = 2-methyl-3-oxopropanoate + L-glutamate
For diagram of reaction, click here
Other name(s): L-3-aminoisobutyrate transaminase; β-aminobutyric transaminase; L-3-aminoisobutyric aminotransferase; β-aminoisobutyrate-α-ketoglutarate transaminase
Systematic name: (S)-3-amino-2-methylpropanoate:2-oxoglutarate aminotransferase
Comments: Also acts on β-alanine and other ω-amino acids having carbon chains between 2 and 5. The two enantiomers of the 2-methyl-3-oxopropanoate formed by the enzyme interconvert by enolization, so that this enzyme, together with EC 2.6.1.40, (R)-3-amino-2-methylpropionate—pyruvate transaminase, provide a route for interconversion of the enantiomers of 3-amino-2-methylpropanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-95-2
References:
1.  Kakimoto, Y., Kanazawa, A., Taniguchi, K. and Sano, I. β-Aminoisobutyrate-α-ketoglutarate transaminase in relation to β-aminoisobutyric aciduria. Biochim. Biophys. Acta 156 (1968) 374–380. [DOI] [PMID: 5641913]
2.  Tamaki, N., Sakata, S.F. and Matsuda, K. Purification, properties, and sequencing of aminoisobutyrate aminotransferases from rat liver. Methods Enzymol. 324 (2000) 376–389. [DOI] [PMID: 10989446]
[EC 2.6.1.22 created 1972, modified 1982, modified 2004]
 
 
EC 2.6.1.29     
Accepted name: diamine transaminase
Reaction: an α,ω-diamine + 2-oxoglutarate = an ω-aminoaldehyde + L-glutamate
Other name(s): amine transaminase; amine-ketoacid transaminase; diamine aminotransferase; diamine-ketoglutaric transaminase
Systematic name: diamine:2-oxoglutarate aminotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-83-8
References:
1.  Kim, K. Purification and properties of a diamine α-ketoglutarate transaminase from Escherichia coli. J. Biol. Chem. 239 (1964) 783–786. [PMID: 14154456]
[EC 2.6.1.29 created 1972]
 
 
EC 2.6.1.31     
Accepted name: pyridoxamine—oxaloacetate transaminase
Reaction: pyridoxamine + oxaloacetate = pyridoxal + L-aspartate
Systematic name: pyridoxamine:oxaloacetate aminotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-88-6
References:
1.  Wada, H. and Snell, E.E. Enzymatic transamination of pyridoxamine. I. With oxaloacetate and α-ketoglutarate. J. Biol. Chem. 237 (1962) 127–132. [PMID: 14004226]
2.  Wu, H.L.C. and Mason, M. Pyridoxamine-oxaloacetic transaminase of rat kidney. J. Biol. Chem. 239 (1964) 1492–1497. [PMID: 14189882]
[EC 2.6.1.31 created 1972]
 
 
EC 2.6.1.36     
Accepted name: L-lysine 6-transaminase
Reaction: L-lysine + 2-oxoglutarate = (S)-2-amino-6-oxohexanoate + L-glutamate
Glossary: (S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
L-1-piperideine 6-carboxylate = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate = (S)-1,6-didehydropiperidine-2-carboxylate
Other name(s): lysine 6-aminotransferase; lysine ε-aminotransferase; lysine ε-transaminase; lysine:2-ketoglutarate 6-aminotransferase; L-lysine-α-ketoglutarate aminotransferase; L-lysine-α-ketoglutarate 6-aminotransferase
Systematic name: L-lysine:2-oxoglutarate 6-aminotransferase
Comments: A pyridoxal-phosphate protein. The product (L-allysine) is converted into the intramolecularly dehydrated form, (S)-2,3,4,5-tetrahydropyridine-2-carboxylate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9054-68-6
References:
1.  Soda, K., Misono, H. and Yamamoto, T. L-Lysine:α-ketoglutarate aminotransferase. I. Identification of a product, δ-1-piperideine-6-carboxylic acid. Biochemistry 7 (1968) 4102–4109. [PMID: 5722275]
2.  Soda, K. and Misono, H. L-Lysine: α-ketoglutarate aminotransferase. II. Purification, crystallization, and properties. Biochemistry 7 (1968) 4110–4119. [PMID: 5722276]
[EC 2.6.1.36 created 1972, modified 2011]
 
 
EC 2.6.1.42     
Accepted name: branched-chain-amino-acid transaminase
Reaction: L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate
For diagram of reaction, click here, of leucine biosynthesis click here, of isoleucine and valine biosynthesis, click here, of coenzyme-A biosynthesis, click here and for diagram of mechanism, click here
Other name(s): transaminase B; branched-chain amino acid aminotransferase; branched-chain amino acid-glutamate transaminase; branched-chain aminotransferase; L-branched chain amino acid aminotransferase; glutamate-branched-chain amino acid transaminase
Systematic name: branched-chain-amino-acid:2-oxoglutarate aminotransferase
Comments: Also acts on L-isoleucine and L-valine, and thereby differs from EC 2.6.1.6, leucine transaminase, which does not. It also differs from EC 2.6.1.66, valine—pyruvate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9054-65-3
References:
1.  Aki, K., Ogawa, K. and Ichihara, A. Transaminases of branched chain amino acids. IV. Purification and properties of two enzymes from rat liver. Biochim. Biophys. Acta 159 (1968) 276–284. [DOI] [PMID: 4968655]
2.  Aki, K., Yokojima, A. and Ichihara, A. Transaminase of branched chain amino acids. VI. Purification and properties of the hog brain enzyme. J. Biochem. (Tokyo) 65 (1969) 539–544. [PMID: 4979711]
3.  Ichihara, A. and Koyama, E. Transaminase of branched chain amino acids. I. Branched chain amino acids-α-ketoglutarate transaminase. J. Biochem. (Tokyo) 59 (1966) 160–169. [PMID: 5943594]
4.  Taylor, R.T. and Jenkins, W.T. Leucine aminotransferase. II. Purification and characterization. J. Biol. Chem. 241 (1966) 4396–4405. [PMID: 5922965]
5.  Rudman, D. and Meister, A. Transamination in Escherichia coli. J. Biol. Chem. 200 (1953) 591–604. [PMID: 13034817]
[EC 2.6.1.42 created 1972]
 
 
EC 2.6.1.52     
Accepted name: phosphoserine transaminase
Reaction: (1) O-phospho-L-serine + 2-oxoglutarate = 3-phosphooxypyruvate + L-glutamate
(2) 4-phosphooxy-L-threonine + 2-oxoglutarate = (3R)-3-hydroxy-2-oxo-4-phosphooxybutanoate + L-glutamate
For diagram of EC 2.6.1, click here, for diagram of serine biosynthesis, click here and for diagram of pyridoxal biosynthesis, click here
Other name(s): PSAT; phosphoserine aminotransferase; 3-phosphoserine aminotransferase; hydroxypyruvic phosphate-glutamic transaminase; L-phosphoserine aminotransferase; phosphohydroxypyruvate transaminase; phosphohydroxypyruvic-glutamic transaminase; 3-O-phospho-L-serine:2-oxoglutarate aminotransferase; SerC; PdxC; 3PHP transaminase
Systematic name: O-phospho-L-serine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. This enzyme catalyses the second step in the phosphorylated pathway of serine biosynthesis [1,3] and the third step in pyridoxal 5′-phosphate biosynthesis in the bacterium Escherichia coli [3]. Pyridoxal 5′-phosphate is the cofactor for both activities and therefore seems to be involved in its own biosynthesis [4]. Non-phosphorylated forms of serine and threonine are not substrates [4]. The archaeal enzyme has a relaxed specificity and can act on L-cysteate and L-alanine as alternative substrates to O-phospho-L-serine [7].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-90-4
References:
1.  Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem. 238 (1963) 3934–3944. [PMID: 14086727]
2.  Hirsch, H. and Greenberg, D.M. Studies on phosphoserine aminotransferase of sheep brain. J. Biol. Chem. 242 (1967) 2283–2287. [PMID: 6022873]
3.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
4.  Drewke, C., Klein, M., Clade, D., Arenz, A., Müller, R. and Leistner, E. 4-O-phosphoryl-L-threonine, a substrate of the pdxC(serC) gene product involved in vitamin B6 biosynthesis. FEBS Lett. 390 (1996) 179–182. [DOI] [PMID: 8706854]
5.  Zhao, G. and Winkler, M.E. 4-Phospho-hydroxy-L-threonine is an obligatory intermediate in pyridoxal 5′-phosphate coenzyme biosynthesis in Escherichia coli K-12. FEMS Microbiol. Lett. 135 (1996) 275–280. [PMID: 8595869]
6.  Baek, J.Y., Jun, D.Y., Taub, D. and Kim, Y.H. Characterization of human phosphoserine aminotransferase involved in the phosphorylated pathway of L-serine biosynthesis. Biochem. J. 373 (2003) 191–200. [PMID: 12633500]
7.  Helgadottir, S., Rosas-Sandoval, G., Soll, D. and Graham, D.E. Biosynthesis of phosphoserine in the Methanococcales. J. Bacteriol. 189 (2007) 575–582. [PMID: 17071763]
[EC 2.6.1.52 created 1972, modified 2006]
 
 
EC 2.6.1.54     
Accepted name: pyridoxamine-phosphate transaminase
Reaction: pyridoxamine 5′-phosphate + 2-oxoglutarate = pyridoxal 5′-phosphate + D-glutamate
Other name(s): pyridoxamine phosphate aminotransferase; pyridoxamine 5′-phosphate-α-ketoglutarate transaminase; pyridoxamine 5′-phosphate transaminase
Systematic name: pyridoxamine-5′-phosphate:2-oxoglutarate aminotransferase (D-glutamate-forming)
Comments: Also acts, more slowly, on pyridoxamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9074-84-4
References:
1.  Tani, Y., Ukita, M. and Ogata, K. Studies on vitamin B6 metabolism in microorganisms. Part X. Further purification and characterization of pyridoxamine 5′-phosphate-α-ketoglutarate transaminase from Clostridium kainantoi. Agric. Biol. Chem. 36 (1972) 181–188.
[EC 2.6.1.54 created 1976]
 
 
EC 2.6.1.55     
Accepted name: taurine—2-oxoglutarate transaminase
Reaction: taurine + 2-oxoglutarate = 2-sulfoacetaldehyde + L-glutamate
Glossary: 2-sulfoacetaldehyde = 2-oxoethanesulfonate
taurine = 2-aminoethanesulfonate
Other name(s): taurine aminotransferase; taurine transaminase; taurine—α-ketoglutarate aminotransferase; taurine—glutamate transaminase
Systematic name: taurine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on D,L-3-amino-isobutanoate, β-alanine and 3-aminopropanesulfonate. Involved in the microbial utilization of β-alanine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-52-2
References:
1.  Toyama, S., Misono, H. and Soda, K. Crystalline taurine:α-ketoglutarate aminotransferase from Achromobacter superficialis. Biochem. Biophys. Res. Commun. 46 (1972) 1374–1379. [DOI] [PMID: 5012173]
2.  Cook, A.M. and Denger, K. Dissimilation of the C2 sulfonates. Arch. Microbiol. 179 (2002) 1–6. [DOI] [PMID: 12471498]
[EC 2.6.1.55 created 1976, modified 2003]
 
 
EC 2.6.1.75     
Accepted name: cysteine-conjugate transaminase
Reaction: S-(4-bromophenyl)-L-cysteine + 2-oxoglutarate = 3-[(4-bromophenyl)sulfanyl]-2-oxopropanoate + L-glutamate
For diagram of reaction, click here and for mechanism, click here
Other name(s): cysteine conjugate aminotransferase; cysteine-conjugate α-ketoglutarate transaminase (CAT-1)
Systematic name: S-(4-bromophenyl)-L-cysteine:2-oxoglutarate aminotransferase
Comments: A number of cysteine conjugates can also act.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 117698-05-2
References:
1.  Tomisawa, H., Ichimoto, N., Takanohashi, Y., Ichihara, S., Fukazawa, H. and Tateishi, M. Purification and characterization of cysteine conjugate transaminases from rat liver. Xenobiotica 18 (1988) 1015–1028. [DOI] [PMID: 2852419]
[EC 2.6.1.75 created 1992]
 
 
EC 2.6.1.82     
Accepted name: putrescine—2-oxoglutarate transaminase
Reaction: putrescine + 2-oxoglutarate = 4-aminobutanal + L-glutamate
For diagram of arginine catabolism, click here
Glossary: putrescine = butane-1,4-diamine
1-pyrroline = 3,4-dihydro-2H-pyrrole
Other name(s): putrescine-α-ketoglutarate transaminase; YgjG; putrescine:α-ketoglutarate aminotransferase; PAT (ambiguous); putrescine transaminase (ambiguous); putrescine aminotransferase (ambiguous); butane-1,4-diamine:2-oxoglutarate aminotransferase
Systematic name: putrescine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein [3]. The product, 4-aminobutanal, spontaneously cyclizes to form 1-pyrroline, which may be the actual substrate for EC 1.2.1.19, aminobutyraldehyde dehydrogenase. Cadaverine and spermidine can also act as substrates [3]. Forms part of the arginine-catabolism pathway [2]. cf. EC 2.6.1.113, putrescine—pyruvate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 98982-73-1
References:
1.  Prieto-Santos, M.I., Martin-Checa, J., Balaña-Fouce, R. and Garrido-Pertierra, A. A pathway for putrescine catabolism in Escherichia coli. Biochim. Biophys. Acta 880 (1986) 242–244. [DOI] [PMID: 3510672]
2.  Samsonova, N.N., Smirnov, S.V., Novikova, A.E. and Ptitsyn, L.R. Identification of Escherichia coli K12 YdcW protein as a γ-aminobutyraldehyde dehydrogenase. FEBS Lett. 579 (2005) 4107–4112. [DOI] [PMID: 16023116]
3.  Samsonova, N.N., Smirnov, S.V., Altman, I.B. and Ptitsyn, L.R. Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol. 3 (2003) 2. [DOI] [PMID: 12617754]
[EC 2.6.1.82 created 2006, modified 2017, modified 2021]
 
 
EC 4.1.1.71     
Accepted name: 2-oxoglutarate decarboxylase
Reaction: 2-oxoglutarate = succinate semialdehyde + CO2
For diagram of the citric acid cycle, click here
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): oxoglutarate decarboxylase; α-ketoglutarate decarboxylase; α-ketoglutaric decarboxylase; pre-2-oxoglutarate decarboxylase; 2-oxoglutarate carboxy-lyase
Systematic name: 2-oxoglutarate carboxy-lyase (succinate-semialdehyde-forming)
Comments: Requires thiamine diphosphate. Highly specific.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-42-8
References:
1.  Shigeoka, S., Onishi, T., Maeda, K., Nakano, Y. and Kitaoka, S. Occurrence of thiamin pyrophosphate-dependent 2-oxoglutarate decarboxylase in mitochondria of Euglena gracilis. FEBS Lett. 195 (1986) 43–47.
[EC 4.1.1.71 created 1989]
 
 
EC 4.1.3.16     
Accepted name: 4-hydroxy-2-oxoglutarate aldolase
Reaction: 4-hydroxy-2-oxoglutarate = pyruvate + glyoxylate
Other name(s): 2-oxo-4-hydroxyglutarate aldolase; hydroxyketoglutaric aldolase; 4-hydroxy-2-ketoglutaric aldolase; 2-keto-4-hydroxyglutaric aldolase; 4-hydroxy-2-ketoglutarate aldolase; 2-keto-4-hydroxyglutarate aldolase; 2-oxo-4-hydroxyglutaric aldolase; DL-4-hydroxy-2-ketoglutarate aldolase; hydroxyketoglutarate aldolase; 2-keto-4-hydroxybutyrate aldolase; 4-hydroxy-2-oxoglutarate glyoxylate-lyase; KHGA
Systematic name: 4-hydroxy-2-oxoglutarate glyoxylate-lyase (pyruvate-forming)
Comments: The enzymes from rat liver and bovine liver act on both enantiomers of 4-hydroxy-2-oxoglutarate. cf. EC 4.1.3.42, (4S)-4-hydroxy-2-oxoglutarate aldolase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-81-3
References:
1.  Kuratomi, K. and Fukunaga, K. The metabolism of γ-hydroxyglutamate in rat liver. I. Enzymic synthesis of γ-hydroxy-α-ketoglutarate from pyruvate and glyoxalate. Biochim. Biophys. Acta 78 (1963) 617–628. [DOI] [PMID: 14089442]
2.  Kobes, R.D. and Dekker, E.E. 2-Keto-4-hydroxyglutarate aldolase of bovine liver. Purification, criteria of purity, and general properties. J. Biol. Chem. 244 (1969) 1919–1925. [PMID: 5780845]
3.  Lane, R.S., Shapley, A. and Dekker, E.E. 2-keto-4-hydroxybutyrate aldolase. Identification as 2-keto-4-hydroxyglutarate aldolase, catalytic properties, and role in the mammalian metabolism of L-homoserine. Biochemistry 10 (1971) 1353–1364. [PMID: 5580656]
4.  Scholtz, J.M. and Schuster, S.M. Regulation of rat liver 4-hydroxy-2-ketoglutarate aldolase. Biochim. Biophys. Acta 869 (1986) 192–196. [DOI] [PMID: 3942759]
[EC 4.1.3.16 created 1972 (EC 4.1.2.1 created 1961, incorporated 1972, EC 4.1.2.31 created 1978, incorporated 1982)]
 
 
EC 6.2.1.4     
Accepted name: succinate—CoA ligase (GDP-forming)
Reaction: GTP + succinate + CoA = GDP + phosphate + succinyl-CoA
For diagram of the citric-acid cycle, click here
Other name(s): succinyl-CoA synthetase (GDP-forming); succinyl coenzyme A synthetase (guanosine diphosphate-forming); succinate thiokinase (ambiguous); succinic thiokinase (ambiguous); succinyl coenzyme A synthetase (ambiguous); succinate-phosphorylating enzyme (ambiguous); P-enzyme; SCS (ambiguous); G-STK; succinyl coenzyme A synthetase (GDP-forming); succinyl CoA synthetase (ambiguous)
Systematic name: succinate:CoA ligase (GDP-forming)
Comments: Itaconate can act instead of succinate, and ITP instead of GTP.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9014-36-2
References:
1.  Hager, L.P. Succinyl CoA synthetase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 6, Academic Press, New York, 1962, pp. 387–399.
2.  Kaufman, S., Gilvarg, C., Cori, O. and Ochoa, S. Enzymatic oxidation of α-ketoglutarate and coupled phosphorylation. J. Biol. Chem. 203 (1953) 869–888. [PMID: 13084656]
3.  Mazumder, R., Sanadi, D.R. and Rodwell, W.V. Purification and properties of hog kidney succinic thiokinase. J. Biol. Chem. 235 (1960) 2546–2550. [PMID: 13768680]
4.  Sanadi, D.R., Gibson, D.M. and Ayengar, P. Guanosine triphosphate, the primary product of phosphorylation coupled to the breakdown of succinyl coenzyme A. Biochim. Biophys. Acta 14 (1954) 434–436. [DOI] [PMID: 13181903]
[EC 6.2.1.4 created 1961]
 
 
EC 6.2.1.70     
Accepted name: L-threonine—[L-threonyl-carrier protein] ligase
Reaction: ATP + L-threonine + holo-[L-threonyl-carrier protein] = AMP + diphosphate + L-threonyl-[L-threonyl-carrier protein] (overall reaction)
(1a) ATP + L-threonine = diphosphate + (L-threonyl)adenylate
(1b) (L-threonyl)adenylate + holo-[L-threonyl-carrier protein] = AMP + L-threonyl-[L-threonyl-carrier protein]
Other name(s): dhbF (gene name); pmsD (gene name); syrB1 (gene name)
Systematic name: L-threonine:[L-threonyl-carrier protein] ligase (AMP-forming)
Comments: The adenylation domain of the enzyme catalyses the activation of L-threonine to (L-threonyl)adenylate, followed by the transfer of the activated compound to the free thiol of a phosphopantetheine arm of a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be part of the same protein (as in the case of DhbF in bacillibactin biosynthesis), or of a different protein (as in the case of PmsD in pseudomonine biosynthesis). This activity is often found as part of a larger non-ribosomal peptide synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vaillancourt, F.H., Yin, J. and Walsh, C.T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase. Proc. Natl. Acad. Sci. USA 102 (2005) 10111–10116. [DOI] [PMID: 16002467]
2.  Sattely, E.S. and Walsh, C.T. A latent oxazoline electrophile for N-O-C bond formation in pseudomonine biosynthesis. J. Am. Chem. Soc. 130 (2008) 12282–12284. [DOI] [PMID: 18710233]
[EC 6.2.1.70 created 2021]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald