The Enzyme Database

Displaying entries 1-50 of 533.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.1     
Accepted name: alcohol dehydrogenase
Reaction: (1) a primary alcohol + NAD+ = an aldehyde + NADH + H+
(2) a secondary alcohol + NAD+ = a ketone + NADH + H+
For diagram of mevalonate biosynthesis, click here
Other name(s): aldehyde reductase; ADH; alcohol dehydrogenase (NAD); aliphatic alcohol dehydrogenase; ethanol dehydrogenase; NAD-dependent alcohol dehydrogenase; NAD-specific aromatic alcohol dehydrogenase; NADH-alcohol dehydrogenase; NADH-aldehyde dehydrogenase; primary alcohol dehydrogenase; yeast alcohol dehydrogenase
Systematic name: alcohol:NAD+ oxidoreductase
Comments: A zinc protein. Acts on primary or secondary alcohols or hemi-acetals with very broad specificity; however the enzyme oxidizes methanol much more poorly than ethanol. The animal, but not the yeast, enzyme acts also on cyclic secondary alcohols.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9031-72-5
References:
1.  Brändén, G.-I., Jörnvall, H., Eklund, H. and Furugren, B. Alcohol dehydrogenase. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 11, Academic Press, New York, 1975, pp. 103–190.
2.  Jörnvall, H. Differences between alcohol dehydrogenases. Structural properties and evolutionary aspects. Eur. J. Biochem. 72 (1977) 443–452. [DOI] [PMID: 320001]
3.  Negelein, E. and Wulff, H.-J. Diphosphopyridinproteid, Alkohol, Acetaldehyd. Biochem. Z. 293 (1937) 351–389.
4.  Sund, H. and Theorell, H. Alcohol dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 25–83.
5.  Theorell, H. Kinetics and equilibria in the liver alcohol dehydrogenase system. Adv. Enzymol. Relat. Subj. Biochem. 20 (1958) 31–49. [PMID: 13605979]
[EC 1.1.1.1 created 1961, modified 2011]
 
 
EC 1.1.1.2     
Accepted name: alcohol dehydrogenase (NADP+)
Reaction: an alcohol + NADP+ = an aldehyde + NADPH + H+
For diagram of mevalonate biosynthesis, click here
Other name(s): aldehyde reductase (NADPH2); NADP-alcohol dehydrogenase; NADP+-aldehyde reductase; NADP+-dependent aldehyde reductase; NADPH-aldehyde reductase; NADPH-dependent aldehyde reductase; nonspecific succinic semialdehyde reductase; ALR 1; low-Km aldehyde reductase; high-Km aldehyde reductase; alcohol dehydrogenase (NADP)
Systematic name: alcohol:NADP+ oxidoreductase
Comments: A zinc protein. Some members of this group oxidize only primary alcohols; others act also on secondary alcohols. May be identical with EC 1.1.1.19 (L-glucuronate reductase), EC 1.1.1.33 [mevaldate reductase (NADPH)] and EC 1.1.1.55 [lactaldehyde reductase (NADPH)]. Re-specific with respect to NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-12-0
References:
1.  Bosron, W.F. and Prairie, R.L. Triphosphopyridine nucleotide-linked aldehyde reductase. I. Purification and properties of the enzyme from pig kidney cortex. J. Biol. Chem. 247 (1972) 4480–4485. [PMID: 4402936]
2.  DeMoss, R. Triphosphopyridine nucleotide-specific ethanol dehydrogenase from Leuconostoc mesenteroides. Bacteriol. Proc. (1953) 81.
3.  Reeves, R.E., Montalvo, F.E. and Lushbaugh, T.S. Nicotinamide-adenine dinucleotide phosphate-dependent alcohol dehydrogenase. Enzyme from Entamoeba histolytica and some enzyme inhibitors. Int. J. Biochem. 2 (1971) 55–64.
4.  Tabakoff, B. and Erwin, V.G. Purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from brain. J. Biol. Chem. 245 (1970) 3263–3268. [PMID: 4393513]
[EC 1.1.1.2 created 1961]
 
 
EC 1.1.1.3     
Accepted name: homoserine dehydrogenase
Reaction: L-homoserine + NAD(P)+ = L-aspartate 4-semialdehyde + NAD(P)H + H+
For diagram of threonine biosynthesis, click here
Other name(s): HSDH; HSD
Systematic name: L-homoserine:NAD(P)+ oxidoreductase
Comments: The yeast enzyme acts most rapidly with NAD+; the Neurospora enzyme with NADP+. The enzyme from Escherichia coli is a multi-functional protein, which also catalyses the reaction of EC 2.7.2.4 (aspartate kinase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-13-1
References:
1.  Black, S. and Wright, N.G. Homoserine dehydrogenase. J. Biol. Chem. 213 (1955) 51–60. [PMID: 14353905]
2.  Starnes, W.L., Munk, P., Maul, S.B., Cunningham, G.N., Cox, D.J. and Shive, W. Threonine-sensitive aspartokinase-homoserine dehydrogenase complex, amino acid composition, molecular weight, and subunit composition of the complex. Biochemistry 11 (1972) 677–687. [PMID: 4551091]
3.  Véron, M., Falcoz-Kelly, F. and Cohen, G.N. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. The two catalytic activities are carried by two independent regions of the polypeptide chain. Eur. J. Biochem. 28 (1972) 520–527. [DOI] [PMID: 4562990]
[EC 1.1.1.3 created 1961, modified 1976]
 
 
EC 1.1.1.19     
Accepted name: glucuronate reductase
Reaction: L-gulonate + NADP+ = D-glucuronate + NADPH + H+
For diagram of mammalian ascorbic-acid biosynthesis, click here
Other name(s): L-hexonate:NADP dehydrogenase; TPN-L-gulonate dehydrogenase; NADP-L-gulonate dehydrogenase; D-glucuronate dehydrogenase; D-glucuronate reductase; L-glucuronate reductase (incorrect)
Systematic name: L-gulonate:NADP+ 6-oxidoreductase
Comments: Also reduces D-galacturonate. May be identical with EC 1.1.1.2 [alcohol dehydrogenase (NADP+)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-29-9
References:
1.  Sivak, A. and Hoffmann-Ostenhof, O. Enzymes of meso-inositol catabolism in the yeast Schwanniomyces occidentalis. Biochim. Biophys. Acta 53 (1961) 426–428. [DOI] [PMID: 13913518]
2.  von Wartburg, J.P. and Wermoth, B. Aldehyde reductase. In: Jakoby, W.B. (Ed.), Enzymatic Basis of Detoxication, vol. 1, Academic Press, New York, 1980, pp. 249–260.
3.  York, J.L., Grollman, A.P. and Bublitz, C. TPN-L-gulonate dehydrogenase. Biochim. Biophys. Acta 47 (1961) 298–306. [DOI] [PMID: 13787380]
[EC 1.1.1.19 created 1961]
 
 
EC 1.1.1.21     
Accepted name: aldose reductase
Reaction: alditol + NAD(P)+ = aldose + NAD(P)H + H+
For diagram of L-arabinose catabolism, click here
Other name(s): polyol dehydrogenase (NADP+); ALR2; alditol:NADP+ oxidoreductase; alditol:NADP+ 1-oxidoreductase; NADPH-aldopentose reductase; NADPH-aldose reductase; aldehyde reductase (misleading)
Systematic name: alditol:NAD(P)+ 1-oxidoreductase
Comments: Has wide specificity.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-31-3
References:
1.  Attwood, M.A. and Doughty, C.C. Purification and properties of calf liver aldose reductase. Biochim. Biophys. Acta 370 (1974) 358–368. [DOI] [PMID: 4216364]
2.  Boghosian, R.A. and McGuinness, E.T. Affinity purification and properties of porcine brain aldose reductase. Biochim. Biophys. Acta 567 (1979) 278–286. [DOI] [PMID: 36151]
3.  Hers, H.G. L’Aldose-réductase. Biochim. Biophys. Acta 37 (1960) 120–126. [DOI] [PMID: 14401390]
4.  Scher, B.M. and Horecker, B.L. Pentose metabolism in Candida. 3. The triphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis. Arch. Biochem. Biophys. 116 (1966) 117–128. [PMID: 4381350]
[EC 1.1.1.21 created 1961 (EC 1.1.1.139 created 1972, incorporated 1978), modified 2019]
 
 
EC 1.1.1.33      
Deleted entry: mevaldate reductase (NADPH), now included with EC 1.1.1.2, alcohol dehydrogenase (NADP+).
[EC 1.1.1.33 created 1961, deleted 2022]
 
 
EC 1.1.1.55     
Accepted name: lactaldehyde reductase (NADPH)
Reaction: propane-1,2-diol + NADP+ = L-lactaldehyde + NADPH + H+
Other name(s): lactaldehyde (reduced nicotinamide adenine dinucleotide phosphate) reductase; NADP-1,2-propanediol dehydrogenase; propanediol dehydrogenase; 1,2-propanediol:NADP+ oxidoreductase; lactaldehyde reductase (NADPH2)
Systematic name: propane-1,2-diol:NADP+ oxidoreductase
Comments: May be identical with EC 1.1.1.2 alcohol dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9028-43-7
References:
1.  Gupta, N.K. and Robinson, W.G. The enzymatic conversion of lactaldehyde to propanediol. J. Biol. Chem. 235 (1960) 1609–1612. [PMID: 13830319]
[EC 1.1.1.55 created 1965]
 
 
EC 1.1.1.59     
Accepted name: 3-hydroxypropionate dehydrogenase
Reaction: 3-hydroxypropanoate + NAD+ = 3-oxopropanoate + NADH + H+
Systematic name: 3-hydroxypropanoate:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9028-59-5
References:
1.  Den, H., Robinson, W.G. and Coon, M.J. Enzymatic conversion of β-hydroxypropionate to malonic semialdehyde. J. Biol. Chem. 234 (1959) 1666–1671. [PMID: 13672942]
[EC 1.1.1.59 created 1965]
 
 
EC 1.1.1.60     
Accepted name: 2-hydroxy-3-oxopropionate reductase
Reaction: D-glycerate + NAD(P)+ = 2-hydroxy-3-oxopropanoate + NAD(P)H + H+
Other name(s): tartronate semialdehyde reductase; (R)-glycerate:NAD(P)+ oxidoreductase
Systematic name: D-glycerate:NAD(P)+ oxidoreductase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-68-6
References:
1.  Gotto, A.M. and Kornberg, H.L. The metabolism of C2 compounds in micro-organisms. 7. Preparation and properties of crystalline tartronic semialdehyde reductase. Biochem. J. 81 (1961) 273–284. [PMID: 13900766]
[EC 1.1.1.60 created 1965]
 
 
EC 1.1.1.61     
Accepted name: 4-hydroxybutyrate dehydrogenase
Reaction: 4-hydroxybutanoate + NAD+ = succinate semialdehyde + NADH + H+
For diagram of the 3-hydroxypropanoate/4-hydroxybutanoate cycle and dicarboxylate/4-hydroxybutanoate cycle in archaea, click here
Other name(s): γ-hydroxybutyrate dehydrogenase
Systematic name: 4-hydroxybutanoate:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-60-8
References:
1.  Nirenberg, M.W. and Jakoby, W.B. Enzymatic utilization of γ-hydroxybutyric acid. J. Biol. Chem. 235 (1960) 954–960. [PMID: 14427301]
[EC 1.1.1.61 created 1965]
 
 
EC 1.1.1.70      
Deleted entry:  D-glucuronolactone dehydrogenase. Now included with EC 1.2.1.3 aldehyde dehydrogenase (NAD+)
[EC 1.1.1.70 created 1965, deleted 1978]
 
 
EC 1.1.1.71     
Accepted name: alcohol dehydrogenase [NAD(P)+]
Reaction: an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+
For diagram of retinal and derivatives biosynthesis, click here
Other name(s): retinal reductase (ambiguous); aldehyde reductase (NADPH/NADH); alcohol dehydrogenase [NAD(P)]
Systematic name: alcohol:NAD(P)+ oxidoreductase
Comments: Reduces aliphatic aldehydes of carbon chain length from 2 to 14, with greatest activity on C4, C6 and C8 aldehydes; also reduces retinal to retinol.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-10-5
References:
1.  Fidge, N.H. and Goodman, D.S. The enzymatic reduction of retinal to retinol in rat intestine. J. Biol. Chem. 243 (1968) 4372–4379. [PMID: 4300551]
[EC 1.1.1.71 created 1972]
 
 
EC 1.1.1.72     
Accepted name: glycerol dehydrogenase (NADP+)
Reaction: glycerol + NADP+ = D-glyceraldehyde + NADPH + H+
Other name(s): glycerol dehydrogenase (NADP)
Systematic name: glycerol:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 37250-11-6
References:
1.  Kormann, A.W., Hurst, R.O. and Flynn, T.G. Purification and properties of an NADP+-dependent glycerol dehydrogenase from rabbit skeletal muscle. Biochim. Biophys. Acta 258 (1972) 40–55. [DOI] [PMID: 4400494]
2.  Toews, C.J. The kinetics and reaction mechanism of the nicotinamide-adinine dinucleotide phosphate-specific glycerol dehydrogenase of rat skeletal muscle. Biochem. J. 105 (1967) 1067–1073. [PMID: 16742532]
[EC 1.1.1.72 created 1972]
 
 
EC 1.1.1.77     
Accepted name: lactaldehyde reductase
Reaction: (R)[or (S)]-propane-1,2-diol + NAD+ = (R)[or (S)]-lactaldehyde + NADH + H+
Other name(s): propanediol:nicotinamide adenine dinucleotide (NAD) oxidoreductase; L-lactaldehyde:propanediol oxidoreductase
Systematic name: (R)[or (S)]-propane-1,2-diol:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-15-0
References:
1.  Ting, S.-M., Sellinger, O.Z. and Miller, O.N. The metabolism of lactaldehyde. VI. The reduction of D- and L-lactaldehyde in rat liver. Biochim. Biophys. Acta 89 (1964) 217–225. [PMID: 14203169]
[EC 1.1.1.77 created 1972]
 
 
EC 1.1.1.78     
Accepted name: methylglyoxal reductase (NADH)
Reaction: (R)-lactaldehyde + NAD+ = 2-oxopropanal + NADH + H+
Glossary: 2-oxopropanal = methylglyoxal
Other name(s): methylglyoxal reductase; D-lactaldehyde dehydrogenase; methylglyoxal reductase (NADH-dependent)
Systematic name: (R)-lactaldehyde:NAD+ oxidoreductase
Comments: This mammalian enzyme differs from the yeast enzyme, EC 1.1.1.283, methylglyoxal reductase (NADPH), by its cosubstrate requirement, reaction direction, and enantiomeric preference.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-16-1
References:
1.  Ting, S.-M., Miller, O.N. and Sellinger, O.Z. The metabolism of lactaldehyde. VII. The oxidation of D-lactaldehyde in rat liver. Biochim. Biophys. Acta 97 (1965) 407–415. [DOI] [PMID: 14323585]
2.  Ray, M. and Ray, S. Purification and partial characterization of a methylglyoxal reductase from goat liver. Biochim. Biophys. Acta 802 (1984) 119–127. [DOI] [PMID: 6386056]
[EC 1.1.1.78 created 1972, modified 2005, modified 2013]
 
 
EC 1.1.1.90     
Accepted name: aryl-alcohol dehydrogenase
Reaction: an aromatic alcohol + NAD+ = an aromatic aldehyde + NADH + H+
Other name(s): p-hydroxybenzyl alcohol dehydrogenase; benzyl alcohol dehydrogenase; coniferyl alcohol dehydrogenase
Systematic name: aryl-alcohol:NAD+ oxidoreductase
Comments: A group of enzymes with broad specificity towards primary alcohols with an aromatic or cyclohex-1-ene ring, but with low or no activity towards short-chain aliphatic alcohols.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37250-26-3
References:
1.  Suhara, K., Takemori, S. and Katagiri, M. The purification and properties of benzylalcohol dehydrogenase from Pseudomonas sp. Arch. Biochem. Biophys. 130 (1969) 422–429. [DOI] [PMID: 5778658]
2.  Yamanaka, K. and Minoshima, R. Identification and characterization of a nicotinamide adenine dinucleotide-dependent para-hydroxybenzyl alcohol-dehydrogenase from Rhodopseudomonas acidophila M402. Agric. Biol. Chem. 48 (1984) 1161–1171.
[EC 1.1.1.90 created 1972, modified 1989]
 
 
EC 1.1.1.91     
Accepted name: aryl-alcohol dehydrogenase (NADP+)
Reaction: an aromatic alcohol + NADP+ = an aromatic aldehyde + NADPH + H+
Other name(s): aryl alcohol dehydrogenase (nicotinamide adenine dinucleotide phosphate); coniferyl alcohol dehydrogenase; NADPH-linked benzaldehyde reductase; aryl-alcohol dehydrogenase (NADP)
Systematic name: aryl-alcohol:NADP+ oxidoreductase
Comments: Also acts on some aliphatic aldehydes, but cinnamaldehyde was the best substrate found.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-27-4
References:
1.  Gross, G.G. and Zenk, M.H. Reduktionaromatische Säuren zu Aldehyden und Alkoholen im zellfreien System. 2. Reinigung und Eigenschaften von Aryl Alkohol:NADP-Oxidoreductase aus Neurospora crassa. Eur. J. Biochem. 8 (1969) 420–425. [DOI] [PMID: 4389864]
[EC 1.1.1.91 created 1972]
 
 
EC 1.1.1.97     
Accepted name: 3-hydroxybenzyl-alcohol dehydrogenase
Reaction: 3-hydroxybenzyl alcohol + NADP+ = 3-hydroxybenzaldehyde + NADPH + H+
Other name(s): m-hydroxybenzyl alcohol dehydrogenase; m-hydroxybenzyl alcohol (NADP) dehydrogenase; m-hydroxybenzylalcohol dehydrogenase
Systematic name: 3-hydroxybenzyl-alcohol:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-73-4
References:
1.  Forrester, P.I. and Gaucher, G.M. m-Hydroxybenzyl alcohol dehydrogenase from Penicillium urticae. Biochemistry 11 (1972) 1108–1114. [PMID: 4335290]
[EC 1.1.1.97 created 1972]
 
 
EC 1.1.1.139      
Deleted entry: polyol dehydrogenase (NADP+). Now included with EC 1.1.1.21 aldehyde reductase
[EC 1.1.1.139 created 1972, deleted 1978]
 
 
EC 1.1.1.144     
Accepted name: perillyl-alcohol dehydrogenase
Reaction: perillyl alcohol + NAD+ = perillyl aldehyde + NADH + H+
For diagram of (-)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Other name(s): perillyl alcohol dehydrogenase
Systematic name: perillyl-alcohol:NAD+ oxidoreductase
Comments: Oxidizes a number of primary alcohols with the alcohol group allylic to an endocyclic double bond and a 6-membered ring, either aromatic or hydroaromatic.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-73-0
References:
1.  Ballal, N.R., Bhattacharyya, P.K. and Rangachari, P.N. Perillyl alcohol dehydrogenase from a soil pseudomonad. Biochem. Biophys. Res. Commun. 23 (1966) 473–478. [DOI] [PMID: 4289759]
[EC 1.1.1.144 created 1972]
 
 
EC 1.1.1.164     
Accepted name: hexadecanol dehydrogenase
Reaction: hexadecanol + NAD+ = hexadecanal + NADH + H+
Systematic name: hexadecanol:NAD+ oxidoreductase
Comments: The liver enzyme acts on long-chain alcohols from C8 to C16. The Euglena enzyme also oxidizes the corresponding aldehydes to fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 62213-59-6
References:
1.  Kolattukuday, P.E. Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry 9 (1970) 1095–1102. [PMID: 4313936]
2.  Stoffel, W., Le Kim, D. and Heyn, G. Metabolism of sphingosine bases. XIV. Sphinganine (dihydrosphingosine), an effective donor of the alk-1-enyl chain of plasmalogens. Hoppe-Seyler's Z. Physiol. Chem. 351 (1970) 875–883. [PMID: 5432753]
[EC 1.1.1.164 created 1976]
 
 
EC 1.1.1.177     
Accepted name: glycerol-3-phosphate 1-dehydrogenase (NADP+)
Reaction: sn-glycerol 3-phosphate + NADP+ = D-glyceraldehyde 3-phosphate + NADPH + H+
Other name(s): glycerol phosphate (nicotinamide adenine dinucleotide phosphate) dehydrogenase; L-glycerol 3-phosphate:NADP+ oxidoreductase; glycerin-3-phosphate dehydrogenase; NADPH-dependent glycerin-3-phosphate dehydrogenase; NADP-specific glycerol 3-phosphate 1-dehydrogenase
Systematic name: sn-glycerol-3-phosphate:NADP+ 1-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37213-46-0
References:
1.  Glushankov, P.E., Epifanova, V.E. and Kolotilova, A.I. Pentose phosphate pathway of carbohydrate metabolism and NADP-dependent glycerol 3-phosphate dehydrogenase activity in some white rat tissues. Biokhimiya 41 (1976) 1788–1790. [PMID: 1024580] (in Russian)
2.  Wood, T. Catalysis of pentose phosphate pathway reactions by cytoplasmic fractions from muscle, uterus and liver of the rat, and the presence of a reduced nicotinamide-adenine dinucleotide phosphate-triose phosphate oxidoreductase in rat muscle. Biochem. J. 138 (1974) 71–76. [PMID: 4152128]
[EC 1.1.1.177 created 1980, modified 1980]
 
 
EC 1.1.1.184     
Accepted name: carbonyl reductase (NADPH)
Reaction: R-CHOH-R′ + NADP+ = R-CO-R′ + NADPH + H+
Other name(s): aldehyde reductase 1; prostaglandin 9-ketoreductase; xenobiotic ketone reductase; NADPH-dependent carbonyl reductase; ALR3; carbonyl reductase; nonspecific NADPH-dependent carbonyl reductase; carbonyl reductase (NADPH2)
Systematic name: secondary-alcohol:NADP+ oxidoreductase
Comments: Acts on a wide range of carbonyl compounds, including quinones, aromatic aldehydes, ketoaldehydes, daunorubicin and prostaglandins E and F, reducing them to the corresponding alcohol. Si-specific with respect to NADPH [cf. EC 1.1.1.2 alcohol dehydrogenase (NADP+)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 89700-36-7
References:
1.  Ahmed, N.K., Felsted, R.L. and Bachur, N.R. Heterogeneity of anthracycline antibiotic carbonyl reductases in mammalian livers. Biochem. Pharmacol. 27 (1978) 2713–2719. [DOI] [PMID: 31888]
2.  Lin, Y.M. and Jarabak, J. Isolation of two proteins with 9-ketoprostaglandin reductase and NADP-linked 15-hydroxyprostaglandin dehydrogenase activities and studies on their inhibition. Biochem. Biophys. Res. Commun. 81 (1978) 1227–1234. [DOI] [PMID: 666816]
3.  Wermuth, B. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J. Biol. Chem. 256 (1981) 1206–1213. [PMID: 7005231]
[EC 1.1.1.184 created 1983]
 
 
EC 1.1.1.185     
Accepted name: L-glycol dehydrogenase
Reaction: an L-glycol + NAD(P)+ = a 2-hydroxycarbonyl compound + NAD(P)H + H+
Other name(s): glycol (nicotinamide adenine dinucleotide (phosphate)) dehydrogenase; L-(+)-glycol:NAD(P) oxidoreductase; L-glycol:NAD(P) dehydrogenase
Systematic name: L-glycol:NAD(P)+ oxidoreductase
Comments: The 2-hydroxycarbonyl compound formed can be further oxidized to a vicinal dicarbonyl compound. In the reverse direction, vicinal diketones, glyceraldehyde, glyoxal, methylglyoxal, 2-oxo-hydroxyketones and 2-ketoacid esters can be reduced.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77967-75-0
References:
1.  Bernardo, A., Burgos, J. and Martin, R. Purification and some properties of L-glycol dehydrogenase from hen's muscle. Biochim. Biophys. Acta 659 (1981) 189–198. [DOI] [PMID: 7018582]
[EC 1.1.1.185 created 1984]
 
 
EC 1.1.1.190     
Accepted name: indole-3-acetaldehyde reductase (NADH)
Reaction: (indol-3-yl)ethanol + NAD+ = (indol-3-yl)acetaldehyde + NADH + H+
Other name(s): indoleacetaldehyde reductase; indole-3-acetaldehyde reductase (NADH); indole-3-ethanol:NAD+ oxidoreductase
Systematic name: (indol-3-yl)ethanol:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 58875-06-2
References:
1.  Brown, H.M. and Purves, W.K. Isolation and characterization of indole-3-acetaldehyde reductases from Cucumis sativus. J. Biol. Chem. 251 (1976) 907–913. [PMID: 2607]
[EC 1.1.1.190 created 1984]
 
 
EC 1.1.1.191     
Accepted name: indole-3-acetaldehyde reductase (NADPH)
Reaction: (indol-3-yl)ethanol + NADP+ = (indol-3-yl)acetaldehyde + NADPH + H+
Other name(s): indoleacetaldehyde (reduced nicotinamide adenine dinucleotide phosphate) reductase; indole-3-acetaldehyde reductase (NADPH); indole-3-ethanol:NADP+ oxidoreductase
Systematic name: (indol-3-yl)ethanol:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 58875-05-1
References:
1.  Brown, H.M. and Purves, W.K. Isolation and characterization of indole-3-acetaldehyde reductases from Cucumis sativus. J. Biol. Chem. 251 (1976) 907–913. [PMID: 2607]
[EC 1.1.1.191 created 1984]
 
 
EC 1.1.1.194     
Accepted name: coniferyl-alcohol dehydrogenase
Reaction: coniferyl alcohol + NADP+ = coniferyl aldehyde + NADPH + H+
Other name(s): CAD (ambiguous)
Systematic name: coniferyl-alcohol:NADP+ oxidoreductase
Comments: Specific for coniferyl alcohol; does not act on cinnamyl alcohol, 4-coumaryl alcohol or sinapyl alcohol.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 37250-27-4
References:
1.  Mansell, R.L., Babbel, G.R. and Zenk, M.H. Multiple forms and specificity of coniferyl alcohol dehydrogenase from cambial regions of higher plants. Phytochemistry 15 (1976) 1849–1853.
2.  Wyrambik, D. and Grisebach, H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 59 (1975) 9–15. [DOI] [PMID: 1250]
[EC 1.1.1.194 created 1984]
 
 
EC 1.1.1.195     
Accepted name: cinnamyl-alcohol dehydrogenase
Reaction: cinnamyl alcohol + NADP+ = cinnamaldehyde + NADPH + H+
Other name(s): cinnamyl alcohol dehydrogenase; CAD (ambiguous)
Systematic name: cinnamyl-alcohol:NADP+ oxidoreductase
Comments: Acts on coniferyl alcohol, sinapyl alcohol, 4-coumaryl alcohol and cinnamyl alcohol (cf. EC 1.1.1.194 coniferyl-alcohol dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55467-36-2
References:
1.  Sarni, F., Grand, C. and Baudet, A.M. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur. J. Biochem. 139 (1984) 259–265. [DOI] [PMID: 6365550]
2.  Wyrambik, D. and Grisebach, H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 59 (1975) 9–15. [DOI] [PMID: 1250]
3.  Wyrambik, D. and Grisebach, H. Enzymic synthesis of lignin precursors. Further studies on cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 97 (1979) 503–509. [DOI] [PMID: 572771]
[EC 1.1.1.195 created 1984]
 
 
EC 1.1.1.202     
Accepted name: 1,3-propanediol dehydrogenase
Reaction: propane-1,3-diol + NAD+ = 3-hydroxypropanal + NADH + H+
Other name(s): 3-hydroxypropionaldehyde reductase; 1,3-PD:NAD+ oxidoreductase; 1,3-propanediol:NAD+ oxidoreductase; 1,3-propanediol dehydrogenase
Systematic name: propane-1,3-diol:NAD+ 1-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 81611-70-3
References:
1.  Abeles, R.H., Brownstein, A.M. and Randles, C.H. α-Hydroxypropionaldehyde, an intermediate in the formation of 1,3-propanediol by Aerobacter melanogaster. Biochim. Biophys. Acta 41 (1960) 530. [DOI] [PMID: 13791444]
2.  Forage, R.G. and Foster, M.A. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J. Bacteriol. 149 (1982) 413–419. [PMID: 7035429]
[EC 1.1.1.202 created 1984]
 
 
EC 1.1.1.223     
Accepted name: isopiperitenol dehydrogenase
Reaction: (-)-trans-isopiperitenol + NAD+ = (-)-isopiperitenone + NADH + H+
For diagram of (-)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Systematic name: (-)-trans-isopiperitenol:NAD+ oxidoreductase
Comments: Acts on (-)-trans-isopiperitenol, (+)-trans-piperitenol and (+)-trans-pulegol. Involved in the biosynthesis of menthol and related monoterpenes in peppermint (Mentha piperita) leaves.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 96595-05-0
References:
1.  Kjonaas, R.B., Venkatachalam, K.V. and Croteau, R. Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha piperita) leaves. Arch. Biochem. Biophys. 238 (1985) 49–60. [DOI] [PMID: 3885858]
[EC 1.1.1.223 created 1989]
 
 
EC 1.1.1.243     
Accepted name: carveol dehydrogenase
Reaction: (–)-trans-carveol + NADP+ = (–)-carvone + NADPH + H+
For diagram of (–)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Other name(s): (–)-trans-carveol dehydrogenase
Systematic name: (–)-trans-carveol:NADP+ oxidoreductase
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 122653-66-1
References:
1.  Gershenzon, J., Maffei, M. and Croteau, R. Biochemical and histochemical-localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol. 89 (1989) 1351–1357. [PMID: 16666709]
[EC 1.1.1.243 created 1992]
 
 
EC 1.1.1.244     
Accepted name: methanol dehydrogenase
Reaction: methanol + NAD+ = formaldehyde + NADH + H+
Systematic name: methanol:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74506-37-9
References:
1.  Arfman, N., Watling, E.M., Clement, W., van Oosterwijk, R.J., de Vries, G.E., Harder, W., Attwood, M.M. and Dijkhuizen, L. Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Arch. Microbiol. 152 (1989) 280–288. [PMID: 2673121]
[EC 1.1.1.244 created 1992]
 
 
EC 1.1.1.263     
Accepted name: 1,5-anhydro-D-fructose reductase
Reaction: 1,5-anhydro-D-glucitol + NADP+ = 1,5-anhydro-D-fructose + NADPH + H+
Systematic name: 1,5-anhydro-D-glucitol:NADP+ oxidoreductase
Comments: Also reduces pyridine-3-aldehyde and 2,3-butanedione. Acetaldehyde, 2-dehydroglucose (glucosone) and glucuronate are poor substrates, but there is no detectable action on glucose, mannose and fructose.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 206138-19-4
References:
1.  Sakuma, M., Kametani, S. and Akanuma, H. Purification and some properties of a hepatic NADPH-dependent reductase that specifically acts on 1,5-anhydro-D-fructose. J. Biochem. (Tokyo) 123 (1998) 189–193. [PMID: 9504428]
[EC 1.1.1.263 created 2000]
 
 
EC 1.1.1.265     
Accepted name: 3-methylbutanal reductase
Reaction: 3-methylbutanol + NAD(P)+ = 3-methylbutanal + NAD(P)H + H+
Systematic name: 3-methylbutanol:NAD(P)+ oxidoreductase
Comments: The enzyme purified from Saccharomyces cerevisiae catalyses the reduction of a number of straight-chain and branched aldehydes, as well as some aromatic aldehydes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 214265-44-8
References:
1.  van Iersel, M.F.M., Eppink, M.H.M., van Berkel, W.J.H., Rombouts, F.M. and Abee, T. Purification and characterization of a novel NADP-dependent branched-chain alcohol dehydrogenase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63 (1997) 4079–4082. [PMID: 9327572]
2.  Ven Nedervelde, L., Verlinden, V., Philipp, D. and Debourg, A. Purification and characterization of yeast 3-methyl butanal reductases involved in the removal of wort carbonyls during fermentation. Proc. 26th Congr.-Eur. Brew. Conv. (1997) 447–454.
[EC 1.1.1.265 created 2000]
 
 
EC 1.1.1.273     
Accepted name: vellosimine dehydrogenase
Reaction: 10-deoxysarpagine + NADP+ = vellosimine + NADPH + H+
For diagram of geissoschizine and sarpagine biosynthesis, click here
Systematic name: 10-deoxysarpagine:NADP+ oxidoreductase
Comments: Also acts on related alkaloids with an endo-aldehyde group as vellosimine (same stereochemistry at C-16) but only slight activity with exo-aldehydes. Detected in many cell suspension cultures of plants from the family Apocynaceae.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 86777-26-6
References:
1.  Pfitzner, A., Krausch, B. and Stöckigt, J. Characteristics of vellosimine reductase, a specific enzyme involved in the biosynthesis of the Rauwolfia alkaloid sarpagine. Tetrahedron 40 (1984) 1691–1699.
[EC 1.1.1.273 created 2002]
 
 
EC 1.1.1.276     
Accepted name: serine 3-dehydrogenase (NADP+)
Reaction: L-serine + NADP+ = 2-aminoacetaldehyde + CO2 + NADPH + H+ (overall reaction)
(1a) L-serine + NADP+ = 2-aminomalonate semialdehyde + NADPH + H+
(1b) 2-aminomalonate semialdehyde = 2-aminoacetaldehyde + CO2 (spontaneous)
Other name(s): serine 3-dehydrogenase
Systematic name: L-serine:NADP+ 3-oxidoreductase
Comments: NAD+ cannot replace NADP+ [cf. EC 1.1.1.387, serine 3-dehydrogenase (NAD+)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9038-55-5
References:
1.  Fujisawa, H., Nagata, S., Chowdhury, E.K., Matsumoto, M. and Misono, H. Cloning and sequencing of the serine dehydrogenase gene from Agrobacterium tumefaciens. Biosci. Biotechnol. Biochem. 66 (2002) 1137–1139. [PMID: 12092831]
2.  Chowdhury, E.K., Higuchi, K., Nagata, S. and Misono, H. A novel NADP+ dependent serine dehydrogenase from Agrobacterium tumefaciens. Biosci. Biotechnol. Biochem. 61 (1997) 152–157. [PMID: 9028042]
[EC 1.1.1.276 created 2003, modified 2015]
 
 
EC 1.1.1.283     
Accepted name: methylglyoxal reductase (NADPH)
Reaction: (S)-lactaldehyde + NADP+ = 2-oxopropanal + NADPH + H+
Glossary: 2-oxopropanal = methylglyoxal
Other name(s): lactaldehyde dehydrogenase (NADP+); GRE2 (gene name); methylglyoxal reductase (NADPH-dependent); lactaldehyde:NADP+ oxidoreductase
Systematic name: (S)-lactaldehyde:NADP+ oxidoreductase
Comments: The enzyme from the yeast Saccharomyces cerevisiae catalyses the reduction of a keto group in a number of compounds, forming enantiopure products. Among the substrates are methylglyoxal (which is reduced to (S)-lactaldehyde) [1,2], 3-methylbutanal [3], hexane-2,5-dione [4] and 3-chloro-1-phenylpropan-1-one [5]. The enzyme differs from EC 1.1.1.78, methylglyoxal reductase (NADH), which is found in mammals, by its cosubstrate requirement, reaction direction, and enantiomeric preference.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 78310-66-4
References:
1.  Murata, K., Fukuda, Y., Simosaka, M., Watanabe, K., Saikusa, T. and Kimura, A. Metabolism of 2-oxoaldehyde in yeasts. Purification and characterization of NADPH-dependent methylglyoxal-reducing enzyme from Saccharomyces cerevisiae. Eur. J. Biochem. 151 (1985) 631–636. [DOI] [PMID: 3896793]
2.  Chen, C.N., Porubleva, L., Shearer, G., Svrakic, M., Holden, L.G., Dover, J.L., Johnston, M., Chitnis, P.R. and Kohl, D.H. Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae. Yeast 20 (2003) 545–554. [DOI] [PMID: 12722185]
3.  Hauser, M., Horn, P., Tournu, H., Hauser, N.C., Hoheisel, J.D., Brown, A.J. and Dickinson, J.R. A transcriptome analysis of isoamyl alcohol-induced filamentation in yeast reveals a novel role for Gre2p as isovaleraldehyde reductase. FEMS Yeast Res. 7 (2007) 84–92. [DOI] [PMID: 16999827]
4.  Muller, M., Katzberg, M., Bertau, M. and Hummel, W. Highly efficient and stereoselective biosynthesis of (2S,5S)-hexanediol with a dehydrogenase from Saccharomyces cerevisiae. Org. Biomol. Chem. 8 (2010) 1540–1550. [DOI] [PMID: 20237665]
5.  Choi, Y.H., Choi, H.J., Kim, D., Uhm, K.N. and Kim, H.K. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87 (2010) 185–193. [DOI] [PMID: 20111861]
6.  Breicha, K., Muller, M., Hummel, W. and Niefind, K. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP+-dependent alcohol dehydrogenase from Saccharomyces cerevisiae. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 (2010) 838–841. [DOI] [PMID: 20606287]
[EC 1.1.1.283 created 2005, modified 2013]
 
 
EC 1.1.1.284     
Accepted name: S-(hydroxymethyl)glutathione dehydrogenase
Reaction: S-(hydroxymethyl)glutathione + NAD(P)+ = S-formylglutathione + NAD(P)H + H+
Other name(s): NAD-linked formaldehyde dehydrogenase (incorrect); formaldehyde dehydrogenase (incorrect); formic dehydrogenase (incorrect); class III alcohol dehydrogenase; ADH3; χ-ADH; FDH (incorrect); formaldehyde dehydrogenase (glutathione) (incorrect); GS-FDH (incorrect); glutathione-dependent formaldehyde dehydrogenase (incorrect); GD-FALDH; NAD- and glutathione-dependent formaldehyde dehydrogenase; NAD-dependent formaldehyde dehydrogenase (incorrect)
Systematic name: S-(hydroxymethyl)glutathione:NAD+ oxidoreductase
Comments: The substrate, S-(hydroxymethyl)glutathione, forms spontaneously from glutathione and formaldehyde; its rate of formation is increased in some bacteria by the presence of EC 4.4.1.22, S-(hydroxymethyl)glutathione synthase. This enzyme forms part of the pathway that detoxifies formaldehyde, since the product is hydrolysed by EC 3.1.2.12, S-formylglutathione hydrolase. The human enzyme belongs to the family of zinc-dependent alcohol dehydrogenases. Also specifically reduces S-nitrosylglutathione.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
2.  Rose, Z.B. and Racker, E. Formaldehyde dehydrogenase. Methods Enzymol. 9 (1966) 357–360.
3.  Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J. and Stamler, J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410 (2001) 490–494. [DOI] [PMID: 11260719]
4.  Sanghani, P.C., Stone, C.L., Ray, B.D., Pindel, E.V., Hurley, T.D. and Bosron, W.F. Kinetic mechanism of human glutathione-dependent formaldehyde dehydrogenase. Biochemistry 39 (2000) 10720–10729. [DOI] [PMID: 10978156]
5.  van Ophem, P.W. and Duine, J.A. NAD- and co-substrate (GSH or factor)-dependent formaldehyde dehydrogenases from methylotrophic microorganisms act as a class III alcohol dehydrogenase. FEMS Microbiol. Lett. 116 (1994) 87–94.
6.  Ras, J., van Ophem, P.W., Reijnders, W.N., Van Spanning, R.J., Duine, J.A., Stouthamer, A.H. and Harms, N. Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J. Bacteriol. 177 (1995) 247–251. [DOI] [PMID: 7798140]
7.  Barber, R.D., Rott, M.A. and Donohue, T.J. Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides. J. Bacteriol. 178 (1996) 1386–1393. [DOI] [PMID: 8631716]
[EC 1.1.1.284 created 2005 (EC 1.2.1.1 created 1961, modified 1982, modified 2002, part transferred 2005 to EC 1.1.1.284)]
 
 
EC 1.1.1.288     
Accepted name: xanthoxin dehydrogenase
Reaction: xanthoxin + NAD+ = abscisic aldehyde + NADH + H+
For diagram of abscisic-acid biosynthesis, click here and for carotenoid-epoxide rearrangements, click here
Other name(s): xanthoxin oxidase; ABA2
Systematic name: xanthoxin:NAD+ oxidoreductase
Comments: Requires a molybdenum cofactor for activity. NADP+ cannot replace NAD+ and short-chain alcohols such as ethanol, isopropanol, butanol and cyclohexanol cannot replace xanthoxin as substrate [3]. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.2.3.14 (abscisic-aldehyde oxidase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8′-hydroxylase]. Abscisic acid is a sesquiterpenoid plant hormone that is involved in the control of a wide range of essential physiological processes, including seed development, germination and responses to stress [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129204-37-1
References:
1.  Sindhu, R.K. and Walton, D.C. Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol. 88 (1988) 178–182. [PMID: 16666262]
2.  Schwartz, S.H., Leon-Kloosterziel, K.M., Koornneef, M. and Zeevaart, J.A. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114 (1997) 161–166. [PMID: 9159947]
3.  González-Guzmán, M., Apostolova, N., Bellés, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R. and Rodríguez, P.L. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14 (2002) 1833–1846. [DOI] [PMID: 12172025]
[EC 1.1.1.288 created 2005]
 
 
EC 1.1.1.292     
Accepted name: 1,5-anhydro-D-fructose reductase (1,5-anhydro-D-mannitol-forming)
Reaction: 1,5-anhydro-D-mannitol + NADP+ = 1,5-anhydro-D-fructose + NADPH + H+
Other name(s): 1,5-anhydro-D-fructose reductase (ambiguous); AFR (ambiguous)
Systematic name: 1,5-anhydro-D-mannitol:NADP+ oxidoreductase
Comments: This enzyme is present in some but not all Rhizobium species and belongs in the GFO/IDH/MocA protein family [2]. This enzyme differs from hepatic 1,5-anhydro-D-fructose reductase, which yields 1,5-anhydro-D-glucitol as the product (see EC 1.1.1.263). In Sinorhizobium morelense, the product of the reaction, 1,5-anhydro-D-mannitol, can be further metabolized to D-mannose [1]. The enzyme also reduces 1,5-anhydro-D-erythro-hexo-2,3-diulose and 2-ketoaldoses (called osones), such as D-glucosone (D-arabino-hexos-2-ulose) and 6-deoxy-D-glucosone. It does not reduce common aldoses and ketoses, or non-sugar aldehydes and ketones [1].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kühn, A., Yu, S. and Giffhorn, F. Catabolism of 1,5-anhydro-D-fructose in Sinorhizobium morelense S-30.7.5: discovery, characterization, and overexpression of a new 1,5-anhydro-D-fructose reductase and its application in sugar analysis and rare sugar synthesis. Appl. Environ. Microbiol. 72 (2006) 1248–1257. [DOI] [PMID: 16461673]
2.  Dambe, T.R., Kühn, A.M., Brossette, T., Giffhorn, F. and Scheidig, A.J. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 Å resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Biochemistry 45 (2006) 10030–10042. [DOI] [PMID: 16906761]
[EC 1.1.1.292 created 2007]
 
 
EC 1.1.1.298     
Accepted name: 3-hydroxypropionate dehydrogenase (NADP+)
Reaction: 3-hydroxypropanoate + NADP+ = malonate semialdehyde + NADPH + H+
For diagram of the 3-hydroxypropanoate cycle, click here and for diagram of the 3-hydroxypropanoate/4-hydroxybutanoate cycle and dicarboxylate/4-hydroxybutanoate cycle in archaea, click here
Glossary: 3-hydroxypropanoate = 3-hydroxypropionate
Other name(s): 3-hydroxypropanoate dehydrogenase (NADP+); 3-hydroxypropionate:NADP+ oxidoreductase
Systematic name: 3-hydroxypropanoate:NADP+ oxidoreductase
Comments: Catalyses the reduction of malonate semialdehyde to 3-hydroxypropanoate, a key step in the 3-hydroxypropanoate and the 3-hydroxypropanoate/4-hydroxybutanoate cycles, autotrophic CO2 fixation pathways found in some green non-sulfur phototrophic bacteria and archaea, respectively [1,2]. The enzyme from Chloroflexus aurantiacus is bifunctional, and also catalyses the upstream reaction in the pathway, EC 1.2.1.75 [3]. Different from EC 1.1.1.59 [3-hydroxypropionate dehydrogenase (NAD+)] by cofactor preference.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Strauss, G. and Fuchs, G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur. J. Biochem. 215 (1993) 633–643. [DOI] [PMID: 8354269]
2.  Berg, I.A., Kockelkorn, D., Buckel, W. and Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318 (2007) 1782–1786. [DOI] [PMID: 18079405]
3.  Hugler, M., Menendez, C., Schagger, H. and Fuchs, G. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Bacteriol. 184 (2002) 2404–2410. [DOI] [PMID: 11948153]
[EC 1.1.1.298 created 2009]
 
 
EC 1.1.1.300     
Accepted name: NADP-retinol dehydrogenase
Reaction: retinol + NADP+ = retinal + NADPH + H+
Other name(s): all-trans retinal reductase (ambiguous); all-trans-retinol dehydrogenase; NADP(H)-dependent retinol dehydrogenase/reductase; RDH11; RDH12; RDH13; RDH14; retinol dehydrogenase 12; retinol dehydrogenase 14; retinol dehydrogenase [NADP+]; RalR1; PSDR1
Systematic name: retinol:NADP+ oxidoreductase
Comments: Greater catalytic efficiency in the reductive direction. This observation, and the enzyme’s localization at the entrance to the mitochondrial matrix, suggest that it may function to protect mitochondria against oxidative stress associated with the highly reactive retinal produced from dietary β-carotene by EC 1.13.11.63 (β-carotene 15,15′-dioxygenase) [2]. Km-values for NADP+ and NADPH are at least 800-fold lower than those for NAD+ and NADH [1,4]. This enzyme differs from EC 1.1.1.105, retinol dehydrogenase, which prefers NAD+ and NADH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Belyaeva, O.V., Korkina, O.V., Stetsenko, A.V., Kim, T., Nelson, P.S. and Kedishvili, N.Y. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry 44 (2005) 7035–7047. [DOI] [PMID: 15865448]
2.  Belyaeva, O.V., Korkina, O.V., Stetsenko, A.V. and Kedishvili, N.Y. Human retinol dehydrogenase 13 (RDH13) is a mitochondrial short-chain dehydrogenase/reductase with a retinaldehyde reductase activity. FEBS J. 275 (2008) 138–147. [DOI] [PMID: 18039331]
3.  Haeseleer, F., Huang, J., Lebioda, L., Saari, J.C. and Palczewski, K. Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J. Biol. Chem. 273 (1998) 21790–21799. [DOI] [PMID: 9705317]
4.  Kedishvili, N.Y., Chumakova, O.V., Chetyrkin, S.V., Belyaeva, O.V., Lapshina, E.A., Lin, D.W., Matsumura, M. and Nelson, P.S. Evidence that the human gene for prostate short-chain dehydrogenase/reductase (PSDR1) encodes a novel retinal reductase (RalR1). J. Biol. Chem. 277 (2002) 28909–28915. [DOI] [PMID: 12036956]
[EC 1.1.1.300 created 2009]
 
 
EC 1.1.1.306     
Accepted name: S-(hydroxymethyl)mycothiol dehydrogenase
Reaction: S-(hydroxymethyl)mycothiol + NAD+ = S-formylmycothiol + NADH + H+
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): NAD/factor-dependent formaldehyde dehydrogenase; mycothiol-dependent formaldehyde dehydrogenase
Systematic name: S-(hydroxymethyl)mycothiol:NAD+ oxidoreductase
Comments: S-hydroxymethylmycothiol is believed to form spontaneously from formaldehyde and mycothiol. This enzyme oxidizes the product of this spontaneous reaction to S-formylmycothiol, in a reaction that is analogous to EC 1.1.1.284, S-(hydroxymethyl)glutathione dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 192140-85-5
References:
1.  Misset-Smits, M., Van Ophem, P.W., Sakuda, S. and Duine, J.A. Mycothiol, 1-O-(2′-[N-acetyl-L-cysteinyl]amido-2′-deoxy-α-D-glucopyranosyl)-D-myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase. FEBS Lett. 409 (1997) 221–222. [DOI] [PMID: 9202149]
2.  Norin, A., Van Ophem, P.W., Piersma, S.R., Person, B., Duine, J.A. and Jornvall, H. Mycothiol-dependent formaldehyde dehydrogenase, a prokaryotic medium-chain dehydrogenase/reductase, phylogenetically links different eukaryotic alcohol dehydrogenase's - primary structure, conformational modelling and functional correlations. Eur. J. Biochem. 248 (1997) 282–289. [DOI] [PMID: 9346279]
3.  Vogt, R.N., Steenkamp, D.J., Zheng, R. and Blanchard, J.S. The metabolism of nitrosothiols in the Mycobacteria: identification and characterization of S-nitrosomycothiol reductase. Biochem. J. 374 (2003) 657–666. [DOI] [PMID: 12809551]
4.  Rawat, M. and Av-Gay, Y. Mycothiol-dependent proteins in actinomycetes. FEMS Microbiol. Rev. 31 (2007) 278–292. [DOI] [PMID: 17286835]
[EC 1.1.1.306 created 2010 as EC 1.2.1.66, transferred 2010 to EC 1.1.1.306]
 
 
EC 1.1.1.309     
Accepted name: phosphonoacetaldehyde reductase (NADH)
Reaction: 2-hydroxyethylphosphonate + NAD+ = phosphonoacetaldehyde + NADH + H+
For diagram of phosphonate metabolism, click here
Other name(s): PhpC
Systematic name: 2-hydroxyethylphosphonate:NAD+ oxidoreductase
Comments: The enzyme from Streptomyces viridochromogenes catalyses a step in the biosynthesis of phosphinothricin tripeptide, the reduction of phosphonoacetaldehyde to 2-hydroxyethylphosphonate. The preferred cofactor is NADH, lower activity with NADPH [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Blodgett, J.A., Thomas, P.M., Li, G., Velasquez, J.E., van der Donk, W.A., Kelleher, N.L. and Metcalf, W.W. Unusual transformations in the biosynthesis of the antibiotic phosphinothricin tripeptide. Nat. Chem. Biol. 3 (2007) 480–485. [DOI] [PMID: 17632514]
[EC 1.1.1.309 created 2011]
 
 
EC 1.1.1.312     
Accepted name: 2-hydroxy-4-carboxymuconate semialdehyde hemiacetal dehydrogenase
Reaction: 4-carboxy-2-hydroxymuconate semialdehyde hemiacetal + NADP+ = 2-oxo-2H-pyran-4,6-dicarboxylate + NADPH + H+
For diagram of the protocatechuate 3,4-cleavage pathway, click here
Other name(s): 2-hydroxy-4-carboxymuconate 6-semialdehyde dehydrogenase; 4-carboxy-2-hydroxy-cis,cis-muconate-6-semialdehyde:NADP+ oxidoreductase; α-hydroxy-γ-carboxymuconic ε-semialdehyde dehydrogenase; 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase; LigC; ProD
Systematic name: 4-carboxy-2-hydroxymuconate semialdehyde hemiacetal:NADP+ 2-oxidoreductase
Comments: The enzyme does not act on unsubstituted aliphatic or aromatic aldehydes or glucose; NAD+ can replace NADP+, but with lower affinity. The enzyme was initially believed to act on 4-carboxy-2-hydroxy-cis,cis-muconate 6-semialdehyde and produce 4-carboxy-2-hydroxy-cis,cis-muconate [1]. However, later studies showed that the substrate is the hemiacetal form [3], and the product is 2-oxo-2H-pyran-4,6-dicarboxylate [2,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Maruyama, K., Ariga, N., Tsuda, M. and Deguchi, K. Purification and properties of α-hydroxy-γ-carboxymuconic ε-semialdehyde dehydrogenase. J. Biochem. (Tokyo) 83 (1978) 1125–1134. [PMID: 26671]
2.  Maruyama, K. Isolation and identification of the reaction product of α-hydroxy-γ-carboxymuconic ε-semialdehyde dehydrogenase. J. Biochem. 86 (1979) 1671–1677. [PMID: 528534]
3.  Maruyama, K. Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J. Biochem. (Tokyo) 93 (1983) 557–565. [PMID: 6841353]
4.  Masai, E., Momose, K., Hara, H., Nishikawa, S., Katayama, Y. and Fukuda, M. Genetic and biochemical characterization of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and its role in the protocatechuate 4,5-cleavage pathway in Sphingomonas paucimobilis SYK-6. J. Bacteriol. 182 (2000) 6651–6658. [DOI] [PMID: 11073908]
[EC 1.1.1.312 created 1978 as EC 1.2.1.45, transferred 2011 to EC 1.1.1.312]
 
 
EC 1.1.1.313     
Accepted name: sulfoacetaldehyde reductase (NADPH)
Reaction: isethionate + NADP+ = 2-sulfoacetaldehyde + NADPH + H+
Glossary: isethionate = 2-hydroxyethanesulfonate
2-sulfoacetaldehyde = 2-oxoethanesulfonate
Other name(s): isfD (gene name)
Systematic name: isethionate:NADP+ oxidoreductase
Comments: Catalyses the reaction only in the opposite direction. Involved in taurine degradation. The bacterium Chromohalobacter salexigens strain DSM 3043 possesses two enzymes that catalyse this reaction, a constitutive enzyme (encoded by isfD2) and an inducible enzyme (encoded by isfD). The latter is induced by taurine, and is responsible for most of the activity observed in taurine-grown cells. cf. EC 1.1.1.433, sulfoacetaldehyde reductase (NADH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Krejcik, Z., Hollemeyer, K., Smits, T.H. and Cook, A.M. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. Microbiology 156 (2010) 1547–1555. [DOI] [PMID: 20133363]
[EC 1.1.1.313 created 2011, modified 2022]
 
 
EC 1.1.1.315     
Accepted name: 11-cis-retinol dehydrogenase
Reaction: 11-cis-retinol—[retinal-binding-protein] + NAD+ = 11-cis-retinal—[retinol-binding-protein] + NADH + H+
Glossary: 11-cis-retinal = 11-cis-retinaldehyde
Other name(s): RDH5 (gene name)
Systematic name: 11-cis-retinol:NAD+ oxidoreductase
Comments: This enzyme, abundant in the retinal pigment epithelium, catalyses the reduction of 11-cis-retinol to 11-cis-retinal [1] while the substrate is bound to the retinal-binding protein [4]. This is a crucial step in the regeneration of 11-cis-retinal, the chromophore of rhodopsin. The enzyme can also accept other cis forms of retinol [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Simon, A., Hellman, U., Wernstedt, C. and Eriksson, U. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J. Biol. Chem. 270 (1995) 1107–1112. [DOI] [PMID: 7836368]
2.  Wang, J., Chai, X., Eriksson, U. and Napoli, J.L. Activity of human 11-cis-retinol dehydrogenase (Rdh5) with steroids and retinoids and expression of its mRNA in extra-ocular human tissue. Biochem. J. 338 (1999) 23–27. [PMID: 9931293]
3.  Liden, M., Romert, A., Tryggvason, K., Persson, B. and Eriksson, U. Biochemical defects in 11-cis-retinol dehydrogenase mutants associated with fundus albipunctatus. J. Biol. Chem. 276 (2001) 49251–49257. [DOI] [PMID: 11675386]
4.  Wu, Z., Yang, Y., Shaw, N., Bhattacharya, S., Yan, L., West, K., Roth, K., Noy, N., Qin, J. and Crabb, J.W. Mapping the ligand binding pocket in the cellular retinaldehyde binding protein. J. Biol. Chem. 278 (2003) 12390–12396. [DOI] [PMID: 12536149]
[EC 1.1.1.315 created 2011]
 
 
EC 1.1.1.332     
Accepted name: chanoclavine-I dehydrogenase
Reaction: chanoclavine-I + NAD+ = chanoclavine-I aldehyde + NADH + H+
Glossary: chanoclavine-I = (1E)-2-methyl-3-[(4R,5R)-4-(methylamino)-1,3,4,5-tetrahydrobenz[cd]indol-5-yl]prop-2-en-1-ol
chanoclavine-I aldehyde = (1E)-2-methyl-3-[(4R,5R)-4-(methylamino)-1,3,4,5-tetrahydrobenz[cd]indol-5-yl]prop-2-enal
Other name(s): easD (gene name); fgaDH (gene name)
Systematic name: chanoclavine-I:NAD+ oxidoreductase
Comments: The enzyme catalyses a step in the pathway of ergot alkaloid biosynthesis in certain fungi.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wallwey, C., Matuschek, M. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch. Microbiol. 192 (2010) 127–134. [DOI] [PMID: 20039019]
2.  Wallwey, C., Heddergott, C., Xie, X., Brakhage, A.A. and Li, S.M. Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae. Microbiology 158 (2012) 1634–1644. [DOI] [PMID: 22403186]
[EC 1.1.1.332 created 2012]
 
 
EC 1.1.1.343     
Accepted name: phosphogluconate dehydrogenase (NAD+-dependent, decarboxylating)
Reaction: 6-phospho-D-gluconate + NAD+ = D-ribulose 5-phosphate + CO2 + NADH + H+
For diagram of the pentose phosphate pathway (early stages), click here
Other name(s): 6-PGDH (ambiguous); gntZ (gene name); GNDl
Systematic name: 6-phospho-D-gluconate:NAD+ 2-oxidoreductase (decarboxylating)
Comments: Highly specific for NAD+. The enzyme catalyses both the oxidation and decarboxylation of 6-phospho-D-gluconate. In the bacterium Methylobacillus flagellatus the enzyme participates in a formaldehyde oxidation pathway [4]. cf. EC 1.1.1.44, phosphogluconate dehydrogenase (NADP+-dependent, decarboxylating).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9073-95-4
References:
1.  Kiriuchin, M. Y., Kletsova, L. V., Chistoserdov, A. Y. and Tsygankov, Y. D. Properties of glucose 6-phosphate and 6-phosphogluconate dehydrogenases of the obligate methylotroph Methylobacillus flagellatum KT. FEMS Microbiol. Lett. 52 (1988) 199–204.
2.  Ohara, H., Russell, R.A., Uchida, K. and Kondo, H. Purification and characterization of NAD-specific 6-phosphogluconate dehydrogenase from Leuconostoc lactis SHO-54. J. Biosci. Bioeng. 98 (2004) 126–128. [DOI] [PMID: 16233677]
3.  Zamboni, N., Fischer, E., Laudert, D., Aymerich, S., Hohmann, H.P. and Sauer, U. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J. Bacteriol. 186 (2004) 4528–4534. [DOI] [PMID: 15231785]
4.  Chistoserdova, L., Gomelsky, L., Vorholt, J.A., Gomelsky, M., Tsygankov, Y.D. and Lidstrom, M.E. Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 146 (2000) 233–238. [DOI] [PMID: 10658669]
[EC 1.1.1.343 created 2013]
 
 
EC 1.1.1.365     
Accepted name: D-galacturonate reductase
Reaction: L-galactonate + NADP+ = D-galacturonate + NADPH + H+
Other name(s): GalUR; gar1 (gene name)
Systematic name: L-galactonate:NADP+ oxidoreductase
Comments: The enzyme from plants is involved in ascorbic acid (vitamin C) biosynthesis [1,2]. The enzyme from the fungus Trichoderma reesei (Hypocrea jecorina) is involved in a eukaryotic degradation pathway of D-galacturonate. It is also active with D-glucuronate and glyceraldehyde [3]. Neither enzyme shows any activity with NADH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Isherwood, F.A. and Mapson, L.W. Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. Biochem. J. 64 (1956) 13–22. [PMID: 13363799]
2.  Agius, F., Gonzalez-Lamothe, R., Caballero, J.L., Munoz-Blanco, J., Botella, M.A. and Valpuesta, V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotechnol. 21 (2003) 177–181. [DOI] [PMID: 12524550]
3.  Kuorelahti, S., Kalkkinen, N., Penttila, M., Londesborough, J. and Richard, P. Identification in the mold Hypocrea jecorina of the first fungal D-galacturonic acid reductase. Biochemistry 44 (2005) 11234–11240. [DOI] [PMID: 16101307]
4.  Martens-Uzunova, E.S. and Schaap, P.J. An evolutionary conserved D-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genet. Biol. 45 (2008) 1449–1457. [DOI] [PMID: 18768163]
[EC 1.1.1.365 created 2013]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald