The Enzyme Database

Displaying entries 1-50 of 1187.

<< Previous | Next >>    printer_iconPrintable version



EC 2.4.1.371     Relevance: 100%
Accepted name: polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol 2,3-α-mannosylpolymerase
Reaction: (1) 2 GDP-α-D-mannose + [α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = 2 GDP + α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
(2) 2 GDP-α-D-mannose + α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = 2 GDP + [α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n+1-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdA
Systematic name: GDP-α-D-mannose:α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 2,3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the biosynthesis of polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotype O9a. The enzymes consists of two domains that are responsible for the 1→2 and 1→3 linkages, respectively.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Greenfield, L.K., Richards, M.R., Li, J., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. J. Biol. Chem. 287 (2012) 35078–35091. [DOI] [PMID: 22875852]
2.  Greenfield, L.K., Richards, M.R., Vinogradov, E., Wakarchuk, W.W., Lowary, T.L. and Whitfield, C. Domain organization of the polymerizing mannosyltransferases involved in synthesis of the Escherichia coli O8 and O9a lipopolysaccharide O-antigens. J. Biol. Chem. 287 (2012) 38135–38149. [PMID: 22989876]
3.  Liston, S.D., Clarke, B.R., Greenfield, L.K., Richards, M.R., Lowary, T.L. and Whitfield, C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J. Biol. Chem. 290 (2015) 1075–1085. [DOI] [PMID: 25422321]
[EC 2.4.1.371 created 2019]
 
 
EC 2.4.1.267     Relevance: 92%
Accepted name: dolichyl-P-Glc:Man9GlcNAc2-PP-dolichol α-1,3-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG6; Dol-P-Glc:Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,3-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 3-α-D-glucosyltransferase (configuration-inverting)
Comments: The successive addition of three glucose residues by EC 2.4.1.267, EC 2.4.1.265 (Dol-P-Glc:Glc1Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase) and EC 2.4.1.256 (Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyltransferase) represents the final stage of the lipid-linked oligosaccharide assembly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Reiss, G., te Heesen, S., Zimmerman, J., Robbins, P.W. and Aebi, M. Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway. Glycobiology 6 (1996) 493–498. [DOI] [PMID: 8877369]
2.  Runge, K.W., Huffaker, T.C. and Robbins, P.W. Two yeast mutations in glucosylation steps of the asparagine glycosylation pathway. J. Biol. Chem. 259 (1984) 412–417. [PMID: 6423630]
3.  Westphal, V., Xiao, M., Kwok, P.Y. and Freeze, H.H. Identification of a frequent variant in ALG6, the cause of congenital disorder of glycosylation-Ic. Hum. Mutat. 22 (2003) 420–421. [DOI] [PMID: 14517965]
[EC 2.4.1.267 created 2011, modified 2012]
 
 
EC 2.7.1.181     Relevance: 92%
Accepted name: polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol kinase
Reaction: ATP + α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = ADP + 3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdD; ATP:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phosphotransferase
Systematic name: ATP:α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phosphotransferase
Comments: The enzyme is involved in the biosynthesis of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotype O9a. O-Polysaccharide structures vary extensively because of differences in the number and type of sugars in the repeat unit. The dual kinase/methylase WbdD also catalyses the methylation of 3-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol (cf. EC 2.1.1.294, 3-O-phospho-polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clarke, B.R., Cuthbertson, L. and Whitfield, C. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J. Biol. Chem. 279 (2004) 35709–35718. [DOI] [PMID: 15184370]
2.  Clarke, B.R., Greenfield, L.K., Bouwman, C. and Whitfield, C. Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J. Biol. Chem. 284 (2009) 30662–30672. [DOI] [PMID: 19734145]
3.  Clarke, B.R., Richards, M.R., Greenfield, L.K., Hou, D., Lowary, T.L. and Whitfield, C. In vitro reconstruction of the chain termination reaction in biosynthesis of the Escherichia coli O9a O-polysaccharide: the chain-length regulator, WbdD, catalyzes the addition of methyl phosphate to the non-reducing terminus of the growing glycan. J. Biol. Chem. 286 (2011) 41391–41401. [DOI] [PMID: 21990359]
4.  Liston, S.D., Clarke, B.R., Greenfield, L.K., Richards, M.R., Lowary, T.L. and Whitfield, C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J. Biol. Chem. 290 (2015) 1075–1085. [DOI] [PMID: 25422321]
[EC 2.7.1.181 created 2014, modified 2017]
 
 
EC 2.4.1.265     Relevance: 91.1%
Accepted name: dolichyl-P-Glc:Glc1Man9GlcNAc2-PP-dolichol α-1,3-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG8; Dol-P-Glc:Glc1Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,3-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 3-α-D-glucosyltransferase (configuration-inverting)
Comments: The successive addition of three glucose residues by EC 2.4.1.267 (dolichyl-P-Glc:Man9GlcNAc2-PP-dolichol α-1,3-glucosyltransferase), EC 2.4.1.265 and EC 2.4.1.256 (dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol α-1,2-glucosyltransferase) represents the final stage of the lipid-linked oligosaccharide assembly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Stagljar, I., te Heesen, S. and Aebi, M. New phenotype of mutations deficient in glucosylation of the lipid-linked oligosaccharide: cloning of the ALG8 locus. Proc. Natl. Acad. Sci. USA 91 (1994) 5977–5981. [DOI] [PMID: 8016100]
2.  Runge, K.W. and Robbins, P.W. A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. J. Biol. Chem. 261 (1986) 15582–15590. [PMID: 3536907]
3.  Chantret, I., Dancourt, J., Dupre, T., Delenda, C., Bucher, S., Vuillaumier-Barrot, S., Ogier de Baulny, H., Peletan, C., Danos, O., Seta, N., Durand, G., Oriol, R., Codogno, P. and Moore, S.E. A deficiency in dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl α3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J. Biol. Chem. 278 (2003) 9962–9971. [DOI] [PMID: 12480927]
[EC 2.4.1.265 created 2011, modified 2012]
 
 
EC 2.4.1.256     Relevance: 89%
Accepted name: dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol α-1,2-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = dolichyl phosphate + α-D-Glc-(1→2)-α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG10; Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol α-1,2-glucosyltransferase (configuration-retaining)
Comments: This eukaryotic enzyme performs the final step in the synthesis of the lipid-linked oligosaccharide, attaching D-glucose in an α-1,2-linkage to the outermost D-glucose in the long branch. The lipid-linked oligosaccharide is involved in N-linked protein glycosylation of selected asparagine residues of nascent polypeptide chains in eukaryotic cells.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Burda, P. and Aebi, M. The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8 (1998) 455–462. [DOI] [PMID: 9597543]
[EC 2.4.1.256 created 2011, modified 2012]
 
 
EC 2.4.1.378     Relevance: 88.5%
Accepted name: GDP-mannose:α-L-Rha-(1→3)-α-D-Gal-PP-Und α-1,4-mannosyltransferase
Reaction: GDP-α-D-mannose + α-L-Rha-(1→3)-α-D-Gal-PP-Und = GDP + α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaU (gene name); rfbU (gene name)
Systematic name: GDP-α-D-mannose:α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 4II-α-rhamnosyltransferase (configuration-retaining)
Comments: The enzyme from Salmonella participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B, and D1 groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
[EC 2.4.1.378 created 2021]
 
 
EC 2.3.1.303     Relevance: 88.5%
Accepted name: α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und 2IV-O-acetyltransferase
Reaction: acetyl-CoA + α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = CoA + 2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): rfbL (gene name); wbaL (gene name)
Systematic name: acetyl-CoA:α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 2IV-O-acetyltransferase
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
2.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
3.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.3.1.303 created 2021]
 
 
EC 3.2.1.24     Relevance: 88.4%
Accepted name: α-mannosidase
Reaction: Hydrolysis of terminal, non-reducing α-D-mannose residues in α-D-mannosides
Other name(s): α-D-mannosidase; p-nitrophenyl-α-mannosidase; α-D-mannopyranosidase; 1,2-α-mannosidase; 1,2-α-D-mannosidase; exo-α-mannosidase
Systematic name: α-D-mannoside mannohydrolase
Comments: Also hydrolyses α-D-lyxosides and heptopyranosides with the same configuration at C-2, C-3 and C-4 as mannose.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9025-42-7
References:
1.  Li, Y.-T. Presence of α-D-mannosidic linkage in glycoproteins. Liberation of D-mannose from various glycoproteins by α-mannosidase isolated from jack bean meal. J. Biol. Chem. 241 (1966) 1010–1012. [PMID: 5905120]
2.  Winchester, B. Role of α-D-mannosidases in the biosynthesis and catabolism of glycoproteins. Biochem. Soc. Trans. 12 (1984) 522–524. [PMID: 6428944]
[EC 3.2.1.24 created 1961]
 
 
EC 2.4.1.382     Relevance: 87.8%
Accepted name: CDP-abequose:α-L-Rha2OAc-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und α-1,3-abequosyltransferase
Reaction: CDP-α-D-abequose + 2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = CDP + α-D-Abe-(1→3)-2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha2OAc-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = 2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Abe-(1→3)-2-O-acetyl-α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-abequosyl-(1→3)-2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaR (gene name); rfbR (gene name)
Systematic name: CDP-α-D-abequose:2-O-acetyl-α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3IV-α-abequosyltransferase (configuration retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
2.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.382 created 2021]
 
 
EC 2.1.1.294     Relevance: 87.3%
Accepted name: 3-O-phospho-polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase
Reaction: S-adenosyl-L-methionine + 3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = S-adenosyl-L-homocysteine + 3-O-methylphospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdD; S-adenosyl-L-methionine:3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-α-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase
Systematic name: S-adenosyl-L-methionine:3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase
Comments: The enzyme is involved in the biosynthesis of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotype O9a. O-Polysaccharide structures vary extensively because of differences in the number and type of sugars in the repeat unit. The dual kinase/methylase WbdD also catalyses the preceding phosphorylation of α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol (cf. EC 2.7.1.181, polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol kinase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clarke, B.R., Cuthbertson, L. and Whitfield, C. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J. Biol. Chem. 279 (2004) 35709–35718. [DOI] [PMID: 15184370]
2.  Clarke, B.R., Greenfield, L.K., Bouwman, C. and Whitfield, C. Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J. Biol. Chem. 284 (2009) 30662–30672. [DOI] [PMID: 19734145]
3.  Clarke, B.R., Richards, M.R., Greenfield, L.K., Hou, D., Lowary, T.L. and Whitfield, C. In vitro reconstruction of the chain termination reaction in biosynthesis of the Escherichia coli O9a O-polysaccharide: the chain-length regulator, WbdD, catalyzes the addition of methyl phosphate to the non-reducing terminus of the growing glycan. J. Biol. Chem. 286 (2011) 41391–41401. [DOI] [PMID: 21990359]
4.  Liston, S.D., Clarke, B.R., Greenfield, L.K., Richards, M.R., Lowary, T.L. and Whitfield, C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J. Biol. Chem. 290 (2015) 1075–1085. [DOI] [PMID: 25422321]
[EC 2.1.1.294 created 2014, modified 2018]
 
 
EC 5.4.99.15     Relevance: 86.9%
Accepted name: (1→4)-α-D-glucan 1-α-D-glucosylmutase
Reaction: 4-[(1→4)-α-D-glucosyl]n-1-D-glucose = 1-α-D-[(1→4)-α-D-glucosyl]n-1-α-D-glucopyranoside
Other name(s): malto-oligosyltrehalose synthase; maltodextrin α-D-glucosyltransferase
Systematic name: (1→4)-α-D-glucan 1-α-D-glucosylmutase
Comments: The enzyme from Arthrobacter sp., Sulfolobus acidocaldarius acts on (1→4)-α-D-glucans containing three or more (1→4)-α-linked D-glucose units. Not active towards maltose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 170780-49-1
References:
1.  Maruta, K., Nakada, T., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci. Biotechnol. Biochem. 59 (1995) 1829–1834. [DOI] [PMID: 8534970]
2.  Nakada, T., Maruta, K., Tsusaki, K., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem. 59 (1995) 2210–2214. [PMID: 8611744]
3.  Nakada, T., Ikegami, S., Chaen, H., Kubota, M., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotechnol. Biochem. 60 (1996) 263–266. [DOI] [PMID: 9063973]
[EC 5.4.99.15 created 1999]
 
 
EC 2.4.1.380     Relevance: 86%
Accepted name: GDP-Man:α-D-Man-(1→3)-α-D-Gal diphosphoundecaprenol α-1,2-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-Man-(1→3)-α-D-Gal-PP-Und = GDP + α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaW (gene name); rfbW (gene name)
Systematic name: GDP-α-D-mannose:α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 2II-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.380 created 2021]
 
 
EC 2.4.1.138     Relevance: 85.7%
Accepted name: mannotetraose 2-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man = UDP + α-D-Man-(1→3)-[α-D-GlcNAc-(1→2)]-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man
Other name(s): α-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine mannoside α1→2-αcetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:mannotetraose α-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-α-D-mannosyl-(1→2)-α-D-mannosyl-(1→2)-D-mannose α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81032-47-5
References:
1.  Douglas, R.H. and Ballou, C.E. Purification of an α-N-acetylglucosaminyltransferase from the yeast Kluyveromyces lactis and a study of mutants defective in this enzyme activity. Biochemistry 21 (1982) 1561–1570. [PMID: 6211189]
[EC 2.4.1.138 created 1984]
 
 
EC 2.7.8.32     Relevance: 85.6%
Accepted name: 3-O-α-D-mannopyranosyl-α-D-mannopyranose xylosylphosphotransferase
Reaction: UDP-xylose + 3-O-α-D-mannopyranosyl-α-D-mannopyranose = UMP + 3-O-(6-O-α-D-xylosylphospho-α-D-mannopyranosyl)-α-D-mannopyranose
Glossary: O-α-D-xylosylphospho-α-D-mannopyranosyl)-α-D-mannopyranose = O-α-D-xylosylphosphono-α-D-mannopyranosyl)-α-D-mannopyranose
Other name(s): XPT1
Systematic name: UDP-D-xylose:3-O-α-D-mannopyranosyl-α-D-mannopyranose xylosylphosphotransferase
Comments: Mn2+ required for activity. The enzyme is specific for mannose as an acceptor but is flexible as to the structural context of the mannosyl disaccharide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Reilly, M.C., Levery, S.B., Castle, S.A., Klutts, J.S. and Doering, T.L. A novel xylosylphosphotransferase activity discovered in Cryptococcus neoformans. J. Biol. Chem. 284 (2009) 36118–36127. [DOI] [PMID: 19864415]
[EC 2.7.8.32 created 2011]
 
 
EC 2.4.1.381     Relevance: 85.3%
Accepted name: dTDP-Rha:α-D-Man-(1→3)-α-D-Gal diphosphoundecaprenol α-1,2-rhamnosyltransferase
Reaction: dTDP-β-L-rhamnose + α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = dTDP + α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaQ (gene name); rfbQ (gene name)
Systematic name: dTDP-β-L-rhamnose:α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 2III-α-rhamnosyltransferase (configuration-inverting)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.381 created 2021]
 
 
EC 3.2.1.198     Relevance: 85.3%
Accepted name: α-mannan endo-1,2-α-mannanase
Reaction: Hydrolysis of the terminal α-D-mannosyl-(1→3)-α-D-mannose disaccharide from α-D-mannosyl-(1→3)-α-D-mannosyl-(1→2)-α-D-mannosyl-(1→2)-α-D-mannosyl side chains in fungal cell wall α-mannans.
Systematic name: α-mannan 1,2-[α-D-mannosyl-(1→3)-α-D-mannose] hydrolase
Comments: The enzyme, characterized from the gut bacteria Bacteroides thetaiotaomicron and Bacteroides xylanisolvens, can also catalyse the reaction of EC 3.2.1.130, glycoprotein endo-α-1,2-mannosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hakki, Z., Thompson, A.J., Bellmaine, S., Speciale, G., Davies, G.J. and Williams, S.J. Structural and kinetic dissection of the endo-α-1,2-mannanase activity of bacterial GH99 glycoside hydrolases from Bacteroides spp. Chemistry 21 (2015) 1966–1977. [DOI] [PMID: 25487964]
2.  Cuskin, F., Lowe, E.C., Temple, M.J., Zhu, Y., Cameron, E.A., Pudlo, N.A., Porter, N.T., Urs, K., Thompson, A.J., Cartmell, A., Rogowski, A., Hamilton, B.S., Chen, R., Tolbert, T.J., Piens, K., Bracke, D., Vervecken, W., Hakki, Z., Speciale, G., Munoz-Munoz, J.L., Day, A., Pena, M.J., McLean, R., Suits, M.D., Boraston, A.B., Atherly, T., Ziemer, C.J., Williams, S.J., Davies, G.J., Abbott, D.W., Martens, E.C. and Gilbert, H.J. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517 (2015) 165–169. [DOI] [PMID: 25567280]
[EC 3.2.1.198 created 2016]
 
 
EC 2.4.1.24     Relevance: 84.7%
Accepted name: 1,4-α-glucan 6-α-glucosyltransferase
Reaction: Transfers an α-D-glucosyl residue in a (1→4)-α-D-glucan to the primary hydroxy group of glucose, free or combined in a (1→4)-α-D-glucan
Other name(s): oligoglucan-branching glycosyltransferase; 1,4-α-D-glucan 6-α-D-glucosyltransferase; T-enzyme; D-glucosyltransferase; 1,4-α-D-glucan:1,4-α-D-glucan(D-glucose) 6-α-D-glucosyltransferase
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan(D-glucose) 6-α-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-12-0
References:
1.  Abdullah, M. and Whelan, W.J. Synthesis of α-1:6-glucosidic linkages by a transglycosylase from potato. Biochem. J. 75 (1960) 12P.
2.  Barker, S.A. and Carrington, T.R. Studies of Aspergillus niger. Part II. Transglycosidation by Aspergillus niger. J. Chem. Soc. (Lond.) (1953) 3588–3593.
3.  Saroja, K., Venkataraman, R. and Giri, K.V. Transglucosidation in Penicillium chrysogenum Q-176. Isolation and identification of the oligosaccharide. Biochem. J. 60 (1955) 399–403. [PMID: 13239572]
[EC 2.4.1.24 created 1965]
 
 
EC 3.2.1.207     Relevance: 84.2%
Accepted name: mannosyl-oligosaccharide α-1,3-glucosidase
Reaction: (1) Glc2Man9GlcNAc2-[protein] + H2O = GlcMan9GlcNAc2-[protein] + β-D-glucopyranose
(2) GlcMan9GlcNAc2-[protein] + H2O = Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc2Man9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
GlcMan9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Man9GlcNAc2-[protein] = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Other name(s): ER glucosidase II; α-glucosidase II; trimming glucosidase II; ROT2 (gene name); GTB1 (gene name); GANAB (gene name); PRKCSH (gene name)
Systematic name: Glc2Man9GlcNAc2-[protein] 3-α-glucohydrolase (configuration-inverting)
Comments: This eukaryotic enzyme cleaves off sequentially the two α-1,3-linked glucose residues from the Glc2Man9GlcNAc2 oligosaccharide precursor of immature N-glycosylated proteins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Trombetta, E.S., Simons, J.F. and Helenius, A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271 (1996) 27509–27516. [DOI] [PMID: 8910335]
2.  Ziak, M., Meier, M., Etter, K.S. and Roth, J. Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells. Biochem. Biophys. Res. Commun. 280 (2001) 363–367. [DOI] [PMID: 11162524]
3.  Wilkinson, B.M., Purswani, J. and Stirling, C.J. Yeast GTB1 encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum. J. Biol. Chem. 281 (2006) 6325–6333. [DOI] [PMID: 16373354]
4.  Mora-Montes, H.M., Bates, S., Netea, M.G., Diaz-Jimenez, D.F., Lopez-Romero, E., Zinker, S., Ponce-Noyola, P., Kullberg, B.J., Brown, A.J., Odds, F.C., Flores-Carreon, A. and Gow, N.A. Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6 (2007) 2184–2193. [DOI] [PMID: 17933909]
[EC 3.2.1.207 created 2018]
 
 
EC 3.2.1.28     Relevance: 84.1%
Accepted name: α,α-trehalase
Reaction: α,α-trehalose + H2O = β-D-glucose + α-D-glucose
Other name(s): trehalase
Systematic name: α,α-trehalose glucohydrolase
Comments: The enzyme is an anomer-inverting glucosidase that catalyses the hydrolysis of the α-glucosidic O-linkage of α,α-trehalose, releasing initially equimolar amounts of α- and β-D-glucose. It is widely distributed in microorganisms, plants, invertebrates and vertebrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-52-9
References:
1.  Myrbäck, K. and Örtenblad, B. Trehalose und Hefe. II. Trehalasewirkung von Hefepräparaten. Biochem. Z. 291 (1937) 61–69.
2.  Kalf, G.F. and Rieder, S.V. The preparation and properties of trehalase. J. Biol. Chem. 230 (1958) 691–698. [PMID: 13525386]
3.  Hehre, E.J., Sawai, T., Brewer, C.F., Nakano, M. and Kanda, T. Trehalase: stereocomplementary hydrolytic and glucosyl transfer reactions with α- and β-D-glucosyl fluoride. Biochemistry 21 (1982) 3090–3097. [PMID: 7104311]
4.  Mori, H., Lee, J.H., Okuyama, M., Nishimoto, M., Ohguchi, M., Kim, D., Kimura, A. and Chiba, S. Catalytic reaction mechanism based on α-secondary deuterium isotope effects in hydrolysis of trehalose by European honeybee trehalase. Biosci. Biotechnol. Biochem. 73 (2009) 2466–2473. [DOI] [PMID: 19897915]
[EC 3.2.1.28 created 1961, modified 2012]
 
 
EC 2.3.1.122     Relevance: 83.5%
Accepted name: trehalose O-mycolyltransferase
Reaction: 2 α,α-trehalose 6-mycolate = α,α-trehalose + α,α-trehalose 6,6′-bismycolate
Other name(s): α,α’-trehalose 6-monomycolate:α,α’-trehalose mycolyltransferase; α,α’-trehalose-6-mycolate:α,α’-trehalose-6-mycolate 6′-mycolyltransferase
Systematic name: α,α-trehalose-6-mycolate:α,α-trehalose-6-mycolate 6′-mycolyltransferase
Comments: Catalyses the exchange of mycolic acid between trehalose, trehalose mycolate and trehalose bismycolate. Trehalose 6-palmitate can also act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111694-11-2
References:
1.  Sathyamoorthy, N. and Takayama, K. Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium smegmatis. J. Biol. Chem. 262 (1987) 13417–13423. [PMID: 3654621]
[EC 2.3.1.122 created 1990]
 
 
EC 2.4.1.60     Relevance: 82.4%
Accepted name: CDP-abequose:α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und α-1,3-abequosyltransferase
Reaction: CDP-α-D-abequose + α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = CDP + α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: D-abequose = 3,6-deoxy-D-xylo-hexose = 3,6-deoxy-D-galactose = 3-deoxy-D-fucose
α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-abequopyranosyl-(1→3)-α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaV (gene name); rfbV (gene name); trihexose diphospholipid abequosyltransferase; abequosyltransferase (ambiguous); CDP-α-D-abequose:Man(α1→4)Rha(α1→3)Gal(β-1)-diphospholipid D-abequosyltransferase
Systematic name: CDP-α-D-abequose:α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3III-α-abequosyltransferase (configuration retaining)
Comments: The enzyme from Salmonella participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B and D1-D3 groups. The enzyme is able to transfer abequose, paratose, or tyvelose, depending on the availability of the specific dideoxyhexose in a particular strain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-67-1
References:
1.  Osborn, M.J. and Weiner, I.M. Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J. Biol. Chem. 243 (1968) 2631–2639. [PMID: 4297268]
2.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
[EC 2.4.1.60 created 1972, modified 2012, modified 2021]
 
 
EC 2.4.1.387     Relevance: 81.6%
Accepted name: isomaltosyltransferase
Reaction: (1) 2 α-isomaltosyl-(1→4)-maltotriose = α-isomaltosyl-(1→3)-α-isomaltosyl-(1→4)-maltotriose + maltotriose
(2) α-isomaltosyl-(1→3)-α-isomaltosyl-(1→4)-maltotriose = cyclobis-(1→6)-α-nigerosyl + maltotriose
Systematic name: α-isomaltosyl-(1→3)-1,4-α-D-glucan:1,4-α-D-glucan 3-α-isomaltosyltransferase
Comments: The enzyme, found in bacteria that produce cyclobis-(1→6)-α-nigerosyl, acts on the products of EC 2.4.1.24, 1,4-α-glucan 6-α;-glucosyltransferase. It catalyses the α-(1→3) transfer of the isomaltosyl moiety of one substrate to another, resulting in α-isomaltosyl-(1→3)-α-isomaltosyl-α-(1→4)-glucan formation. In addition, the enzyme catalyses the intramolecular cyclization of the product, eventually generating cyclobis-(1→6)-α-nigerosyl.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Aga, H., Maruta, K., Yamamoto, T., Kubota, M., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Cloning and sequencing of the genes encoding cyclic tetrasaccharide-synthesizing enzymes from Bacillus globisporus C11. Biosci. Biotechnol. Biochem. 66 (2002) 1057–1068. [DOI] [PMID: 12092816]
2.  Nishimoto, T., Aga, H., Mukai, K., Hashimoto, T., Watanabe, H., Kubota, M., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Purification and characterization of glucosyltransferase and glucanotransferase involved in the production of cyclic tetrasaccharide in Bacillus globisporus C11. Biosci. Biotechnol. Biochem. 66 (2002) 1806–1818. [DOI] [PMID: 12400677]
3.  Kim, Y.K., Kitaoka, M., Hayashi, K., Kim, C.H. and Cote, G.L. A synergistic reaction mechanism of a cycloalternan-forming enzyme and a D-glucosyltransferase for the production of cycloalternan in Bacillus sp. NRRL B-21195. Carbohydr. Res. 338 (2003) 2213–2220. [DOI] [PMID: 14553982]
[EC 2.4.1.387 created 2022]
 
 
EC 3.2.1.130     Relevance: 81.5%
Accepted name: glycoprotein endo-α-1,2-mannosidase
Reaction: GlcMan9GlcNAc2-[protein] + H2O = Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,2) + α-D-glucosyl-(1→3)-α-D-mannopyranose
Glossary: GlcMan9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,2) = {α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Other name(s): glucosylmannosidase; endo-α-D-mannosidase; endo-α-mannosidase; endomannosidase; glucosyl mannosidase; MANEA (gene name); glycoprotein glucosylmannohydrolase
Systematic name: glycoprotein glucosylmannohydrolase (configuration-retaining)
Comments: The enzyme catalyses the hydrolysis of the terminal α-D-glucosyl-(1→3)-D-mannosyl unit from the GlcMan9(GlcNAc)2 oligosaccharide component of N-glucosylated proteins during their processing in the Golgi apparatus. The name for the isomer is based on a nomenclature proposed by Prien et al [7].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 108022-16-8
References:
1.  Lubas, W.A. and Spiro, R.G. Golgi endo-α-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J. Biol. Chem. 262 (1987) 3775–3781. [PMID: 3818665]
2.  Tulsiani, D.R.P., Coleman, V.P. and Touster, O. Asparagine-linked glycoprotein biosynthesis in rat brain: identification of glucosidase I, glucosidase II, and endomannosidase (glucosyl mannosidase). Arch. Biochem. Biophys. 277 (1990) 114–121. [DOI] [PMID: 2407194]
3.  Hiraizumi, S., Spohr, U. and Spiro, R.G. Ligand affinity chromatographic purification of rat liver Golgi endomannosidase. J. Biol. Chem. 269 (1994) 4697–4700. [PMID: 8106437]
4.  Spiro, M.J., Bhoyroo, V.D. and Spiro, R.G. Molecular cloning and expression of rat liver endo-α-mannosidase, an N-linked oligosaccharide processing enzyme. J. Biol. Chem. 272 (1997) 29356–29363. [DOI] [PMID: 9361017]
5.  Hamilton, S.R., Li, H., Wischnewski, H., Prasad, A., Kerley-Hamilton, J.S., Mitchell, T., Walling, A.J., Davidson, R.C., Wildt, S. and Gerngross, T.U. Intact α-1,2-endomannosidase is a typical type II membrane protein. Glycobiology 15 (2005) 615–624. [DOI] [PMID: 15677381]
6.  Hardt, B., Volker, C., Mundt, S., Salska-Navarro, M., Hauptmann, M. and Bause, E. Human endo-α1,2-mannosidase is a Golgi-resident type II membrane protein. Biochimie 87 (2005) 169–179. [DOI] [PMID: 15760709]
7.  Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H. and Reinhold, V.N. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20 (2009) 539–556. [DOI] [PMID: 19181540]
[EC 3.2.1.130 created 1990, modified 2017]
 
 
EC 2.4.1.261     Relevance: 80.4%
Accepted name: dolichyl-P-Man:Man8GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase; Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues: the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G. and Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (2009) 910–917. [DOI] [PMID: 19451548]
2.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
[EC 2.4.1.261 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.261, modified 2012]
 
 
EC 3.2.1.106     Relevance: 80.2%
Accepted name: mannosyl-oligosaccharide glucosidase
Reaction: Glc3Man9GlcNAc2-[protein] + H2O = Glc2Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc3Man9GlcNAc2 = [α-D-Glc-(1→2)-α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Glc2Man9GlcNAc2-[protein] = [α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Other name(s): Glc3Man9NAc2 oligosaccharide glucosidase; trimming glucosidase I; CWH41 (gene name); MOGS (gene name); mannosyl-oligosaccharide glucohydrolase
Systematic name: Glc3Man9GlcNAc2-[protein] glucohydrolase (configuration-inverting)
Comments: This enzyme catalyses the first step in the processing of the N-glycan tetradecasaccharide precursor Glc3Man9GlcNAc2, which takes place in the endoplasmic reticulum, by removing the distal α-1,2-linked glucose residue. This and subsequent processing steps are required before complex N-glycans can be synthesized.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 78413-07-7
References:
1.  Elting, J.J., Chen, W.W. and Lennarz, J. Characterization of a glucosidase involved in an initial step in the processing of oligosaccharide chains. J. Biol. Chem. 255 (1980) 2325–2331. [PMID: 7358674]
2.  Grinna, L.S. and Robbins, P.W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J. Biol. Chem. 254 (1979) 8814–8818. [PMID: 479161]
3.  Kilker, R.D., Saunier, B., Tkacz, J.S. and Herscovics, A. Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J. Biol. Chem. 256 (1981) 5299–5603. [PMID: 7014569]
4.  Grinna, L.S. and Robbins, P.W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J. Biol. Chem. 255 (1980) 2255–2258. [PMID: 7358666]
5.  Mark, M.J. and Kornfeld, S. Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. Arch. Biochem. Biophys. 199 (1980) 249–258. [DOI] [PMID: 7356331]
[EC 3.2.1.106 created 1984, modified 2018]
 
 
EC 2.4.1.383     Relevance: 80.2%
Accepted name: GDP-Man:α-L-Rha-(1→3)-α-D-Gal-PP-Und β-1,4-mannosyltransferase
Reaction: GDP-α-D-mannose + α-L-Rha-(1→3)-α-D-Gal-PP-Und = GDP + β-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
β-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = β-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaO (gene name); rfbO (gene name)
Systematic name: GDP-α-D-mannose:α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 4II-β-mannosyltransferase (configuration inverting)
Comments: The enzyme participates in the biosynthesis of the O antigens produced by group E and D2 strains of the pathogenic bacterium Salmonella enterica.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xiang, S.H., Hobbs, M. and Reeves, P.R. Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J. Bacteriol. 176 (1994) 4357–4365. [DOI] [PMID: 8021222]
2.  Zhao, Y., Biggins, J. B. and Thorson, J. S. Acceptor specificity of Salmonella GDP-Man:α-L-Rha-(1→3)-α-D- Gal- PP-Und β(1→4)-mannosyltransferase: A simplified assay based on unnatural acceptors. J. Am. Chem. Soc. 120 (1998) 12986–12987. [DOI]
3.  Zhao, Y. and Thorson, J.S. Chemoenzymatic synthesis of the Salmonella group E1 core trisaccharide using a recombinant β-(1-→4)-mannosyltransferase. Carbohydr. Res. 319 (1999) 184–191. [DOI] [PMID: 10520265]
[EC 2.4.1.383 created 2021]
 
 
EC 2.4.1.260     Relevance: 80.1%
Accepted name: dolichyl-P-Man:Man7GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-α-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG12; ALG12 mannosyltransferase; ALG12 α1,6mannosyltransferase; dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase; dolichyl-P-Man:Man7GlcNAc2-PP-dolichyl α6-mannosyltransferase; EBS4; Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,6-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 6-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
2.  Hong, Z., Jin, H., Fitchette, A.C., Xia, Y., Monk, A.M., Faye, L. and Li, J. Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell 21 (2009) 3792–3802. [DOI] [PMID: 20023196]
3.  Cipollo, J.F. and Trimble, R.B. The Saccharomyces cerevisiae alg12δ mutant reveals a role for the middle-arm α1,2Man- and upper-arm α1,2Manα1,6Man- residues of Glc3Man9GlcNAc2-PP-Dol in regulating glycoprotein glycan processing in the endoplasmic reticulum and Golgi apparatus. Glycobiology 12 (2002) 749–762. [PMID: 12460943]
4.  Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M. and Hennet, T. ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum. Mol. Genet. 11 (2002) 2331–2339. [DOI] [PMID: 12217961]
[EC 2.4.1.260 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.160, modified 2012]
 
 
EC 2.4.1.309     Relevance: 79.9%
Accepted name: UDP-Gal:α-L-Fuc-1,2-β-Gal-1,3-α-GalNAc-1,3-α-GalNAc-diphosphoundecaprenol α-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-Fuc-(1→2)-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-Gal-(1→3)-(α-L-Fuc-(1→2))-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbnI
Systematic name: UDP-α-D-galactose:α-L-Fuc-(1→2)-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol α-1,3-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of the bacterium Escherichia coli serotype O86.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yi, W., Shao, J., Zhu, L., Li, M., Singh, M., Lu, Y., Lin, S., Li, H., Ryu, K., Shen, J., Guo, H., Yao, Q., Bush, C.A. and Wang, P.G. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J. Am. Chem. Soc. 127 (2005) 2040–2041. [DOI] [PMID: 15713070]
2.  Yi, W., Zhu, L., Guo, H., Li, M., Li, J. and Wang, P.G. Formation of a new O-polysaccharide in Escherichia coli O86 via disruption of a glycosyltransferase gene involved in O-unit assembly. Carbohydr. Res. 341 (2006) 2254–2260. [DOI] [PMID: 16839526]
3.  Woodward, R., Yi, W., Li, L., Zhao, G., Eguchi, H., Sridhar, P.R., Guo, H., Song, J.K., Motari, E., Cai, L., Kelleher, P., Liu, X., Han, W., Zhang, W., Ding, Y., Li, M. and Wang, P.G. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6 (2010) 418–423. [DOI] [PMID: 20418877]
[EC 2.4.1.309 created 2013]
 
 
EC 5.4.99.66     Relevance: 79.6%
Accepted name: α-onocerin synthase
Reaction: pre-α-onocerin = α-onocerin
For diagram of α-onocerin biosynthesis, click here
Glossary: α-onocerin = 8,14-secogammacera-8(26),14(27)-diene-3β,21α-diol
pre-α-onocerin = (21S)-21,22-epoxypolypoda-8(26)-13,17-trien-3β-ol
Other name(s): LCD
Systematic name: pre-α-onocerin mutase (cyclizing, α-onocerin-forming)
Comments: Isolated from the plant Lycopodium clavatum.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Araki, T., Saga, Y., Marugami, M., Otaka, J., Araya, H., Saito, K., Yamazaki, M., Suzuki, H. and Kushiro, T. Onocerin biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopodium clavatum. ChemBioChem 17 (2016) 288–290. [DOI] [PMID: 26663356]
[EC 5.4.99.66 created 2017]
 
 
EC 3.2.1.55     Relevance: 79.6%
Accepted name: non-reducing end α-L-arabinofuranosidase
Reaction: Hydrolysis of terminal non-reducing α-L-arabinofuranoside residues in α-L-arabinosides.
Other name(s): arabinosidase (ambiguous); α-arabinosidase; α-L-arabinosidase; α-arabinofuranosidase; polysaccharide α-L-arabinofuranosidase; α-L-arabinofuranoside hydrolase; L-arabinosidase (ambiguous); α-L-arabinanase
Systematic name: α-L-arabinofuranoside non-reducing end α-L-arabinofuranosidase
Comments: The enzyme acts on α-L-arabinofuranosides, α-L-arabinans containing (1,3)- and/or (1,5)-linkages, arabinoxylans and arabinogalactans. Some β-galactosidases (EC 3.2.1.23) and β-D-fucosidases (EC 3.2.1.38) also hydrolyse α-L-arabinosides. cf. EC 3.2.1.185, non-reducing end β-L-arabinofuranosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9067-74-7
References:
1.  Tagawa, K. and Kaji, A. Preparation of L-arabinose-containing polysaccharides and the action of an α-L-arabinofuranosidase on these polysaccharides. Carbohydr. Res. 11 (1969) 293–301.
2.  Kaji, A. and Tagawa, K. Purification, crystallization and amino acid composition of α-L-arabinofuranosidase from Aspergillus niger. Biochim. Biophys. Acta 207 (1970) 456–464. [DOI] [PMID: 5452669]
3.  Kaji, A. and Yoshihara, O. Properties of purified α-L-arabinofuranosidase from Corticium rolfsii. Biochim. Biophys. Acta 250 (1971) 367–371. [DOI] [PMID: 5143344]
4.  Margolles-Clark, E., Tenkanen, M., Nakari-Setala, T. and Penttila, M. Cloning of genes encoding α-L-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 62 (1996) 3840–3846. [PMID: 8837440]
5.  Inacio, J.M., Correia, I.L. and de Sa-Nogueira, I. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 154 (2008) 2719–2729. [DOI] [PMID: 18757805]
[EC 3.2.1.55 created 1972, modified 1976 (EC 3.2.1.79 created 1972, incorporated 1976), modified 2013]
 
 
EC 2.4.1.125     Relevance: 79.6%
Accepted name: sucrose—1,6-α-glucan 3(6)-α-glucosyltransferase
Reaction: (1) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + [(1→6)-α-D-glucosyl]n+1
(2) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + (1→3)-α-D-glucosyl-[(1→6)-α-D-glucosyl]n
Other name(s): water-soluble-glucan synthase (misleading); GTF-I; GTF-S; GTF-SI; sucrose-1,6-α-glucan 3(6)-α-glucosyltransferase; sucrose:1,6-α-D-glucan 3-α- and 6-α-glucosyltransferase; sucrose:1,6-, 1,3-α-D-glucan 3-α- and 6-α-D-glucosyltransferase; sucrose:1,6-α-D-glucan 3(6)-α-D-glucosyltransferase; gtfB (gene name); gtfC (gene name); gtfD (gene name)
Systematic name: sucrose:(1→6)-α-D-glucan 3(6)-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme extends (1→6)-α-D-glucans by both α(1→3) and α(1→6) linkages, with one of the linkage types being dominant. cf. EC 2.4.1.140, alternansucrase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81725-87-3
References:
1.  Mukasa, H., Shimamura, A. and Tsumori, H. Purification and characterization of basic glucosyltransferase from Streptococcus mutans serotype c. Biochim. Biophys. Acta 719 (1982) 81–89. [DOI] [PMID: 6216919]
2.  Shimamura, A., Tsumori, H. and Mukasa, H. Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim. Biophys. Acta 702 (1982) 72–80. [DOI] [PMID: 6461359]
3.  Tsumori, H., Shimamura, A. and Mukasa, H. Purification and properties of extracellular glucosyltransferase synthesizing 1,6-, 1,3-α-D-glucan from Streptococcus mutans serotype a. J. Gen. Microbiol. 131 (1985) 3347–3353. [DOI] [PMID: 2937877]
4.  Fujiwara, T., Tamesada, M., Bian, Z., Kawabata, S., Kimura, S. and Hamada, S. Deletion and reintroduction of glucosyltransferase genes of Streptococcus mutans and role of their gene products in sucrose dependent cellular adherence. Microb Pathog 20 (1996) 225–233. [DOI] [PMID: 8737492]
5.  Monchois, V., Willemot, R.M. and Monsan, P. Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23 (1999) 131–151. [DOI] [PMID: 10234842]
6.  Ito, K., Ito, S., Shimamura, T., Weyand, S., Kawarasaki, Y., Misaka, T., Abe, K., Kobayashi, T., Cameron, A.D. and Iwata, S. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408 (2011) 177–186. [DOI] [PMID: 21354427]
[EC 2.4.1.125 created 1984]
 
 
EC 3.2.1.141     Relevance: 79.4%
Accepted name: 4-α-D-{(1→4)-α-D-glucano}trehalose trehalohydrolase
Reaction: hydrolysis of (1→4)-α-D-glucosidic linkage in 4-α-D-[(1→4)-α-D-glucanosyl]n trehalose to yield trehalose and (1→4)-α-D-glucan
Other name(s): malto-oligosyltrehalose trehalohydrolase
Systematic name: 4-α-D-[(1→4)-α-D-glucano]trehalose glucanohydrolase (trehalose-producing)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 170780-50-4
References:
1.  Maruta, K., Nakada, T., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci. Biotechnol. Biochem. 59 (1995) 1829–1834. [DOI] [PMID: 8534970]
2.  Nakada, T., Maruta, K., Mitsuzumi, H., Kubota, M., Chaen, H., Sugimoto, T. , Kurimoto M., Tsujisaka, Y. Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem. 59 (1995) 2215–2218. [DOI] [PMID: 8611745]
3.  Nakada, T., Ikegami, S., Chaen, H., Kubota, M., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotechnol. Biochem. 60 (1996) 267–270. [PMID: 9063974]
[EC 3.2.1.141 created 1999]
 
 
EC 2.4.1.231     Relevance: 79.2%
Accepted name: α,α-trehalose phosphorylase (configuration-retaining)
Reaction: α,α-trehalose + phosphate = α-D-glucose + α-D-glucose 1-phosphate
For diagram of the reactions of trehalose phosphorylase, click here
Other name(s): trehalose phosphorylase[ambiguous]
Systematic name: α,α-trehalose:phosphate α-D-glucosyltransferase
Comments: Unlike EC 2.4.1.64, α,α-trehalose phosphorylase, this enzyme retains its anomeric configuration. Vanadate is a strong competitive inhibitor of this reversible reaction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Eis, C. and Nidetzky, B. Substrate-binding recognition and specificity of trehalose phosphorylase from Schizophyllum commune examined in steady-state kinetic studies with deoxy and deoxyfluoro substrate analogues and inhibitors. Biochem. J. 363 (2002) 335–340. [PMID: 11931662]
2.  Eis, C., Watkins, M., Prohaska, T. and Nidetzky, B. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem. J. 356 (2001) 757–767. [PMID: 11389683]
3.  Nidetzky, B. and Eis, C. α-Retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors. Biochem. J. 360 (2001) 727–736. [PMID: 11736665]
[EC 2.4.1.231 created 2003]
 
 
EC 3.2.1.22     Relevance: 79%
Accepted name: α-galactosidase
Reaction: Hydrolysis of terminal, non-reducing α-D-galactose residues in α-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids
Other name(s): melibiase; α-D-galactosidase; α-galactosidase A; α-galactoside galactohydrolase
Systematic name: α-D-galactoside galactohydrolase
Comments: Also hydrolyses α-D-fucosides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-35-8
References:
1.  Suzuki, H., Li, S.-C. and Li, Y.-T. α-Galactosidase from Mortierella vinacea. Crystallization and properties. J. Biol. Chem. 245 (1970) 781–786. [PMID: 5418105]
2.  Wiederschain, G. and Beyer, E. [Interrelation of α-D-fucosidase and α-D-galactosidase activities in man and animals] Dokl. Akad. Nauk S.S.S.R. 231 (1976) 486–488. [PMID: 976079]
[EC 3.2.1.22 created 1961]
 
 
EC 2.4.1.379     Relevance: 78.5%
Accepted name: GDP-Man:α-D-Gal-diphosphoundecaprenol α-1,3-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-galactosyl-diphospho-ditrans-octacis-undecaprenol = GDP + α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaZ (gene name); rfbZ (gene name)
Systematic name: GDP-α-D-mannose:α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.379 created 2021]
 
 
EC 2.4.1.342     Relevance: 78.4%
Accepted name: α-maltose-1-phosphate synthase
Reaction: ADP-α-D-glucose + α-D-glucose-1-phosphate = ADP + α-maltose-1-phosphate
Glossary: maltose = α-D-glucopyranosyl-(1→4)-D-glucose
Other name(s): glgM (gene name)
Systematic name: ADP-α-D-glucose:α-D-glucose-1-phosphate 4-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme, found in Mycobacteria, can also use UDP-α-D-glucose with much lower catalytic efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koliwer-Brandl, H., Syson, K., van de Weerd, R., Chandra, G., Appelmelk, B., Alber, M., Ioerger, T.R., Jacobs, W.R., Jr., Geurtsen, J., Bornemann, S. and Kalscheuer, R. Metabolic network for the biosynthesis of intra- and extracellular α-glucans required for virulence of Mycobacterium tuberculosis. PLoS Pathog. 12 (2016) e1005768. [DOI] [PMID: 27513637]
[EC 2.4.1.342 created 2016]
 
 
EC 3.2.1.133     Relevance: 78.4%
Accepted name: glucan 1,4-α-maltohydrolase
Reaction: hydrolysis of (1→4)-α-D-glucosidic linkages in polysaccharides so as to remove successive α-maltose residues from the non-reducing ends of the chains
Other name(s): maltogenic α-amylase; 1,4-α-D-glucan α-maltohydrolase
Systematic name: 4-α-D-glucan α-maltohydrolase
Comments: Acts on starch and related polysaccharides and oligosaccharides. The product is α-maltose; cf. EC 3.2.1.2 β-amylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 160611-47-2
References:
1.  Diderichsen, B. and Christiansen, L. Cloning of a maltogenic α-amylase from Bacillus stearothermophilus. FEMS Microbiol. Lett. 56 (1988) 53–59.
2.  Outtrup, H. and Norman, B.E. Properties and application of a thermostable maltogenic amylase produced by a strain of Bacillus modified by recombinant-DNA techniques. Stärke 36 (1984) 405–411.
[EC 3.2.1.133 created 1992, modified 1999]
 
 
EC 2.8.2.37     Relevance: 78.3%
Accepted name: trehalose 2-sulfotransferase
Reaction: 3′-phosphoadenylyl sulfate + α,α-trehalose = adenosine 3′,5′-bisphosphate + 2-O-sulfo-α,α-trehalose
Glossary: 2-O-sulfo-α,α-trehalose = trehalose 2-sulfate = α-D-glucopyranosyl 2-O-sulfo-α-D-glucopyranoside
Other name(s): Stf0 sulfotransferase; 3′-phosphoadenylyl-sulfate:α,α-trehalose 2-sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:α,α-trehalose 2-sulfonotransferase
Comments: The sulfation of trehalose in the bacterium Mycobacterium tuberculosis is required for the biosynthesis of sulfolipid-1.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mougous, J.D., Petzold, C.J., Senaratne, R.H., Lee, D.H., Akey, D.L., Lin, F.L., Munchel, S.E., Pratt, M.R., Riley, L.W., Leary, J.A., Berger, J.M. and Bertozzi, C.R. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat. Struct. Mol. Biol. 11 (2004) 721–729. [DOI] [PMID: 15258569]
2.  Pi, N., Hoang, M.B., Gao, H., Mougous, J.D., Bertozzi, C.R. and Leary, J.A. Kinetic measurements and mechanism determination of Stf0 sulfotransferase using mass spectrometry. Anal. Biochem. 341 (2005) 94–104. [DOI] [PMID: 15866533]
[EC 2.8.2.37 created 2014]
 
 
EC 2.4.1.167     Relevance: 77.6%
Accepted name: sucrose 6F-α-galactosyltransferase
Reaction: UDP-α-D-galactose + sucrose = UDP + 6F-α-D-galactosylsucrose
Other name(s): uridine diphosphogalactose-sucrose 6F-α-galactosyltransferase; UDPgalactose:sucrose 6fru-α-galactosyltransferase; sucrose 6F-α-galactotransferase; UDP-galactose:sucrose 6F-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sucrose 6F-α-D-galactosyltransferase
Comments: The enzyme is involved in the synthesis of the trisaccharide planteose and higher analogues in the seeds of Plantago and Sesamum species.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 92480-04-1
References:
1.  Hopf, H., Spanfelner, M. and Kandler, O. Planteose synthesis in seeds of Sesamum indicum L. Z. Pflanzenphysiol. 114 (1984) 485–492.
[EC 2.4.1.167 created 1989]
 
 
EC 2.4.1.362     Relevance: 77.1%
Accepted name: α-(1→3) branching sucrase
Reaction: sucrose + a (1→6)-α-D-glucan = D-fructose + a (1→6)-α-D-glucan containing a (1→3)-α-D-glucose branch
Other name(s): branching sucrase A; BRS-A; brsA (gene name)
Systematic name: sucrose:(1→6)-α-D-glucan 3-α-D-[(1→3)-α-D-glucosyl]-transferase
Comments: The enzyme from Leuconostoc spp. is responsible for producing α-(1→3) branches in α-(1→6) glucans by transferring the glucose residue from fructose to a 3-hydroxyl group of a glucan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vuillemin, M., Claverie, M., Brison, Y., Severac, E., Bondy, P., Morel, S., Monsan, P., Moulis, C. and Remaud-Simeon, M. Characterization of the first α-(1→3) branching sucrases of the GH70 family. J. Biol. Chem. 291 (2016) 7687–7702. [PMID: 26763236]
2.  Moulis, C., Andre, I. and Remaud-Simeon, M. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell. Mol. Life Sci. 73 (2016) 2661–2679. [PMID: 27141938]
[EC 2.4.1.362 created 2019]
 
 
EC 3.2.1.139     Relevance: 76.8%
Accepted name: α-glucuronidase
Reaction: an α-D-glucuronoside + H2O = an alcohol + D-glucuronate
Other name(s): α-glucosiduronase
Systematic name: α-D-glucosiduronate glucuronohydrolase
Comments: Considerable differences in the specificities of the enzymes from different fungi for α-D-glucosiduronates have been reported. Activity is also found in the snail.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37259-81-7
References:
1.  Puls, J. α-Glucuronidases in the hydrolysis of wood xylans. In: Visser, J., Kusters van Someren, M.A., Beldman, G. and Voragen, A.G.J. (Ed.), Xylans and Xylanases, Elsevier, Amsterdam, 1992, pp. 213–224.
2.  Uchida, H., Nanri, T., Kawabata, Y., Kusakabe, I., Murakami, K. Purification and characterization of intracellular α-glucuronidase from Aspergillus niger. Biosci. Biotechnol. Biochem. 56 (1992) 1608–1615.
[EC 3.2.1.139 created 1999]
 
 
EC 2.4.1.259     Relevance: 76.6%
Accepted name: dolichyl-P-Man:Man6GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase; Dol-P-Man:Man6GlcNAc2-PP-Dol α-1,2-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,2-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues - the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G. and Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (2009) 910–917. [DOI] [PMID: 19451548]
2.  Cipollo, J.F. and Trimble, R.B. The accumulation of Man(6)GlcNAc(2)-PP-dolichol in the Saccharomyces cerevisiae Δalg9 mutant reveals a regulatory role for the Alg3p α1,3-Man middle-arm addition in downstream oligosaccharide-lipid and glycoprotein glycan processing. J. Biol. Chem. 275 (2000) 4267–4277. [DOI] [PMID: 10660594]
3.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
[EC 2.4.1.259 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.259, modified 2012]
 
 
EC 3.2.1.50     Relevance: 76.5%
Accepted name: α-N-acetylglucosaminidase
Reaction: Hydrolysis of terminal non-reducing N-acetyl-D-glucosamine residues in N-acetyl-α-D-glucosaminides
Other name(s): α-acetylglucosaminidase; N-acetyl-α-D-glucosaminidase; N-acetyl-α-glucosaminidase; α-D-2-acetamido-2-deoxyglucosidase
Systematic name: α-N-acetyl-D-glucosaminide N-acetylglucosaminohydrolase
Comments: Hydrolyses UDP-N-acetylglucosamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37288-40-7
References:
1.  von Figura, K. Human α-N-acetylglucosaminidase. 1. Purification and properties. Eur. J. Biochem. 80 (1977) 523–533. [PMID: 411658]
2.  von Figura, K. Human α-N-acetylglucosaminidase. 2. Activity towards natural substrates and multiple recognition forms. Eur. J. Biochem. 80 (1977) 535–542. [DOI] [PMID: 923593]
3.  Weissmann, B., Rowen, G., Marshall, J. and Friederici, D. Mammalian α-acetylglucosaminidase. Enzymic properties, tissue distribution, and intracellular localization. Biochemistry 6 (1967) 207–214. [PMID: 4291567]
4.  Werries, E., Wollek, E., Gottschalk, A. and Buddecke, E. Separation of N-acetyl-α-glucosaminidase and N-acetyl-α-galactosaminidase from ox spleen. Cleavage of the O-glycosidic linkage between carbohydrate and polypeptide in ovine and bovine submaxillary glycoprotein by N-acetyl-α-galactosaminidase. Eur. J. Biochem. 10 (1969) 445–449. [DOI] [PMID: 5348072]
[EC 3.2.1.50 created 1972]
 
 
EC 3.2.1.59     Relevance: 76.1%
Accepted name: glucan endo-1,3-α-glucosidase
Reaction: Endohydrolysis of (1→3)-α-D-glucosidic linkages in isolichenin, pseudonigeran and nigeran
Other name(s): endo-1,3-α-glucanase; mutanase; endo-(1→3)-α-glucanase; cariogenase; cariogenanase; endo-1,3-α-D-glucanase; 1,3(1,3;1,4)-α-D-glucan 3-glucanohydrolase
Systematic name: 3-α-D-glucan 3-glucanohydrolase
Comments: Products from pseudonigeran (1,3-α-D-glucan) are nigerose and α-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-84-7
References:
1.  Hasegawa, S., Nordin, J.H. and Kirkwood, S. Enzymes that hydrolyze fungal cell wall polysaccharides. I. Purification and properties of an endo-α-D-(1-3)-glucanase from Trichoderma. J. Biol. Chem. 244 (1969) 5460–5470. [PMID: 5388595]
[EC 3.2.1.59 created 1972]
 
 
EC 3.2.1.49     Relevance: 75.6%
Accepted name: α-N-acetylgalactosaminidase
Reaction: Cleavage of non-reducing α-(1→3)-N-acetylgalactosamine residues from human blood group A and AB mucin glycoproteins, Forssman hapten and blood group A lacto series glycolipids
Other name(s): α-acetylgalactosaminidase; N-acetyl-α-D-galactosaminidase; N-acetyl-α-galactosaminidase; α-NAGAL; α-NAGA; α-GalNAcase
Systematic name: α-N-acetyl-D-galactosaminide N-acetylgalactosaminohydrolase
Comments: The human lysosomal enzyme is involved in the degradation of blood type A epitope.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-63-2
References:
1.  Asfaw, B., Schindler, D., Ledvinova, J., Cerny, B., Smid, F. and Conzelmann, E. Degradation of blood group A glycolipid A-6-2 by normal and mutant human skin fibroblasts. J. Lipid Res. 39 (1998) 1768–1780. [PMID: 9741689]
2.  Zhu, A., Monahan, C., Wang, Z.K. and Goldstein, J. Expression, purification, and characterization of recombinant α-N-acetylgalactosaminidase produced in the yeast Pichia pastoris. Protein Expr. Purif. 8 (1996) 456–462. [DOI] [PMID: 8954893]
3.  Clark, N.E. and Garman, S.C. The 1.9 Å structure of human α-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases. J. Mol. Biol. 393 (2009) 435–447. [DOI] [PMID: 19683538]
4.  Hoskins, L.C., Boulding, E.T. and Larson, G. Purification and characterization of blood group A-degrading isoforms of α-N-acetylgalactosaminidase from Ruminococcus torques strain IX-70. J. Biol. Chem. 272 (1997) 7932–7939. [DOI] [PMID: 9065462]
5.  Harun-Or-Rashid, M., Matsuzawa, T., Satoh, Y., Shiraishi, T., Ando, M., Sadik, G. and Uda, Y. Purification and characterization of α-N-acetylgalactosaminidases I and II from the starfish Asterina amurensis. Biosci. Biotechnol. Biochem. 74 (2010) 256–261. [DOI] [PMID: 20139603]
6.  Weignerova, L., Filipi, T., Manglova, D. and Kren, V. Induction, purification and characterization of α-N-acetylgalactosaminidase from Aspergillus niger. Appl. Microbiol. Biotechnol. 79 (2008) 769–774. [DOI] [PMID: 18443780]
7.  Ashida, H., Tamaki, H., Fujimoto, T., Yamamoto, K. and Kumagai, H. Molecular cloning of cDNA encoding α-N-acetylgalactosaminidase from Acremonium sp. and its expression in yeast. Arch. Biochem. Biophys. 384 (2000) 305–310. [DOI] [PMID: 11368317]
[EC 3.2.1.49 created 1972, modified 2011]
 
 
EC 3.2.1.99     Relevance: 75.5%
Accepted name: arabinan endo-1,5-α-L-arabinanase
Reaction: Endohydrolysis of (1→5)-α-arabinofuranosidic linkages in (1→5)-arabinans
Other name(s): endo-1,5-α-L-arabinanase; endo-α-1,5-arabanase; endo-arabanase; 1,5-α-L-arabinan 1,5-α-L-arabinanohydrolase; arabinan endo-1,5-α-L-arabinosidase (misleading)
Systematic name: 5-α-L-arabinan 5-α-L-arabinanohydrolase
Comments: Acts best on linear 1,5-α-L-arabinan. Also acts on branched arabinan, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 75432-96-1
References:
1.  Kaji, A. and Saheki, T. Endo-arabinanase from Bacillus subtilis F-11. Biochim. Biophys. Acta 410 (1975) 354–360. [DOI] [PMID: 1096]
2.  Weinstein, L. and Albersheim, P. Structure of plant cell walls. IX. Purification and partial characterization of a wall-degrading endo-arabinase and an arabinosidase from Bacillus subtilis. Plant Physiol. 63 (1979) 425–432. [PMID: 16660741]
3.  Flipphi, M.J., Panneman, H., van der Veen, P., Visser, J. and de Graaff, L.H. Molecular cloning, expression and structure of the endo-1,5-α-L-arabinase gene of Aspergillus niger. Appl. Microbiol. Biotechnol. 40 (1993) 318–326. [PMID: 7764386]
4.  Leal, T.F. and de Sa-Nogueira, I. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241 (2004) 41–48. [DOI] [PMID: 15556708]
[EC 3.2.1.99 created 1981, modified 2011]
 
 
EC 3.2.1.82     Relevance: 75.4%
Accepted name: exo-poly-α-digalacturonosidase
Reaction: [(1→4)-α-D-galacturonosyl]n + H2O = α-D-galacturonosyl-(1→4)-D-galacturonate + [(1→4)-α-D-galacturonosyl]n-2
Other name(s): pehX (gene name); poly(1,4-α-D-galactosiduronate) digalacturonohydrolase; exopolygalacturonosidase (misleading); poly[(1→4)-α-D-galactosiduronate] digalacturonohydrolase; exo-poly-α-galacturonosidase
Systematic name: poly[(1→4)-α-D-galactosiduronate] non-reducing-end-digalacturonohydrolase
Comments: The enzyme, characterized from bacteria, hydrolyses the second α-1,4-glycosidic bond from the non-reducing end of polygalacturonate, releasing digalacturonate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37288-58-7
References:
1.  Hasegawa, H. and Nagel, C.W. Isolation of an oligogalacturonate hydrolase from a Bacillus species. Arch. Biochem. Biophys. 124 (1968) 513–520. [DOI] [PMID: 5661621]
2.  Hatanaka, C. and Ozawa, J. Enzymic degradation of pectic acid. XIII. New exopolygalacturonase producing digalacturonic acid from pectic acid. J. Agric. Chem. Soc. Jpn.. 43 (1968) 764–772.
3.  Hatanaka, C. and Ozawa, J. Ber. des O'Hara Inst. 15 (1971) 47.
4.  He, S.Y. and Collmer, A. Molecular cloning, nucleotide sequence, and marker exchange mutagenesis of the exo-poly-α-D-galacturonosidase-encoding pehX gene of Erwinia chrysanthemi EC16. J. Bacteriol. 172 (1990) 4988–4995. [PMID: 2168372]
[EC 3.2.1.82 created 1972, modified 2019]
 
 
EC 3.2.1.116     Relevance: 75.4%
Accepted name: glucan 1,4-α-maltotriohydrolase
Reaction: Hydrolysis of (1→4)-α-D-glucosidic linkages in amylaceous polysaccharides, to remove successive maltotriose residues from the non-reducing chain ends
Other name(s): exo-maltotriohydrolase; maltotriohydrolase; 1,4-α-D-glucan maltotriohydrolase
Systematic name: 4-α-D-glucan maltotriohydrolase
Comments: cf. EC 3.2.1.2 (β-amylase), EC 3.2.1.60 (glucan 1,4-α-maltotetraohydrolase) and EC 3.2.1.98 (glucan 1,4-α-maltohexaosidase). The products have the α-configuration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 91273-84-6
References:
1.  Nakakuki, T., Azuma, K. and Kainuma, K. Action patterns of various exo-amylases and the anomeric configurations of their products. Carbohydr. Res. 128 (1984) 297–310.
[EC 3.2.1.116 created 1989]
 
 
EC 2.4.1.2     Relevance: 74.9%
Accepted name: dextrin dextranase
Reaction: [(1→4)-α-D-glucosyl]n + [(1→6)-α-D-glucosyl]m = [(1→4)-α-D-glucosyl]n-1 + [(1→6)-α-D-glucosyl]m+1
Other name(s): dextrin 6-glucosyltransferase; dextran dextrinase; 1,4-α-D-glucan:1,6-α-D-glucan 6-α-D-glucosyltransferase
Systematic name: (1→4)-α-D-glucan:(1→6)-α-D-glucan 6-α-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9032-13-7
References:
1.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
2.  Hehre, E.J. and Hamilton, D.M. Bacterial conversion of dextrin into a polysaccharide with the serological properties of dextran. Proc. Soc. Exp. Biol. Med. 71 (1949) 336–339. [PMID: 18136472]
3.  Hehre, E.J. and Hamilton, D.M. The biological synthesis of dextran from dextrins. J. Biol. Chem. 192 (1953) 161–174. [PMID: 14917661]
[EC 2.4.1.2 created 1961]
 
 
EC 2.4.1.347     Relevance: 74.8%
Accepted name: α,α-trehalose-phosphate synthase (ADP-forming)
Reaction: ADP-α-D-glucose + D-glucose 6-phosphate = ADP + α,α-trehalose 6-phosphate
Other name(s): otsA (gene name); ADP-glucose—glucose-phosphate glucosyltransferase
Systematic name: ADP-α-D-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme has been reported from the yeast Saccharomyces cerevisiae and from mycobacteria. The enzyme from Mycobacterium tuberculosis can also use UDP-α-D-glucose, but the activity with ADP-α-D-glucose, which is considered the main substrate in vivo, is higher.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-07-3
References:
1.  Ferreira, J.C., Thevelein, J.M., Hohmann, S., Paschoalin, V.M., Trugo, L.C. and Panek, A.D. Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim. Biophys. Acta 1335 (1997) 40–50. [DOI] [PMID: 9133641]
2.  Pan, Y.T., Carroll, J.D. and Elbein, A.D. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur. J. Biochem. 269 (2002) 6091–6100. [DOI] [PMID: 12473104]
3.  Asencion Diez, M.D., Demonte, A.M., Syson, K., Arias, D.G., Gorelik, A., Guerrero, S.A., Bornemann, S. and Iglesias, A.A. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim. Biophys. Acta 1850 (2015) 13–21. [DOI] [PMID: 25277548]
[EC 2.4.1.347 created 2017]
 
 


Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald